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We present a study of bidispersed particulate gravity currents at high Reynolds
numbers flowing along a V-shaped valley. The speed and width of the currents,
the mass deposited by the currents and the density of the deposits were examined
by both a box model and lock-exchange experiments in a 5 m long tank. Silicon
carbide and glass beads were used for the bidispersed suspension models. The initial
conditions of the currents were similar, except that the grain size of the glass beads
was successively chosen to be 2, 2.5 and 4 times that of the silicon carbide. For
all experiments a Stokes’ settling velocity model, assuming that both particles are
spherical, gives a settling rate of the glass beads that is greater than that of the silicon
carbide by a factor ranging from 1.6 to 16.5. When the ratio of the Stokes’ settling
velocity of the glass beads to that of the silicon carbide is greater than ∼6, we find
a complete agreement between the box model and the experiment. In particular, the
deposit shows a substantial decline in the mass of the coarser glass beads in the
first metre, so that it only contains the finer silicon carbide further downstream. By
contrast, when the Stokes’ settling velocity ratio is less than ∼4, only the speed of the
current and the total sedimented mass can be well described by the box model. The
experimental deposit is otherwise characterized by a slightly increasing density, which
the box model fails to match. There is no difference in the deposit density across the
valley. For all experiments in the V-shaped valley, the width of the currents decreases
with time t according to t−2/7. Analogue experiments in a flat-bottom tank were
also performed to assess the influence of the valley on the sedimentation dynamics
described above. A similar behaviour with settling velocity ratios was found. This
study eventually shows the need for considering particle interactions in even dilute
gravity currents at high Reynolds numbers.

Key words: channel flow, gravity currents, sediment transport

1. Introduction
Pyroclastic and turbidity flows are both gravity currents carrying particulate matter.

Deposits produced by such currents are especially important. Deposits from pyroclastic
flows are the key source of information to evaluate volcanic hazards. Deposits from
turbidity currents are well known for being significantly hydrocarbon-rich as well
as being reservoirs of other minerals. Both currents have been the subject of much

† Email address for correspondence: cameriaux@fc.ul.pt

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:cameriaux@fc.ul.pt
https://doi.org/10.1017/jfm.2012.389


Sedimentation in particulate turbulent currents 625

attention over the last few decades (see, for example, the reviews by Sparks (1976),
Kneller & Buckee (2000) and Meiburg & Kneller (2010)).

Sedimentation is a key process in dilute turbidity currents and pyroclastic flows.
One key feature that is expected from such dilute polydispersed currents is the
sedimentation of the coarser particulate sizes upstream, whereas the finer particulate
sizes settle further downstream. Such settling dynamics has been well established by
laboratory experiments in long flumes driven by steady influx (e.g. Garcia 1994), or
by lock-exchange experiments in which a fixed volume is initially released from a
lock in a long flat-bottom tank (Gladstone, Phillips & Sparks 1998; Choux & Druitt
2002; Hodson & Alexander 2010). Several numerical models for currents consisting
of one type of particulate matter but with several grain sizes showed a sedimentation
behaviour similar to that observed in the laboratory studies. Although these models
were based on quite distinct numerical approaches, they similarly assumed that
sedimentation occurs through the basal viscous sublayer from a vertically uniform
particle concentration that is well mixed by turbulence. Hence, they relied on a settling
velocity in the Stokes’ range. Following Garcia (1994), Salaheldina et al. (2000)
used a layer-averaged model that incorporated water entrainment, dynamic friction,
sediment exchange with the erodible bottom and an empirical equation accounting for
the effects of size, density, shape and roundness on the settling velocity of natural
sediments, as established by Dietrich (1982). The model described by Bonnecaze,
Huppert & Lister (1996) was based on shallow-water equations, and assumed Stokes’
settling. Huang, Imran & Pirmez (2007) developed a model for turbidity currents
propagating down a slope using three-dimensional Reynolds-averaged Navier–Stokes
equations, with a multiphase approach and a turbulence closure scheme while adopting
Dietrich’s fall-velocity estimate. The model includes the exchange of sediments with
the bottom boundary via erosion and deposition.

In currents where particles differ not only by grain size but also by density, large
and small particles could coexist in the deposit at large distances from the source
when the settling velocities for the large and small particles are equivalent. This
concept of hydrodynamic equivalence has, for instance, been proposed by Dade &
Huppert (1996) to explain why large pumices were found together with smaller lithics
at large distances downstream, in the case of the Taupo ignimbrite. In this case the
settling velocity was that of particles in low-density gases, which is proportional to
(gρd)1/2, where g is the gravitational acceleration, ρ is the ratio of particle-to-gas
phase densities and d is the size of the particle. In polydispersed dilute currents,
the settling velocity is characterized by the Stokes’ velocity, and the hydrodynamic
equivalence would thus require gρd2 to be similar between particles of different
densities and sizes. This contrasts with the proposed criterion of a turbulent settling
regime that is ρ2d, as assumed by Choux & Druitt (2002) in their analogue study of
pyroclastic density currents.

Monaghan et al. (2009a,b) were the first to assess the extent to which the
topography of a V-shaped bottom affects currents of constant volumes. In particular
they found that the speed of the currents and the deposits of their monodispersed
particulate currents can be described with remarkable accuracy by a box model. In
addition to the valley, our study considered bidispersed particulate gravity currents as
a further step in modelling more realistic currents. The objectives were to: (a) develop
a box model for binary suspensions; and (b) benchmark the new box model with
laboratory experiments. This paper presents the combined box model and laboratory
experiments of bidispersed particulate gravity currents at high Reynolds numbers
flowing along a V-shaped valley. Our study also tests the concept of hydrodynamic
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equivalence discussed previously, as we consider particles of different densities and
different sizes, namely silicon carbide and glass beads. Our laboratory experiments
reveal that the density of the deposits as a function of distance from the point of
release of the currents can be strikingly different from that predicted by the box model,
which systematically follows the well-accepted trend for decreasing grain size along
the current. Only when the Stokes’ settling velocity ratio between the coarser and
finer particles is greater than ∼6 do we retrieve agreement between the experimental
data and the box model. As the Stokes’ settling velocity ratio between the coarser
and finer particles is less than ∼4, the density of the deposit is found to be slightly
increasing, which suggests that there was quasihydrodynamic equivalence between the
two particles. To check whether the valley has a major influence on sedimentation, two
experiments, which were similar in grain size and initial gravitational potential energy
as the V-shaped experiments, were performed in a flat-bottom geometry. We found that
the final deposits have density characteristics similar to the V-shaped analogues. So the
presence of the valley does not affect the sedimentation mechanisms. The box model
is first described in § 2, whereas § 3 details the experiments. In § 4 we present our
results from the box model and experiments. We discuss our results and present our
conclusions in §§ 5 and 6, respectively.

2. The box model for a binary suspension
In this section we generalize the box model of Monaghan et al. (2009a,b) for binary

suspensions released in lock-exchange experiments. We consider the two geometries
of a current propagating over either a flat bottom or a V-shaped valley. The box
model relies on three assumptions: (a) the velocity of the front of the current is
given by a Froude number condition; (b) the sedimentation of the particles during the
flow follows a generalized deposit formula from Martin & Nokes (1988, 1989) and
Monaghan et al. (2009b); and (c) the volume of the current V is constant.

First, if X is the coordinate of the front measured from the origin of the lock, the
velocity of the front of the current is given by

dX

dt
= Fr

√
g′h, (2.1)

where h is the depth of the current, Fr ∼ 1 is the Froude number and g′ is defined by

g′ = (ρc − ρw)

ρw
g, (2.2)

where ρc is the density of the current, ρw is the density of water and g is the
gravitational acceleration. In the binary suspension, the density of the current ρc is
given by

ρc = M + m1 + m2

m1/ρ1 + m2/ρ2 +M/ρw
, (2.3)

where m1 and m2 are the masses of particles 1 and 2, the densities of which are ρ1 and
ρ2, respectively, and M is the mass of water that is in the lock prior to the release of
the current.

Second, the sedimentation of the particles during the flow is described by

dmi

dt
=−γ miv

i
s

h
, (2.4)
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Sedimentation in particulate turbulent currents 627

where mi and vi
s are the mass and sedimentation velocity of particles i = 1, 2, and

γ is a parameter that was shown to be less than 1 and to vary around 0.5–0.7
for monodispersed currents (Monaghan et al. 2009b). We use an estimate of the
sedimentation velocity similar to that of Monaghan et al. (2009b), which leads to

vi
s =

d2
i g(ρi/ρw − 1)(1− ϕ5

i )

18ν
, (2.5)

where di is the diameter of the particles i, ρi is the density of the particles i, ν is the
kinematic viscosity of water and ϕi is the volume concentrations of particles i= 1, 2 in
the current, given by

ϕi = mi

M

ρw

ρi
. (2.6)

We note that using (2.4) means that the current is well mixed, as it ignores any
turbulent diffusion where mass is transferred through the mixing of eddies. This would
have led to an additional term that depends on the turbulent Schmidt number Sct,
which is the ratio of turbulent eddy viscosity to mass eddy diffusivity. Such a term is,
for instance, considered in the model of Huang et al. (2007). Equation (2.4) can be
expressed in terms of ϕi using (2.6), which gives

dϕi

dt
=−γ ϕiv

i
s

h
. (2.7)

Equation (2.7) means that particles of type i, and of uniform particle concentration
ϕi in the current, leave the current at the viscous sublayer with the Stokes’ settling
velocity vi

s, independently of particle type j.
Third, if h0 is the initial depth of the current and L is the length of the lock, the

volume condition in the case of the flat bottom at time t when the current front is at X
leads to

h= V

XW
= h0L

X
, (2.8)

where W is the constant width of the current.
In the V-shaped valley, the height of the current h is measured from the bottom of

the valley of height a. So, when h > a,

h= a

2
+ V

WX
= a

2
+ A

X
, (2.9)

where the cross-section A = V/W is known from the initial volume as A = V/W =
L(h0 − a/2). When h< a,

h=
√

2aV

XW
=

√
2aA

X
. (2.10)

The system of equations (2.1)–(2.10) is solved numerically using a midpoint
predictor–corrector algorithm. To increment the mass deposited from the current with
time, the total mass deposited, 1m = 1m1 + 1m2, during a time step is equally
distributed between strips of length 1x that divide the bottom of the tank. At a time
t, the number of strips in which the deposited mass is incremented is X/1x. If mk is
the final mass in strip k, the mass per strip area at the position of the strip is, in the
presence of the valley, mk/(2S1x), where S =√

W2/4+ a2, and mk/(W1x) for the
flat bottom.
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W

L

h0

a

FIGURE 1. Schematic of the lock-exchange tank with inserted valley. Dimensions of W, L
and a are 30, 13 and 6.65 cm, respectively. In all experiments with the V-shaped valley, h0
was 0.126 cm, whereas h0 was 0.120 cm for the flat-bottom experiments.

The deposited mass fraction f k
1 of particles 1 is evaluated as

f k
1 =

mk
1

mk
1 + mk

2

, (2.11)

where mk
1 and mk

2 are the final masses of particles 1 and 2, respectively, in strip k.
We then define the density of the deposit by its material density, which we will also
determine experimentally. The density of the deposit ρk

d in strip k is thus defined by
the particulate mass mk in strip k divided by the volume occupied by the particulate
matter, which gives

ρk
d =

mk
1 + mk

2

mk
1/ρ1 + mk

2/ρ2
. (2.12)

Equation (2.12) can further be expressed in terms of f k
1 , which gives

ρk
d =

ρ1ρ2

[f k
1 ρ2 + (1− f k

1 )ρ1] . (2.13)

3. The laboratory experiments
3.1. Laboratory protocol

The experiments were carried out in a Perspex rectangular tank 5 m long and 30 cm
wide. We either used the flat-bottom tank or we inserted a V-shaped valley in the tank,
sealed along the tank edge with transparent tape at the edges of the valley, and with
transparent silicon in the lock. The V-shaped valley had a height of 6.65 cm (figure 1).

Particles of silicon carbide (SiC) and glass beads (GBs) were manually wet sieved
with shaking, to select given grain sizes, until the endpoint test (i.e. when the quantity
passing through the sieve in 1 min is less than 0.1 % of the total) was reached. We
found that dry sieving was inappropriate, because of the presence of a significant
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(a)

(c)

(b)

(d )

FIGURE 2. Close-up view of the SiC (a) and GBs (b–d) used for the experiments after
sieving. The scale of each frame is 0.5 mm × 0.5 mm. The microscope used a magnification
of 400×. Panels (b), (c) and (d) show sampled GBs of sizes 50–63, 60–80 and 100–125 µm.
Note the contrasting shape and roundness of the smooth GB spheres and the sharp angular
SiC grains.

quantity of dust in our bulk materials. Figure 2 shows samples of the grains used for
the experiment after sieving.

The tank was initially filled with tap water up to a fixed depth h0, measured from
the surface of the water to the bottom. A Perspex gate with foam seal at its bottom
was positioned at a fixed distance, L = 13 cm, from one end of the tank. A measured
mass m0 of particles composed of SiC and GBs was added to the volume of water
held behind the lock gate. The mixture was stirred vigorously to bring all of the
particles into suspension before the gate was rapidly lifted to release the current. Once
the flow had stopped and the particles had been deposited, the tank was carefully
drained. In the V-shaped valley and flat-bottom experiments, successive strips of length
25 cm were then cut over the tank width into the wet, cohesive deposits from the end
of the lock to the final position of the current. In experiment 1 with the V-shaped
valley (see table 1), each strip was cut into three slices consisting of two symmetric
flank substrips, each of length 12 cm, and a central substrip of length 8.8 cm. Note
that we never observed ripples at the surface of the deposits. Figure 3 shows a
close-up view of the sampled deposit in the last strip for experiments 1, 3, 4 and
5. Remarkably, the photos reveal the presence or absence of GBs at the end of the
deposit.

Each experiment was recorded by a camera in video mode. Measurements of the
position of the front of the current as a function of time were obtained from frame-by-
frame replay of the video recording.
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(c)

(a)

(d )

(b)

FIGURE 3. Close-up view of the sampled deposits from the last strip in experiments 1, 3, 4
and 5: panels (a), (b), (c) and (d), respectively. The scale of each frame is 0.5 mm × 0.5 mm.
The magnification used was 400×. Remarkably, the photos show the presence or absence of
GBs, carried or not by the current to the end. The density measurements will confirm this and
further quantify the quantity of SiC and GBs in each deposit.

Experiment Bottom 1ρ/ρw h0 mSiC
0 dSiC dGB ϕ0 g′0 Re0 Mlock

(%) (m) (kg) (µm) (µm) (m s−2) (%)

0 V-shaped 0.0443 0.126 0.238 25–32 — 0.0205 0.4344 29 566 10.5
1 V-shaped 0.0443 0.126 0.130 25–32 50–63 0.0263 0.4346 29 484 13.4
2 V-shaped 0.0443 0.126 0.130 25–32 63-80 0.0263 0.4346 29 484 13.8
3 V-shaped 0.0443 0.126 0.130 25–32 100–125 0.0263 0.4346 29 484 29.2
4 Flat 0.0451 0.120 0.168 25–32 50–63 0.0258 0.4422 27 644 20.3
5 Flat 0.0451 0.120 0.168 25–32 100–125 0.0258 0.4422 27 644 31.5

TABLE 1. Initial experimental conditions. The initial Reynolds number is estimated
following Re0 =

√
g′0h3

0/ν
2, where the kinematic viscosity of water ν is 10−6 m2 s−1.

The variable ϕ0 is the total initial volume concentration of the particles. We note that the
initial mass of the glass beads mGB

0 was equal to that of the silicon carbide mSiC
0 in all

experiments, except for experiment 0, which was performed with SiC only. The initial loss
of mass in the lock Mlock is given as a percentage relative to the total initial mass mSiC

0 or
mGB

0 + mSiC
0 . The variable 1ρ is (ρc − ρw).
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3.2. Analysis of the deposits
The particles in each strip were collected in a beaker and then dried and weighed.
The particles that had remained in the lock were also collected and weighed.
Density measurements of the particulate matter within each beaker were then made
using calibrated pycnometers and ultrapure water. Four density measurements were
performed for each beaker from four subsamples of the total mass, except for the
beaker that contained the deposit from the end of the current. As this beaker contained
just a small amount of deposit, the four estimates were obtained by repeating the
measurements from the same mass. The content of each beaker was thoroughly
mixed before taking the four subsamples. Depending on the mass available, we used
pycnometers of volumes 100, 50 and 25 ml. From a calibration study with pure SiC,
we identified that our density estimates had errors 64 % when using a mass of 10 g
and the 100 ml pycnometers, but within 12 % when using only 2 g. For the 50 ml
pycnometers, the error was 3 % when using a mass of 10 g, but the error rose to 8 %
when using only 2.5 g. For the 25 ml pycnometers, the error was 3 % when using a
mass of 5 g but 15 % when using only 2.5 g.

These measurements enable us to characterize the density of the particulate matter
as defined by (2.12). For a pycnometer of volume Vp, the mass of water mpw is
Vpρw. When particles of total mass mi

s of the sampled strip i are placed in the
pycnometer, they occupy by definition a volume mi

s/ρ
i
d, where ρ i

d is the material
density of the deposit of the ith sampled strip. As the pycnometer is then filled
with water up to the level marking its volume of calibration, the total mass mi

pwg is
mi

pwg = mi
s+ρw(Vp−mi

s/ρ
i
d). Consequently, the density of the deposit of the ith sampled

strip ρ i
d is given by

ρ i
d = ρw

mi
s

mi
s + mpw − mi

pwg

, (3.1)

where mi
s, mpw and mi

pwg are all measured quantities. Having determined the density
of the deposit strip sample ρ i

d, the mass fraction f i
1 of particles 1 in strip i can be

calculated using (2.13) and, knowing the mass of particles (mi
1 + mi

2) in strip i, the
mass of particles mi

1 and mi
2 in strip i can be calculated using (2.11).

We note that the deposit density ρd represents a material density of the deposit,
which shows the granular composition of the deposit. The quantity ρd differs from
the in situ density of the deposit. First, ρd does not depend on the arrangement of
the grains in the granular bed, which includes the voids between grains. Second,
ρd cannot provide any information on the stratification of the deposits, which are
thought to develop for particulate currents with small initial concentrations (McCaffrey
et al. 2003). For suspensions of highly polydispersed particles with concentrations
of 13.8–23.0 % by volume, deposits are strongly stratified (Choux, Druitt & Thomas
2004). Our deposits were too thin (just a few millimetres at the lock gate) for us to
look at the vertical structure of the deposits.

3.3. Initial conditions of the laboratory experiments
Prior to the experiments presented in this paper, we carried out a number of tests to
assess our laboratory methodology. In particular, we found that the final position of
the front was critically linked to the degree to which our sieving had selected the
desired grain size. Although not contributing to the deposit, a tiny fraction of dust or
finer grain sizes were responsible for the current stopping tens of centimetres further
downstream. Here we present six selected experiments, four of which were performed
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Experiment vSiC
s vGB

s vGB
s /vSiC

s vSiC
sc vGB

sc vGB
sc /v

SiC
sc

(×10−3)
(m s−1)

(×10−3)
(m s−1)

(×10−3)
(m s−1)

(×10−3)
(m s−1)

0 0.71–1.16 — — 0.56-0.92 — —
1 0.71–1.16 1.88–2.98 1.62–4.21 0.56–0.92 1.76–2.80 1.90–4.96
2 0.71–1.16 2.98–4.80 2.57–6.79 0.56–0.92 2.80–4.51 3.02–7.99
3 0.71–1.16 7.51–11.73 6.48–16.59 0.56–0.92 7.05–11.02 7.62–19.51
4 0.71–1.16 1.88–2.98 1.62–4.21 0.56–0.92 1.76–2.80 1.90–4.96
5 0.71–1.16 7.50–11.72 6.48–16.58 0.56–0.92 7.05–11.01 7.62–19.51

TABLE 2. Initial sedimentation velocities for the SiC and GB particles, vSiC
s and vGB

s ,
respectively, within their grain size ranges in each experiment, as indicated in table 1.
Velocities are calculated according to (2.5). In all experiments, the GBs are expected to
sediment faster than the SiC particles within velocity ratios that range from a factor of 1.62
to a factor of 16.48. vSiC

sc and vGB
sc are the settling velocities corrected for viscosity, and for

the shape and roundness of particles, as discussed in § 5.4.

in the V-shaped valley and two of which used the flat-bottom tank. Experiment 0 was
a monodispersed gravity current made of SiC in the V-shaped valley that is used for
comparison with the bidispersed currents of experiments 1–3. Details of the initial
conditions for the currents are given in table 1. In all experiments, the volume fraction
of particles was small, and imposed an initial density of the current of 4 % higher
than that of water. The V-shaped experiments 1–3 only differed in the grain size of
the GBs, ranging from 50–63 to 100–125 µm in diameter. The SiC particle grain sizes
were kept within the range 25–32 µm in diameter. The densities of SiC and GBs were
measured three times, and were (3188 ± 33) and (2475 ± 12) kg m−3, respectively.
Table 2 gives the corresponding initial sedimentation velocities for the SiC and GB
particles, following (2.5).

The initial conditions of flat-bottom experiments 4 and 5 were chosen so that their
initial gravitational potential energy equalled that of V-shaped experiments 1 and 3,
respectively. This constraint is achieved by having h2

0(Flat) = h2
0(Valley) − 1/3a2. The flat-

bottom experiments were carried out to assess the role of the valley in sedimentation.
The particle loss in the lock was greater (see table 1) than that described by Monaghan
et al. (2009b), which was 5–10 % of the initial mass, because of the larger grain sizes
used in this study.

4. Experimental and box model results
4.1. The box model runs

The numerical code was first checked against the experimental data and results of the
box model of Monaghan et al. (2009b). The tests were simply performed by setting
the properties of SiC and GB particles to be equal, and their initial masses to be half
of those used in the experiments of Monaghan et al. (2009b). Full agreement was
found in this comparison exercise. The input masses mSiC

0 and mGB
0 used in the box

model were actually not exactly those indicated in table 1. As the loss in the lock was
greater than 10 % of the initial mass (see table 1), we applied a correction to the initial
masses mSiC

0 and mGB
0 for the box model. Given the smaller grain size of SiC relative

to the GBs, it was expected that the deposit in the lock would contain more GBs than
SiC. The mass concentration of SiC in the lock deposit was thus determined from the
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Experiment ρlock mSiC
0 mGB

0 γ tα MAE Xe
R ± 0.05 Xb

R
(kg m−3) (kg) (kg) (m) (m)

0 (3188±33) 0.213 — 0.9 t−0.32 0.0043 3.80 3.77
1 (2714±38) 0.116 0.109 0.8 t−0.29 0.0062 3.55 3.57
2 (2680±14) 0.116 0.108 0.9 t−0.27 0.0069 3.10 3.26
3 (2660±04) 0.106 0.078 0.9 t−0.27 0.0071 3.03 3.12
4 (2694±14) 0.143 0.125 0.4 — — 2.65 2.72
5 (2603±04) 0.144 0.081 0.5 — — 2.30 2.42

TABLE 3. Corrected mass inputs for the box model, best fit γ factor, narrowing width
functions tα , mean absolute errors (MAEs) for the linear regressions, experimental and box
model run-out lengths Xe

R and Xb
R, respectively.

measure of the density of the deposit in the lock ρlock , using (2.13). Table 3 gives
the resulting corrected masses of SiC and GBs that were used to run the box model.
We also used the average values between the minimum and maximum particle sizes
indicated in table 1 to run the box model. The strips were set to a length 1x= 0.05 m
in all runs. Finally, table 3 indicates the value of γ that leads to the best fit between
the box model and the experimental data. We note that the Froude number Fr was
always taken as being equal to 1 in all of the runs.

4.2. V-shaped geometry
4.2.1. Front of the current with time and total mass deposited

Figure 4 shows the variation of the position of the head of the current against
time for experiments 1–3 in comparison with experiment 0. The agreement between
the box model results and the experimental results is good. As the grain size of the
GBs is increased, the bidispersed currents flow at increasingly slower speeds compared
with the monodispersed current. This is as expected because larger particles are more
rapidly lost from the currents because of their larger settling rates, which results
in a decrease of the driving effective gravity. Figure 5 shows the experimental data
and the box model results for the total mass deposited per area as a function of
distance x along the tank for experiments 0–3. The agreement between theory and
experiment for the total mass deposited is good. The difference in the mass deposit
across the valley is shown for experiment 1 in figure 6. The overall match between the
measured data and the simulated results is not as good as for the total mass. Compared
with the experimental data, the box model overestimates the mass deposited in the
flanks, whereas it underestimates the deposited mass in the central region of the valley.
However, both show that there is a factor of 4–5 difference in the magnitude of the
mass per area in the central region compared with that on the flanks of the valley.
Such variation has already been described for monodispersed currents (Monaghan et al.
2009b), and has been explained by the inability of currents to deposit on flanks while
flowing along the narrowing valley.

4.2.2. Deposit density
Figure 7 shows the density of the deposit for experiments 1–3 as determined from

the experimental data and box model runs. For experiment 1, panel (a) shows the
density determined from the substrips collected in the central part of the valley and
on the flanks. A good agreement between the experimental and box model results is
found for experiment 3 only (panel c). In particular, the deposit density determined
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FIGURE 4. Position of the head of the current X(t) (m) as a function of time t (s). Panels
(a)–(c) show the bidispersed experiments 1–3 of table 1. The black straight lines and black
circles are the box model results and the experimental data, respectively. In all frames, the
monodispersed experiment 0 is shown for comparison as grey solid lines and grey crosses,
representing the box model results and experimental data, respectively.

in experiment 3 at the end of the current matches together with the box model that
of SiC. By contrast, results from experiment 1 (panel a) and 2 (panel b) agree with
the box model results in the first metre of the deposit only. The experimental data of
experiment 1 suggest a deposit of slightly increasing density (6.8 %) along its length
that is not predicted by the box model, for which density increases all along the length
to equal the density of SiC at the end of the deposit. There is no difference that can
be seen between the experimental density across the valley, as the density within the
central region and the flanks are similar. This supports the assumption of a current
well mixed by turbulence. Compared with experiment 1, the data in experiment 2 show
a larger increase in deposit density as the distance increases from the lock position, but
they still indicate the presence of glass beads at the end of deposit, as also illustrated
in figure 8, which shows the volume concentration of SiC in the deposit for the three
experiments. The mass deposition misfit between the experimental data and the box
model results can also be seen when the masses deposited for both SiC and GBs in
the experiments are back-calculated from the measured deposit density, as shown in
figure 9 for experiment 1.

4.2.3. Widths of the currents
Figure 10 shows the widths predicted by the box model for gravity currents of

experiments 0–3 as the head of the currents is at X = 1.64 m. The current width
values calculated with the box model are in good agreement with the experiments. The
predicted current front position in panels (c) and (d) is ∼10 cm less than the actual
front position of the current, which is explained by the slightly slower speed predicted
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FIGURE 5. Mass deposited per strip area Md/Area (kg m−2) as a function of distance
x (m). Panel (a) corresponds to monodispersed experiment 0 of table 1, whereas panels
(b–d) correspond to bidispersed experiments 1–3. The black straight lines and black circles
represent the box model predictions and experimental data for the total mass deposited,
respectively. The grey straight lines represent the mass deposited by the GBs, and the grey
dashed lines represent the mass deposited by SiC, as predicted by the box model.

by the box model in the first 2 m of the current (see figure 4). As currents narrow
when they flow along the valley, the evolution of the width of the currents is further
examined with the box model. We analysed the predicted current widths over a time
interval where the current front position is between 8 and 20 times the lock length. We
found that the width as a function of time is very well represented by a power law of
the form t−α. Table 3 gives the α coefficients obtained by linear regressions from the
natural logarithm of the width versus the natural logarithm of time, a quality indicator
of the fits and the mean absolute errors (MAEs).

4.3. Flat-bottom geometry
Two experiments were conducted in the flat-bottom tank to assess the influence of
the valley. Importantly, those two experiments were analogue in terms of grain
sizes with experiments 1 and 3. As for the experiments with the V-shaped valley,
a good agreement between the box model and the experiments can be found in
the experiments with the flat bottom for the speed of the front (figure 11) and the
mass deposited per unit area as a function of distance x along the tank (figure 12).
We note that the agreement between theory and experiment is much better in the
V-shaped case than in the flat-bottom geometry for the mass deposited. This feature
was already observed in Monaghan et al. (2009b) for monodispersed turbulent gravity
currents. These results are very similar to those presented by Bonnecaze et al. (1996)
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FIGURE 6. Mass deposited per strip area Md/Area (kg m−2) as a function of distance x
(m) for experiment 1 in the central region of the valley and its flanks. Strips were cut into
three slices consisting of two symmetric flank substrips, each of length 12 cm, and a central
substrip, of length 8 cm. The experimental results are shown by diamonds and the continuous
curves are the values predicted by the box model. The black upper curve and black diamonds
show the results for the central region, and the grey lower curve and grey diamonds show the
results for the two flanks.
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FIGURE 7. Density of the deposit ρd (kg m−3) as a function of distance x (m). Panels (a–c)
correspond to experiments 1, 2 and 3 of table 1. The straight lines represent the predictions of
the box model. The crosses, with error bars corresponding to the standard deviations, are from
the experimental data. Panel (a) shows the density found for the substrips of the central region
(in black) and flanks (in grey) of the valley.
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FIGURE 8. Volume concentration of SiC in the deposit CSiC
v = (ρd − ρGB)/(ρSiC − ρGB), as a

function of distance x (m). Panels (a–c) correspond to experiments 1–3 of table 1. The straight
lines represent the predictions of the box model. The crosses are from the experimental
data.
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FIGURE 9. Mass deposited per strip area Md/Area (kg m−2) as a function of distance x (m)
for experiment 1. The black straight line represents the total mass deposited, as predicted
by the box model. The circles are the experimental total mass data. The straight grey line
represents the mass deposited by the GBs and the dashed grey line represents the mass
deposited by SiC, as predicted by the box model. The dots are the SiC masses deduced from
the density measurements of the deposits and the stars are the GB masses deduced from the
density measurements of the deposits. The factor γ was 0.8 for both particles.
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(a)

(b)

(c)

(d )

FIGURE 10. The gravity current of experiments 0–3 (panels a–d, respectively), seen from
above when the head of the current is X = 1.64 m. The views show the currents from the end
of the lock, so the current length shown in all frames is 1.51 m. The width of the tank of
30 cm seen from above is used to scale the widths. The white lines show the boundaries of the
box model. The width of the boxes calculated with the box model are in good agreement with
the experiments. For experiments 2 and 3, the front calculated by the box model is slightly
less than the experimental one, which is also seen in the fits found for the front position of the
currents as a function of time (figure 4).
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FIGURE 11. Position of the head of the current X(t) (m) as a function of time t (s). Panels
(a) and (b) correspond to experiments 4 and 5 of table 1. The straight lines represent the box
model and the crosses represent the experimental data.
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FIGURE 12. Mass deposited per strip area Md/Area (kg m−2) as a function of distance x (m).
Panels (a) and (b) correspond to experiments 4 and 5 of table 1. The straight lines represent
the total mass deposited as predicted by the box model and the circles are the experimental
data. The straight grey lines represent the mass deposited by the GBs and the dashed grey
lines represent the mass deposited by SiC, as predicted by the box model.
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FIGURE 13. Density of the deposit ρd (kg m−3) as a function of distance x (m). Panels
(a) and (b) correspond to experiments 4 and 5 of table 1. The straight lines represent
the predictions of the box model. The crosses, with error bars corresponding to standard
deviations, are from the experimental data.

for polydispersed turbidity currents. On the other hand, there is again disagreement
between the box model results and the experimental data for the deposit density in
experiment 4 (figures 13a and 14a). The density shown by the experimental data
shows a slight increase of 6.8 %, similar to that observed in experiment 1 in the V-
shaped valley. By contrast, good agreement between the experimental and box model
results is found for experiment 5 (figures 13b and 14b), as in the case of experiment 3.

5. Discussion
5.1. Run-out distance of currents in the V-shaped valley

The run-out distances of particulate currents depend on the settling rate of the particles.
As the loss of particles from a current results in a decrease of its driving effective
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FIGURE 14. Volume concentration of SiC in the deposit CSiC
v = (ρd − ρGB)/(ρSiC − ρGB)

as a function of distance x (m). Panels (a) and (b) correspond to experiments 4 and 5 of
table 1. The straight lines represent the predictions of the box model. The crosses are from the
experimental data.

gravity, a current in which particles settle at a slow rate may travel a few times
the distance of a current in which particles sediment quickly. Gladstone et al. (1998)
showed such a relationship in studying constant-volume gravity currents consisting of
two sizes of SiC (25 and 69 µm) and flowing in a flat-bottom tank. In this study,
we found that the run-out lengths resulting from currents flowing along the valley
are 35 % higher than those of currents flowing along a flat bottom (see table 3).
This probably results from the larger initial velocity of the current in the case of the
V-shaped valley because, for equal initial gravitational potential energy, the height of
the fluid h is less for the flat-bottomed tank (see § 3.3). However, run-out lengths vary
in the same way with the grain size distribution in the V-shaped and flat-bottomed
geometries. Comparison of the run-out lengths for experiments 1 and 3 in the V-
shaped valley, and for experiments 4 and 5 with the flat bottom, shows a similar
decrease of the run-out lengths with increasing GB grain size. The run-out length
decreases by 14.6 % in the V-shaped valley and by 13.2 % with the flat bottom, which
is similar.

5.2. Widths of the currents
An obvious but significant feature of the flows along the valley is that currents narrow
with time. In the case of saline gravity currents, Monaghan et al. (2009a) showed
from a similarity solution that, for sufficiently long lengths of time, the width of the
current decreases with time as t−2/5. Good agreement was found with the experiments.
In the case where the deposition of particles occurs during the flow, this study shows
that the particulate currents narrow a little less with time, as ∼t−2/7 for particulate
currents. No significant statistical difference could be found in the α values between
the monodispersed and bidispersed currents (table 3).

5.3. Effect of the V-shaped valley on the deposit density
Monaghan et al. (2009a,b) showed that the presence of the valley had a major impact
on saline and monodispersed gravity currents, compared with those flowing along a
flat bottom. Currents are then characterized by, for instance, a parabolic front with
radius of curvature proportional to the initial depth of the current, and a narrowing
width with time. Not surprisingly, the same features were observed in the bidispersed
currents of this study. Yet, by contrast, our study shows that the presence of the
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valley does not affect the sedimentation mechanisms: bidispersed currents flowing
either along the flat bottom or in the V-shaped valley, with similar grain sizes and
initial driving effective gravity, resulted in either a slightly increasing deposit density
(experiments 1 and 4) or an early and substantial loss of the glass beads within the
first metre of the current (experiments 3 and 5).

5.4. Sedimentation dynamics
Our experimental results on the deposit density show that the box model does
not always predict the sedimentation dynamics in the bidispersed currents. Whereas
agreement can be found between the box model and experiments 3 and 5, the granular
characteristics of the deposits of experiments 1, 2 and 4 are not predicted by the
model. These findings indicate a need for revisiting the deposition formulae (equation
(2.7)).

First, the Stokes’ velocity model (equation (2.5)) can be corrected for viscosity, and
for the shape and roundness of particles. For the viscosity correction, Einstein (1906)
predicts an increase of the viscosity for dilute suspensions that follows

µsuspension = µ(1+ kϕ), (5.1)

where k is the Einstein coefficient (=2.5), ϕ is the volumetric concentration of
particles, µsuspension is the total viscosity and µ is the viscosity of the interstitial
fluid. Given our volumetric concentrations, the increase in the viscosity of our medium
would be 6 %, leading to an ∼6 % reduction in the settling velocity of both SiC and
GBs.

For the shape and roundness correction, figure 2 shows that the SiC grains depart
from smooth grains, in contrast to the GBs. So only the settling velocity of SiC
needs a shape and roundness correction factor. Although quantifying such a factor is
somewhat conjectural, Clift, Grace & Weber (1978) showed that the velocity should be
corrected by a factor K that ranges between 0.3 and 0.5 for long and thin structures,
whereas it takes the value 1 for spheres. The empirical formulae of Dietrich (1982),
which Salaheldina et al. (2000) and Huang et al. (2007) used for their models, gives
a correction factor here for the settling of smooth spheres of K = 0.85. This estimate
approximates the Corey shape factor (CSF), CSF = 0.63, and assumes a roughness
factor P= 2 for crushed sediments. We note that the CSF is defined by CSF = c/

√
ab,

where a, b and c are the longest, intermediate and shortest particle axes. Here we used
its two-dimensional analogue from our photos (i.e. CSF = c/a). Overall the shape and
roundness corrections for the SiC add together with the viscosity factor to decrease the
SiC settling velocity by a factor 0.8.

Now, if we apply the conservative corrections for the settling velocities of 0.8 and
0.94 for SiC and GBs, respectively, in (2.5), not a single γ factor results in improved
fitting. We can show improved fits of the box model against experiments 1 or 4 if
we arbitrarily use different γ factors for the SiC and the GBs. For instance, figure 15
shows good agreement for the velocity of the current for experiment 1 and the box
model, in which two γ fitting factors, one for SiC and a second for the GBs, were
used. In addition, figure 16 shows the predicted masses deposited when using the two
γ fitting factors. When compared with figure 9 based on the box model using the
single best-fit value of γ for experiment 1 (see table 3), the use of two γ factors
shows an improved agreement between the box model and the experiment. The density
profile predicted by the box model is also better, as shown in the insert of figure 16.
Table 4 shows the improvement of the fitting with the mean absolute errors calculated
between the observed and simulated data. Unexpectedly, the values of the two γ
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FIGURE 15. Position of the head of the current X(t) (m) as a function of time t (s) for
experiment 1. The straight line represents the predictions of the box model with a single value
of γ of 0.8. The dashed-dotted line represents the box model with values of γ equal to 0.5 for
the GB particles and 0.9 for the SiC particles. The crosses are from the experimental data.
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FIGURE 16. Mass deposited per strip area Md/Area (kg m−2) as a function of distance x (m)
for experiment 1. The straight line represents the total mass deposited as predicted by the box
model, and the circles are the experimental total mass data. The straight grey line represents
the mass deposited by the GBs and the dashed grey line represents the mass deposited by
SiC, as predicted by the box model. The dots are the SiC masses deduced from the density
measurements of the deposits, and the stars are the GB masses deduced from the density
measurements of the deposits. The factor γ was 0.5 for the GB particles and 0.9 for the SiC
particles. The insert shows the improved fit of the box model for the deposit density compared
with figure 7(a).
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X Md/Area mSiC/Area mGB/Area ρd

MAE (1 factor γ ) 0.0841 0.0305 0.0078 0.0423 0.0958
MAE (2 factors γ ) 0.0662 0.0172 0.0095 0.0152 0.0343

TABLE 4. MAEs between the experimental data of experiment 1 and the box model results
that have been interpolated at the same x-axis position as the experimental data for the fits
based on: (a) a single value of γ ; and (b) two values of γ , as discussed in § 5.4. The
analysis is made for the front position X, the total mass deposited per area Md/Area, the
mass of SiC per area mSiC/Area, the mass of GB per area mGB/Area and the density ρd, as
shown in figures 9, 15 and 16. The MAE values show the overall improvement of the fits
with the two values of γ .

factors results in an apparent reduction of the sedimentation rate by a factor of 1.6 for
the GBs, and an increase by a factor of 1.125 for SiC.

At this point there appears to be a need to go beyond simple corrections, and
consider particle interactions. There are actually two types of particle interaction that
could be involved here.

The first is the interaction between particles and turbulence. This could result in
preferential concentrations of particles (Wang & Maxey 1993; Eaton & Flessler 1994).
Settling of particles in turbulence is thought to be controlled by the Stokes’ number
of the particle species, i.e. the time ratio of particle response to the Kolmogorov scale
of turbulence, or equivalently the ratio of particle settling velocity to upward-directed
components of turbulent velocity. Only when this ratio is less than unity can the
current have a vertically well-mixed distribution of the suspension load. So coarser
particles could not be well mixed (see figure 6 of Garcia (1994), for steady currents).
Yet, for the coarsest grain sizes of GBs (experiment 3), the box model with its
assumption of a well-mixed current, and consequently a vertically uniform particle
concentration, is fully satisfactory. So it is possible that the assumption of the vertical
uniform particle concentration used in the equation for deposition could remain a
reasonably good approximation, even in the case of small-scale and intermittent
preferential concentrations, as described by Baas et al. (2005).

The second type of particle interaction is the interaction between the particles
in the viscous sublayer. This would result in a complex correction to the settling
rate, as proposed by Batchelor (1982). The formula for the settling rate is then a
function of pair interactions between particles, i.e. vi

s = [vi
s]0(1 +

∑m
j=1Sijϕj), where

[vi
s]0 is the Stokes’ velocity for an isolated particle of type i, the factor Sij is a

function of the size ratio dj/di of particles of type i and j, with reduced density ratio
(ρj − ρ)/(ρi − ρ), Péclet number of the relative motion of particle i and particle j,
and some dimensionless measure of the interparticle force potential. For suspensions
containing more than one particle species, Davis & Acrivos (1985) showed that the
settling rate differs significantly from the Stokes’ prediction, even when the total
volume fraction of particles exceeds only ∼1 %. Yet whether or not this would be
relevant to the thin viscous sublayer remains an open question.

Undoubtedly this study motivates further investigations on particle interactions in
gravity currents at high Reynolds numbers.
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6. Conclusion
We have presented a study of particulate gravity currents made of SiC and GBs

flowing along a V-shaped valley and a flat bottom. The speed and width of the
currents, the mass deposited by the currents and the density of the deposits were
examined together by a box model and lock-exchange experiments in a 5 m long
tank. In all experiments the Stokes’ settling velocity of the GBs was greater than
that of the SiC within a factor ranging from 1.6 to 16.5. When the ratio of the
settling velocity of the GBs to that of the SiC is greater than about 6, we find a
complete agreement between the box model and the experiment. In particular, the
deposit shows a substantial decline in the mass of the coarser GBs in the first metre,
so that it only contains the finer SiC further downstream. By contrast, when the
settling velocity ratio is less than ∼4, the experimental deposit is characterized by
a slightly increasing density, which the box model fails to match unless different
sedimentation γ factors are used for the SiC and the GBs. The SiC and GBs appear
to be in quasihydrodynamic equivalence, which was not expected given their distinct
Stokes’ settling velocities. There is no difference in the deposit density across the
valley. A similar dynamics of the sedimentation is found for the experiments that
were performed in a flat-bottom tank. Run-out lengths vary in the same way with
the grain size distribution in the V-shaped and flat-bottom geometry. So, whatever the
sedimentation mechanisms involved in the deposition that produce the characteristic
deposit density, they are not influenced by the presence of the valley. In all
experiments in the V-shaped valley, the width of the currents decreases with time
t according to t−2/7. This study eventually showed the need for considering particle
interactions in even dilute gravity currents at high Reynolds numbers.
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