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Rotary honing: a variant of the Taylor
paint-scraper problem

By C H R I S T O P H E R P. H I L L S AND H. K. M O F F A T T†
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Silver Street, Cambridge CB3 9EW, UK

(Received 24 February 1999 and in revised form 29 February 2000)

The three-dimensional flow in a corner of fixed angle α induced by the rotation in
its plane of one of the boundaries is considered. A local similarity solution valid
in a neighbourhood of the centre of rotation is obtained and the streamlines are
shown to be closed curves. The effects of inertia are considered and are shown to be
significant in a small neighbourhood of the plane of symmetry of the flow. A simple
experiment confirms that the streamlines are indeed nearly closed; their projections on
planes normal to the line of intersection of the boundaries are precisely the ‘Taylor’
streamlines of the well-known ‘paint-scraper’ problem. Three geometrical variants
are considered: (i) when the centre of rotation of the lower plate is offset from the
contact line; (ii) when both planes rotate with different angular velocities about a
vertical axis and Coriolis effects are retained in the analysis; and (iii) when two
vertical planes intersecting at an angle 2β are honed by a rotating conical boundary.
The last is described by a similarity solution of the first kind (in the terminology of
Barenblatt) which incorporates within its structure a similarity solution of the second
kind involving corner eddies of a type familiar in two-dimensional corner flows.

1. Introduction
One of the simplest and best-known similarity solutions of fluid dynamics is that

describing flow in a corner between two rigid planes, one of which slides with steady
velocity U relative to the other at constant inclination α (figure 1a) (Taylor 1960,
1962; see also Batchelor 1967, p. 224). In the terminology of Barenblatt (1996), this
is a similarity solution of the first kind, for which the stream function ψT (r, θ) is
determined on dimensional grounds in the form

ψT = Uψ(r, θ) = Urf(θ), (1.1)

where

f(θ) =
(α2 − kθ) sin θ − θ sin2 α cos θ

α2 − sin2 α
, (1.2)

with

k = 1
2
(2α− sin 2α) > 0. (1.3)

Here, (r, θ) are plane polar coordinates, and the fluid domain is 0 < θ < α.
The corresponding pressure (per unit density) in a liquid of kinematic viscosity ν

† Also Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge
CB3 0EH, UK.
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120 C. P. Hills and H. K. Moffatt
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Figure 1. (a) Two-dimensional geometry of the Taylor paint-scraper problem showing the open
streamlines ψ = constant. (b) Geometry for the rotary honing problem: a ‘blade’ is held fixed at
angle α above a plate which rotates in its plane with angular velocity Ω.

is given by

pT = p0 − νUg′(θ)/r, (1.4a)

where

g(θ) = f + f′′ = −2(k cos θ − sin2 α sin θ)

α2 − sin2 α
, g′(θ) =

2(k sin θ + sin2 α cos θ)

α2 − sin2 α
> 0,

(1.4b, c)

and p0 is a positive constant determined by conditions far from the corner. The
singularity of pressure at r = 0 is a consequence of the imposed discontinuity of
velocity at the corner. For U > 0, pT → −∞ as r → 0, a singularity that would in
reality imply cavitation in the immediate vicinity of the corner; for U < 0, pT → +∞
and an infinite force is required to maintain contact between the planes – in reality,
there would in this case be leakage of liquid through a small gap between the planes.

We consider in this paper a variant of this ‘scraper’ problem, in which the lower
plate rotates in its plane with constant angular velocity Ω about a point, taken to
be the origin, on the line of intersection of the two planes (figure 1b). It is perhaps
appropriate to describe this as the ‘rotary honing problem’, or simply the ‘honing
problem’. This problem has potential relevance to situations in which viscous fluids
are mixed or kept in motion by the rotation of a paddle or rotor, or when fluid is
scraped from a smooth surface. Such a situation has been investigated experimentally
by Takahashi et al. (1982), who consider the mixing of two highly viscous Newtonian
fluids by the action of a helical blade in scraping contact with the base of a circular
cylinder.

The importance of understanding rotationally driven (mixing) flows has been
emphasized by Tatterson, Brodkey & Calabrese (1991), who estimate that the annual
cost of solving mixing problems for a typical chemical plant is of the order $ 0.5–5
million; and that unaddressed problems could result in a loss of between 0.5% and
3% of the total plant revenue; for the chemical industry in the USA, this amounts
to a total potential loss of between $ 1–20 billion per annum! This sort of statistic
provides ample motivation for the analysis presented in this paper.

We shall find that for the configuration indicated by figure 1(b), all three velocity
components (u, v, w) are functions of all three cylindrical polar coordinates (r, θ, z),
where z is now the ‘axial’ coordinate parallel to the line of intersection of the planes;
even within the Stokes approximation, these velocity components are coupled through
the pressure field. The solution in this approximation is determined in § 2.
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Rotary honing 121

The streamlines of this flow are shown to be the doubly infinite family of closed
curves given by the intersections of ‘Taylor’ surfaces ψ(r, θ) = constant and spherical
surfaces r2+z2 = constant. This is in contrast to the scraper problem of figure 1(a), for
which all streamlines extend to infinity. However, projection of the closed streamlines
of the honing problem on planes z = constant are segments (doubly covered) of the
Taylor curves ψ = constant. This property provides a convenient means for indirect
experimental verification of Taylor’s solution (see § 4).

The Taylor solution (in the Stokes approximation) is known to be valid in a region
where |U|r/ν � 1; the Stokes solution for the honing problem may be expected to
have a similarly restricted range of validity. By evaluation of the (neglected) inertial
terms of the Navier–Stokes equations, we find in § 3 that this neglect is in fact strictly
justified only if two conditions are satisfied, namely

Ωr|z|/ν � 1 and Ωr3/|z|ν � 1. (1.5a, b)

The second of these conditions means that, no matter how near we are to the
origin, there is always a layer near the plane z = 0 within which one contribution to
these inertial forces (axial convection of momentum) dominates over viscous forces.
We adopt an approximation in this layer that takes account of this non-negligible
contribution, and compute the resulting inertial perturbation of particle paths. With
the inclusion of this effect, the streamlines are no longer exactly closed curves;
however the net effect of inertia is still shown to be weak provided merely that the
first condition (1.5a) is satisfied.

In §§ 5–7, we consider three variants of the honing problem:

(i) The centre of rotation of the lower plane is offset from the line of intersection
of the planes; we show in § 5 that to leading order, the particle paths remain closed,
the effect of the offset being merely to elongate their shape.

(ii) It is supposed in § 6 that both planes rotate about the same axis through a point
on the line of intersection, but with different angular velocities; a frame of reference
rotating with the upper plate is chosen, and Coriolis forces are included. These of
course do not affect the Stokes solution, but the inertial correction is modified.

(iii) Two vertical plates intersecting at an angle 2β are honed by a conical boundary
which rotates about the line of intersection (see figure 10a below). A tentative analysis
(§ 7) suggests that, in the Stokes approximation, the streamlines again lie on spherical
surfaces; moreover on each such surface, a sequence of eddies (cf. Moffatt 1964)
may be expected to form near the 2β-corner. This flow is described (again in the
terminology of Barenblatt 1996) by a similarity solution of the first kind (one whose
structure is determined by dimensional considerations), which contains within this
structure a similarity solution of the second kind (one whose crucial scaling parameter
is determined by solution of an eigenvalue problem).

2. The Stokes solution to the honing problem

2.1. Velocity and pressure fields

With the geometry and coordinate system indicated in figure 1(b), the flow in the
region 0 < θ < α is given in the Stokes approximation by the equations

ν∇2u = ∇p, ∇ · u = 0, (2.1a, b)
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122 C. P. Hills and H. K. Moffatt

where u = (u, v, w) is the velocity field relative to the coordinates (r, θ, z), and p is the
pressure (per unit density). The boundary conditions are

u = 0 on θ = α, and u = (Ωz, 0,−Ωr) on θ = 0. (2.2a, b)

We shall refer to the fixed plane θ = α as the ‘blade’, and to the rotating plane as the
‘plate’ or ‘base’.

The first two components of (2.1a) suggest that we try a solution derived from the
Taylor solution (1.1), with U simply replaced by Ωz. Thus let

Ψ (r, θ, z) = Ωzψ(r, θ) with still ψ = rf(θ), (2.3a, b)

and let

u =
1

r

∂Ψ

∂θ
= Ωzf′(θ), v = −∂Ψ

∂r
= −Ωzf(θ). (2.4a, b)

Here f(θ) is precisely as given by (1.2); and the first two components of (2.1a) are
satisfied provided (cf. (1.4a))

p = p0 − νΩzg′(θ)/r, (2.5)

where g(θ) is given by (1.4b).
Consider now the third component of (2.1a):

ν∇2w =
∂p

∂z
= −νΩg′(θ)/r, (2.6)

which must be solved with boundary conditions

w = 0 on θ = α, w = −Ωr on θ = 0. (2.7a, b)

It is very easily verified that the required solution is

w = −Ωrf′(θ), (2.8)

and we note that the boundary conditions (2.2) are satisfied, since by the original
construction of Taylor’s solution,

f(0) = 0, f′(0) = 1, f(α) = f′(α) = 0. (2.9a–d )

The solution of (2.1), (2.2) is therefore given by (2.4), (2.5) and (2.8), together with
(1.2) and (1.4b, c).

2.2. Particle paths

The particle paths of the flow (2.4), (2.8) coincide with the streamlines and are the
integral curves of the system dr/u = r dθ/v = dz/w (= dt), i.e.

dr

Ωzf′(θ)
=
−r dθ

Ωzf(θ)
=
−dz

Ωrf′(θ)
= dt. (2.10)

The first equality yields

ψ(r, θ) = rf(θ) = constant. (2.11)

We may describe these surfaces as the ‘Taylor surfaces’, since each such surface is
obtained by ‘sweeping’ a Taylor streamline curve in the z-direction. Equality of the
first and third terms of (2.10) gives

r2 + z2 = constant, (2.12)
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Figure 2. Contours ψ = constant (dotted) and w = constant (solid) for the rotary honing problem
when the fixed blade θ = π/2 is perpendicular to the rotating plate. Note that w 7 0 according as
θ 7 θs.

a family of spheres centred on the origin. Thus the particle paths are indeed closed
curves, the intersections of these spheres with the Taylor surfaces. This closed-
streamline property is to be contrasted with the open-streamline property of the
Taylor paint-scraper problem; it is a property that can be tested experimentally (see
§ 4 below).

The case α = π/2, for which

f(θ) =
π(π − 2θ) sin θ − 4θ cos θ

π2 − 4
, f′(θ) =

(π2 − 2πθ − 4) cos θ − 2(π − 2θ) sin θ

π2 − 4
,

(2.13a, b)

is of particular interest. Figure 2 shows the contours ψ = rf(θ) = constant and
w = −Ωrf′(θ) = constant for this case, and figure 3(a) shows a typical streamline as
an intersection of a sphere r2 + z2 = constant and a Taylor surface ψ(r, θ) = constant.
Note that f′(θ) = 0 when θ = θs ≈ 30.97◦ and that w changes sign across the line
θ = θs. We can picture the motion of a fluid particle as the vector sum of flow along
a Taylor curve ψ = constant (which changes direction when the particle crosses the
plane z = 0) and flow in the z-direction (which changes direction when the particle
crosses the plane θ = θs); it is this behaviour that makes the closure of streamlines
understandable. Note further that u = Ωzf′(θ) is also zero on θ = θs, and the velocity
is therefore in the θ-direction on θ = θs as evident in figure 2; in fact a fluid particle
is at its nearest to the origin as it crosses θ = θs. Since v = 0 on z = 0, the line z = 0,
θ = θs is a line of stagnation points of the flow.

Note finally a scaling property of the particle paths obtained from (2.10): if a
streamline solution of (2.10) is given in parametric form by (r(t), θ(t), z(t)), then
(κr(t), θ(t), κz(t)) is also a solution for arbitrary κ > 0. Thus the streamlines on a
sphere of radius R are geometrically similar (with scale factor κ) to the streamlines
on the sphere of radius κR; moreover the orbit time for such geometrically similar
streamlines is independent of κ. A set of geometrically similar streamlines (for
κ = 1, 2, 3) is shown for the case α = π/2 in figure 3(b); the set for continuous
variation of κ lie on a cone with vertex at the origin.

For general α, the value of θ where u = w = 0 is given from solution of the equation
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Figure 3. (a) Flow streamline shown as an intersection of a Taylor surface ψ = constant (black)
and a sphere r2 + z2 = constant (grey) (x = r cos θ, y = r sin θ). (b) Set of self-similar streamlines
for which θ = π/8 when z = 0, on spheres of radius R, 2R, 3R where R is arbitrary.
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Figure 4. (a) The angle θs of the plane on which u = w = 0 as a function of α; the linear
approximation θs ≈ α/3 is shown by the dashed line. (b) Expanded view of the difference θs − α/3
as a function of α.

f′(θ) = 0, i.e. from (1.2):

tan θ =
α2 − sin2 α− kθ
k − θ sin2 α

. (2.14)

The solution of this transcendental equation, θ = θs(α), is shown in figure 4; the
function θs(α) is asymptotically α/3 as α→ 0, and is in fact remarkably close to α/3
over the whole range 0 < α < π.

2.3. Force and couple on the scraper

As already observed in § 1, the r−1 singularity in the pressure field associated with
the Taylor flow (equation (1.4a)) means that this flow cannot be exactly realized in
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Rotary honing 125

practice: the singularity must be resolved either geometrically (through a small gap
between the plates) or physically (through cavitation or other mechanism).

Consider now the situation for the rotary honing problem. The traction (force per
unit area and per unit density) acting on the fixed blade θ = α is, relative to (r, θ, z)
coordinates,

t =

(
−ν
r

∂u

∂θ
, p ,−ν

r

∂w

∂θ

)
θ=α

= νΩ
(
−z
r
f′′(α), −z

r
g′(α), f′′(α)

)
, (2.15)

using (2.4), (2.5) and (2.8). Here the contribution due to the constant additional
pressure p0 is ignored. From (1.2) and (1.4c), we find

f′′(α) =
2(sin α− α cos α)

α2 − sin2 α
, g′(α) =

2α sin α

α2 − sin2 α
. (2.16a, b)

The singularity in the r and θ components of stress is still evident in (2.15), so
that the same caveat is needed here concerning real-fluid effects in the immediate
vicinity of r = 0. However, insofar as these components are odd functions of z, they
integrate to zero over any even interval (−z0, z0). The z-component of stress in (2.15)
is independent of r and z, and integrates to give a total force on the blade

F = (0, 0, νΩAf′′(α)), (2.17)

where A is the area of the blade, assumed finite in any practical situation.
The moment of the traction t about the origin is

x ∧ t∣∣
θ=α

=

(
z2

r
g′(α),− (z2 + r2)

r
f′′(α),−zg′(α)

)
. (2.18)

Here the first two components have a non-integrable singularity at r = 0. This
singularity must again evidently be resolved either geometrically or physically as
indicated above. This has a bearing on experimental realization of the flow, as
discussed in § 4 below.

3. Inertial effects
3.1. Estimate of inertia terms

Let us now estimate the order-of-magnitude of the (so-far-neglected) inertial acceler-
ation (u · ∇)u. It is convenient to decompose this into two parts:

(u · ∇)u = (ũ · ∇)u+ w∂u/∂z, (3.1)

where ũ = (u, v, 0). Then from (2.4) and (2.8) we may easily evaluate

(ũ · ∇)u = Ω2

(
−z

2

r
(ff′′ + f2), 0, z(ff′′ − f′2)

)
(3.2)

and

w∂u/∂z = Ω2(−rf′2, rff′, 0). (3.3)

Now compare these expressions with the viscous term

ν∇2u = νΩ

(
z

r2
g′,

z

r2
g,−1

r
g′
)

(3.4)

(with g = f + f′′ as before). Since for any fixed θ, f and its derivatives are O(1) with
respect to variation of r and z, it is evident that the two components of (ũ · ∇)u are
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Figure 5. Curves r̂ẑ = constant (solid) and r̂3/ẑ = constant (dotted). Inertia is negligible in the
shaded region where r̂ẑ � 1 and r̂3/ẑ � 1.

negligible compared to the corresponding components of ν∇2u provided

Ωr|z|/ν � 1. (3.5)

We may adopt Re = Ωr|z|/ν as a local Reynolds number of the flow, and neglect of
inertia certainly requires that Re� 1.

This however is not sufficient, for comparison of the components of (3.3) with the
corresponding components of (3.4) indicates that the inertial contribution w∂u/∂z is
negligible only if

Ωr3/ν|z| � 1, (3.6)

a condition independent of (3.5). The situation is indicated schematically in figure
5 in which we adopt dimensionless variables r̂ = r(Ω/ν)1/2, ẑ = z(Ω/ν)1/2. It is
evident that, no matter how near to the origin we are, the term w∂u/∂z, representing
transport of momentum by the axial component of velocity w, remains important in
a neighbourhood of the plane z = 0, on which, for reasons of symmetry, the r and θ
components of ν∇2u both vanish.

3.2. Oseen-type approximation in the inertial layer

Let us then place ourselves in the region where Re� 1, but retain the term w∂u/∂z
in the Navier–Stokes equations; thus we consider the approximation

w∂u/∂z = −∇p+ ν∇2u, ∇ · u = 0, (3.7a, b)

where w is as given by the foregoing Stokes analysis, i.e.

w = −Ωrf′(θ). (3.8)

Thus, we continue to neglect inertial terms of relative magnitude O(Ωrz/ν), but we
retain those of relative magnitude O(Ωr3/zν). (This partial incorporation of inertial
effects is reminiscent of the Oseen approximation for unbounded Stokes flows, and
it therefore seems appropriate to describe it as an ‘Oseen-type’ approximation in the
present context also.) We may then expect corresponding perturbations of u, v and p
in the form

u = Ωzf′ + Ω2r3f2(θ)/ν, v = −Ωzf + Ω2r3g2(θ)/ν, (3.9a, b)

p = p0 − νΩzg′/r + Ω2r2p2(θ), (3.9c)
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Rotary honing 127

where f2, g2 and p2 are dimensionless functions of θ to be determined. Note that for
r3Ω/ν|z| � 1, the leading-order terms in (3.9) dominate and conform to the Stokes
solution previously determined.

The additional velocity field in (3.9a, b) is

u2 = (Ω2/ν)(r3f2, r
3g2, 0) (3.10)

and is two-dimensional. The condition ∇·u2 = 0 implies that 4f2+g′2 = 0. Equivalently,
u2 is derivable from a streamfunction

ψ2(r, θ) = −(Ω2/4ν)r4g2(θ), (3.11)

and the corresponding vorticity is

ω2 = (Ω2/4ν)(0, 0, r2G(θ)), (3.12)

where

G = g′′2 + 16g2. (3.13)

Equation (3.7a) gives

f′2 = 2p2 + 1
4
G′ and − ff′ = p′2 − 1

2
G, (3.14a, b)

and eliminating p2, we then have

G′′ + 4G = 8f′(f′′ + f) = 8f′g. (3.15)

Equations (3.13), (3.15) constitute a fourth-order linear system, and the boundary
conditions, deriving from u2 = 0 on θ = 0, α are

g2 = g′2 = 0 on θ = 0, α. (3.16)

The term 8f′g in (3.15) is a forcing term of known form. The required solution has
the form

g2(θ) = [(A1 + A2θ) + (A3 + A4θ)θ cos 2θ + (A5 + A6θ)θ sin 2θ

+C1 cos 2θ + C2 sin 2θ + C3 cos 4θ + C4 sin 4θ](α2 − sin2 α)−2. (3.17)

The constants A1, . . . , A6 are determined by satisfying (3.13), (3.15) and the constants
C1, . . . , C4 are then determined by satisfying the boundary conditions (3.16).

For the particular case α = π/2, these constants have (with an obvious notation)
the following values:

(Ai) =

(
−π

3

64
,
4 + π2

32
,
52− 25π2

288
,
π

12
,
π(26− 3π2)

144
,
π2 − 4

48

)
(3.18)

and

(Ci) =

(
π(11π2 − 8)

576
,
(π2 + 4)(3π2 − 26)

1152
,
π(4− π2)

288
,− (3π4 − 46π2 + 72)

2304

)
. (3.19)

It is important to note that (3.8) and (3.9) now provide an exact solution of (3.7)
satisfying the boundary conditions (2.2), and that this solution is now uniformly valid
in the region where (1.5a) is satisfied.

3.3. Inertial perturbation of particle paths

The particle paths associated with the velocity field (u, v, w) in (3.8), (3.9) have been
computed for the case α = π/2 and for various initial conditions. Figure 6(a) shows
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(a) (b)

Figure 6. Particle path for α = π/2, with initial position r̂ = 0.05, θ = 0.2, ẑ = 0: (a) Stokes
solution, (b) solution incorporating inertial term w∂u/∂z. In both cases, the time of integration is
such that the particle crosses the plane ẑ = 0 one thousand times.

one such particle path for the Stokes flow determined in § 2, which is as expected
a closed curve. Figure 6(b) shows the particle path with the same initial conditions
and including the additional (inertial) contributions of (3.7a, b). Both diagrams show
a path which crosses the plane z = 0 one thousand times. Figure 6(b) indicates a
slow ‘drift’ associated with the inertial perturbation experienced on each orbit as the
particle crosses the layer in which z = O(r3Ω/ν). Poincaré sections of such paths on
the plane z = 0 indicate that the drift may be towards or away from the origin,
depending on the initial conditions.

The magnitude of this drift may be estimated as follows. On a single orbit, the
particle remains very near to a sphere of radius R and the time taken for it to cross
the inertial layer of thickness O(ΩR3/ν) with velocity w ∼ ΩR is of order R2/ν.
During this time the net displacement associated with the velocity u2 (∼ Ω2R3/ν) is
of order Ω2R5/ν2. Hence the percentage drift in the (r, θ)-plane relative to the scale
O(R) of the orbit is given by 100(R/L)4%, where L = (ν/Ω)1/2. With the specific
conditions of figure 6(b), R/L = 0.05, and for one thousand orbits, this percentage
drift amounts to 0.6%, in order-of-magnitude agreement with the computed drift.

Over a long period of time, the cumulative effect of this drift may be to move
the particle out of the region of validity r|z| � ν/Ω of the solution. We should note
moreover that the weak O(Re) inertial effect that is neglected in the above treatment
provides an additional perturbation over the whole orbit, which may contribute
significantly to the net drift in practice.

3.4. The influence of eddy solutions

The streamfunction ψ2(r, θ) given by (3.11) is a particular solution of the forced
biharmonic equation

∇4ψ = −2(Ω2/ν)f′g (3.20)

with boundary conditions

ψ2 = ∂ψ2/∂θ = 0 on θ = 0, α. (3.21)

To this solution, we may add the general solution of the associated homogeneous
problem (i.e. the ‘complementary function’),

ψc(r, θ) =

∞∑
n=1

Anr
λnfn(θ) (3.22)
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(Moffatt 1964). Here, the λn (functions of α) are complex solutions of an eigenvalue
problem, and may be ordered so that 1 < Rλ1 < Rλ2 < . . . . The functions fn(θ) are
complex eigenfunctions and the coefficients An in (3.22) are determined (in principle)
by conditions far from the corner. The real part of the series (3.22) is understood.
We note that more general z-dependent eigenfunctions have the same asymptotic
r-dependence as r → 0 (Moffatt & Mak 1999).

The r and θ components of the full flow for Re� 1 should thus be obtained from
a streamfunction

Ψ = Ωzrf(θ)− Ω2r4g2(θ)/4ν + ψc(r, θ). (3.23)

We have seen that the second term here dominates the first where |z| � Ωr3/ν.
However, for angles α for which Rλ1 < 4, the leading-order ‘eddy’ contribution in ψc
will dominate the r4 contribution in (3.23) and will also dominate the leading term in
a region |z| ∼ |A1|Ω−1rRλ1−1. The condition Rλ1 < 4 is in fact satisfied for α > 81.87◦.
In particular, for α = π/2, λ1 ≈ 3.74 + 1.12i, so that the (r, θ) components of the flow
are dominated by eddy contributions in a region |z| ∼ |A1|Ω−1r2.74.

The general question of dominance of inhomogeneous or homogeneous contri-
butions to low-Reynolds-number solutions, and the associated breakdown of local
similarity solutions, have been discussed by Moffatt (1979) and Moffatt & Duffy
(1980). The situation considered above may be contrasted with the two-dimensional
Taylor problem, in which case, as shown by Hancock, Lewis & Moffatt (1981), the
eddy contributions are dominated not only by the leading-order (Taylor) solution,
but also by the first-order inertial correction.

4. Experimental visualization of the flow
A simple experiment was designed in order to visualize the flow described above,

for the case α = π/2. The apparatus is shown in figure 7(a). A Perspex cylinder
of height 24 cm and radius 10 cm was centrally placed on a rotating table. A static
vertical aluminium blade of width 15 cm and height 21 cm was symmetrically and
rigidly fixed very close to the smooth cylinder base, the line of ‘contact’ passing
through the centre of rotation; in practice, a gap of the order of 0.1 mm was always
present between the blade and the base. The cylinder was filled with a viscous fluid,
pricerine, with dynamic viscosity 15 g cm−1 s−1 and density 1.26 g cm−3 (Weast 1971).
The angular speed Ω of the table, and so of the cylinder, could be varied over the
range 0–10 rad s−1; taking R = 5 cm, the corresponding range of Reynolds number
ΩR2/ν is 0–21. The flow structure was found to be fairly insensitive to Reynolds
number in this range. The observations described below were obtained at the value
Ω = 0.25 rad s−1 (i.e. Re ≈ 0.5).

At this low Reynolds number, inertia effects may be expected to be negligible, and
the flow near to the centre of rotation should be reasonably well described by the
Stokes solution of § 2 above. Three properties of this Stokes solution can be tested:

(i) the closed-streamline property, and the fact that the projection of these stream-
lines on vertical planes perpendicular to the blade should follow the Taylor curves
rf(θ) = constant;

(ii) the invariance of the flow (2.4), (2.8) under the symmetry transformation
(r, θ, z)→ (r, θ,−z), (u, v, w)→ (−u,−v, w), which implies symmetry of the streamlines
about the plane z = 0;

(iii) the linear relation between u and Ω, and the implied reversibility of the flow
under reversal of Ω (Ω → −Ω).
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(a)

(b)

(c) (d )

Figure 7. (a) Experimental apparatus. (b) Dye track showing a closed streamline viewed nearly
perpendicular to the fixed blade. (c) Dye track viewed nearly along the line of intersection of the
plates. (d) Several adjacent closed streamlines, obtained by moving the point of injection of the dye.

These properties do not persist when inertial effects are included. They may also of
course be affected by the ‘remote’ boundary conditions on the curved surface of the
cylinder and at the vertical edges of the blade, and by the presence of the small gap
between the blade and the base which allows some leakage of fluid under the blade.

Two visualization techniques were employed. The first used dye, mixed with pricer-
ine to minimize the density difference and injected by hypodermic needle at a point
near the fixed blade. Figure 7(b–d) shows the resulting dye tracks; these indicate that
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(a) (b)

Figure 8. Particle tracks constructed from the movement of small air bubbles: (a) viewed in
a direction perpendicular to the fixed blade; (b) viewed in a direction parallel to the line of
intersection of the plates; the theoretical Taylor streamlines ψ = constant are superposed as solid
curves for comparison.

the particle paths are indeed very nearly closed, and symmetric about the plane z = 0.
Figure 7(c) in which the dye track is viewed nearly along the line of intersection of
the planes, provides a visualization of a portion of the Taylor curve; while figure 7(d)
shows several neighbouring particle paths originating from different points.

The second visualization technique used very small air bubbles illuminated by a
strong light source. These bubbles, whose natural rise time was of the order of days,
could be regarded as neutrally buoyant ‘particles’. Their paths were constructed from
a video of the flow using the computer flow-analysis package DIGImage (Dalziel
1992). Figure 8(a, b) shows resulting particle tracks; (a), viewed normal to the fixed
blade, shows the (nearly) closed paths, and (b), viewed parallel to the contact line,
shows what may be described as the ‘Taylor projections’ ψ(r, θ) = constant. The
streamlines of the Taylor solution are superposed, and the fit is at least qualitatively
reasonable.

Finally, reversibility of the flow was tested in the qualitative manner demonstrated
by G. I. Taylor in his well-known film ‘Low Reynolds Number Hydrodynamics’
(Taylor 1966): a blob of dyed fluid was injected, and the lower plate turned slowly
through three complete revolutions till the dye appeared well mixed. When the plate
was turned in the reverse direction again through three revolutions, the blob of
dye reconstituted itself in the original position with just a slight fuzziness due to
molecular diffusion. It is perhaps worth remarking that this behaviour is associated
with the highly regular closed-streamline character of the flow, as well as with its
formal reversibility; in general, three-dimensional steady flows have streamlines that
exhibit chaotic wandering (see, for example, Bajer & Moffatt 1990), and will spread a
convected dye in an irreversible manner even if they have the formal ‘Stokes’ property
of reversibility.

5. Displacement of centre of rotation
In the experiment described above, an obvious error may arise from any small

offset of the vertical blade from the centre of rotation of the lower plate and it is
desirable to analyse the effect of such an offset. If this centre of rotation is displaced
to the point x = a, y = z = 0 (as shown in figure 9a), then the boundary condition
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(a) (b)

z

a
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X

h
α

y

z x

a = 0

a = 1

Figure 9. (a) Geometry with centre of rotation displaced a distance a from the lower plate. (b)
Closed streamlines for the same initial position for a = 0 and for a = 1 showing the elongation
associated with this displacement.

(2.2b) is replaced by

u = (Ωz, 0,−Ω(r − a)) on θ = 0. (5.1)

Since the Stokes problem is linear, the new solution is easily found by the addition
of a contribution ŵ to w satisfying

∇2ŵ = 0, ŵ = Ωa on θ = 0, ŵ = 0 on θ = α. (5.2a–c)

This contribution is ŵ = Ωa(1 − θ/α), and the full solution to the Stokes problem
becomes

u = Ωzf′(θ), v = −Ωzf(θ), w = −Ωrf′(θ) + Ωa(1− θ/α). (5.3a–c)

The pressure field (2.5) is unaffected.
The particle paths are now given by

dr

zf′(θ)
=

r dθ

−zf(θ)
=

dz

−Ωrf′(θ) + a(1− θ(α)
. (5.4)

The first equality gives rf(θ) = ψ0 where ψ0 is constant, as before. Equality of the
first and third terms now gives

r2 + z2 + 2aψ0

∫ θ

θ0

1− t/α
(f(t))2

dt = constant. (5.5)

a closed surface which is a perturbation of a sphere when a is small. The streamlines
are still closed curves, the effect of displacing the centre of rotation being to expand
and elongate them in the direction of this displacement (figure 9b).

6. Differential rotation
A further minor modification of the analysis allows treatment of the situation in

which both planes rotate about a common axis but with different angular velocities.
Thus, consider the situation in which the blade rotates with angular velocity q =
(0, 0, q), and the plane z = 0 rotates with angular velocity (0, 0, Ω + q). If we adopt
a frame of reference rotating with angular velocity q, then in this frame the blade
is fixed, and the boundary conditions are just as before (i.e. (2.2a, b)). However, the
governing equations now include a Coriolis term:

(u · ∇)u+ 2q ∧ u = −∇p̃+ ν∇2u, ∇ · u = 0, (6.1a, b)
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(a) (b)X
u

2b

c

£
£

u

2b

X

Figure 10. (a) Two fixed triangular fins ϕ = ±β inside a cone Θ = γ which rotates with angular
velocity Ω about the axis Θ = 0. (b) The same configuration with γ = π/2.

where p̃ includes, as usual, a contribution from the centrifugal force. Provided q/Ω =
O(1), the Coriolis term 2q∧u in (6.1a) has no effect on the Stokes solution. The inertial
correction in the layer where z = O(r3Ω/ν) is however affected. In fact, following the
procedure of § 3.2, the change appears in equation (3.15) in which the forcing term
on the right-hand side must now include a contribution from the Coriolis term. The
modified equation is

G′′ + 4G = 8f′g + 8q(f′′ cos θ + f′ sin θ). (6.2)

The form of the solution (3.17) for g2(θ) is unchanged, but the constants {Ai}, {Ci}
in (3.18), (3.19) are replaced by the following values:

(Ãi) = (Ai) + q̃

(
−3π

32
,
1

8
,− 1

12
, 0,− π

24
, 0

)
, (6.3)

(C̃i) = (Ci) + q̃

(
5π

96
,
π2 + 4

96
,
π

24
,
−(π2 + 6)

192

)
, (6.4)

where q̃ = (π2 − 4)q/4Ω.

7. Flow in a rotating cone with fixed fins
Finally, we consider the geometry indicated in figure 10(a), in which a cone of

angle γ rotates about its axis which is also the intersection of two rigid triangular
‘fins’ fixed inside the cone. With spherical polar coordinates (R,Θ, ϕ) and with basis
vectors eR, eΘ, eϕ, the fins are taken to be ϕ = ±β, and the cone is Θ = γ. Figure 10(b)
shows the situation when γ = π/2 so that the cone becomes a rotating plane; the
special case in which 2β = π is then the case studied in §§ 2–4 above (when α = π/2).

We now seek a solution to the Stokes equations (2.1) satisfying the boundary
conditions

u = 0 on ϕ = ±β, u = ΩR sin γeϕ on Θ = γ. (7.1a, b)

We adopt the ‘toroidal-poloidal’ decomposition of the velocity field

u = ∇ ∧ (xT ) + ∇ ∧ ∇ ∧ (xP ), (7.2)

where T and P are scalar fields to be determined. Since the addition to T or P of an
arbitrary function of R does not change u, we may suppose that T and P have zero

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112000001075


134 C. P. Hills and H. K. Moffatt

average over any sphere R = constant. Note that the toroidal part of u,

∇ ∧ (xT ) = −x ∧ ∇T , (7.3)

is a flow whose streamlines lie on spheres R = constant
Substitution of (7.2) in the Stokes equation (2.1a) yields

ν
[∇ ∧ (x∇2T

)
+ ∇ ∧ ∇ ∧ (x∇2P

)]
= ∇p (7.4)

or, taking the curl to eliminate p,

− (R∇2
2∇2T

)
eR + ∇2(∂(R∇2T )/∂R) + (eR ∧ ∇2)(R∇4P ) = 0, (7.5)

where ∇2 = ∇− eR∂/∂R is the two-dimensional gradient operator.
Now the boundary conditions (7.1) indicate that, on dimensional grounds,

u = ΩRû(Θ,ϕ), (7.6)

where the circumflex indicates a dimensionless function. Here we see the structure of
a similarity solution of the first kind (cf. (2.3)). The corresponding scalings of T and
P are evidently

T = ΩRT̂ (Θ,ϕ), P = ΩR2P̂ (Θ,ϕ). (7.7a, b)

It follows that ∇2T is proportional to R−1 and hence the second term of (7.5) vanishes.
The radial component of (7.5) now gives

L2(L2 + 2)T̂ = 0, (7.8)

where

L2 = R2∇2
2 =

1

sinΘ

[
∂

∂Θ

(
sinΘ

∂

∂Θ

)
+

1

sinΘ

∂2

∂ϕ2

]
. (7.9)

The non-radial components of (7.5) give ∇4P = 0 (using the zero-average property
mentioned above) and, using (7.7), this reduces to

L2(L2 + 6)P̂ = 0. (7.10)

Equations (7.8), (7.10) have to be solved subject to the boundary conditions (7.1), i.e.

û = 0 on ϕ = ±β, û = sin γeϕ on Θ = γ. (7.11a, b)

We already know the solution in the special case when 2β = π, γ = π/2; in this
case, taking due account of the change of coordinate system,

T̂ = (r/R)f(θ), P̂ = 0, (7.12a, b)

where f(θ) is still given by (2.13a). We conjecture that P̂ = 0 in the general case
also (i.e. that the required flow is purely toroidal, with streamlines on spheres R =
constant). Under this assumption, the problem that remains to be solved is (7.8) with
boundary conditions (from 7.11)

∂T̂ /∂ϕ = T̂ = 0 on ϕ = ±β, (7.13a)

T̂ = 0, ∂T̂ /∂Θ = sin γ on Θ = γ. (7.13b)

Also, since u→ 0 as Θ → 0, T̂ must be o(Θ) as Θ → 0.
We limit consideration here to the behaviour of the solution to this problem near

to the 2β-corner where Θ � 1. In this region, (7.8) degenerates to

L4
1T̂ = 0 where L2

1 =
1

Θ

∂

∂Θ
Θ

∂

∂Θ
+

1

Θ2

∂2

∂ϕ2
. (7.14a, b)
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The equation (7.14a), being homogeneous in Θ, admits solutions of the form

T̂ = Θλfλ(ϕ), (7.15)

where λ must be determined through satisfying the boundary conditions (7.13a). The
analysis now exactly parallels that of Moffatt (1964) and the conclusions likewise:
for 2β < 146◦, a sequence of eddies is present as Θ → 0. The streamlines of these
eddies lie on spheres R = constant, and for varying R, they scale linearly in R, and so
form cones of eddying motion in alternating directions. This asymptotic behaviour is
that of a similarity solution of the second kind (Barenblatt 1996) which is evidently
contained within the similarity solution (7.6) of the first kind. As far as we are aware,
this is the first time that this sort of double similarity structure has been identified in
a steady flow.
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