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The dynamics of Reynolds stresses and turbulent kinetic energy (TKE) in Langmuir
turbulence are analysed using data of large-eddy simulations with the wave phase resolved.
It is found that the streamwise and spanwise Reynolds normal stresses and the Reynolds
shear stress vary appreciably with the wave phase, while the vertical normal stress is
only weakly dependent on the wave phase. Budget analyses indicate that the production
due to wave straining and the effects associated with turbulence pressure are the dominant
mechanisms for the wave-phase variation of Reynolds stresses. The accumulative effect of
wave–turbulence interactions on TKE is then investigated using the Lagrangian average.
It is discovered that the energy transfer from wave to turbulence is contributed by
two mechanisms. The first mechanism is the turbulence production by the Lagrangian
mean wave shearing and the mean shear stress, which is consistent with the traditional
wave-phase-averaged model. The second mechanism, which is not accounted for in
previous studies, is the correlation between the wave-phase variation of the Reynolds shear
stress and the wave orbital shearing. A model is proposed for the second mechanism.
Comparison of the frequency spectrum with Craik–Leibovich simulation results shows
that the correlation effect can affect the turbulence fluctuations at time scales around the
wave period, indicating the importance of this effect on Reynolds stresses and TKE.

Key words: wave–turbulence interactions

1. Introduction

Langmuir circulations in upper oceans, induced by the wave–turbulence interactions
under the forcing of surface waves and wind-driven shear, consist of organized
counter-rotating vortex pairs. With the Langmuir circulations, turbulent kinetic energy
(TKE) and turbulent mixing can be significantly enhanced compared with those in the
boundary layer flows driven by shear only (Thorpe 2004; Sullivan & McWilliams 2010;
D’Asaro 2014). The turbulent flows featuring Langmuir circulations, namely Langmuir
turbulence, play a crucial role in air–sea interactions by contributing to upper-ocean
mixing and dispersion (see, e.g. Li 2000; McWilliams & Sullivan 2000; Rye 2000; Thorpe
et al. 2003; Lewis 2005; Noh et al. 2006; Kukulka et al. 2009; Belcher et al. 2012; Fan &
Griffies 2014; Yang, Chamecki & Meneveau 2014; Chen et al. 2016).

† Email address for correspondence: shen@umn.edu
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The effect of surface waves on the turbulence underneath is usually modelled using
the Craik–Leibovich (CL) equations (Craik & Leibovich 1976; Leibovich 1980; Holm
1996). Leveraging the fact that the wave period is usually much shorter than the time
scales of current and turbulence eddies, the CL equations model the flow using a
wave-phase-averaged approach, which averages flow motions over wave periods. The
accumulative effect of the wave on the rotational motions, i.e. current and turbulence, is
modelled by a vortex force term us × ω, where us is the Stokes drift of the wave and ω is
the turbulence vorticity. The CL equations have been useful in many theoretical analyses
and large-eddy simulations (LES) for the modelling of Langmuir turbulence, providing
insights into its dynamic processes (see, e.g. Craik 1977; Leibovich 1977; Skyllingstad &
Denbo 1995; McWilliams, Sullivan & Moeng 1997; Tejada-Martínez & Grosch 2007;
Harcourt & D’Asaro 2008; Grant & Belcher 2009; Kukulka et al. 2009; Van Roekel
et al. 2012; Rabe et al. 2014; Deng et al. 2019; Pearson, Grant & Polton 2019; Shrestha
et al. 2019; Sullivan & McWilliams 2019). For example, the budget of TKE shows that
in Langmuir turbulence, production of TKE is mainly associated with the wave Stokes
drift (Li, Garrett & Skyllingstad 2005; Polton & Belcher 2007; Grant & Belcher 2009),
indicating that the energy of waves can be transferred to the turbulence through their
interactions (Teixeira & Belcher 2002; Ardhuin & Jenkins 2006). This process results
in the enhancement of TKE and energy dissipation rate in the upper-ocean mixed layer.
The dynamics of the Reynolds stress components have been studied relatively less. It has
been found that the vertical Reynolds stress is directly enhanced by the Stokes production
while the streamwise Reynolds stress is suppressed owing to the reduced production by the
sheared current (Li et al. 2005). The pressure–strain term in the Reynolds stress budget is
considered important for the modelling of Reynolds stresses (Harcourt 2013; Pearson et al.
2019).

Despite the advancement of our understandings of the Langmuir turbulence through
the CL equations, the physical processes embedded in the wave–turbulence interactions
are not fully understood yet, owing to the complications introduced by the surface
gravity waves. When viewing a surface wave and the turbulence field within a wave
period, the orbital velocity of the wave exerts an alternating straining on the turbulence,
which corresponds to the wave–turbulence interaction processes occurring at time scales
comparable to the wave period. This type of wave–turbulence interaction has been
observed in the laboratory experiments of the water turbulence under a mechanically
generated wave, where the turbulence statistics, such as Reynolds stresses, were found
to be modulated by the wave phase (Jiang & Street 1991; Rashidi, Hetsroni & Banerjee
1992; Thais & Magnaudet 1996). In field measurement, it has also been observed that
the turbulence velocity spectra are enhanced around the wave frequency (Kitaigorodskii
et al. 1983; Lumley & Terray 1983) and the turbulence fluctuations are correlated with
the wave phase (Veron, Melville & Lenain 2009). Teixeira & Belcher (2002) employed
the rapid distortion theory (RDT) to analyse the evolution of an initially isotropic
turbulence under a surface wave with a wave-phase-resolved framework. They found that
the Reynolds stresses are dependent on the wave phase. Their analysis predicts that the
variation of the Reynolds stresses in a wave cycle is related to the wave slope. This
result is supported by the wave-phase-resolved direct numerical simulations by Guo &
Shen (2013, 2014). A qualitative dependence of the wave-coherent turbulence on the
wave slope was also observed in field measurement by Veron et al. (2009). However,
the isotropic turbulence that the theoretical analysis is based on is still quite different from
the Langmuir turbulence with wind-driven shear. Experimental measurements, on the
other hand, are often challenging in the near-surface region to obtain precise quantification
of the turbulence modulated by waves.
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FIGURE 1. Sketch of the configuration of the wave-phase-resolved simulation of Langmuir
turbulence. The grey filled arrow denotes the direction of the surface shear stress τ0. The angled
arrow on the surface indicates the wave phase velocity c.

With the advancement of numerical schemes and the increase in computer
power, simulations with the wave phase resolved have been employed to revisit the
wave–turbulence interaction problem in Langmuir turbulence (Zhou 1999; Kawamura
2000; Fujiwara, Yoshikawa & Matsumura 2018; Wang & Özgökmen 2018; Xuan, Deng
& Shen 2019). Our recent study (Xuan et al. 2019) analysed the wave-phase fluctuations
of turbulence vorticity and the dynamics of wave-phase-averaged vorticity. It was found
that the accumulative effect of the wave straining on the wave-phase-averaged vorticity is
consistent with the vortex force modelling of the wave effect on the vorticity. A similar
conclusion was also obtained by Fujiwara et al. (2018). However, such conclusions are
for the wave-phase-averaged first-order moment quantities, of which the dynamics may be
different from that of higher-order moments such as the Reynolds stresses. For example,
Zhou (1999) observed that the turbulence fluctuations in their wave-phase-resolved LES
are stronger than those in CL-based LES, indicating that the fast turbulence fluctuations
can influence the wave–turbulence interactions. However, to date, the behaviour and
dynamics of the Reynolds stresses and TKE have not been studied systematically in
the wave-phase-resolved frame. Therefore, it remains to be answered how the turbulence
fluctuations that have time scales comparable to the wave period affect the dynamics of
Reynolds stresses and TKE.

In this work we investigate the wave-phase modulation effect on Reynolds normal and
shear stresses and the resultant accumulative effect on TKE using the wave-phase-resolved
LES data of Xuan et al. (2019), in which the Langmuir turbulence generated by a
wind-driven shear flow and a monochromatic progressive wave is simulated, as sketched in
figure 1. In the present study the wave-phase variation of the Reynolds stresses is examined
and is found to exhibit some differences from the prediction in the literature. The transport
equations of the Reynolds stresses in the wave-phase-resolved frame are analysed to reveal
the mechanisms of the wave-phase dependent variations, which include the wave straining
and the turbulence pressure effects. The dynamics of the wave-phase-averaged TKE is
then investigated using the Lagrangian average of the TKE budget, with a focus on the
net energy flux from the wave to the turbulence. It is discovered that, in addition to the
interaction between the wave-phase-averaged Reynolds shear stress and the Lagrangian
wave straining, the wave-phase-dependent part of the Reynolds shear stress also yields a
net energy flux. The latter path of energy flux is found to be caused by the phase correlation
between the Reynolds stresses and the wave orbital velocity gradients, for which a model
is proposed in this study. The effect of the correlation-induced energy transfer is then
explained, providing a better understanding of the properties of the turbulence underneath
surface waves.
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This paper is organized as follows. The governing equations, numerical method and the
computational parameters are introduced in § 2, where a summary of the wave straining
effects is also provided as the basis of the subsequent analyses of the Reynolds stresses
and TKE. In § 3 the wave-phase variations of the Reynolds stresses and their budget
equations are discussed. In § 4 the wave-phase-averaged TKE budget is analysed using the
Lagrangian average for the accumulative dynamics of the wave–turbulence interactions.
At last, conclusions are given in § 5.

2. Simulation set-up and computational cases

2.1. Governing equations and numerical method
The simulation domain is a horizontally periodic box with the top boundary being a
surface wave (figure 1). The Coriolis effect of the Earth’s rotation is omitted, i.e. the
simulations are performed in an inertial reference frame, consistent with the focus of our
study on the wave–turbulence interactions at individual wave scales (Xuan et al. 2019).
The streamwise, spanwise and vertical directions are denoted by x , y and z (or x1, x2 and
x3), respectively. The following filtered continuity equation and filtered Navier–Stokes
equations for LES are solved,

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂(uiuj)

xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xjxj
− ∂τ d

ij

∂xj
. (2.2)

In the above equations ρ and ν are the density and kinematic viscosity of the water,
respectively; the components of the filtered velocity (u, v, w) are denoted by ui (i =
1, 2, 3). In the last term of (2.2), τ d

ij = τij − τii/3 is the deviatoric part of the subgrid-scale
(SGS) stress tensor τij, modelled using a Lagrangian dynamic scale-dependent model
(Meneveau, Lund & Cabot 1996; Porté-Agel, Meneveau & Parlange 2000; Bou-Zeid,
Meneveau & Parlange 2005). The isotropic part of the SGS stress τii/3 is included in
the modified pressure p.

As detailed in Xuan et al. (2019), the evolution of the surface elevation η(x, y, t) is
governed by the free-surface kinematic boundary condition. A shear stress τ0 representing
the wind shear is imposed on the free surface z = η(x, y, t) through the dynamic boundary
condition. At the bottom z = −H̄, the free slip condition is used to mimic the weak shear
at the base of the ocean mixed layer (Belcher et al. 2012). A uniform adverse pressure
gradient ∂p/∂x = τ0/H̄ is applied to keep the momentum balanced in the simulation. We
note that, in oceans, the Coriolis force plays an important role in the momentum balance
at larger scales. The imposed pressure gradient is small compared to the wave forcing
and thus has a negligible effect on the fundamental mechanisms of the wave–turbulence
interactions as discussed in Xuan et al. (2019). The simulation set-up described above
ensures that the turbulent flow can develop into an equilibrium state, which facilitates the
statistical analyses of the Langmuir turbulence.

The numerical scheme utilizes a free-surface conforming curvilinear grid described
in Xuan & Shen (2019). The governing equations (2.1) and (2.2) are transformed into
the curvilinear coordinates and written in a strong conservative form to improve the
discrete conservation properties of the numerical scheme (Xuan & Shen 2019). The
spatial discretization of the equations employs a Fourier-series-based pseudo spectral
method in the horizontal directions and a finite difference method in the vertical direction.
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The temporal advancement of the filtered Navier–Stokes equations is embedded within
the temporal integration of the free-surface elevation η. At each time step, the free-surface
kinematic boundary condition is integrated in time using a two-stage predictor–corrector
scheme. The velocity and pressure fields for each stage are updated from the filtered
Navier–Stokes equations, which are solved using a second-order Adam–Bashforth method
with a fractional-step method to enforce the incompressibility constraint (2.1). The
numerical scheme has been validated for a variety of canonical wave flows (Xuan & Shen
2019) and shown to be accurate and effective in simulating wave–turbulence interaction
problems (Guo & Shen 2013, 2014; Xuan et al. 2019).

2.2. Computational parameters
The key parameters of the simulation cases considered in this study are listed in table 1.
The friction velocity is defined as u∗ = √

τ0/ρ, with τ0 being the imposed shear stress
(figure 1). The turbulent Langmuir number Lat, quantifying the relative importance of the
wind forcing and the wave forcing, is defined as Lat = √

u∗/Us (McWilliams et al. 1997),
where Us is the surface Stokes drift of the wave. According to the linear wave theory,
Us = a2kσ with a, k and σ being the amplitude, wavenumber and angular frequency of
the surface wave, respectively. In the present study Lat ranges from 0.35 to 0.9. Case 1
with Lat = 0.35 has a strong wave forcing and is therefore a case with strong Langmuir
turbulence, while the weak wave forcing in case 3 with Lat = 0.9 results in flow features
similar to those in the pure shear-driven flow (Li et al. 2005). In cases 1–3, the wave
steepness ak is set to 0.084. Case 1S is set up with a larger steepness ak = 0.15 and the
same Lat as in case 1 to show the influence of the wave steepness. The wavelength of the
surface wave in all cases is λ = 4πH̄/7, corresponding to a dimensionless wavenumber
kH̄ = 3.5 and satisfying the deep-water wave condition. The Froude number Fr defined
based on the friction velocity u∗ and the depth H̄, i.e. Fr = u∗/

√
gH̄, can be calculated

using Lat, ak and kH̄ as

Fr = u∗√
gH̄

= UsLat
2√

gH̄
= (akLat)

2

√
kH̄

. (2.3)

The sixth column of table 1 shows the ratio of the wave phase speed c = (ak)−2Us
to the friction velocity u∗. The large values indicate that the wave phase speed c is
considerably faster than the mean current and turbulence fluctuations, which are O(u∗).
In other words, the mean current and turbulence motions are much weaker than the
wave motions. The second-to-last column of table 1 compares the magnitude of the
wave-orbital-velocity-induced strain rate, being O(akσ), to that of the current-induced
shearing, being O(u∗/H̄), with the former being much stronger than the latter. This
indicates that the surface gravity wave plays an important role in the dynamics of
Langmuir turbulence, which is shown in the analyses of Reynolds stresses and TKE in
the subsequent sections.

The simulation is performed at a moderate Reynolds number Reτ = u∗H̄/ν = 2000 (the
last column of table 1) to allow the use of wall-resolved LES, where the near-surface
dynamics is resolved directly without the influence of the wall-layer modelling (Xuan
et al. 2019). The moderate Reynolds number here can be realized in the laboratory
condition at small scales. For example, case 1 corresponds to a wave with 1 Hz frequency,
1.56 m wavelength, 20.8 mm amplitude, a wind shear stress with friction velocity
u∗ = 1.35 mm s−1. The water depth corresponding to the above Reynolds number is
18 cm. We shall also note that although the Reynolds number here is relatively low,
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Case Lat ak kH̄ Fr c/u∗ akσ/u∗H̄−1 Reτ

Case 1 0.35 0.084 3.5 4.62 × 10−4 1.16 × 103 3.40 × 102 2000
Case 1S 0.35 0.15 3.5 1.47 × 10−3 3.63 × 102 1.90 × 102 2000
Case 2 0.5 0.084 3.5 9.43 × 10−4 5.67 × 102 1.67 × 102 2000
Case 3 0.9 0.084 3.5 3.05 × 10−3 1.75 × 102 51.44 2000

TABLE 1. Computational parameters of Langmuir turbulence simulation cases.

Xuan et al. (2019) has shown that the characteristic features of the wave effect
on turbulence are insensitive to Reynolds number and, thus, the mechanisms of
wave–turbulence interaction revealed by the current set-ups should be representative of
Langmuir turbulence to a large extent. The simulation domain has a size of Lx × Ly ×
H̄ = 16πH̄/7 × 16πH̄/7 × H̄ and contains four wavelengths of the surface wave in the
streamwise direction. The domain is sufficiently large to capture the large-scale turbulent
coherent structures (Xuan et al. 2019). In wall-resolved LES the small-scale longitudinal
vortical structures in the viscous sublayer need to be directly resolved, which requires
the grid resolutions in the three directions to be Δx+ � 50, Δy+ � 30 and Δz+|min � 1
(Chapman 1979; Choi & Moin 2012). The superscript ‘+’ denotes the length normalized
by the viscous wall unit ν/u∗. To meet the requirements, the number of grid points is set to
288 × 512 × 217, resulting in Δx+ = 49.9 and Δy+ = 28.0. The vertical grid is refined
near the water surface, with the minimum grid spacing Δz+|min = 0.49 at the surface. The
statistical analyses are performed after the simulations reach a statistically steady state
(Xuan et al. 2019).

2.3. Overview of straining effects of the wave
In this section we give a brief overview of the properties of the surface wave and the
straining effect that the wave imposes on the turbulence field, which is crucial to the
analyses of the dynamics of the Reynolds stresses and TKE in the subsequent sections.
The wave velocity is obtained by a triple decomposition that separates the wave motions
from the mean current and turbulence, i.e. the total resolved velocity u is decomposed into
three parts as

u = 〈u〉 + u′ = uc + uw + u′, (2.4)

where uc, uw and u′ denote the velocities of the mean current, wave and turbulence,
respectively. As shown in appendix A, the mean current and wave motions are defined
based on a phase average (A 1) 〈u〉 = uc + uw. Then, a decomposition based on the theory
of the generalized Lagrangian mean (GLM, Andrews & Mcintyre 1978) is performed to
separate the mean current and wave motions. The Lagrangian mean ¯(·)L

(A 2) is defined
as the averaging along the trajectory of a flow particle moving with velocity 〈u〉 over
a Lagrangian wave period TL (Longuet-Higgins 1986). Correspondingly, the Lagrangian
fluctuation (·)l (A 3) quantifies the variation of a flow property with the wave phase. The
two Lagrangian-based definitions are used to calculate the quasi-Eulerian current (A 4),
which is used to define the mean current uc.

Figure 2(a) illustrates the Eulerian velocity of the wave, uw = (uw, ww). The velocity
forms a periodic orbital motion, of which the velocity direction varies with the wave
phase and the velocity magnitude decays with the depth. Because the relations between
the Reynolds stresses and the wave phase are of interest in this study, the view in
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c z y

x

∂uw/∂x > 0

∂uw/∂z > 0

∂ww/∂z < 0
∂uw/∂x < 0

∂uw/∂z L > 0  ∂ww/∂x L > 0

∂uw/∂z < 0

∂ww/∂z > 0

∂ww/∂x > 0 ∂ww/∂x < 0

∂uw/∂x L ≈ 0  ∂ww/∂z L ≈ 0

(b)

(a)

(c)

FIGURE 2. Sketch of (a) the wave Eulerian orbital velocity uw, (b) the effects of the wave
Eulerian orbital straining ∇uw, and (c) the effects of the Lagrangian straining ∇uw

L
. In

(a) the arrows with solid lines illustrate the wave orbital velocity and the dashed line with arrows
indicate the direction of the convection of a fluid particle in a wave-following frame. In both
(b) and (c) the distortion effect of the wave straining on fluid elements is illustrated using the
change from the dashed rectangles to solid ones.

the wave-following frame (i.e. translating with the wave phase speed c) can facilitate
our analyses. When observed in the wave-following frame, the velocity becomes (uw −
c, ww) and the fluid elements move in the opposite direction to the wave propagation, as
indicated by the arrows along the dashed line in figure 2(a). We also note that because the
wave flow is steady in the wave-following frame, the trajectory of a fluid particle sketched
in figure 2(a) coincides with the streamline.

The velocity gradients of the wave orbital velocity, ∇uw, which directly distort the
turbulence and thus influence the Reynolds stresses, also exhibit a sign-alternating
distribution, as shown in figure 2(b). The normal velocity gradients, constrained by
the incompressible condition ∂uw/∂x = −∂ww/∂z, impose alternating stretching and
compression on the fluid elements. For example, under the wave forward slope, ∂uw/∂x
is negative and ∂ww/∂z is positive, which results in the compression of the fluid element
in the x-direction and the stretching in the z-direction. The opposite process occurs under
the backward slope where ∂uw/∂x and ∂ww/∂z reverse signs. The values of the shear
gradients, ∂uw/∂z and ∂ww/∂x , are found to be almost equal in the bulk region, i.e. the
wave is mostly irrotational and imposes an irrotational shearing effect on fluid elements.
The orbital motions of the wave result in opposite shearing effects under the wave trough
and under the crest. We shall point out that, in a thin layer immediately below the surface,
the wave motions become rotational (not shown in figure 2) due to the viscous effect (Xuan
et al. 2019). To satisfy the stress balance condition at the undulating wave surface, a Stokes
layer with non-zero vorticity develops right below the surface (Longuet-Higgins 1953).
Therefore, the thickness of this viscous surface layer is on the same order of magnitude
as the Stokes layer. For example, for case 1 with the thinnest viscous layer among all
cases, the dimensionless thickness of the Stokes layer is kδS = k(2ν/σ)1/2 = 0.0017. This
is negligibly thin compared to the characteristic length scale on which the wave–turbulence
interaction occurs, i.e. the wavelength, and thus has only limited effects on the overall
wave–turbulence interactions.

The Lagrangian wave velocity gradients ∇uw
L
, defined as the Lagrangian average (A 2)

of ∇uw, represent the net wave straining applied on the fluid elements over a period and
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are summarised in figure 2(c). The normal gradients, ∂uw/∂x
L = −∂ww/∂z

L
, are found

to be nearly zero, whereas the shear gradients, ∂uw/∂z
L

and ∂ww/∂x
L
, are positive and

of O(a2k2σ) (Ardhuin & Jenkins 2006; Guo & Shen 2013). This means that, during a
Lagrangian wave period, the stretching that the fluid elements experience is cancelled by
the compression, while the alternating shear straining has a residual effect, resulting in a
net shearing distortion on fluid elements.

In summary, when the fluid elements are convected by the wave motions, they undergo
the nearly periodic cycles of straining and de-straining owing to the sign-alternating orbital
velocity. For the dynamics of the Reynolds stresses, as discussed in the following § 3, we
shall see that the wave orbital straining can directly interact with the Reynolds stresses
and lead to their cycles of intensification–weakening. Then, the Lagrangian-averaged
dynamics of the TKE is analysed in § 4, which shows that the Lagrangian straining, despite
being smaller than the instantaneous wave orbital straining, has a net influence on the
long-term evolution of the turbulence energy.

3. Variation of Reynolds stresses in the wave-following frame

In this section the variation of the Reynolds normal and shear stresses with the wave
phase is examined in the wave-phase-resolved frame. First, in § 3.1 the overall properties
of the Reynolds stresses from the wave-phase-resolved simulations are discussed. Then,
the wave-phase variation of the Reynolds stresses is quantified in § 3.2. Finally, in § 3.3
we evaluate the budget equations of the Reynolds stresses in the wave-following frame to
explain the dynamic mechanisms of the wave-phase variation of the Reynolds normal and
shear stresses.

3.1. Overview of Reynolds stresses
Figure 3 shows the contours of the phase-averaged Reynolds normal stresses 〈u′2

i 〉 as
defined by (A 1) for case 1 (Lat = 0.35) and case 3 (Lat = 0.9), which represent the
scenarios of strong and weak wave forcing, respectively. The intensities of the turbulence
fluctuations in the three directions are considerably different between the two cases. The
streamwise Reynolds normal stress 〈u′2〉 in case 1 is much weaker than that in case 3,
indicating that the streamwise velocity fluctuations are suppressed in strong Langmuir
turbulence. Meanwhile, 〈v′2〉 and 〈w′2〉 are increased as the wave forcing becomes stronger
due to the enhanced streamwise vortical structures and the strong vertical mixing present
in the Langmuir turbulence. With the suppression of 〈u′2〉 and the intensification of 〈v′2〉
and 〈w′2〉, the vertical and spanwise fluctuations become significantly stronger than the
streamwise fluctuations in case 1. On the other hand, case 3 with the weak wave forcing
has the relation 〈u′2〉 > 〈v′2〉 > 〈w′2〉, similar to the turbulent flow driven by shear only.
The above results indicate that the anisotrophy of the turbulence in case 1 is mainly caused
by the wave. Our numerical results are consistent with the observations of the Langmuir
turbulence in the literature (McWilliams et al. 1997; D’Asaro 2001; Li et al. 2005), further
confirming that the wave-phase-resolved LES successfully captures the effect of wave
forcing and the features of Langmuir turbulence.

In the vertical direction both horizontal velocity fluctuations, 〈u′2〉 and 〈v′2〉, increase
towards the free surface. This is expected because the wave and current forcing that
provide energy to the turbulence is stronger near the surface. Meanwhile, the kinematic
blocking effect of the free surface leads to the energy redistribution from the vertical
turbulence fluctuations to the horizontal components, which also increases the energy
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FIGURE 3. Contours of phase-averaged Reynolds normal stresses (a,d) 〈u′2〉, (b,e) 〈v′2〉 and
(c, f ) 〈w′2〉 for (a–c) case 1 (Lat = 0.35) and (d–f ) case 3 (Lat = 0.9), respectively. The Reynolds
stresses are normalized by u2∗. The grey lines in (a) represent the fixed depth kz = −0.1 (— · —)
and the Lagrangian trajectory with a mean depth kz = −0.1 (– – –) that are used in figures 5
and 6, respectively.

of 〈u′2〉 and 〈v′2〉 (Shen et al. 1999; Guo & Shen 2010, 2014). Also due to the blocking
effect, 〈w′2〉 decreases as the free surface is approached. We can also see from figure 3
that the contours of 〈u′2

i 〉 near the wave surface follow the wave geometry closely in case 1
(Lat = 0.35) and roughly in case 3 (Lat = 0.9). This result indicates that the intensity of
near-surface turbulence fluctuations is dependent on the vertical distance from the wave
surface. This surface effect can extend to approximately k(z − η) = −0.2 for 〈u′2〉 and
〈w′2〉 and k(z − η) = −0.7 for 〈v′2〉 (whole range not plotted). In the following § 3.2 the
effect of the vertical variation of the turbulence intensity on the wave-phase variation of
Reynolds stresses is further discussed.

The phase-averaged Reynolds shear stress 〈−u′w′〉 for case 1 (Lat = 0.35) and case 3
(Lat = 0.9) are shown in figures 4(a) and 4(b), respectively. The shear stress in case 1
is stronger than that in case 3, indicating that the momentum transport in the vertical
direction is enhanced by the wave forcing, as expected from the increased 〈w′2〉 discussed
above. The greater momentum mixing leads to a more uniform profile of the mean current
in Langmuir turbulence (see, e.g. Xuan et al. 2019). We can see from figure 4 that the
influence of the wave phase is obvious for the Reynolds shear stress, which is quantified
in the following § 3.2. In the vicinity of the surface the shear stress decreases rapidly in
both cases due to the constraint imposed by the surface blocking effect. However, we shall
note that the values of 〈−u′w′〉 do not go to zero at the surface, for which the reason is
discussed in the following section.

3.2. Wave-phase variation of Reynolds stresses
As discussed in § 3.1 and shown in figure 3, the near-surface intensity of the turbulence
velocity fluctuations is affected by the distance from the wave surface. In other words,
if the turbulence statistics are measured at a fixed location, especially near the surface,
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FIGURE 4. Contours of phase-averaged Reynolds shear stress 〈−u′w′〉 for (a) case 1
(Lat = 0.35) and (b) case 3 (Lat = 0.9). The stress is normalized by u2∗.

they are expected to vary with the wave phase due to the passage of the wave. We take
the streamwise Reynolds stress 〈u′2〉 as an example. Figure 5 plots the variation of 〈u′2〉
at the location kz = −0.1 along with the data from the laboratory measurements of the
turbulence under a wind-sheared surface wave by Jiang & Street (1991) and Thais &
Magnaudet (1996). These experiments are estimated to have comparable Lat with case 2
in our study. The LES result shows that the maximum 〈u′2〉 occurs under the wave
trough. This is because 〈u′2〉 increases as the surface is approached (figure 3a) and the
distance to the surface is the shortest under the wave trough. We shall note that, for other
cases considered in this study, the phase variation of 〈u′2〉 is qualitatively similar but has
different magnitudes due to different vertical variations of the streamwise fluctuations. For
example, case 1 (Lat = 0.35) is found to have a larger variation of 〈u′2〉 than case 2, mostly
because the intensity of 〈u′2〉 increases more sharply near the surface. When comparing
the numerical result with the experiments, we can see that the phase variation of 〈u′2〉 is
consistent while the magnitude of the variation is slightly smaller than the experiments.
The difference in the variation magnitude could be caused by the fact that the experimental
conditions and our idealized simulation set-up are not matched exactly. For example, in
the experiment by Jiang & Street (1991) with Uair = 2.5 m s−1 in the wind–wave tank, a
return Eulerian flow with negative velocity is present at the water bottom and, therefore,
the profile of the mean current is different from our simulation set-up. This can lead to
a different vertical distribution of turbulent kinetic energy and, thus, the difference in
the variation magnitude of 〈u′2〉. Other factors, such as the wind–wave coupling, may
also lead to discrepancies between our simulation and the experiments. Despite that
the experimental data have more fluctuations than the simulation result, their overall
agreement is encouraging.

However, relying on the observation at a fixed point has the shortcoming of failing
to account for the region between the wave trough and the wave crest. To overcome
this drawback, we instead consider the variation of the turbulence statistics along
the Lagrangian trajectory of a fluid element convected by the wave, i.e. along the
streamline of the mean flow in the wave-following frame. As illustrated in figure 2, the
streamline follows the wave surface geometry such that the region below the wave crest
is included. Moreover, as discussed above, the variation of Reynolds normal stresses
at a fixed point is mainly due to the kinematic motion, i.e. the change of the distance
from the surface. By contrast, the Lagrangian trajectory follows the wave geometry
and, thus, reflects the variation of turbulence statistics due to flow dynamics more
closely.
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0 π/2 3π/2 2ππ

FIGURE 5. Normalized variation of Reynolds normal stress 〈u′2〉 at the fixed depth kz = −0.1
in case 2 (——). The values of 〈u′2〉 are normalized by its mean value over the wave period at
that depth, �u′2 = (Lx )

−1 ∫ Lx
0 〈u′2〉 dx . The experimental data plotted in the figure for comparison

are from: Jiang & Street (1991) with an air speed Uair = 2.5 m s−1 and an estimated turbulent
Langmuir number Lat = 0.52 (�); Jiang & Street (1991) with Uair = 4.1 m s−1 and Lat = 0.66
(�); Thais & Magnaudet (1996) with Uair = 4.5 m s−1 and Lat = 0.57 (case E2) (◦). The wave
surface geometry η corresponding to the wave phase kx is illustrated using the solid line above
the plot. The dotted line with the arrow above the plot indicates that the variation is measured at
a fixed depth (the dash–dotted line in figure 3a) and the phase change is in the −x-direction in
the wave-following frame.

Figure 6 plots the normalized variation of the Reynolds normal stresses, (u′2
i )

l
/u′2

i

L
. By

definition (A 3), (u′2
i )

l reflects the variation of 〈u′2
i 〉 along the streamline of the wave in

the wave-following frame. Also plotted is the theoretical prediction of the wave-phase
variation of the streamwise and vertical Reynolds normal stresses based on the RDT
analysis by Teixeira & Belcher (2002), which is given by

(u′2)l

u′2L = 4
5

ak ekz sin(kx − σ t), (3.1a)

(w′2)l

w′2L = −4
5

ak ekz sin(kx − σ t). (3.1b)

We note that the above prediction is obtained from a simplified RDT model which
considers only the normal straining of the wave, i.e. ∂uw/∂x and ∂ww/∂z. Teixeira
& Belcher (2002) found that considering only the normal straining can yield a good
approximation of the full RDT model with all components of the straining in terms of
the fluctuating amplitude and phase distribution, and, therefore, neglected the effects
of the shear straining. In the mean time, with only the normal straining, the model
for slab-symmetric straining flows (Townsend 1998) can be employed to obtain explicit
expressions for the evolution of Reynolds stresses. Therefore, the simplified model is
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FIGURE 6. Normalized wave-phase variation of Reynolds normal stresses in the
wave-following frame along the Lagrangian trajectory with a mean depth kz = −0.1 for

case 1 (——), case 2 (– – –), case 3 (— · —) and case 1S (— · · —): (a) (u′2)l
/u′2L

,

(b) (v′2)l
/v′2L

and (c) (w′2)l
/w′2L

. For comparison, the theoretical results (3.1) based on the
RDT analysis by Teixeira & Belcher (2002) for ak = 0.084 (�) and ak = 0.15 (◦) are plotted.
The wave surface geometry η corresponding to the wave phase kx is illustrated using the solid
line above the plot. The dotted line with the arrows above the plot indicates that the variation is
measured following the Lagrangian trajectory (the dashed line in figure 3a), which points to the
−x-direction in the wave-following frame.

used here for comparisons with our LES results. For the spanwise Reynolds stress, the
simplified RDT model yields a result that depends on the initial condition and is thus not
suitable for the comparison with the quasi-steady flow in the present work.

As shown in figure 6(a), the values of (u′2)l for different simulation cases vary
sinusoidally with the wave phase. The maxima and minima of (u′2)l indicate that, along
the streamline, 〈u′2〉 is stronger under the crest and weaker under the trough, respectively.
This distribution is roughly consistent with the prediction by the RDT analysis (3.1a). The
magnitude of (u′2)l also shows an overall agreement with the theoretical model, which
predicts that the magnitude of the variation of 〈u′2〉 is proportional to the wave steepness
ak. These results indicate that the simplified RDT model (3.1a) can capture the dominant
dynamics underlying the wave-phase variation of 〈u′2〉. However, we also find that the
extrema of 〈u′2〉 deviate slightly from the crest or trough because (3.1a) considers only
the normal straining. The neglected processes, such as the shear straining, can lead to the
phase shift of the Reynolds stresses. Nevertheless, the maximum deviation among all the
cases at all depths is within 12◦ (not plotted), indicating that the normal straining governs
the wave-phase variation of the streamwise stress, which is also shown in the analysis of
budgets in § 3.3.

The trajectory-following result shown in figure 6(a) is completely different from
the fixed-point result (figure 5), suggesting that the kinematic-induced fluctuation of
〈u′2〉 is indeed dominant in the fixed-point observation and this effect is removed
in the Lagrangian approach. This contrast suggests that care should be taken when
interpreting data from fixed-point measurement under water waves, as one would obtain
from experiments. To remove the kinematics-induced fluctuations from fixed-point
observations, a coordinate transformation can be performed to obtain the Lagrangian
fluctuations of turbulence statistics. For a trajectory, the vertical deviation of its mean
depth, ξ 3 (see appendix A), can be approximated using a linear relation as

ξ 3 = ekz〈η〉, (3.2)
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where z is the mean depth of the trajectory. Then, using the above coordinate
transformation, the turbulence statistics along the Lagrangian trajectory can be computed
by interpolating the fixed-point data at each wave phase onto the location of the trajectory,
z + ξ 3.

The spanwise Reynolds normal stress also exhibits a sinusoidal variation with the wave
phase (figure 6b). The value of (v′2)l reaches its maxima near the wave trough and on
the backward slope, and reaches its minima on the forward slope side of the wave crest.
This behaviour is consistent with the wave-phase variation of the streamwise component
of the enstrophy 〈ω2

x〉, whose maximum and minimum values are ahead of the wave
trough and crest, respectively (Xuan et al. 2019). The connection between the wave-phase
distributions of (v′2)l and ω2

x is not surprising because the enhanced spanwise turbulence
fluctuations in Langmuir turbulence are associated with the elongated streamwise vortical
structures.

The variation of the vertical Reynolds stress (w′2)l observed in our simulation is different
from the RDT prediction (3.1b), as shown in figure 6(c). Our result shows that the
variation of (w′2)l with the wave phase is much weaker compared with the horizontal
Reynolds stresses, indicating a weak modulation of the wave phase on the vertical velocity
fluctuations. On the other hand, the RDT theory predicts the fluctuation magnitude of
(w′2)l to be as strong as that of (u′2)l. The above results show that the turbulence intensities
are indeed affected by the direct wave distortion. However, the existing theoretical model
based on the RDT cannot fully explain the observed behaviours. Later through the analyses
of the budget balance of 〈u′2

i 〉 in § 3.3, we show that the discrepancy between our numerical
results and the RDT prediction is related to the turbulence-pressure-related effects.

Next, we discuss the wave-phase variation of the Reynolds shear stress. The Lagrangian
fluctuation (u′w′)l of kz = −0.2 is shown in figure 7(a). The maximum shear stress occurs
under the wave crest, indicating that the momentum transport is enhanced under the crest.
This result is consistent with the findings by Thais & Magnaudet (1996), who observed
from their experiments that the turbulence bursting events are more pronounced under the
wave crest. The RDT analysis of the temporal evolution of an initially isotropic turbulence
(Teixeira & Belcher 2002, figure 9) also shows that the maxima of the Reynolds shear
stress occur under the wave crest after a few wave periods. We also note that the fluctuation
magnitude of the shear stress clearly relates to the wave steepness because the variation of
(u′w′)l is similar for cases 1–3 but larger for case 1S.

At the surface, a different variation of (u′w′)l is observed as shown in figure 7(b). We
find that the variation of u′ and w′ is governed by the surface blocking effect. Because
the direction of the velocity fluctuations are constrained by the inclined wave surface, the
velocity at the surface approximately satisfies

w′ ≈ u′ηx , at z = η. (3.3)

This leads to
u′w′ ≈ u′2ηx , at z = η. (3.4)

The wave-phase variation of (u′w′)l is well described by (3.4), as shown in figure 7(b).
In other words, u′ and w′ are positively and negatively correlated under the backward and
forward slope, respectively. However, we shall note that the kinematic-induced u′w′ does
not contribute to the dynamics of momentum mixing, as the viscous effect dominates
the momentum transport near the boundary. This is consistent with the fact that u′w′L is
approximately zero at the surface. It is later discussed in § 4 that the wave-phase fluctuation
of 〈u′w′〉 away from the surface, where the extrema of it are under the wave crest and
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FIGURE 7. Normalized wave-phase variation of Reynolds shear stress in the wave-following
frame for case 1 (——), case 2 (– – –), case 3 (— · —) and case 1S (— · · —): (a) (u′w′)l

/u′w′L

along the Lagrangian trajectory with a mean depth kz = −0.1 and (b) (u′w′)l
/u′2L

at the surface.
In (b) the approximation (3.4) is plotted for ak = 0.084 (�) and ak = 0.15 (◦).

trough, can influence the dynamics of TKE. On the other hand, the wave-phase variation
of 〈u′w′〉 induced by the blocking effect at the surface has no contribution to the TKE
dynamics (§ 4.3).

3.3. Reynolds stress budget in the wave-phase-resolved frame
To explain the mechanism underlying the variation of Reynolds stresses with the wave
phase shown in § 3.2, we next analyse the budget of the Reynolds stresses in the
wave-following frame. Using the definition of the phase averaging 〈·〉 (A 1), we can obtain
the evolution equation for the phase-averaged resolved Reynolds stress 〈u′

iu
′
j〉,

D〈u′
iu

′
j〉

Dt
= ∂〈u′

iu
′
j〉

∂t
+ (〈u〉 − c) · ∇〈u′

iu
′
j〉 = Pc

ij + Pw
ij + Πij + Tt

ij + εij. (3.5)

Here, owing to the quasi-steadiness of the flow, ∂〈u′
iu

′
j〉/∂t is approximately zero and,

thus, the material derivative D〈u′
iu

′
j〉/Dt ≈ (〈u〉 − c) · ∇〈u′

iu
′
j〉 represents the change rate

of Reynolds stresses under the advection of 〈u〉 − c, i.e. the wave-phase variation of
Reynolds stresses. Note that the wave phase speed c appears owing to the translation of the
observation frame. The terms on the right-hand side of (3.5) represent different processes
contributing to the wave-phase variation of 〈u′

iu
′
j〉, corresponding to the positive–negative

fluctuations of D〈u′
iu

′
j〉/Dt with the wave phase. The first two terms, Pc

ij and Pw
ij , defined as

Pc
ij = −〈u′

iu
′
k〉

∂(uc)j

∂xk
− 〈u′

ju
′
k〉

∂(uc)i

∂xk
, (3.6)

Pw
ij = −〈u′

iu
′
k〉

∂(uw)j

∂xk
− 〈u′

ju
′
k〉

∂(uw)i

∂xk
, (3.7)

represent the production of 〈u′
iu

′
j〉 caused by the straining of the mean current and wave,

respectively. As the wave straining has both the normal and shear straining, Pw
ij can be

contributed by the interaction between the normal stress and normal straining, namely
the normal production, and the interaction between the shear stress and shear straining,
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namely the shear production. The velocity–pressure-gradient term Πij is defined as

Πij = − 1
ρ

〈
u′

i
∂p′

∂xj
+ u′

j
∂p′

∂xi

〉
. (3.8)

The term Tt
ij is defined as

Tt
ij = −∂〈u′

ku
′
iu

′
j〉

∂xk
− ∂〈u′

iτ
′
jk〉

∂xk
− ∂〈u′

jτ
′
ik〉

∂xk
+ ν∇2〈u′

iu
′
j〉. (3.9)

This term represents the change of 〈u′
iu

′
j〉 caused by the spatial fluxes driven by the resolved

turbulence, the SGS turbulence and the viscous diffusion. The last term in (3.5), εij, is the
dissipation associated with the resolved-scale and SGS turbulence, defined as

εij = −2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
+
〈
τ ′

ik

∂u′
j

∂xk

〉
+
〈
τ ′

jk
∂u′

i

∂xk

〉
. (3.10)

The velocity–pressure-gradient term Πij (3.8) can be decomposed into the pressure
transport term Tp

ij and pressure–strain correlation term Rij,

Πij = Tp
ij + Rij, (3.11)

where

Tp
ij = − 1

ρ

(
∂〈p′u′

i〉
∂xj

+ ∂〈p′u′
j〉

∂xi

)
, (3.12)

Rij =
〈

p′

ρ

(
∂u′

i

∂xj
+ ∂u′

j

∂xi

)〉
. (3.13)

The pressure transport term Tp
ij represents the spatial transport rate of the Reynolds stresses

by turbulent pressure fluctuations. The sum of the normal pressure–strain correlation Rii
is zero because of the incompressibility, i.e. the pressure–strain correlation is associated
with the inter-component energy transfer among the three Reynolds normal stresses. We
note that the decomposition of the velocity–pressure-gradient term is not unique (Lumley
1975; Pearson et al. 2019). The adopted decomposition has been widely used for studying
turbulence dynamics (see, e.g. Speziale, Sarkar & Gatski 1991; Harcourt 2013).

The Reynolds stress budget equations in the wave-phase-resolved frame (3.5) differ from
those derived from the CL models (see, e.g. Harcourt 2013) in that the wave velocity
uw appears explicitly in the budget terms. To be specific, the advection term, (u − c) ·
∇〈u′

iu
′
j〉, includes the orbital motions of the wave as it represents the wave-phase variation

of Reynolds stresses. The production terms Pw
ij also relate directly to the velocity gradients

of the wave motions rather than the Stokes drift so that Pw can account for the effect of
wave phases. The remaining terms have similar expressions with those in the CL-based
equations.

As discussed above, the variations of Reynolds stresses with the wave phase observed
in § 3.2 correspond to the positive–negative fluctuations of D〈u′

iu
′
j〉/Dt, which we find are

mostly caused by the production by the wave, Pw, and the velocity–pressure-gradient term,
Π . These two terms exhibit nearly sinusoidal variations with the wave phase. As a result,
Reynolds stresses are increased and decreased under different phases, leading to their
variations with the wave phase. By comparison, the fluctuations of the remaining terms
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are at least one order of magnitude in ak weaker and, thus, have negligible contributions
to the fluctuations of D〈u′

iu
′
j〉/Dt. This indicates that the wave-phase variation of the

Reynolds stresses is governed by Pw and Π . The Reynolds stress budgets for different
cases considered in this study are qualitatively similar; therefore, case 1 is used here as a
representative for the explanation of the mechanisms of the wave-phase variation of the
Reynolds stresses.

We first discuss the physical processes of the wave-phase variation of the streamwise
Reynolds normal stress 〈u′2〉. To reveal the inter-component energy transfer for the
Reynolds normal stresses, we apply the decomposition (3.12) and (3.13) to Πii for all
three components of Reynolds normal stresses. Figure 8 shows the contours of Pw

xx , Tp
xx

and Rxx , with the production Pw
xx decomposed into the normal production −2〈u′2〉∂uw/∂x

(figure 8a) and the shear production −2〈u′w′〉∂uw/∂z (figure 8b). Among these terms, the
normal production is dominant and contributes the most to the wave-phase variation of
〈u′2〉. Under the wave forward slope, ∂uw/∂x is negative (figure 2b) and the resulting
normal production is positive, indicating that 〈u′2〉 gains energy from the streamwise
compression of the wave motions. The opposite process occurs under the backward slope.
Towards the wave surface, with the increase of 〈u′2〉 (figure 3a) and the velocity gradient
∂uw/∂x , the rate of the energy exchange between 〈u′2〉 and the wave through the normal
production also increases. Because the convection by the wave is in the −x-direction
relative to the frame moving with the wave, the alternating enhancement and suppression
of the 〈u′2〉 result in maximal 〈u′2〉 under the wave crest and minimal under the wave
trough, consistent with figure 6(a). Finally, because the RDT theory also assumes that
the straining effect is the dominant mechanism for the rapid distortion of the turbulence,
the wave-phase variation of 〈u′2〉 is well predicted by the RDT theory (3.1a), as shown in
§ 3.2. In the budget equation of 〈v′2〉, the production and pressure transport are both zero
according to the definition of phase averaging (A 1). The pressure–strain correlation Ryy

shown in figure 9 is the dominant term in the budget of 〈v′2〉. The value of Ryy is positive
and negative under the wave backward and forward slope, respectively. As a result, 〈v′2〉 is
enhanced when the wave backward slope passes and is weakened when the forward slope
passes, consistent with the wave-phase variation of (v′2)l shown in § 3.2 (figure 6b). We
also note that Rii represents the inter-component energy transfer, which means that the
wave-phase variation of 〈v′2〉 is not directly affected by the wave straining but is sustained
by its periodic energy exchange with the other two components of the Reynolds normal
stresses (mostly 〈w′2〉 as discussed below). Figure 10 shows the dominant terms in the
budget of 〈w′2〉. Among these terms, the shear production (figure 10b) is significantly
weaker, therefore, the weak wave-phase variation of 〈w′2〉 (figure 6c) results from the
balance among the normal production (figure 10a), the pressure transport (figure 10c)
and the pressure–strain correlation (figure 10d). The normal production −2〈w′2〉∂ww/∂z
is negative and positive under the forward and backward slopes, respectively. Meanwhile,
the phase distribution of the pressure–strain correlation Rzz, i.e. positive under the forward
slope and negative under the backward slope, is opposite to that of the normal production.
The pressure transport Tp

zz relating to the diffusion of 〈w′2〉 due to the turbulence pressure
in the vertical direction has a two-layer structure, as shown in figure 10(c). Under the
forward slope, Tp

zz is negative near the surface and becomes positive away from the
surface, indicating that the energy of 〈w′2〉 is transported from the surface to the deep
region. The energy transport direction reverses under the backward slope, i.e. from the
deep region to the surface. Comparing the magnitude of the above three terms, we
can now explain their net effect on 〈w′2〉. Under the forward slope, the energy gained
through the positive pressure–strain correlation near the surface overweights the negative
normal production. The excess of the energy is removed from the near-surface region
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FIGURE 8. Contours of the dominant budget terms of 〈u′2〉, including the production due to
the wave Pw

xx , (a) −2〈u′2〉∂uw/∂x and (b) −2〈u′w′〉∂uw/∂z, (c) the pressure transport Tp
xx and

(d) the pressure–strain correlation Rxx . The results are normalized by u2∗akσ .

and transported to the deep region through the pressure transport. Similarly, under the
backward slope, the pressure fluctuations transports energy from the deep region to the
surface and compensates the difference between the pressure–strain correlation and the
normal production. As a result of the balance described above, the strength of 〈w′2〉
changes little with the wave phase. By comparison, in the RDT model, the normal straining
is assumed to be the dominant mechanism for the wave-phase variation of the Reynolds
stresses. If we consider the normal production only (figure 10a), the maxima and minima
of 〈w′2〉 would be under the wave trough and crest, respectively, as predicted by the
RDT model (3.1b). This suggests that the effects of the turbulence pressure, including
the pressure transport and pressure–strain correlation, are not fully accounted for by the
RDT model.

We can see from the above analyses that the terms related to the turbulence pressure
play an important role in the wave-phase variation of the Reynolds normal stresses.
Specifically, the dynamics of 〈v′2〉 and 〈w′2〉 are closely related to the pressure–strain
correlation Rii. We notice that the magnitude of Rzz (figure 10d) is approximately the
same as Ryy (figure 9), indicating that the inter-component energy exchange occurs mainly
between 〈v′2〉 and 〈w′2〉. The energy transfers from 〈w′2〉 to 〈v′2〉 under the backward slope
and then transfers back under the forward slope. The sign-alternating variation of the
pressure–strain correlation can be explained by the blocking effect of the wave surface
(Guo & Shen 2014). As the fluid elements move under the backward slope, the decreased
surface elevation compresses the fluid elements in the vertical direction. As a result, the
fluid elements move closer to the surface and experience the blocking effect of the surface.
As the vertical turbulence fluctuations are restricted by the surface blocking, the energy
transfers from 〈w′2〉 to 〈v′2〉. Under the forward slope, as the surface elevation increases,
the reverse process occurs.
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FIGURE 9. Contours of the dominant budget term of 〈v′2〉, pressure–strain correlation Ryy .
The results are normalized by u2∗akσ .
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FIGURE 10. Contours of the dominant budget terms of 〈w′2〉, including the production due
to the wave Pw

zz, (a) −2〈w′2〉∂ww/∂z and (b) −2〈u′w′〉∂ww/∂x , (c) pressure transport Tp
zz and

(d) pressure–strain correlation Rzz. The results are normalized by u2∗akσ .

To summarise the mechanisms of the wave-phase variation of the Reynolds normal
stresses 〈u′2

i 〉, we sketch the dominant processes in the budget of 〈u′2
i 〉 in figure 11.

The wave-phase variation of 〈u′2〉 is mainly associated with its direct energy exchange
with the wave through the wave normal production, resulting in the maximum of 〈u′2〉
under the wave crest and minimum under the trough. The wave-phase variation of 〈v′2〉 is
caused by its energy exchange with 〈w′2〉 through the pressure–strain correlation, which
increases 〈v′2〉 under the backward slope and reduces 〈v′2〉 under the forward slope. The
effects of the pressure–strain correlation are related to the strengthening and weakening
of the blocking effect of the water surface due to the undulating motions of the wave.
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FIGURE 11. Sketch of the dominant processes contributing to the wave-phase variation of the
Reynolds normal stresses. The arrows indicate the direction of the energy flux. The solid arrows
represent the wave normal production. The arrows with dash–dotted lines represent the pressure
transport. The hollow arrows with dash–dot–dot lines indicate the pressure–strain correlation.

Lastly, the energy gain or loss of 〈w′2〉 with 〈v′2〉 through the pressure–strain correlation
is balanced with the wave normal production and the pressure transport. The net effect
of these three processes results in the weak wave-phase variation of 〈w′2〉. We note that,
although there is no direct interaction between 〈v′2〉 and the wave straining through the
production effect, 〈w′2〉 acts as a conduit of energy exchange between 〈v′2〉 and the wave.

Next, we analyse the budget of the Reynolds shear stress −〈u′w′〉. Because the variation
of 〈u′w′〉 at the surface is due to the surface kinematics as discussed in § 3.2, here we
focus on the processes occurring away from the surface, where −〈u′w′〉 obtains its maxima
under the crest and minima under the trough (figure 7a in § 3.2). Note that for the Reynold
shear stress, if we apply the decomposition (3.11) to the velocity–pressure-gradient terms,
there are two pressure transport terms Rxz (3.12) and two pressure–strain correlation
terms Tp

xz (3.13), which complicates the analyses. Therefore, we keep the form of the
velocity–pressure-gradient terms, −〈u′∂p′/∂z〉 and −〈w′∂p′/∂x〉, to facilitate the analysis
of the wave-phase variation of 〈u′w′〉.

Figure 12 shows the contours of the production terms (figures 12a and 12b) and the
velocity–pressure-gradient terms (figures 12c and 12d). Note that the budget equation (3.5)
has been multiplied by −1 such that these terms represent the variation of −〈u′w′〉. The
two production terms represent the generation of 〈u′w′〉 from the shear straining of the
normal velocity fluctuations 〈u′2〉 and 〈w′2〉. We can see that all the four terms exhibit
obvious wave-phase variation, indicating the complicated physical processes involved
with the Reynolds shear stress. Upon a closer examination, we find that the production
associated with the vertical normal stress 〈w′2〉∂ww/∂x (figure 12b) can roughly cancel
the pressure term associated with the vertical velocity fluctuation 〈w′∂p′/∂x〉 in most
of the region. To illustrate their net effect, the sum of the these two terms is plotted in
figure 12(e), from which we can see that its wave-phase variation is much weaker than
the two individual terms. When we compare figure 12(e) with figures 12(a) and 12(c), we
can now see clearly that the pressure effect term 〈u′∂p′/∂z〉 overwhelms the other terms
and is the dominant mechanism that determines the wave-phase variation of the shear
stress. For example, in the −x-direction, the value of 〈u′∂p′/∂z〉 changes from positive
to negative near the wave crest, which means that 〈u′∂p′/∂z〉 alone would lead to the
maxima of −〈u′w′〉 approximately under the wave crest. Meanwhile, the production term
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FIGURE 12. Contours of the dominant terms in the evolution equation of −〈u′w′〉:
(a) 〈u′2〉∂ww/∂x , (b) 〈w′2〉∂uw/∂z, (c) 〈u′∂p′/∂z〉, (d) 〈w′∂p′/∂x〉 and (e) 〈w′2〉∂uw/∂z +
〈w′∂p′/∂x〉.

〈u′2〉∂ww/∂x (figure 12a) and the summed term (figure 12e) offset 〈u′∂p′/∂z〉 and shift
the positive and negative regions of 〈u′∂p′/∂z〉 further towards the −x-direction, which
results in the maxima and minima of −〈u′w′〉 under the wave crest and trough, respectively
(figure 4 in § 3.2). From the above analyses we can see that the turbulence pressure is not
only important to the dynamics of the Reynolds normal stresses 〈v′2〉 and 〈w′2〉, but also
plays a crucial role in the wave-phase variation of the Reynolds shear stress −〈u′w′〉.

4. Dynamics of Lagrangian-averaged TKE

In this section we use the Lagrangian average (A 2) to investigate the wave-phase-
averaged dynamics of the TKE balance, with a focus on the accumulative energy flux
from the wave to the turbulence. First, in § 4.1 the budget of the Lagrangian-averaged
TKE is examined and discussed. Then, the energy flux between the wave and turbulence
through the production is analysed in § 4.2, for which a model is further developed in § 4.3.
At last, the relation of the present modelling of the wave–turbulence energy flux with the
traditional model that uses the Stokes drift is discussed in § 4.4.
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4.1. Lagrangian-averaged TKE budget
The budget equation of the Lagrangian-averaged TKE ĒL, where E = u′

iu
′
i/2, is

D̄LĒL

D̄t
= PcL + PwL + TpL + TtL + ε̄L, (4.1)

which is obtained by summing up the budget equations of the three Reynolds
normal stresses (3.5) and applying the Lagrangian average (A 2). Note that we have
decomposed the velocity–pressure-gradient term into the pressure transport term Tp

ii
and the pressure–strain correlation term Rii as (3.11)–(3.13), and invoked the trace-free
property of Rii. Therefore, Rii that represents the inter-component energy transfer is
cancelled among the three components of Reynolds normal stresses and only the pressure
transport term appears in (4.1).

The terms on the right-hand side of (4.1) are the TKE production due to the sheared
current PcL

,

PcL = −u′w′ ∂uc

∂z

L

= −u′w′L ∂uc

∂z
, (4.2)

the TKE production due to the wave straining PwL
,

PwL = −u′2 ∂uw

∂x

L

− w′2 ∂ww

∂z

L

− u′w′ ∂uw

∂z

L

− u′w′ ∂ww

∂x

L

, (4.3)

the diffusion of TKE due to the pressure fluctuations TpL
,

TpL = − 1
ρ

(
∂p′u′

∂x

L

+ ∂p′w′

∂z

L)
, (4.4)

the diffusion due to the effects of the resolved turbulence fluctuations, SGS turbulence and

viscosity TtL,

TtL = −∂u′E
∂x

L

− ∂w′E
∂z

L

+ ν∇2E
L

− ∂(u′τ ′
11 + v′τ ′

12 + w′τ ′
13)

∂x

L

− ∂(u′τ ′
13 + v′τ ′

23 + w′τ ′
33)

∂z

L

, (4.5)

and the combined viscous and SGS dissipation ε̄L,

ε̄L = −ν
∂u′

i

∂xk

∂u′
i

∂xk

L

+ τ ′
ik

∂u′
i

∂xk

L

. (4.6)

Note the in (4.2), uc
L is equal to uc by definition (A 4).

To assess the characteristic features of the wave-phase-averaged budget of TKE, we
focus on cases 1 and 3, representative of the strong (Lat = 0.35) and weak (Lat = 0.9)
Langmuir turbulence, respectively. Their budget terms are plotted in figures 13(a) and
13(b), respectively. The deep bottom region is not plotted because our interest is the wave
effect. In case 1 (figure 13a) the dominant source of the TKE is the production associated
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FIGURE 13. Profiles of the budget terms of Lagrangian-averaged TKE (4.1) for (a) case 1 and
(b) case 3: production due to the wave straining PwL

(——), production due to the mean current
PcL

(– – –), diffusion due to the resolved turbulence fluctuations, SGS turbulence and viscous
effects TtL (— · —), pressure transport TpL

(— · · —) and dissipation ε̄L (· · · · · ·). The results
are normalized by ku3∗.

with the wave straining PwL
. The production due to the wave effect decays as the depth

increases and becomes negligible compared to other terms at approximately kz = −2. The
production by the current shear PcL

as another source of the TKE is negligibly small except
for close to the surface. This is because the Eulerian current is almost uniform away from
the surface due to the enhanced mixing associated with the Langmuir turbulence, and
only near the surface does the shear of the mean current become significant owing to the
viscous effect. The dominance of the wave production is consistent with the findings from
the CL model. In other words, the production by Stokes shear is the main source of TKE.
For case 3 where the Langmuir turbulence is weak (figure 13b), the roles of the wave and
current are reversed. In other words, because the strength of wave straining and the mixing
due to the Langmuir circulations is relatively weak in case 3, the dominant source of the
TKE becomes the interaction between the current shear and turbulence, similar to a purely
shear-driven boundary layer. We also note that the regions of TKE production for cases 1
and 3 are different. The TKE production for case 1 extends much deeper into the water
column compared to case 3 because the wave production scales with the characteristic
length of the wave, i.e. the wavelength. This result suggests that the production of TKE
due to the wave can affect the interior of the water column. For case 2 with Lat = 0.5
and case 1S with Lat = 0.35 and increased wave steepness, the profiles of the two
production terms, PwL

and PcL
, are qualitatively similar to case 1 and, thus, are not plotted

here.
The turbulence energy extracted from the wave and mean current is either locally

dissipated or transported to the deep region. For both case 1 and 3, the sum of the two
diffusion terms, TtL and TpL

, is negative in the near-surface region and positive in the
deep region, indicating that the kinetic energy generated in the TKE production region
near the surface is transported to the interior of the water column. The penetration of the
diffusion flux of case 1 is deeper than that of case 3, which suggests the enhanced mixing
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of TKE in the presence of Langmuir circulations. A similar trend has also been reported
in the literature based on the CL model (see, e.g. Polton & Belcher 2007; Grant & Belcher
2009).

4.2. Turbulent kinetic energy production by wave straining

It is shown above that the wave production PwL
plays an important role in the balance

of TKE, especially when Lat is small. This result indicates that the wave–turbulence
interaction induces an energy flux from the wave to turbulence. To further understand
the energy exchange between the wave and the turbulence through PwL

, we perform a
Lagrangian-average-based Reynolds decomposition to PwL

. First, using the definitions
(A 1) and (A 2), we have

Pw
ij

L = u′
iu

′
j
∂(uw)i

∂xj

L

= 〈u′
iu

′
j〉

∂(uw)i

∂xj

L

. (4.7)

Then we invoke (A 3),

Pw
ij

L =
(

u′
iu

′
j
L + (u′

iu
′
j)

l
)[∂(uw)i

∂xj

L

+
(

∂(uw)i

∂xj

)l
]L

(4.8)

= u′
iu

′
j
L ∂(uw)i

∂xj

L
L

+ (u′
iu

′
j)

l ∂(uw)i

∂xj

L
L

+ u′
iu

′
j
L
(

∂(uw)i

∂xj

)l
L

+ (
u′

iu
′
j

)l
(

∂(uw)i

∂xj

)l
L

. (4.9)

Note that the cross-correlations between the Lagrangian mean and the Lagrangian
fluctuation quantities in the above equation are zero; therefore, we obtain the following

decomposition of Pw
ij

L

Pw
ij

L = (
Pw

ij

)LL + (
Pw

ij

)ll
, (4.10)

where

(
Pw

ij

)LL = −u′
iu

′
j
L ∂(uw)i

∂xj

L

, (4.11)

(
Pw

ij

)ll = −(u′
iu

′
j)

l
(

∂(uw)i

∂xj

)l
L

. (4.12)

The first term on the right-hand side of (4.10), (Pw
ij )

LL, is the production of TKE due to
the Lagrangian mean wave velocity gradient acting on the mean Reynolds stress. The
second term, (Pw

ij )
ll, represents the TKE production contributed by the correlation between

the Lagrangian fluctuations of the wave velocity gradient and Reynolds stress. Hereafter,
(Pw

ij )
LL and (Pw

ij )
ll are referred to as the mean effect and the correlation effect, respectively.
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To facilitate the discussion, we also write the full expression of the production terms from
the above decomposition as

(Pw)
LL = −u′2L ∂uw

∂x

L

− w′2L ∂ww

∂z

L

− u′w′L ∂uw

∂z

L

− u′w′L ∂ww

∂x

L

, (4.13)

(Pw)
ll = −(u′2)l

(
∂uw

∂x

)l
L

− (w′2)l
(

∂ww

∂z

)l
L

− (u′w′)l
(

∂uw

∂z

)l
L

− (u′w′)l
(

∂ww

∂x

)l
L

. (4.14)

Figure 14 plots the vertical profiles of (Pw)LL and (Pw)ll for different cases. Both terms
are positive, indicating that the wave transfers energy to the turbulence through both the
mean effect and correlation effect. Although the production due to the correlation effect
is smaller than that from the mean effect, the correlation effect is still pronounced. To
quantify the contributions from (Pw)LL and (Pw)ll, we define the following integration over
the water column as

PLL =
∫ 0

D
(Pw)LL dz, (4.15)

P ll =
∫ 0

D
(Pw)ll dz. (4.16)

Because we focus on the near-surface region where the wave effect is important, we choose
D = −2k−1. This depth is four times the e-folding depth of the Stokes drift and twice the
e-folding depth of the wave orbital velocity, and, therefore, captures the wave distortion
effect well. Figure 14 confirms that below this depth, both productions become negligible.
The percentages of the contributions from (4.15) and (4.16) to the total energy flux
P = PLL + P ll are listed in table 2. We can see that (Pw

ij )
ll accounts for an important

portion of the energy flux from the wave to turbulence. We remark that we have also
varied the choice of D between −2k−1 and −k−1 and find that the results presented in
table 2 change at most 2.4 %, indicating that the choice of D has little impact on the
quantification of the fundamental roles of the two mechanisms. Next, we examine the two
effects in more detail.

Among the different production terms in the mean effect (Pw)LL (4.13), the dominant
contribution comes from the Lagrangian-averaged shear production,

− u′w′L ∂uw

∂z

L

, −u′w′L ∂ww

∂x

L

. (4.17a,b)

The other two terms in (4.13), the Lagrangian-averaged normal production, is negligible
because the Lagrangian-averaged wave normal gradients ∂uw/∂x

L
and ∂ww/∂z

L
are

negligibly small (figure 2). The profiles of the two dominant terms in (4.17a,b) are plotted
in figure 15. The two terms are approximately equal in most of the region because the wave
is nearly irrotational, i.e. ∂uw/∂z

L ≈ ∂ww/∂x
L
. Near the surface, −u′w′L∂uw/∂z

L
increases

sharply due to the rapid increase of ∂uw/∂z
L

in the viscous surface boundary layer (§ 2.3).
Because the thickness of the viscous layer scales with (2ν/σ)1/2, case 1 has the thinnest
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FIGURE 14. Lagrangian decomposition of TKE production for (a) case 1, (b) case 2, (c) case 3
and (d) case 1S: mean effect (Pw)LL (——) and correlation effect (Pw)ll (– – –). The results are
normalized by u2∗(ak)2σ .

Case PLL/P P ll/P PLL
estimate/P P ll

estimate/P
Case 1 62.1 % 37.9 % 62.1 % 33.9 %
Case 2 69.6 % 30.4 % 59.4 % 29.7 %
Case 3 71.9 % 28.1 % 53.8 % 23.2 %
Case 1S 67.3 % 32.7 % 62.9 % 34.3 %

TABLE 2. Percentages of TKE production due to the mean effect PLL (4.15) and the correlation
effect P ll (4.16) in the total production P . The fourth and fifth columns are calculated using the
proposed estimation model for the mean effect PLL

estimate (4.20) and correlation effect P ll
estimate

(4.28), respectively.

viscous layer among the cases considered in this study. Case 3 has the thickest viscous
layer and thus the region where the increase of −u′w′L∂uw/∂z

L
is observed is larger than

the other cases.
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FIGURE 15. Production of TKE due to the mean effect (4.17a,b) for (a) case 1, (b) case 2,
(c) case 3 and (d) case 1S: −u′w′L∂uw/∂z

L
(– – –), −u′w′L∂ww/∂x

L
(· · · · · ·), and the model

estimation (4.19) (◦). The results are normalized by u2∗(ak)2σ .

Next, we discuss the correlation effect (Pw)ll. Among the different terms (Pw)ll (4.14), it
is found that the TKE production due to the correlation effect comes from

−(u′w′)l
(

∂uw

∂z

)l
L

, −(u′w′)l
(

∂ww

∂x

)l
L

. (4.18a,b)

In other words, the interaction of the Lagrangian fluctuations of Reynolds shear stress,
(u′w′)l, with the shear gradients of the wave velocity, (∂uw/∂z)l and (∂ww/∂x)l, result in a
net production of TKE over a Lagrangian period. Figure 16 plots the vertical profiles of the
above two terms for different cases. The TKE production from (4.18a,b) can be explained
by the phase distribution of the Reynolds stresses. As discussed in § 3.2 and shown in
figure 7(a), (u′w′)l in most of the region has its maximum and minimum values under
the wave crest and trough, respectively. The variation of (u′w′)l is negatively correlated
with the wave shear strain (∂uw/∂z)l and (∂ww/∂x)l (figure 2). As a result, the product
of (u′w′)l and (∂uw/∂z)l or (∂ww/∂x)l yields a net value when integrated over the wave
period. Comparatively, the other two terms in (4.14) representing the correlations between
the Reynolds normal stresses and the wave normal velocity gradients are negligibly small.
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FIGURE 16. Production of TKE due to the correlation effect (4.18a,b) for (a) case 1, (b) case 2,

(c) case 3 and (d) case 1S: −(u′w′)l(∂uw/∂z)lL (– – –), −(u′w′)l(∂ww/∂x)lL (· · · · · ·), and the
model estimation (4.27) (◦). The results are normalized by u2∗(ak)2σ ).

The streamwise Reynolds stress (u′2)l reaches maxima and minima under the crest and

trough, respectively (figure 6a). Therefore, for −(u′2)l
(∂uw/∂x)l

L
, the phase difference

between (u′2)l and (∂uw/∂x)l is nearly π/2. Integrated over a Lagrangian wave period, the
product of the two terms with a phase difference of π/2 does not result in net contributions.
For the correlation effect associated with the vertical Reynolds stress, due to the weak
dependence of (w′2)l on the wave phase as discussed in § 3.2 and shown in figure 6(c), the
resulting correlation effect is also negligible.

4.3. Modelling of production due to wave
In this section we further investigate the modelling of the TKE production due to the
mean effect and correlation effect of the wave. For the mean effect, because the wave
is mostly irrotational, we use the potential wave solution to approximate the Lagrangian
mean velocity gradient, i.e. ∂uw/∂z

L = ∂ww/∂x
L = (ak)2σe2kz (Ardhuin & Jenkins 2006).
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The production due to the mean effect can then be calculated as

−
[

u′w′L ∂uw

∂z

L]
estimate

= −
[

u′w′L ∂ww

∂x

L]
estimate

= −u′w′Le2kz(ak)2σ. (4.19)

In other words,

(Pw)LL
estimate = −2u′w′L e2kz(ak)2σ. (4.20)

The above model estimation is plotted in figure 15 together with the result from the
LES. We can see that the estimation agrees with the numerical result of −u′w′L∂ww/∂x

L

mostly. For −u′w′L∂uw/∂z
L
, the model works well in most of the region, but is unable to

capture the rapid increase of −u′w′L∂uw/∂z
L

within the viscous surface boundary layer.
As discussed above, case 1 has the thinnest viscous layer and thus the error of the model is
the smallest. Case 3 has the thickest viscous layer, which leads to a larger deviation from
the data. The integrated production from z = D to the surface, defined in (4.15), based
on the estimation (4.20) is listed as PLL

estimate in table 2. Similar to what we observe in
figure 15, the integrated contribution from the mean effect is underestimated by (4.20) and
the difference increase in case 3. However, we shall note that in case 3 the TKE production
due to the wave straining is much smaller than that due to the mean current as discussed
in § 4.1. Moreover, the Reynolds number in the field is high and thus the viscous surface
layer is thin. Therefore, such deviation in the viscous surface layer shall not impact the
overall dynamics associated with TKE production.

For the correlation effect terms in (4.18a,b), we need to first quantify the wave-phase
variation of the quantities involved, i.e. the Lagrangian fluctuations of wave shear velocity
gradients, (∂uw/∂z)l and (∂ww/∂x)l, and the Lagrangian fluctuations of the Reynolds shear
stress, (u′w′)l. Based on the solution of the potential wave, we express the wave velocity
gradients as (

∂uw

∂z

)l

=
(

∂ww

∂x

)l

≈ akσ ekz sin(kx − σ t), (4.21)

where kx − σ t is the wave phase. The Reynolds shear stress (u′w′)l is assumed to have the
following form:

(u′w′)l = (u′w′)in sin(kx − σ t) + (u′w′)out cos(kx − σ t). (4.22)

In (4.22), (u′w′)l is decomposed into an in-phase part and an out-of-phase part, where
(u′w′)in and (u′w′)out denote their amplitudes, respectively. The in-phase part has a phase
difference of 0 or π from the wave elevation, and the out-of-phase part has a phase
difference of π/2 or −π/2. The above form is proposed as a generalized expression for the
different phase distributions of (u′w′)l that we have observed in § 3.2. In most of the region,
the extrema of 〈u′w′〉l are located under the wave crest and trough, respectively (figure 7a).
This corresponds to the dominance of the in-phase part (u′

iu
′
j)in

. At the surface, due to
the kinematic blocking effect, (u′w′)l has its maxima and minima under the backward
and forward slope, respectively (figure 7b). This means that the out-of-phase part (u′w′)out
becomes dominant at the surface.

The correlation effect (4.18a,b) is the integration of the product of (4.21) and (4.22) over
the Lagrangian wave period. Due to the orthogonality of the trigonometric functions, the
net effect is contributed only by the part of the Reynolds stress fluctuation that has a phase
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difference of 0 or π from the fluctuations of the wave velocity gradients. Consequently,
(4.18a,b) becomes

−(u′w′)l
(

∂uw

∂z

)l
L

≈ −(u′w′)inakσekzsin2(kx − σ t)
L
, (4.23)

−(u′w′)l
(

∂ww

∂x

)l
L

≈ −(u′w′)inakσekzsin2(kx − σ t)
L
. (4.24)

The above equations indicate that the kinematic-induced variation of (u′w′)l does not
contribute to the correlation effect and, thus, we only need to quantify the in-phase part.
However, it remains challenging to model (u′w′)in dynamically. The reason is that the
wave-phase variation of (u′w′)l is mainly caused by the velocity–pressure-gradient term as
discussed in § 3.3. The pressure related terms in the Reynolds stress budgets are often
difficult to model, even for simple configurations such as the channel flow (Hoyas &
Jiménez 2008). For the Langmuir turbulence with the effect of surface waves, Pearson
et al. (2019) studied the pressure–strain terms using the data from the LES of CL equations
by decomposing the pressure fluctuations into the rapid, Stokes and slow parts. They
proposed a model to incorporate the effect of the Stokes drift, but its performance is
still limited in reproducing some components of the pressure–strain terms, and empirical
formulations are used in the modelling of the slow pressure–strain term. In the present
study, for the turbulent flow with the wave phase resolved, the modelling of the turbulence
pressure is further complicated by the curved boundary and the straining by the wave
orbital velocity, as discussed in § 3.3. Therefore, we seek to obtain a simple model for the
correlation effect based on our wave-phase-resolved LES data.

The values of (u′w′)in for the cases considered in this study are plotted in figure 17(a).
The negative values of (u′w′)in correspond to the phase distribution that the enhanced
Reynolds shear stress is under the wave crest (figure 4). In the vertical direction the
magnitude of (u′w′)in first increases towards the surface, indicating that the wave-phase
variation of the Reynolds shear stress increases as the wave effect becomes stronger near
the surface. As the surface is further approached, (u′w′)in decreases due to the surface
blocking effect discussed in § 3. Among different cases, it is obvious that (u′w′)in has a
strong dependence on the wave steepness ak, as (u′w′)in in case 1S is larger compared to
that in cases 1–3. The profiles of cases 1–3 also indicate a weak dependence of (u′w′)in on
Lat, i.e. the magnitude of (u′w′)in increases slightly as Lat decreases.

The above features of (u′w′)in lead us to propose an estimation of (u′w′)in as

(u′w′)in = βLa−n
t ak ekzu′w′L. (4.25)

The above form is analogous to the RDT modelling of the Lagrangian fluctuations (u′2)l

(3.1a). We essentially assume that the wave-phase modulation of the Reynolds shear
stress is proportional to the straining rate of the orbital motions. The parameter β is a
dimensionless coefficient describing the relative magnitude of the wave-phase variation.
The effect of Lat is parameterized by a power-law scaling, which has been widely used
in the literature for estimating various quantities in Langmuir turbulence, including the
TKE, Reynolds stress (see, e.g. Harcourt & D’Asaro 2008; Grant & Belcher 2009) and the
budget terms (Pearson et al. 2019). Using the least-square regression, we determine the
coefficients to be

β = −0.84 ± 0.02; n = 0.25 ± 0.02. (4.26a,b)
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FIGURE 17. Profiles of (a) the in-phase amplitude of the wave-phase variation of the Reynolds
shear stress, (u′w′)in (4.22), and (b) the scaled in-phase variation, |(u′w′)in|/(akLa−n

t u′w′L) for
case 1 (——), case 2 (– – –), case 3 (— · —) and case 1S (— · · —). In (b) the estimation (4.25)
(◦) is plotted for comparison.

Figure 17(b) plots the scaled profiles of (u′w′)in for different cases. We can see that these
profiles nearly collapse, indicating that the use of the wave steepness ak and the turbulent
Langmuir number Lat is effective in the scaling of the in-phase variation of the Reynolds
shear stress. The proposed approximation (4.25) using the coefficients (4.26a,b) is also
plotted in figure 17(b), which shows that (4.25) agrees with our numerical result.

Using (4.23)–(4.25), we can obtain the following estimation for the production terms
associated with the correlation effect (4.18a,b):⎡

⎣−(u′w′)l
(

∂uw

∂z

)l
L
⎤
⎦

estimate

=
⎡
⎣−(u′w′)l

(
∂ww

∂x

)l
L
⎤
⎦

estimate

= −βLa−n
t ak ekzu′w′L · akσ ekz sin2 (kx − σ t)

L

= − 1
2βLa−n

t (ak)2σ e2kzu′w′L. (4.27)

In other words, the total production caused by the correlation effect is

(Pw)ll
estimate = −β(ak)2La−n

t σ e2kzu′w′L. (4.28)

In the above equations, because the wave-phase variation of both the Reynolds shear
stress and the wave orbital velocity gradient is O(ak), the resulting correlation effect is
O(a2k2), the same as the mean effect (4.19). Meanwhile, the exponential decay rate e2kz,
which is also the same as that in the mean effect (4.19), indicate that the influence region
of the correlation effect has a similar depth as that of the mean effect. The estimation

(4.27) is compared with the LES results of −(u′w′)l(∂uw/∂z)l
L

and −(u′w′)l(∂ww/∂x)l
L

in
figure 16, which shows that the proposed model agrees with the numerical result well. To
further evaluate the performance of our estimation, we list the vertically integrated values
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of (4.28), denoted by P ll
estimate, in the last column of table 2 for comparison. Comparing

the model (the last column) and the LES result (the third column), we can see that
the model (4.27) gives a fairly good approximation of the correlation effect and as a
result, significantly improves the estimation of the total TKE production (which had the
correlation effect missed in previous studies as discussed below in § 4.4).

4.4. Discussion on turbulence energy production from the wave
Traditionally, the production of TKE from waves in Langmuir turbulence is modelled
using the Stokes drift and Reynolds shear stress. For a uni-directional monochromatic
wave, the production rate, denoted by PSt, is

PSt = −u′w′ dus

dz
= −2u′w′ e2kz(ak)2σ, (4.29)

where u′w′ denotes the Reynolds shear stress and us = a2kσe2kz is the Stokes drift obtained
from the potential wave theory (Phillips 1977). We can see that the above formulation
of the wave production based on the Stokes drift is the same as our estimation of the
mean effect (4.20). The relation between the Stokes production (4.29) and the mean
effect in this study can be explained by how (4.29) is obtained. The formulation (4.29)
can be derived from the CL momentum equations (see, e.g. McWilliams et al. 1997),
where it arises from the vortex force. In the CL momentum equations the velocity
represents the wave-phase-averaged motions without wave-phase-correlated fluctuations.
Therefore, the TKE production derived from the CL equations is equivalent to the
mean effect that represents the interaction between the wave-phase-averaged stress and
wave-phase-averaged straining. Alternatively, (4.29) can be derived in the Lagrangian
frame by assuming that there is no wave-phase correlation between the turbulence stress
and the wave orbital straining (Ardhuin & Jenkins 2006). The no-phase-correlation
assumption is also equivalent to our mean effect production. Therefore, it is natural that
the above Stokes production (4.29) is the same as the mean effect in the present study
(4.20).

The Stokes production is found to be the main source of TKE in strong Langmuir
turbulence at small Lat from the previous simulations using the CL equations (see, e.g.
McWilliams et al. 1997; Grant & Belcher 2009). When Lat increases and the wave
effect weakens, the production from the Stokes drift decreases while the production by
the shearing current increases. This is consistent with our analyses of the role of the
wave production in Lagrangian-averaged TKE budget in § 4.1, indicating that the Stokes
production can capture the qualitative features of the wave production. Furthermore,
between the two mechanisms of wave–turbulence energy flux, i.e. the mean effect and
the correlation effect, the former contributes more to the energy flux from the wave to the
turbulence, as shown in table 2. This suggests that the majority of the physical processes
related to the TKE in the wave–turbulence interactions is captured by the CL approach.

However, our analyses in § 4.2 indicate that, in addition to the mean effect, energy
transferred from the wave to the turbulence through the correlation effect is also
important, which is not accounted for by the above traditional model. As discussed above,
because the CL momentum equations describe the wave-phase-averaged velocity, it is
not surprising that the resultant TKE equation can only account for the dynamics of the
wave-phase-averaged velocity fluctuations but cannot capture the correlations between the
turbulence properties and the wave phase.
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4.5. Comparison with CL simulation
To further understand the difference between the present full wave-phase-resolved
approach for modelling the wave–turbulence interaction and the conventional
wave-phase-averaged approach, we performed an LES of Langmuir turbulence using the
CL equations (see, e.g. McWilliams et al. 1997). The set-up of the CL simulation is the
same as case L1 with La = 0.35. The upper boundary becomes a stress-driven rigid lid.

Profiles of the Reynolds normal stresses, u′2
i

L
, are plotted in figure 18(a–c). Note that the

Lagrangian mean ¯(·)L
(A 3) for the CL simulation is equivalent to the x–y plane average.

We can see that the profiles of u′2
i

L
from the two simulation approaches are qualitatively

similar but there are some quantitative differences. The wave-phase-resolved simulation
yields slightly stronger u′2L

and w′2L
and weaker v′2L

than the CL model. However, the
discrepancies between the two approaches are relatively small. Similarly, we see a modest
difference in TKE, ĒL, as shown in figure 18(d). The TKE in the CL simulation is smaller
than in the wave-phase-resolved simulation, but the difference is within a margin of 10 %.
For the Reynolds shear stress, figure 18(e) shows noticeably larger −u′w′L near the surface
in the wave-phase-resolved simulation than in the CL simulation, indicating that the
former predicts more efficient turbulence momentum transport. This result is consistent
with the difference in the mean current shown in figure 18( f ), where we see a more
uniform mean current in the wave-phase-resolved simulation than in the CL simulation,
especially in the upper half of the domain.

Despite some relatively small quantitative differences, the Reynolds stresses and TKE
seem well predicted by the CL simulation. However, this does not mean that the dynamics
of Langmuir turbulence are fully captured by the CL simulation. As discussed in the
preceding discussions, the wave-phase-resolved simulation has an additional energy
production mechanism through the correlation effect. Because the correlation effect is
associated with the wave-phase-correlated fluctuations, we can deduce that the correlation
effect should produce fluctuations that have time scales comparable to the wave period.
Therefore, we use the frequency spectrum of TKE, SE, to investigate the time scales of the
turbulence fluctuations.

Figure 19(a) plots the premultiplied frequency spectrum of TKE near the surface.
A notable phenomenon of the turbulence with the wave phase resolved is that energy
is distributed in two frequency ranges. First, there is energy concentrated around the
frequency of the wave, f0. This part of the energy, representing velocity fluctuations with
time scales close to the wave period, is related to the wave-phase-correlated turbulent
motions. Similar energy peaks have also been observed in field and laboratory experiments
(Kitaigorodskii et al. 1983; Lumley & Terray 1983; Jiang, Street & Klotz 1990; Magnaudet
& Thais 1995; Thais & Magnaudet 1996). The above results confirm that waves can supply
energy to the turbulent motions through the production of TKE by the correlation effect.

In addition to the energy distributed around f0, most of the TKE is contained in the
frequency range much lower than f0, which we name as the energy containing range. Given
that these motions are essentially what are retained after averaging over wave periods,
this part of the energy should be mostly supplied by the mean effect arising from the
wave-phase-averaged turbulence. We can also see that the largest time scale is on the
order of the large-eddy turnover time H̄/u∗, indicating that this range corresponds to large
energy-containing eddies in turbulence.

Figure 19(b) shows the energy spectrum evaluated at a deeper location. Compared
with figure 19(a), the energy containing range shifts towards larger time scales because
large-scale motions are more pronounced in the bulk flow. In the meantime, there is less
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FIGURE 18. Comparisons of (a) u′2L
/u2∗, (b) v′2L

/u2∗, (c) w′2L
/u2∗, (d) ĒL/u2∗, (e) −u′w′L/u2∗

and ( f ) uc/u∗ between the case L1 of the wave-phase-resolved simulation (——) and the CL
simulation (– – –).

energy around the wave frequency, indicating that the turbulence production due to the
correlation effect decays with depth. This is expected because the wave orbital straining
that drives the wave-phase-correlated fluctuations weakens as the depth increases.

For the frequency spectra computed from the CL simulation, the energy around the
wave frequency is absent because the turbulent motions associated with the correlation
effect are not accounted for by the wave-phase-averaged approach. Moreover, the energy
distributions in the energy containing range are different from the wave-phase-resolved
simulation. As shown in figure 19(a), the energy in the mid energy containing range,
defined as 8 × 10−4 < f /f0 < 5 × 10−2 in this case, is lower in the CL simulation than
in the wave-phase-resolved simulation, whereas the CL simulation has more energy in
the lower range f /f0 < 8 × 10−4. A similar difference is observed at the deeper depth,
as shown in figure 19(b). This result indicates that, although the two simulation methods
predicted approximately the same level of TKE, ĒL, as shown in figure 18(d), the energy
containing structures in the CL simulation has a longer lifetime.

Figure 19(c,d) shows the premultiplied frequency cross-spectrum of u′ and w′,
representing the contributions to the Reynolds shear stress from different time scales.
Here, we also observe a peak around the wave frequency, an indicator that the
wave-phase-correlated fluctuations contribute to the turbulent flux of momentum. The
contribution from the wave frequency range is much smaller at the deeper depth
(figure 19d) than near the surface (figure 19c), consistent with the previous observation
in the TKE spectrum that the correlation effect weakens with increasing depth. The above
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FIGURE 19. Comparisons of (a,b) the premultiplied frequency spectrum of the TKE and
(c,d) the premultiplied frequency cross-spectrum of u′ and w′ between the case L1 of
the wave-phase-resolved simulation (——) and the CL simulation (— · —). The spectrum
is computed along the Lagrangian trajectories with the mean depth (a) kz = −0.2 and
(b) kz = −0.8.

results show that the correlation effect has a larger influence on the TKE and turbulent
fluxes near the surface than away from the surface.

Compared with the wave-phase-resolved simulation, the cross-spectrum from the CL
simulation exhibits similar differences in the time scales as the TKE spectrum. For
example, figure 19(c) shows that the CL simulation has turbulence eddies with very large
time scales f /f0 < 8 × 10−4 contributing to the turbulent flux. These long-living eddies
are not present in the wave-phase-resolved simulation, but the latter has stronger flux
contributions from the midrange 8 × 10−4 < f /f0 < 5 × 10−2 and the wave frequency
range.

To summarize, the turbulence fluctuations in the wave-phase-resolved simulation are
produced by both the mean and correlation effects, with the former effect contributing
to large eddies in the energy containing frequency range and the latter contributing
to the wave-phase-correlated fluctuations in the wave frequency range. By contrast,
the CL simulation captures only the mean effect. It is also interesting that the
wave-phase-resolved simulation tends to predict turbulent motions with a shorter lifetime,
for which the underlying reasons need further investigations. We conjecture that this
result is because some large-scale structures are more likely to be disrupted owing to
the wave-phase-correlated fluctuations. Finally, we remark that the differences from the
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CL model found here is not in conflict with the findings in Xuan et al. (2019) that the CL
modelling of the wave-phase-averaged vorticity is consistent with the wave-phase-resolved
simulation result. Both the CL modelling and the study of Xuan et al. (2019) focus
on the first-order moments of the turbulence. The first-order moments, e.g. vorticity or
momentum, do not contain the fast oscillating portion of the turbulence motions after the
use of phase averaging. However, the contributions from the wave-frequency turbulence
fluctuations shown in figure 19 are kept in the second-order moments, such as the Reynolds
stresses and TKE investigated in the present study. The correlation effect, together with the
mean effect, provides a complete picture of the energy exchange process between the wave
and turbulence.

5. Conclusions

In the present study the effect of wave phase on Reynolds stresses and TKE in Langmuir
turbulence is examined based on the wave-phase-resolved LES data of Xuan et al. (2019).
We focus on the direct phase modulation of Reynolds stresses by the surface wave and
the associated dynamical processes. The accumulative dynamics of the TKE are then
analysed, which reveal the mechanisms of the energy flux from the wave to turbulence.
The analyses of the turbulence statistics and dynamics in the wave-phase-resolved frame
are based on a triple decomposition that utilizes the phase averaging and GLM theory to
separate the total velocity into the mean current uc, wave uw and turbulence components
u′.

The wave-phase variation of the Reynolds normal stresses and the underlying
mechanisms are analysed and summarised in figure 11. The streamwise Reynolds normal
stress 〈u′2〉 and spanwise Reynolds normal stress 〈v′2〉 are found to have a nearly sinusoidal
variation with the wave phase, while the vertical Reynolds normal stress 〈w′2〉 has a much
weaker dependence on the wave phase. The wave-phase variation of 〈u′2〉 is mainly driven
by the production due to wave orbital straining that periodically exchanges energy between
〈u′2〉 and the wave. As a result of the energy exchange induced by the streamwise stretching
and compression by the wave orbital motions (figure 2b), 〈u′2〉 attains its maxima under
the wave crest and minima under the wave trough. The maxima and minima of 〈v′2〉 occur
approximately under the wave trough and crest, respectively. For 〈v′2〉, its inter-component
energy transfer with 〈w′2〉 through the pressure–strain correlation is responsible for its
wave-phase variation. Such energy exchange is caused by the periodic surface lifting
and falling, which leads to the variation of the surface blocking effect and the energy
exchange between 〈v′2〉 and 〈w′2〉. The energy exchange from and to 〈v′2〉 does not lead to
a significant wave-phase variation of 〈w′2〉 because the exchanged energy is balanced by
the normal production that periodically exchanges energy with the wave and the pressure
transport that redistributes energy in the vertical direction. This balance results in the
weak wave-phase dependence of 〈w′2〉. Our analyses indicate that the Reynolds stresses
are modulated by not only the wave orbital straining but also the pressure effects, while
the latter is not captured by the models based on the rapid distortion theory. Therefore,
the modelling of the pressure effects in the wave-phase-resolved frame should be further
investigated in future work.

The Reynolds shear stress 〈−u′w′〉 also varies with the wave phase. In most of the region
away from the surface, its maxima and minima occur under the wave crest and trough,
respectively. Such wave-phase fluctuation of 〈−u′w′〉 is found to result mainly from the
velocity–pressure-gradient term, 〈u′∂p′/∂z〉. At the surface, owing to the surface blocking
effect, u′ and w′ are correlated because the velocity fluctuations need to be along the
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wave surface. The variation of u′w′ at the surface induced by the surface blockage is
kinematic, and we find that it does not contribute to the TKE production.

To investigate the accumulative effect of the wave on the turbulence, the budget of
Lagrangian-averaged TKE is evaluated. It is found that the production due to the wave
straining is a main source of turbulence, especially for the strong wave forcing cases
(i.e. with a small Lat). This indicates that Langmuir turbulence is mainly forced by the
energy from the surface wave. Then we employ the Lagrangian-average-based Reynolds
decomposition to the turbulence production terms associated with the wave. These terms
are decomposed into two parts, contributed by the mean effect and the correlation effect,
respectively. It is found that the mean effect, which represents the interactions between
the Lagrangian-averaged Reynolds stresses and the Lagrangian-averaged wave velocity
gradients, has the major contribution to the energy flux from the wave to turbulence.
Among different terms associated with the mean effect, the shear production terms,

−u′w′L∂uw/∂z
L

and −u′w′L∂ww/∂x
L
, are dominant. The estimation of the mean effect

for the TKE production based on the potential flow wave theory (4.20) is consistent with
the Stokes production term derived from the CL equations (4.29). An interesting finding
on the wave–turbulence energy transfer process is the production of TKE owing to the
correlation effect, which results from the correlation between the wave-phase fluctuations
of the Reynolds stress and the wave velocity gradients. Among the different correlation
terms in (4.14), the wave shear production owing to the interaction between the Reynolds

shear stress and the shearing of the wave orbital motions, i.e. −(u′w′)l(∂uw/∂z)l
L

and

−(u′w′)l(∂ww/∂x)l
L
, is found to be dominant. Because (u′w′)l is in phase with (∂uw/∂z)l

and (∂ww/∂x)l, their interaction leads to a net contribution to the production of TKE. We
then develop a simplified model to estimate the wave-phase variation of Reynolds shear
stress (4.25) and the resulting production by the correlation effect (4.28). The model is
found to be in good agreement with the LES result.

For first-order moments of turbulence, Xuan et al. (2019) showed that the correlation
of the vorticity fluctuations with the wave orbital straining needs to be considered to
obtain the correct wave-phase-averaged vorticity dynamics. In the present study focusing
on the second-order moments, we show that the wave-phase correlated fluctuations are
not accounted for by the wave-phase-averaged CL model. Although the vertical profiles
of TKE and Reynolds stresses are similar in both the wave-phase-resolved simulation and
CL simulation, the frequency spectrum of the TKE (figure 19a,b) and the co-spectrum of
u′ and w′ (figure 19c,d) show that the wave-phase-resolved simulation has two distinct
differences. First, wave-phase correlated velocity fluctuations lead to an energy bump
around the frequency of the surface wave, suggesting that the wave provides energy to not
only the wave-phase-averaged turbulence fluctuations but also the turbulence fluctuations
around the wave frequency. Second, the time scales of the turbulent motions in the
wave-phase-resolved LES are shorter than those in the CL simulation.

This study provides an improved and more complete understanding of the
wave–turbulence interactions in terms of the energy path from the wave to turbulence. The
proposed model for the TKE production due to the correlation effect also contributes to a
more accurate quantification of the energy transfer rate from the wave to the turbulence.
Although the analyses in the present paper are based on a monochromatic wave such
that the phase averaging can be employed for mechanistic studies, the conclusions in
the present paper can still be helpful to the modelling of turbulence under more realistic
waves with multiple modes. As a first step, the modulation effects of the different wave
components can be considered separately so that the wave-phase variation of the Reynolds
stresses can be superposed. Similarly, the TKE production caused by multichromatic
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waves can also be computed by the superposition of the individual wave components. Next,
the interactions among different wave components, which may be higher-order effects, can
be considered. They are beyond the scope of this paper but should be examined in future
research.
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Appendix A. Decomposition of mean current, wave and turbulence

To decompose the total velocity u into the mean current, wave and turbulence
components, we assume that the mean current and wave motions are uniform in the
spanwise direction and periodic with the wave. Therefore, we can separate them from
the total velocity through a phase averaging 〈·〉 defined as

〈u〉(x, z, t) = uc + uw = 1
NLyT

N−1∑
n=0

[∫ Ly

0

∫ t+T

t
u(x + cτ + nλ, y, z, τ ) dτ dy

]
, (A 1)

and the remainder is the turbulence velocity u′ = u − 〈u〉. In the above equation, x + cτ
translates the averaging frame with the wave phase speed c such that x is fixed with the
wave phase. The above averaging is also performed over the spanwise direction and over
the N (N = 4) waves in the domain following the assumptions of the spanwise invariance
and the periodicity. We then utilize the theory of GLM to decompose 〈u〉 into the mean
current and wave parts. The mean current velocity uc is defined as the quasi-Eulerian
velocity from the GLM theory and its definition is detailed below. With uc, the wave
velocity is naturally obtained as uw = 〈u〉 − uc.

The quasi-Eulerian velocity is calculated based on the Lagrangian mean and fluctuation
velocities, denoted by ūL and ul, respectively. The definitions of ūL and ul are given by

ūL(x, t) = 1
TL

∫ TL

0
〈u〉(x + ξ(x, τ ), τ ) dτ, (A 2)

ul(x, ξ , t) = 〈u〉(x + ξ(x, t)) − ūL. (A 3)

The Lagrangian mean velocity ūL is the average velocity of a fluid particle moving with
velocity 〈u〉 over a Lagrangian wave period TL (Longuet-Higgins 1986). The trajectory
of the fluid particle in (A 2), x + ξ , is expressed as the sum of a mean position x and a
fluctuating displacement ξ(x, t) that satisfies

∫ TL

0 ξ(x, τ ) dτ = 0. Then, using the above
quantities, the quasi-Eulerian velocity is calculated as

uc = ūL − p, (A 4)

where p denotes the pseudo-momentum defined as (Andrews & Mcintyre 1978)

pi = − 1
TL

∫ TL

0
ul

j
∂ξj

∂xi
dτ. (A 5)
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We remark that the quantities defined above are all associated with the mean Eulerian
coordinates of the trajectory, x. Because the trajectory is periodic in the streamwise
direction and the flow is quasi-steady, the mean coordinates of the trajectory reduce to
only the vertical coordinate z. That is, the Lagrangian quantities, including ūL and uc,
depend only on the mean vertical coordinate.

The above decomposition method has the advantage of including the region between
the wave troughs and crests. We remark that the wave velocity generally agrees with the
solution of a Stokes wave. Meanwhile, the quasi-Eulerian current also represents well the
Eulerian mean current defined as the x–y plane averaged velocity up to the wave trough
as shown in figure 3 of Xuan et al. (2019). This indicates that the decomposition method
is effective in separating the mean current and wave motions.
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