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SILVER ANTICHAINS

OTMAR SPINAS ANDMAREKWYSZKOWSKI

Abstract. In this paper we investigate the structure of uncountable maximal antichains of Silver forcing
and show that they have to be at least of size d, where d is the dominating number. Part of this work can
be used to show that the additivity of the Silver forcing ideal has size at least the unbounding number b.
It follows that every reasonable amoeba Silver forcing adds a dominating real.

§1. Introduction and basic definitions. Silver forcing consists of the set of all
Silver trees together with the inclusion ordering. Recall that a Silver tree is a perfect
tree T ⊆ 2<�, such that for all nodes �, � ′ ∈ T of the same length and i ∈ 2 we
have: ��i ∈ T ⇔ � ′�i ∈ T . So on each level either all nodes go left, all nodes go
right, or all nodes split at that level. The set of all Silver trees is denoted as Si .
We will identify a Silver tree with a functionf : dom(f)→ 2with dom(f) ⊆ � and
infinite codomain. Such f represents the Silver tree consisting of all nodes � ∈ 2<�
with �(n) = f(n) for n ∈ dom(f). The respective ordering is reverse inclusion.
Sometimes it is convenient to identify such f with f′ ∈ (2 ∪ {∗})� with f′−1[{∗}]
being the codomain of f.
For f, g ∈ Si Silver functions we write f ‖ g, if f and g are compatible, which is

equivalent tof∪g ∈ Si . Iff and g are incompatible, wewritef⊥g. Note that there
are two reasons forf, g ∈ Si to be incompatible: There exists n ∈ dom(f)∩dom(g)
with f(n) �= g(n), or (dom(f))c ∩ (dom(g))c is finite.
For f ∈ Si and x ∈ (2 ∪ {∗})� we write f|x if f does not contradict x, that is,
∀n ∈ dom(f) ∩ dom(x) f(n) = x(n). If the opposite is true, we write f � x.
An antichain A ⊆ Si is a set of pairwise incompatible Silver conditions. It is the
interplay of the two reasons for incompatibility just mentioned that makes it hard
in general to understand the structure of maximal Silver antichains.
For any antichain A of Silver conditions we denote by
Afin := {f ∈ A : |dom(f)| < �} the set of finite conditions and by
Ainf := {f ∈ A : |dom(f)| = �} the set of infinite conditions of the antichain.
In some situations we shall have an infinite subsetX ⊆ � andwe need to consider

Silver conditions relative toX , that is,f ∈ Si withX \dom(f) infinite. The set of all
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these is denoted by Si(X ). For f, g ∈ Si(X ) we write f ‖X g if f, g are compatible
with respect to Si(X ) or f⊥Xg otherwise.
For a given set X and a tree T ⊆ X<� by [T ] we denote the set of all infinite
branches of T . Let T (n) := {� ∈ T : |�| = n} and
T � n := {� ∈ T : |�| ≤ n} . For any � ∈ T let T � � := {� ∈ T : � ⊆ � ∨ � ⊇ �}
be the subtree of T consisting of all nodes that are initial segments or extensions
of �. For a given tree T let sp(T ) := {� ∈ T : ∃i, j (i �= j ∧ ��i, ��j ∈ T )} be
the set of all splitting nodes of T.
Furthermore, given a subsetY ⊆ X<� , by dwcl(Y )we denote the downward closure
of Y , which is the tree {� ∈ X<� : ∃� ∈ Y � ⊆ �}.
If we have some uncountable Y ⊆ X� , then
cond(Y ) := {� ∈ X<� : |{y ∈ Y : � ⊆ y}| ≥ ℵ1} is the condensation tree of Y .
It is easy to see that then Y \ [cond(Y )] is countable and cond(Y ) is a perfect tree.
For a given forcing P consisting of trees T ⊆ 2<�, that are ordered by inclusion, its
associated forcing ideal is defined as
I (P) := {X ⊆ 2� : ∀p ∈ P ∃q ∈ P (q ≤ p ∧ [q] ∩ X = ∅)}.
It is easily seen that the sets of the form X (A) = 2� \⋃{[p] : p ∈ A}, where A is a
maximal antichain ofP, forma basis for I (P). For all standard tree forcingsP, I (P)
is a forcing ideal in the sense that a real is P generic iff it avoids all sets X (A) for a
maximal antichain A in the ground model. Recall that add (I (P)), cov(I (P)) is the
minimal number of sets in I (P) whose union is not in I (P), is all of the underlying
space, respectively. ByM we denote the ideal of meager subsets of the reals.
A starting point for this research were two questions about the Silver ideal I (Si)
that had been asked by G. Laguzzi [2] and others. He had asked whether in ZFC
the inequalities add (I (Si)) ≤ b and add (I (Si)) ≤ cov(M) are provable.
For Sacks forcing S it follows from results by P.Simon [5] and Judah, Miller, Shelah
[1] that add (I (S)) ≤ b holds. It is implicit in [3], that an amoeba forcing for S can be
constructed that does not add Cohen reals and, moreover, has the Laver property.
Iterating this forcing one obtains amodel for cov(M) < add (I (S)). In this paperwe
prove add (I (Si)) ≤ b in ZFC . The consistency of cov(M) < add (I (Si)) remains
open. We conjecture that it is true.
Even though the results seem to be analogous for S andSi , themethods of proof are
not. For example, the main ingredient in [3] is the Halpern–Läuchli Theorem for
Sacks trees, which is false for Silver trees. It is obvious that a good understanding
of the structure of maximal antichains of a given tree forcing P is relevant for
investigating I (P) and its coefficients. We shall show that in this respect, Si behaves
quite differently from S. Note that both S and Si have countably infinite maximal
antichains. Let fn be the finite Silver condition with dom(fn) = n + 1, fn(n) = 1
and fn(i) = 0 for i < n. Given some Silver condition g ∈ (2 ∪ {∗})� let n be
minimal with g(n) = 1∨g(n) = ∗. Then g ‖ fn holds. On the other hand let pn ∈ S
be the full binary tree with stem fn. Then {pn : n < �} is a maximal antichain
in S. Therefore it is natural to define a(S), a(Si), the antichain number of S, Si ,
respectively, to be the minimal cardinality of an uncountable maximal antichain
of S, Si , respectively.
In [4] it has been shown that consistently a(S) < c. We conjecture that a(Si) = c.
We are able to prove this in two cases. The first case is when we restrict to maximal
antichains containing no finite Silver functions. Note that by the above example
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a finite Silver function corresponds in S to a full binary tree above some finite
stem. The Roslanowski-Shelah example of an uncountable maximal antichain in
S consists of skew trees, that is, trees having at most one splitnode on each level.
Clearly such a tree is nowhere full binary. The second case in which we can show
that a given maximal antichain A ⊆ Si has size c is when A contains uncountably
many members that are pairwise incompatible by the second reason mentioned
above, that is, these members are all subfunctions of a single x ∈ 2� and hence their
codomains form an almost disjoint family. This result is the core of this paper and it
is applied to prove d ≤ a(Si) in ZFC . In the last section add (I (Si)) ≤ b is proven.
This only uses the result of the first case just mentioned. This implies that every
reasonable amoeba forcing for Si adds a dominating real. Recall that an amoeba
for Si is a forcing adding a Silver tree with the property that each of its branches
is Si-generic to the ground model. As far as we know , the cardinal a(S) has not
been investigated except for [4]. In their model a(S) = d holds, and hence d ≤ a(S)
is conceivable.

§2. Antichain number of Silver forcing. We start with a well known fact.
Lemma 2.1. Let {X� : � < � < c} be a family of sets X� ∈ [�]� . Then there exists

a X ∈ [�]� with |� \ X | = �, such that |X ∩X� | = � for all � < �.
Proof. Let {X� : � < �} be as above. Let T ⊆ �<� be a perfect tree such that

each natural number occurs exactly once and thus uniquely determines a node that
has this number as its last value.
Pick some x ∈ [T ] that is not definable from T ∪ {T} ∪ {X� : � < �}. What

is meant by this phrase is that we choose � ∈ OR sufficiently large (such that the
relevant parameters belong to H�), and then we pick some x ∈ (H� ∩ [T ]) \N for
some N ≺ H� with T ∪ {T} ∪ · · · ⊆ N and |N | < c. (Note, that from now on we
will use this phrase to simplify the notation).
This implies that ∀� < � X� �∗ ran(x). Hence, if we define X := � \ ran(x) we

have ∀� < � |X ∩ X� | = � and |� \ X | = �. �
Next we use this fact to handle the case of maximal antichains that solely consist

of conditions with infinite domain.
Theorem 2.2. Let A ⊆ Si be a set of Silver conditions with |A| < c and ∀f ∈

A |domf| = �. Let 〈en : n ∈ �〉 be an enumeration of [�]<� and let An := {f ∈ A :
f−1[{1}] = en}. If every An is an antichain, there exists h ∈ Si such that h � f for
every f ∈ A.
Proof. Let Bn := {(domf)c : f ∈ An}. Obviously every Bn is an a.d. family.

Now, because we have countably many a.d. families, we can easily choose some
b ∈ [�]� with the property that for all n ∈ � there is at most one c ∈ Bn with
|c ∩ b| = �, and if c is like that then actually b ⊆∗ c.
For all f ∈ A with |f−1[{1}]| < � we have f ∈ An for some n ∈ �.
Hence, by choice of b we have either b ⊆∗ (domf)c from which we can conclude
|domf ∩ (� \ b)| = �,
or |b ∩ (domf)c | < �, hence b ⊆∗ domf.
This enables us to define a partition of A as follows: Letting

C0 := {f ∈ A : |f−1[{1}]| < � ∧ b ⊆∗ dom(f)},
C1 := {f ∈ A : |f−1[{1}]| < � ∧ b ⊆∗ (dom(f))c},
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D0 := {f ∈ A : |f−1[{1}]| = � ∧ |b ∩ f−1[{1}]| = �},
D1 := {f ∈ A : |f−1[{1}]| = � ∧ |b ∩ f−1[{1}]| < �},
we have A = C0 ∪̇ C1 ∪̇D0 ∪̇D1 and C1 is countable.
By Lemma 2.1 we can pick some infinite b0 ⊆ b with |b0 ∩ f−1[{1}]| = � for all
f ∈ D0 as well as |b \ b0| = �.
For b1 := b \ b0 we have ∀f ∈ C0 b1 ⊆∗ dom(f).
Next, let 〈fn : n ∈ �〉 enumerate the elements of C1 and construct a perfect tree
T ⊆ (� \ b)<� with ∀� ∈ T \ {∅} (�(|�| − 1) ∈ (� \ b) ∩ f−1

|�| [{0}])
and ∀�, � ′ ∈ T \ {∅} (� �= � ′ → (�(|�| − 1) �= � ′(|� ′| − 1))), such that each natural
number occurs in the tree at most once.
By our assumption |A| < c we then pick some b2 ∈ [T ] that is not definable by
T ∪ {T} ∪D1 ∪ {D1}.
Assume by contradiction, that there exists f ∈ D1, such that f−1[{1}] ⊆∗ b2,
hence f−1[{1}] \N ⊆ b2 for some N ∈ �.
Then by construction of the tree b2 would be determined by
b2 =

⋃{� ∈ T : �(|�| − 1) ∈ f−1[{1}] \N}, which is clearly not possible.
So in conclusion we get: ∀f ∈ C1 f−1[{0}]∩ b2 �= ∅ by construction of our tree,
as well as ∀f ∈ D1 (|(� \ b) \ b2 ∩ f−1[{1}]| = �) as stated above.
Again by Lemma 2.1 we can split up (� \ b) \ b2 into two disjoint infinite sets b3
and b4 with ∀f ∈ D1 |f−1[{1}] ∩ b3| = �.
If we define h ∈ Si by:

h(n) :=

⎧⎪⎨
⎪⎩
0 if n ∈ b0 ∪ b3,
1 if n ∈ b1 ∪ b2,
∗ otherwise.

we can easily check that h � A. �
In particular, we get the following corollary:
Corollary 2.3. If A ⊆ Si is an antichain of Silver conditions with |A| < c and

∀f ∈ A |domf| = �, then A is not maximal.
As a consequence of Theorem 2.2 we can show that the additivity of the Silver
ideal is at most b (see Theorem 3.1 below).
The core of this paper is the following result which analyzes maximal Silver
antichains that contain uncountablymany elementswhich are pairwise incompatible
by the second reason (see §1).
Theorem 2.4. Let A ⊆ Si be an antichain with �1 ≤ |A| < c. If for some real

x ∈ 2� the set {f ∈ A : f|x} is uncountable, then A is not maximal.
Proof. We assume without loss of generality that

{f ∈ A : ∀n ∈ domf f(n) = 0} is uncountable. Let 〈en : n ∈ �〉 enumerate the set
{f−1[{1}] : f ∈ Ainf ∧ |f−1[{1}]| < �} ⊆ �<� with e0 = ∅ and as in the previous
proof define
An := {f ∈ Ainf : f−1[{1}] = en} and Bn := {(domf)c : f ∈ An}. Clearly each
Bn is an almost disjoint family and B0 is uncountable.
Also for each n ∈ � define xn ∈ 2� by:

xn(k) :=

{
1 if k ∈ en,
0 otherwise.
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If for some n ∈ � we have b ∈ Bn and if it is clear which Bn we are referring
to, we will often write fb for a Silver condition that has b as its codomain with
f−1
b [{1}] = en .
We will also identify each b ∈ Bn with its strictly increasing enumeration.
Let T ⊆ �<� be the tree on � consisting of all � ∈ �<� that are initial segments

of uncountably many members of B0.
Thus, T := cond({� ∈ �<� : ∃b ∈ B0 � ⊆ b}).
As B0 is an uncountable a.d family, T is perfect.
Let us first sketch the basic idea of the proof in the special situation thatBn = ∅ for

all n ≥ 1. It is clear that for nof ∈ Afin can there be � ∈ T withf−1[{1}] ⊆ ran(�).
Hence every Silver condition that is constantly 0 outside some fixed branch of T is
incompatible with every f ∈ Afin.
We distinguish two cases:

Case 1:

∃� ∈ T ∃m ∈ � ∃b0 �= b1 ∈ B0 ∩ [T � �] ∀f ∈ Afin (f−1[{1}] ⊆ ran(b0) ∪ ran(b1)
→ f−1[{1}] ∩m �= ∅).

In this case choose b0, b1, and m as above and define a function h ∈ (2 ∪ {∗})� by:

h0(n) :=

⎧⎪⎨
⎪⎩
0 if n /∈ ran(b0) ∪ ran(b1),
0 if n ∈ (ran(b0) ∪ ran(b1)) ∩m,
∗ otherwise.

Then obviously h0⊥Afin and because B0 is an a.d. family we have for all f, g ∈ Ainf
that |dom(f) ∩ (b0 ∪ b1)| = � and f⊥(b0∪b1)\m g. Hence, by the latter fact and by
Theorem 2.2 we can pick h1 : (b0 ∪ b1) \ m → 2 ∪ {∗} with h1⊥(b0∪b1)\m Ainf. We
can conclude that for h := h0 ∪ h1 we have h⊥A.
Case 2: If the first case does not hold true, we can construct recursively

〈�s : s ∈ 2<�〉 and 〈fs : s ∈ 2<�〉 with �s ∈ T and fs ∈ Afin for all s ∈ 2<� in the
following way:
For a given �s ∈ T we pick branches b0, b1 ∈ [T ] with b0 �= b1 and b0, b1 ⊇ �s .
Let n be the length of the common initial segment. Because we are not in Case 1
we can find fs ∈ Afin with f−1

s [{1}] ⊆ ran(b0) ∪ ran(b1) and f−1
s [{1}] ∩ n = ∅.

Let �s�0, �s�1 ∈ T be sufficiently long initial segments of b0 and b1 withf−1
s [{1}] ⊆

ran(�s�0) ∪ ran(�s�1).
After we have got all �s , fs let T0 := dwcl({�s : s ∈ 2<�}). Choose a branch
x ∈ [T0] that is not definable from T ∪ {T} ∪ A ∪ {A}. Note that because x is a
branch in T we have f−1{1} ∩ (� \ x) �= ∅ for all f ∈ Afin.
Thus, if we define h0 ∈ (2 ∪ {∗})� by

h0(n) :=

{
0 if n /∈ x,
∗ if n ∈ x,

we have h0⊥Afin.
Now, assume by contradiction that we have b ∈ B0 with b ⊇∗ ran(x). Then we
know by choice of x that {y ∈ [T0] : b ⊇∗ ran(y)} is uncountable (otherwise x
would be definable by b). Then there existsN ∈ � with {y ∈ [T0] : b∪N ⊇ ran(y)}
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uncountable. LetT ′ the perfect condensation tree of the latter set.We can pick some
�s that is a member of T ′ of length greater or equal to N , such that �s�0 and �s�1
are members of T ′ as well. For branches b0, b1 of T ′ with ran(b0) ⊇ ran(�s�0) and
ran(b1) ⊇ ran(�s�1) we have by definition of T0 that (ran(b0) ∪ ran(b1)) \ N ⊇
f−1
s [{1}]. Hence b ⊇ f−1

s [{1}]. This implies fs ‖ fb , which is a contradiction.
Therefore, {f � x : f ∈ Ainf} is an antichain solely consisting of infinite conditions
relative to x.
By Theorem 2.2 we can choose h1 ∈ Si(x) with h1⊥x Ainf. For h := h0 ∪ h1 we get
h⊥A.
For the general case we can repeatedly apply this basic idea in a quite del-
icate recursion (to take care of all Bn) together with some new ideas, which
in particular exploit the freedom we had to choose the two branches b0, b1 in
Case 2.
We construct a subtree T0 ⊆ T by recursion in the following way:
At the beginning of the recursion:
Choose a splitting node � ∈ sp(T ) and �0, �1 ∈ T, �0, �1 ⊇ � with �0(|�|) �= �1(|�|).
For �0 fix b ∈ B0 ∩ [T � �0] , which we call the “reference branch”. First, we
check whether there exist f ∈ Afin and � ∈ T with � ⊇ �1 and f−1[{1}] ⊆
(ran(�) ∪ b) \ |�|.
If we find such �,f, we define �1 := �, f0,∅ := f, c0 := {�} =: c1 and �0 := b � k
with k ∈ � sufficiently large that f−1[{1}] ⊆ ran(�0) ∪ ran(�1).
In addition set T

(0)
:= T � �0 and T

(1)
:= T � �1

If we are not able to find any such �,f we try to construct a sequence 〈	(m)|m ∈ �〉
recursively with
�1 ⊆ 	(0) ⊆ 	(1) ⊆ · · ·
and obtain by y :=

⋃
m∈� 	

(m) ∈ �� an “opponent” to b as follows:
m = 0 :

Case 1: For all a ∈ B1 we have that a �∗ b :
In this case simply define 	(0) := �1.
Case 2: There exists a ∈ B1 with a ⊇∗ b:
Case 2.1: ∀� ∈ T (� ⊇ �1 → f−1

a [{1}] � (ran(�) ∪ b) \ |�|):
In this case define 	(0) := �1.
Case 2.2: ∃� ∈ T (� ⊇ �1 ∧ f−1

a [{1}] ⊆ (ran(�) ∪ b) \ |�|):
Then let 	(0) ∈ T be a witness for this statement.
Consider the following two subcases:
Case 2.2.1: The set X := {b ∈ B0 : b ∈ [T � 	(0)] ∧ |b ∩ a| = �} is uncountable:
In this case the construction of the 	(m) stops.
We definef0,∅ :≡ fa, c〈0〉 := {�}, c〈1〉 := {a} and �1 := 	(0), as well as �0 := b � k
with k ∈ � sufficiently large, such that f−1

a [{1}] ⊆ ran(�0) ∪ ran(�1).
We also set T

(0)
:= T � �0 and T

(1)
:= cond(X )

and go on with the construction of the tree T0 (as described later).
Case 2.2.2: The X of the former case is countable:
Then choose some 	(0) ∈ T, 	(0) ⊇ 	(0), such that |bc ∩ ran(	(0))| ≥ 1 and
|ac ∩ ran(	(0))| ≥ 1. This is clearly possible since uncountably many b ∈ B0 have
	(0) as an initial segment and B0 is an a.d. family.
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In this case we go on with the construction of the 	(m).
m � m + 1 :

For m ∈ � let 	(m) be constructed:
Case 1: For all a ∈ Bm+2 we have a �∗ b :
In this case choose 	(m+1) ∈ T, 	(m+1) ⊇ 	(m), such that |ran(	(m+1))∩bc | ≥ m+2
and such that for all k ≤ m, where we had Case 2.2.2 witnessed by ã ∈ Bk+1, we
have: |ran(	(m+1)) ∩ ãc | ≥ m + 2− k.
Case 2: There exists a ∈ Bm+2 with a ⊇∗ b:
Case 2.1: ∀� ∈ T (� ⊇ 	(m) → f−1

a [{1}] � (ran(�) ∪ b) \ |�|):
In this case also choose 	(m+1) ∈ T, 	(m+1) ⊇ 	(m), such that
|ran(	(m+1)) ∩ bc | ≥ m + 2 and such that for all k ≤ m, where we had Case 2.2.2
witnessed by ã ∈ Bk+1, we have: |ran(	(m+1)) ∩ ãc | ≥ m + 2− k.
Case 2.2: ∃� ∈ T (� ⊇ 	(m) ∧ f−1

a [{1}] ⊆ (ran(�) ∪ b) \ |�|):
Then let 	(m+1) be a witness.
Again we have two subcases:
Case 2.2.1: The set X := {b ∈ B0 : b ∈ [T � 	(m+1)]∧ |b ∩ a| = �} is uncountable:
Then the construction of the 	(m) stops.
Define f0,∅ :≡ fa, c〈0〉 := {�}, c〈1〉 := {a}
and �1 := 	(m+1) and�0 := b � k with k ∈ � sufficiently large, such thatf−1

a [{1}] ⊆
ran(�0) ∪ ran(�1).
Also define: T

(0)
:= T � �0 and T

(1)
:= cond(X )

Case 2.2.2: The set X defined above is countable:
Then choose 	(m+1) ∈ T, 	(m+1) ⊇ 	(m+1), such that:
|ran(	(m+1))∩ac | ≥ 1, |ran(	(m+1))∩ bc | ≥ m+2 and for all k ≤ m, where we had
Case 2.2.2 witnessed by ã ∈ Bk+1, we have |ran(	(m+1)) ∩ ãc | ≥ m + 2− k.
Let us first consider the situation, where the construction of the 	(m) does not

stop (which means that Case 2.2.1 does not occur):
Define by y :=

⋃
m∈� 	

(m) the opponent to b. By construction the following
propositions are true:

i) For all f ∈ Afin we have:
f−1[{1}] ∩ |�| �= ∅ or f−1[{1}] ∩ (� \ (y ∩ b)) �= ∅.

ii) For f = fd with d ∈ Bk+1 for some k ∈ � we have:
|b ∩ dom(fd )| = � (Case 1 or Case 2 with a ⊇∗ b, a �= d )
or f−1

d [{1}] ∩ |�| �= ∅ or f−1
d [{1}] ∩ (� \ b ∪ y) �= ∅ (Case 2.1 with d ⊇∗ b)

or |y ∩ dom(fd )| = � (Case 2.2.2 with d ⊇∗ b).
iii) For f = fb we have |y ∩ dom(f)| = �.
iv) For f = fd with d ∈ B0 \ {b} we have |dom(f) ∩ b| = �.
v) For f ∈ A with |f(−1)[{1}]| = � the following holds: f−1[{1}] ∩ (� \ (y ∪
b)) �= ∅ or |dom(f) ∩ (y ∪ b)| = �.

Thus, if we define h ∈ Si by h � (� \ (b ∪ y)) ∪ |�| :≡ 0, each condition of the
antichain is either incompatible to h or is an infinite Silver condition relativized to
(b ∪ y) \ |�|. This means, we can use Corollary 2.3 to obtain h ∈ Si with h⊥A.
⇒ A is not maximal.
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If on the other handwe did not start to construct an opponent or the construction
of the opponent stops (Case 2.2.1), we go on with the construction of T0 in the
following way:
For i ∈ 2 we have either:
Case a: There exists a ∈ B1 withX := {b ∈ B0∩[T (i)] : |b∩

⋃
ci | = �∧|b∩a| = �}

uncountable:
In this case define z〈i〉 := a and T (〈i〉) := cond(X ) (⊆ T (i)).
Or:
Case b:
∀a ∈ B1 {b ∈ B0 ∩ [T (i)] : |b ∩

⋃
ci | = � ∧ |b ∩ a| = �} is countable:

In this case define z〈i〉 := ∗ and T (〈i〉) := T (i).

Remark: Because Z := {b ∈ B0 : |b ∩ ⋃
ci | = �} is uncountable and T (i) =

cond (Z) it follows in case b, that for all a ∈ B1 the set
{� ∈ T (〈i〉) : �(|�| − 1) ∈ ac} is dense in T (〈i〉).
In fact more is true:
For each subtree T ′ ⊆ T (〈i〉) with the property
∀� ∈ T ′ ([T ′ � �] ∩Z is uncountable)
we have ∀a ∈ B1 {� ∈ T ′ : �(|�| − 1) ∈ ac} is dense in T ′.
(Note that in case b all subtrees T (s) with s ∈ 2<� and s(0) = i in the following
construction actually will have the above property.)

This finishes the first step in the construction of T0.
Suppose that for some n ∈ � and for all s ∈ 2n all �s together with the ct and zt
for all t ∈ 2≤n \ ∅ have been constructed
such that for each s ∈ 2n we have gotten T (s) = cond(X ) with uncountable

X = {b ∈ B0 : b ⊇ �s ∧ ∀1 ≤ k ≤ |s |∀d ∈ cs�k (|b ∩ d | = �)
∧ ∀1 ≤ k ≤ |s | ((zs�k �= ∗)→ |b ∩ zs�k | = �)}.

Now fix some s ∈ 2n.

Choose a splitting node �s ∈ sp(T (s)), such that
ran(�s � [|�s |, |�s |)) ∩ d �= ∅ for all ∅ �= t ⊆ s, d ∈ ct
and that ran(�s � [|�s |, |�s |)) ∩ zt �= ∅ for all ∅ �= t ⊆ s with zt �= ∗.
(This is possible by the construction of T (s).)
Next, choose �s�0, �s�1 ∈ T (s) with �s�0, �s�1 ⊇ �s
and �s�0(|�s |) �= �s�1(|�s |).
Again we take a reference branch and try to construct an opponent (with respect
to B0):
First choose a reference branch b ∈ [T (s) � �s�0] ∩ B0.
Check if there exists f ∈ Afin and � ∈ T (s), � ⊇ �s�1, such that
f−1[{1}] ⊆ (b ∪ ran(�)) \ |�s |.
If we find such �,f, define �(0)s�1 := �, f0,s := f and �

(0)
s�0 := b � k for a sufficiently

large k ∈ �.
In this case the construction of the opponent (w.r.t. B0) stops.
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Otherwise try to construct recursively the sequence 〈	(m)| m ∈ �〉 as follows:
m = 0 :

Case 1: For all a ∈ B1 we have a �∗ b :
Define 	(0) := �s�1
Case 2: There exists a ∈ B1 with a ⊇∗ b :
Case 2.1: ∀� ∈ T (s) (� ⊇ �s�1 → f−1

a [{1}] � (ran(�) ∪ b) \ |�s |):
Define 	(0) := �s�1.
Case 2.2: ∃� ∈ T (s) (� ⊇ �s�1 ∧ f−1

a [{1}] ⊆ (ran(�) ∪ b) \ |�s |):
Then let 	(0) be a witness.
Case 2.2.1:

X := {b ∈ B0 ∩ [T (s) � 	(0)] : ∀∅ �= t ⊆ s∀d ∈ ct (|b ∩ d | = �)
∧ ∀∅ �= t ⊆ s (zt �= ∗ → |b ∩ zt | = �)
∧ |b ∩ a| = �}

is uncountable:
In this case the construction of the 	(m) stops.
Define f0,s := fa, �

(0)
s�1 := 	

(0), �(0)s�0 := b � k with k ∈ � sufficiently large.
Also define T

(s�0)
0 := T (s) � �(0)s�0 and T

(s�1)
0 := cond(X ).

Case 2.2.2: The set X of the previous case is countable: Then choose 	(0) ∈ T (s),
	(0) ⊇ 	(0), such that:
|ran(	(0)) ∩ bc | ≥ 1 and |ran(	(0)) ∩ ac | ≥ 1.
Remark: Because of the definition of T (s) we can conclude in this case, that

{� ∈ T (s) � 	(0) : �(|�| − 1) ∈ ac} is dense in T (s) � 	(0).
So we can arrange in the further construction of the 	(m), that the opponent (if it
exists) will have an infinite intersection with ac .
m � m + 1 :

Let 	(m) be constructed for a m ∈ �:
Case 1: ∀a ∈ Bm+2 a �∗ b:
In this case choose 	(m+1) ∈ T (s), 	(m+1) ⊇ 	(m), such that
|ran(	(m+1)) ∩ bc | ≥ m + 2
and for all k ≤ m, where we had Case 2.2.2 witnessed by some ã ∈ Bk+1, we have
|ran(	(m+1)) ∩ ãc | ≥ m + 2− k.
Case 2: ∃a ∈ Bm+2 a ⊇∗ b :
Case 2.1: ∀� ∈ T (s) (� ⊇ 	(m) → f−1

a [{1}] � (ran(�) ∪ b) \ |�s |):
In this case choose 	(m+1) the same way as in Case 1.
Case 2.2: ∃� ∈ T (s) (� ⊇ 	(m) ∧ f−1

a [{1}] ⊆ (ran(�) ∪ b) \ |�s |)
In this case let 	(m+1) be a witness.
Case 2.2.1:

X := {b ∈ B0 ∩ [T (s) � 	(m+1)] : ∀∅ �= t ⊆ s∀d ∈ ct (|b ∩ d | = �)
∧ ∀∅ �= t ⊆ s (zt �= ∗ → (|b ∩ zt | = �)
∧ |b ∩ a| = �}

is uncountable:
In this case the construction of the 	(m) stops.
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Define f0,s := fa, �
(0)
s�1 := 	

(m+1), �(0)s�0 := b � k with k ∈ � sufficiently large.
Also define T

(s�0)
0 := T (s) � �(0)s�0 and T

(s�1)
0 := cond(X ).

Case 2.2.2: The set X of the previous case is countable: In this case choose 	(m+1) ∈
T (s), 	(m+1) ⊇ 	(m+1), such that
|ran(	(m+1)) ∩ bc | ≥ m + 2,
|ran(	(m+1)) ∩ ac | ≥ 1,
and for all k ≤ m, where we had Case 2.2.2 witnessed by some ã ∈ Bk+1 we have
|ran(	(m+1)) ∩ ãc | ≥ m + 2− k.
Remark: In this case we also have that {� ∈ T (s) � 	(m+1) : �(|�| − 1) ∈ ac} is
dense in T (s) � 	(m+1).
Now, if the construction of the 	(m) is successful, we can define our opponent by
y :=

⋃
m∈� 	

(m). Again it is true, that for all f ∈ A we have f−1[{1}] ∩ ((� \ (y ∪
b))∪ |�s |) �= ∅ or |dom(f)∩ (b ∪ y)| = �. As before we can find h ∈ Si with h⊥A.
Hence A is not maximal.
If on the other hand the construction of the opponent stops, we try to construct
opponents with respect to B|t| for all t ⊆ s with t �= ∅ and zt = ∗ in the following
sense:

Assume that for some i < |s | and for all j ≤ i the fj,s , �(j)s�0, and �(j)s�1 have
been constructed together with T

(s�0)
j = T (s) � �(j)s�0 and T

(s�1)
j = cond(X ) for

uncountable

X = {b ∈ B0 ∩ [T (s�1)j−1 � �
(j)
s�1] : ∀∅ �= t ⊆ s∀d ∈ ct (|b ∩ d | = �)

∧ ∀∅ �= t ⊆ s (zt �= ∗ → |b ∩ zt | = �)
∧ ∀1 ≤ l ≤ j (zs�l = ∗ → |b ∩ dom(fl,s)c | = �)}

and assume that zs�i+1 = ∗ . (Otherwise just set �(i+1)s�k := �
(i)
s�k and define T

(s�k)
i+1

accordingly.)
We know because of the fact that zs�i+1 = ∗ and the respective remark that for all
e ∈ Bi+1 the set {� ∈ T (s�1)i : �(|�| − 1) ∈ ec} is dense in T (s�1)i .

Pick some reference branch b ∈ B0 ∩ [T (s
�0)
i ] and check if there exist

f ∈ Afin, � ∈ T (s�1)i with {k ∈ � : f(k) �= xi+1(k)} ⊆ (b ∪ ran(�)) \ |�s |.
If such f, � exist define fi+1,s := f, �

(i+1)
s�1 := � and �

(i+1)
s�0 := b � k for k ∈ �

sufficiently large, as well as T
(s�0)
i+1 := T

(s�0)
i � �(i+1)s�0 and T

(s�1)
i+1 := T

(s�1)
i � �(i+1)s�1 .

If such f, � do not exist we try again to construct an opponent sequence
〈	(m)| m ∈ �〉 by recursion:
Before we start the recursion we consider two different cases:

(i) ∀e ∈ Bi+1 e �∗ b,
(ii) ∃!e ∈ Bi+1 e ⊇∗ b. (remember that Bi+1 is an a.d.-family)

These two cases will be handled slightly differently in the following recursion.
Also pick some bijection φ : � → � \ {0, i + 1}.
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m = 0 :
Case 1: ∀a ∈ Bφ(0) a �∗ b:

In this case just set 	(0) := �(i)s�1.
Case 2: ∃a ∈ Bφ(0) a ⊇∗ b:
Case 2.1:
∀� ∈ T (s�1)i , � ⊇ �(i)s�1 ({k ∈ � : fa(k) �= xi+1(k)} � (b ∪ ran(�)) \ |�s |):
In this case set 	(0) := �(i)s�1.
Case 2.2:
Otherwise let 	(0) ∈ T (s�1)i , 	(0) ⊇ �(i)s�1 with
{k ∈ � : fa(k) �= xi+1(k)} ⊆ (b ∪ ran(	(0))) \ |�s |.
Case 2.2.1:

X := {b ∈ B0 ∩ [T (s�1)i � 	(0)] : ∀∅ �= t ⊆ s∀d ∈ ct (|b ∩ d | = �)
∧ ∀∅ �= t ⊆ s (zt �= ∗ → |b ∩ zt | = �)
∧ ∀1 ≤ l ≤ i (zs�l = ∗ → (|b ∩ (dom(fl,s))c | = �)
∧ |b ∩ a| = �}

is uncountable:
Then define fi+1,s := fa, �

(i+1)
s�1 := 	

(0), �(i+1)s�0 := b � k for k ∈ � sufficiently
large, such that {k ∈ � : fa(k) �= xi+1(k)} ⊆ (ran(�(i+1)s�0 ) ∪ ran(�(i+1)s�1 )) \ |�s |.
Also define T

(s�0)
i+1 := T

(s�0)
i � �(i+1)s�0 and T

(s�1)
i+1 := cond(X ).

The construction of the opponent stops in this case.
Case 2.2.2: The set X of the previous case is countable:

Then choose 	(0) ∈ T (s�1)i , 	(0) ⊇ 	(0) with
|ran(	(0)) ∩ bc | ≥ 1, |ran(	(0)) ∩ ac | ≥ 1 (and ran(|	(0)) ∩ ec | ≥ 1 in case of (ii)).
We also obtain our usual density property.
m � m + 1 :

Let 	(m) be constructed for some m ∈ �:
Case 1: ∀a ∈ Bφ(m+1) a �∗ b:

In this case choose 	(m+1) ∈ Ts�1i , 	(m+1) ⊇ 	(m)
with
|ran(	(m+1)) ∩ bc | ≥ m + 2 (and |ran(	(m+1)) ∩ ec | ≥ m + 2 in the case of (ii))
and for each k ≤ m, where we had 2.2.2 witnessed by ã ∈ Bφ(k), we have:
|ran(	(m+1)) ∩ ãc | ≥ m + 2− k.
Case 2: There exists a ∈ Bφ(m+1) with a ⊇∗ b:
Case 2.1:
∀� ∈ T (s�1)i (� ⊇ 	(m) → {k ∈ � : fa(k) �= xi+1(k)} � (b ∪ ran(�)) \ |�s |):
Pick 	(m+1) as in Case 1.
Case 2.2:
∃� ∈ T (s�1)i (� ⊇ 	(m) ∧ {k ∈ � : fa(k) �= xi+1(k)} ⊆ (b ∪ ran(�)) \ |�s |):
Then let 	(m+1) be a witness.

https://doi.org/10.1017/jsl.2014.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.38


514 OTMAR SPINAS ANDMAREKWYSZKOWSKI

Case 2.2.1:

X := {b ∈ B0 ∩ [T (s
�1)
i � 	(m+1)] : ∀∅ �= t ⊆ s∀d ∈ ct (|b ∩ d | = �)

∧ ∀∅ �= t ⊆ s (zt �= ∗ → |b ∩ zt | = �)

∧ ∀1 ≤ l ≤ i (zs�l = ∗ → |b ∩ (dom(fl,s))c |= �)

∧ |b ∩ a| = �}

is uncountable:
In this case define fi+1,s := fa, �

(i+1)
s�1 := 	

(m+1) and �(i+1)s�0 := b � k for k ∈ �
sufficiently large. Also set T

(s�0)
i+1 := T

(s�0)
i � �(i+1)s�0 and T

(s�1)
i+1 := cond(X ) and stop

the construction of the opponent.
Case 2.2.2: The set X of the previous case is countable:

Then choose 	(m+1) ∈ T (s�1)i , 	(m+1) ⊇ 	(m+1) with
|ran(	(m+1)) ∩ bc | ≥ m + 2 (and |ran(	(m+1)) ∩ ec | ≥ m + 2 in the case of (ii))
and for each k ≤ m, where had Case 2.2.2 witnessed by ã ∈ Bφ(k), we have
|ran(	(m+1)) ∩ ãc | ≥ m + 2− k, as well as |ran(	(m+1)) ∩ ac | ≥ 1.

Remark: Again we get {� ∈ T (s
�1)
i � 	(m+1) : �(|�| − 1) ∈ ac} is dense in

T
(s�1)
i � 	(m+1).

If the construction of the opponent y :=
⋃
m∈� 	

(m) is successful, we have the
following situation:
|bc ∩ y| = � and for d ∈ B0, d �= b, we have |b ∩ dc | = �.
Also we either have that
for all d ∈ Bi+1 holds |b ∩ dc | = � (Case (i))
or else |y ∩ ec | = � ∧ ∀d ∈ Bi+1 (d �= e → |b ∩ dc | = �). (Case (ii)).
Analogously as with the previous opponents we have for all j /∈ {0, i + 1} and
d ∈ Bj that either
∃k ∈ (� \ (b ∪ y) ∪ |�s |) ∩ dom(fd ) (fd (k) �= xi+1(k))
or |dom(fd ) ∩ ((b ∪ y) \ |�s |)| = �.
If we define h0 ∈ Si by dom(h0) := � \ (b ∪ y) ∪ |�s | and
h0 � dom(h0) :≡ xi+1 � dom(h0) and, by Corollary 2.3, choose some h1 ∈ Si((b ∪
y)\|�s |) with h1⊥(b∪y)\|�s |{f ∈ A : f ‖ h0}, we have h⊥A, where h := h0∪h1 ∈ Si .
Hence A is not maximal.
If on the other hand the construction of the 	(m) stops, then go on with the
construction of T0 (or the construction of the next opponent). If for all i < s
with zs�i+1 = ∗ the constructions of the opponents (with respect to B|i+1|) fail,
we have constructed in particular �(|s|)s�0 , �

(|s|)
s�1 , T

(s�0)
|s| and T

(s�1)
|s| . In this case set

�s�0 := �
(|s|)
s�0 , �s�1 := �

(|s|)
s�1 and T

(s�0)
:= T

(s�0)
|s| , T

(s�1)
:= T

(s�1)
|s| and define

cs�0 := {�} and cs�1 := {(dom(fi,s))c : (1 ≤ i ≤ |s | ∧ zs�i = ∗) ∨ i = 0}.
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Also in this case for each j ∈ 2 we have to check two different cases:
Case a:
There is an a ∈ B|s|+1 with:

X := {b ∈ B0 ∩ [T (s
�j)
] : ∀∅ �= t ⊆ s�j∀d ∈ ct (|b ∩ d | = �)

∧ ∀∅ �= t ⊆ s (zt �= ∗ → |b ∩ zt | = �)
∧ |b ∩ a| = �}

is uncountable:
Then define zs�j := a and T (s

�j) := cond(X ).
Case b:
Otherwise just define T (s

�j) := T
(s�j)

and zs�j := ∗.
This finishes the recursion step in the construction of the �s�j, T (s

�j).
If for no s ∈ 2<� the construction of the opponents is successful, then define

T0 := dwcl({�s : s ∈ 2<�}), which is obviously a perfect subtree of T . Let x ∈ [T0]
be a branch of the tree that is not definable from A ∪ {A} ∪ T0 ∪ {T0}. Associated
to x is a real r ∈ 2� by r := ⋃{s : �s ⊆ x}.
Now let f ∈ A be an arbitrary Silver function of the antichain. We analyze the
different classes that f can be a member of:

i) For f = fd for a d ∈ Bk with k ∈ � \ {∅} these are the following subcases:
Case 1: zr�k = a ∈ Bk :
Assume that f−1

a [{1}] ⊆ x would hold and choose some n ∈ � with
x � n ⊇ f−1

a [{1}]. We have x ∈ [T (r�k)] and therefore x � n ∈ T (r�k), and hence by
definition of the tree and the fact that zr�k = a weknow, that there exist uncountably
many b ∈ B0 with b ⊇ x � n ⊇ f−1

a [{1}] and |b ∩ a| = �. But then fa ‖ fb , which
is clearly a contradiction. So we can conclude f−1

a [{1}] ∩ (� \ x) �= ∅.
On the other hand, we also know by the fact that x ∈ [T0 � �r�k] with zr�k = a
and the construction of T0 that |x ∩ a| = �. For any d ∈ Bk with d �= a we have
|dom(fd )c ∩ a| < �, hence we get |dom(fd ) ∩ x| = �.
So in this case we have |dom(f) ∩ x| = � or f−1[{1}] ∩ (� \ x) �= ∅.
Case 2: zr�k = * :
Assume by contradiction, that ∃a ∈ Bk a ⊇∗ x. Because x is not definable from
A ∪ {A} ∪ T0 ∪ {T0}, we know that there exists N ∈ � with
{z ∈ [T0 � �r�k] : N ∪ a ⊇ z} being uncountable. In particular, we can find a
�s ∈ T0 � �r�k with |�s | ≥ N and z, z′ ∈ [T0 � �r�k] with N ∪ a ⊇ z, z′ and
z ⊇ �s�0 and z′ ⊇ �s�1. Because zr�k = * with r � k ⊆ s we have defined fk,s
and {n ∈ � : fk,s(n) �= xk} ⊆ (z ∪ z′) \ N ⊆ a is true. Also by construc-
tion we have (dom(fk,s))c ∈ cs�1 and hence |z′ ∩ (dom(fk,s))c | = � and hence
|a ∩ (dom(fk,s))c | = �. So we can conclude that fa ‖ fk,s for some fk,s with
(dom(fk,s ))c /∈ Bk by construction. So there are two different members of the
antichain that are compatible, which is a contradiction.
We can conclude that in this case ∀a ∈ Bk |ac ∩ x| = �, so in particular
|dom(f) ∩ x| = �.
ii) f = fb for b ∈ B0:

Assume by contradiction that b ⊇∗ x.
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As in i) we find z, z′ in [T0] with a common initial segment �s , |�s | ≥ N , and
z ∪ z′ ⊆ b ∪N . Then we havef−1

0,s [{1}] ⊆ (z ∪ z′) \N and |z′ ∩ (dom(f0,1))c | = �,
hence fb ‖ f0,s , which is a contradiction.
We can conclude |dom(f) ∩ x| = �.
iii) f ∈ Afin:
Assume by contradictionf−1[{1}]∩(� \x) = ∅. Then for a sufficiently large n ∈ �
we would have f−1[{1}] ⊆ x � n and in conclusion f−1[{1}] ⊆ b for some b ∈ B0.
This would imply f ‖ fb, a contradiction.
So in this case we can conclude f−1[{1}] ∩ (� \ x) �= ∅.
iv) |f−1[{1}]| = �:
Then f−1[{1}] ∩ (� \ x) �= ∅ or |dom(f) ∩ x| = �.
So in each case for everyf ∈ Awe have∃k ∈ �\x f(k) = 1∨|dom(f)∩x| = �.
This means that if we define h0 ∈ Si by (dom(h0))c := x and h0 � (� \ x) :≡ 0,
then the functions of the antichain that are compatible with h0 form an antichain
exclusively consisting of infinite conditions relativized to x. By Corollary 2.3 we can
pick some h1 ∈ Si(x) that is incompatible to these functions relativized to x. If we
define h := h0 ∪ h1, we get h⊥A.
Hence A is not a maximal antichain. �
We can now use the above theorem to prove the following:

Theorem 2.5. d ≤ a(Si).

Proof. Suppose that we have an antichain A of Silver conditions with �1 ≤
|A| < d. We want to show that A is not maximal. Because of theorem 2.4 we can
assume without loss of generality:
∀x ∈ 2� |{f ∈ A : f|x}| ≤ �.
First we define a tree T ⊆ (2 ∪ {∗})<� as follows:
T := {� ∈ (2 ∪ {∗})<� : |{f ∈ A : � ‖ f ∧ �−1[{∗}] ⊆ (dom(f))c}| ≥ ℵ1}.
We will show that there exists a branch in this tree that is a Silver condition that is
incompatible with the antichain. Note that obviously [T ] � Si . Hence, we define
Z∗ := [T ] ∩ Si . T has the following properties, that are easy to prove:
i) ∀x ∈ [T ]∀f ∈ Afin∃k ∈ dom(f) ∩ dom(x) x(k) �= f(k).
ii) The ∗ are dense inT ; that is,∀� ∈ T∃� ∈ T (� ⊇ �∧�−1[{∗}]∩[|�|, |�|) �= ∅).
iii) ∀� ∈ T∀k ∈ �∃� ∈ T (� ⊇ � ∧ |�| ≥ k ∧ �−1[{∗}] ∩ [|�|, �) = ∅).
iv∗) If � ∈ T,f ∈ Ainf, there are uncountably many conditions of the antichain

that are compatible with �, contain the ∗ of � in their codomain and are
also incompatible with f. This implies the following:
∀f ∈ Ainf∀� ∈ T∃� ∈ T∃k ∈ � (� ⊇ �∧k ∈ (dom(f)∩(dom(�))∧�(k) �=
f(k))) ∨ (k ∈ dom(f) ∧ �(k) = ∗).

Because for any ��∗ ∈ T we also have ��0 ∈ T and ��1 ∈ T , we can replace
iv∗) by the following:

iv) ∀f ∈ Ainf∀� ∈ T∃� ∈ T ; � ⊇ �∃k ∈ dom(�) ∩ dom(f) �(k) �= f(k).
Because of ii) and iii) we can pick a function I : T → Z∗;� �→ x� such that for all
�, � ′ with � �= � ′ we have that x−1� [{∗}] and x−1�′ [{∗}] are almost disjoint. Together
with the assumption from the beginning of the proof we get for any �, � ′ ∈ T
with � �= � ′ that the set B�,�′ := {f ∈ Ainf : f|x� ∧ f|x�′} is countable. Let
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B :=
⋃
�,�′∈T,� 
=�′ B�,�′ be the countable set of infinite conditions of the antichain,

that do not contradict at least two different x�, x�′ . Let
〈bn : n ∈ �〉 be an enumeration of B.
In order to construct our desired branch of T , we need to introduce some auxiliary
functions Sf, Ff (for f ∈ Ainf), hn,Hn (n ∈ �). They are defined as follows:
Sf : T → �

Sf(�) :=

⎧⎪⎨
⎪⎩
min{k ∈ � : k ∈ dom(x�) ∩ dom(f) ∧ x�(k) �= f(k)} if ¬(f|x�) ∧ f ‖ �,
|�| if f⊥�,
0 otherwise.

Ff : � → �
Ff(n) := max{k ∈ � : ∃� ∈ T (k = Sf(�) ∧ |�| ≤ n}
Note that the Ff are increasing.

hn : T → �

hn(�) :=

⎧⎪⎨
⎪⎩
min{k ∈ � : ∃� ∈ T (� ⊇ � ∧ k ∈ dom(�) ∩ dom(bn)

∧|�| = k + 1 ∧ �(k) �= bn(k))} if bn ‖ �,
|�| if bn⊥�.

Note that because of property iv) of our tree hn is well-defined for any n ∈ �.
Hn : � → �

Hn(m) := max{k ∈ � : ∃� ∈ T (k = hn(�) ∧ |�| ≤ m)}.
For any n ∈ � we have thatHn is increasing.
Ff(n) gives us, for all x� with |�| ≤ n that contradict f, an upper bound for the

level at which this is witnessed.
Hn(m) gives us, for all nodes of the tree of length at most m, an upper bound for
the length of an extension in the tree that contradicts bn.
We will use this information to construct for each s ∈ �<� andf ∈ Ainf a sequence
Rs,f := 〈r(s,f)k : k ∈ �〉 by recursion, that will help us to construct the desired
branch of T .
For k < |s | define r(s,f)k := s(k)

and r(s,f)|s| := Ff ◦H|s|−1(r
(s,f)
|s|−1), if s �= ∅

or r(s,f)0 := 0, if s = ∅.
Furthermore for k ∈ � define by recursion:
r(s,f)|s|+k+1 := Ff ◦H|s|+k(r

(s,f)
|s|+k).

We have |{Rs,f : s ∈ �<�, f ∈ Ainf}| ≤ |A| < d. So we can choose a strictly
increasing sequence R = 〈rk : k ∈ �〉 in � with
∀s ∈ �<�∀f ∈ Ainf∃∞n ∈ � rn > r(s,f)n .
We use this sequence to construct y ∈ Z∗ by recursion:
n = 0 :

Define �0 := ∅.
n � n + 1 :

Let �0, .., �n be constructed. Choose �̃n+1 ∈ T, �̃n+1 ⊇ �n of minimal length with
�̃n+1⊥bn. Let kn+1 ≥ |�̃n+1|, rn+1 be sufficiently large such that
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(x�̃n+1 � kn+1)−1[{∗}] ∩ [|�n|, kn+1) �= ∅. Then define �n+1 := x�̃n+1 � kn+1.
After � many steps let y :=

⋃
n∈� �n. Obviously, by construction we have

y ∈ Z∗ ⊆ Si .
We claim that y⊥A. For all f ∈ Afin we get y⊥f by property i) . For all b ∈ B
we have y⊥B by construction of y. We still have to show that y⊥Ainf \ B:
Let f ∈ Ainf \ B. Because f /∈ B we can choose n0 ∈ � sufficiently large such that
∀|�| ≥ |�n0 | ¬(f|x�).
Define s ∈ �n0+1 by:

s(k) :=

{
0 if k < n0,
|�n0 | if k = n0.

Hence, we have r(s,f)n0 = |�n0 |. Now let k ≥ 1 be minimal with |�n0+k | > r(s,f)n0+k
(exists by construction of �n). Because Hn is increasing and by the fact that
|�n0+k−1| ≤ r(s,f)n0+k−1 we can conclude

|�̃n0+k | ≤ Hn0+k−1(|�n0+k−1|) ≤ Hn0+k−1(r(s,f)n0+k−1), and hence by monotony of Ff
we get
|�n0+k | > r(s,f)n0+k

= Ff ◦Hn0+k−1(r(s,f)n0+k−1) ≥ Ff(|�̃n0+k |).
By choice of n0 and definition of Ff we have �n0+k = x�̃n0+k � |�n0+k | ⊥f.⇒ y⊥f.
Thus the claim is proven and we can conclude that A is not a maximal
antichain. �

§3. Additivity of I (Si). We can use Theorem 2.2 to prove the following theo-
rem, which implies that every reasonable amoeba forcing for Silver forcing adds a
dominating real.

Theorem 3.1. add (I (Si)) ≤ b.

Proof. Let κ < add (I (S)) and 〈fα : α < κ〉 be a sequence of functions
of �� . We need to show that there exists g ∈ �� that dominates all functions of
the sequence. In the following proof we will identify Silver trees with their Silver
functions. At any point of the proof it should be clear which representation we are
referring to. We will identify a member of [�]� with its increasing enumeration.
Note that any Silver tree can be partioned into 2ℵ0 subtrees with pairwise disjoint
closure. So whenever we have a Silver tree p and some set Y ⊆ 2� with |Y | < 2ℵ0 ,
we can pick some Silver tree p′ ⊆ p with [p′]∩Y = ∅. It is also obvious that for any
f ∈ �� the set {p ∈ Si : (dom(p))c >∗ f} is open dense in Si . Hence, similarly to
the proof of Lemma 1.1 of [1], for any α < κ, we can construct a maximal antichain
Aα ⊆ Si with the following two additional properties:
i) ∀q ∈ Si ([q] ⊆ ⋃{[p] : p ∈ Aα} → ∃B ∈ [Aα]<2ℵ0 [q] ⊆

⋃{[p] : p ∈ B}).
ii) ∀p ∈ Aα (dom(p))c >∗ fα .

The construction is as follows:
Let 〈q� : � < c〉 enumerate all Silver trees. We recursively construct a sequence of
Silver trees 〈p� : � < c〉 and a sequence 〈x� : � < c〉 of members of 2� as follows:
Let 〈p� : � < �〉 already be constructed for some � < c. If ∀� < � p�⊥q� , pick
p� ⊆ q� with (dom(p�))c >∗ fα and such that x� /∈ [p� ] for all � < �. Otherwise
just define p� := p0. In any case check if [q� ] ⊆

⋃
�<� [p�]. If this is not the case, let
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x� ∈ [q� ] \
⋃
�<� [p�]. Otherwise just let x� be the sequence that is constantly 0.

If we have constructed the sequences we get by Aα := {pα : α < c} the desired
antichain.
For each α < κ define Xα := 2� \⋃{[p] : p ∈ Aα} ∈ I (Si).

By κ < add (I (Si)) we have that X :=
⋃
α<κ Xα ∈ I (Si). Hence we can pick some

q ∈ Si with [q] ∩ X = ∅. By definition of X we have
∀α < κ [q] ⊆ ⋃{[p] : p ∈ Aα}.
We claim: (∗) ∀α < κ∃p ∈ Aα (dom(q))c ⊆∗ (dom(p))c .

Assume by contradiction that for some α < κ we have
∀p ∈ Aα |(dom(q))c ∩ dom(p)| = �.
Because of property i) of Aα we can choose B ∈ [Aα ]<2ℵ0 , such that
[q] ⊆ ⋃{[p] : p ∈ B}. Because of our assumption we know that the members of B
that are compatible to q form an antichain consisting solely of infinite conditions
relativized to (dom(q))c . Hence, by theorem 2.2 we can find a subtree q′ ⊆ q with
q′⊥B. We can conclude that for any p ∈ B we have |[q′] ∩ [p]| < � and thus
[q′] �

⋃{[p] : p ∈ B}, which is clearly a contradiction.
Now let 〈bn : n ∈ �〉 be an enumeration of all b ∈ [�]� with b =∗ (dom(q))c .

Let g ∈ �� dominate all bn. We will show that ∀α < κ g >∗ fα :
Let α < κ be arbitrary. By (∗) we can pick p ∈ Aα with (dom(q))c ⊆∗ (dom(p))c .
There exists n ∈ � with bn ⊆ (dom(p))c . Hence by property ii) of Aα we get
g >∗ bn >∗ (dom(p))c >∗ fα . �
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