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The fundamental mechanisms responsible for the creation of electrohydrodynamically
driven roll structures in free electroconvection between two plates are analysed
with reference to traditional Rayleigh–Bénard convection (RBC). Previously available
knowledge limited to two dimensions is extended to three-dimensions, and a wide
range of electric Reynolds numbers is analysed, extending into a fully inherently
three-dimensional turbulent regime. Results reveal that structures appearing in three-
dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and
while two-dimensional EHD results bear some similarities with the three-dimensional
results there are distinct differences. Analysis of two-point correlations and integral
length scales show that full three-dimensional electroconvection is more chaotic
than in two dimensions and this is also noted by qualitatively observing the roll
structures that arise for both low (ReE = 1) and high electric Reynolds numbers (up
to ReE = 120). Furthermore, calculations of mean profiles and second-order moments
along with energy budgets and spectra have examined the validity of neglecting the
fluctuating electric field E′i in the Reynolds-averaged EHD equations and provide
insight into the generation and transport mechanisms of turbulent EHD. Spectral and
spatial data clearly indicate how fluctuating energy is transferred from electrical to
hydrodynamic forms, on moving through the domain away from the charging electrode.
It is shown that E′i is not negligible close to the walls and terms acting as sources
and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar
variance equations are examined. Profiles of hydrodynamic terms in the budgets
resemble those in the literature for RBC; however there are terms specific to EHD
that are significant, indicating that the transfer of energy in EHD is also attributed to
further electrodynamic terms and a strong coupling exists between the charge flux and
variance, due to the ionic drift term.
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FIGURE 1. Schematic of charge injection atomizer operation.

1. Introduction
Electrohydrodynamics (EHD) is the interdisciplinary field dealing with the

interaction between hydrodynamic and electrical forces (Castellanos 1998). The area
has a number of industrial applications that range from electrostatic spraying (Kim &
Turnbull 1976; Kelly 1984; Bailey 1986; Bankston et al. 1988; Lehr & Hiller 1993;
Balachandran et al. 1999; Ye, Domnick & Pulli 2005) to electrostatic precipitators
(Davidson & McKinney 1989, 1991; Yamamoto et al. 2006). Here, discussion is
restricted to pure isothermal dielectric liquids, where charged dipoles and monopoles
are separated by neutral entities (Crowley 1999) and electric charge may reside for
relatively long periods in the liquid volume.

In practical spraying applications, such as in charge injection atomization (Kelly
1984, 1990; Shrimpton & Yule 2003; Rigit & Shrimpton 2006), fine sprays are
achieved via injecting charge into a dielectric liquid through a charge-emitting
electrode that is commonly held at negative high voltage ranging from 2–10 kV.
Within the device, the high-voltage (HV) electrode to orifice plane gap is typically of
length d and comparable to the orifice diameter, φ, as shown in figure 1. Between the
HV electrode and grounded orifice plate, the area referred to as the inter-electrode gap
of length d, the high electric fields and significant charge density result in EHD chaos
developing (Shrimpton & Kourmatzis 2010). Unfortunately such devices have been
designed and are operated without the support of a good physical understanding of
the electrohydrodynamics in this region. A motivation for this study is to understand
the EHD in this electrode gap region and to use this knowledge to improve the
performance of charge injection atomizers.

A more common example of a charge-laden dielectric fluid is air in electrostatic
precipitators (ESP), where corona-laden air and imposed electric fields charge
unwanted particles and remove them from a dusty gas flow (Davidson & McKinney
1989, 1991; Yamamoto et al. 2006). Although the governing equations pertaining to
flow of electrically charged air, such as in an ESP, are the same as for systems
containing dielectric liquids there are distinct differences. An electrically charged fluid
element has two velocity components Ui and κEi where Ui is the bulk flow velocity
and κEi is the ionic drift velocity component. For negatively charged carriers in
air, the ionic mobility, κ ∼ 1 × 10−6 (m2 (Vs)−1), is approximately three orders of
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230 A. Kourmatzis and J. S. Shrimpton

magnitude greater than that of a dielectric liquid, such as a hydrocarbon fuel. This
results in a different coupling between the bulk flow of the air and the flow attributed
to electrical force, meaning that in ESPs κEi � Ui due to the high mobility which
results in a one-way coupling between the flow field and the electrical forces. In such
systems the flow field is driven by κEi but the electric field is not strongly influenced
by the flow field (Soldati & Banerjee 1998). The study by Soldati & Banerjee (1998)
examined the energy budget contribution by the production and transport terms in
the turbulent kinetic energy equation for the EHD case. The domain studied was
a plane–plane system with an imposed cross-flow. Other investigations on EHD
turbulence and instability pertaining to ESPs have been undertaken by Yamamoto
et al. (2006) and Hong, Wang & Wu (2008); however as they were also one-way
coupled studies they are not commented on further here. With the dielectric liquids
investigated in this paper, such as insulating hydrocarbon fuels, the mobility may be as
low as 10−10 m2 (Vs)−1 (Melcher 1981) leading to κEi ∼ Ui. The coupling can result
in chaotic roll structures appearing, similar to the thermal Rayleigh–Bénard-convection
(RBC) case, and the literature pertaining to this area is now reviewed.

The investigation of roll structures in thermal RBC is well-documented (Getling
1998; Worner & Grotzbach 1998; Chandra & Grotzbach 2008). Here, three-
dimensional roll structures are produced by the input of thermal energy as opposed
to electrical energy and several studies have drawn analogies between the two areas
of physics (Tobazeon 1984; Castellanos 1991; Atten 1996, 1998; Vazquez, Perez
& Castellanos 1996). In the EHD case, it is mainly the Lorentz body force term
(Castellanos 1991, 1998) ρQEi in the Navier–Stokes (NS) equations that drives
instabilities while in the thermal case it is a thermal source term ρ(1 + α(Φ − Φ0))gi

arising from the Boussinesq approximation, with α being the coefficient of thermal
expansion, ρ being the density, Q being the space change and Φ0 a reference
temperature (Getling 1998; Shishkina & Wagner 2006; Verzicco & Sreenivasan 2008).
Therefore, in the thermal case, the gravitational potential energy gradient is an
important driving parameter, and is constant in both space and time. In the EHD
case there is a highly nonlinear coupling between charge distribution and electric field
in the space charge transport equation. Hence, the electrical potential energy gradient
is now no longer a constant in either space or time. Thermal RBC is well-understood
and extensive research exists which is aimed towards the better understanding of both
ordered convective motion as well as more turbulent convective motion (Xi & Gunton
1993; Worner & Grotzbach 1998; Chavanne et al. 2001; Shishkina & Wagner 2006;
Chandra & Grotzbach 2008; Verzicco & Sreenivasan 2008). The analogous dielectric
EHD however has not been as well-examined, and in this paper analysis of turbulent
dielectric EHD in three dimensions is presented for the first time. RBC will be refered
to in order to draw similarities between the two cases.

As in RBC, the analogous electrical studies have involved theoretical analyses such
as those carried out by Atten (1996), Schneider & Watson (1970), Hopfinger & Gosse
(1971) and Castellanos (1991, 1998) which have concentrated on understanding the
onset of instability as well as how the electrical forces couple to the hydrodynamic
forces. More precise analysis via two-dimensional numerical investigations, such
as more recent studies by Chicon, Castellanos & Martin (1997) and Vazquez,
Gheorgiou & Castellanos (2006, 2008) showed how the structure of rolls is
affected by the injected charge, and electric field present. Strong and weak injection
regimes have been identified and investigated, where this terminology refers to the
‘strength’ of charge injection, directly related to the value of charge density at the
injecting electrode (Vazquez et al. 2006, 2008), and these regimes may be more
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Electrohydrodynamic convection between two plates 231

thoroughly classified through non-dimensional governing equations, which shall be
subsequently presented.

Computational studies of EHD free convection have been restricted to two
dimensions. Given the nonlinearity of the EHD problem researchers have turned to
‘special’ numerical treatment where Chicon et al. (1997) have used a particle injection
scheme, and Vazquez et al. (2006, 2008) have used both particle injection schemes
and a finite-element–flux-corrected-transport (FE-FCT) method that employs both a
low-order and high-order scheme where the low-order scheme includes diffusion so
has to avoid solution instability, and the higher-order scheme is utilized in order to
provide a more accurate solution (Vazquez et al. 2008). More recently, Perez et al.
(2009) and Traore et al. (2010) have used a total variation diminishing (TVD) finite-
volume scheme that includes artificial diffusion near the boundary and is nominally
second-order. While these numerical methods are suitable for a wide range of EHD
parameters, these authors have shown that a conventional globally second-order finite
volume scheme can be used to simulate EHD flow quite accurately, so long as the
limitations are clearly defined. More details on the implementation of a finite volume
scheme to EHD shall be presented in a separate publication.

Previous authors have determined that the variation of charge and roll velocity
amplitude is unstable with time (Vazquez et al. 2008) when in the nonlinear regime,
and the level of instability directly depends on the governing non-dimensional numbers
of the problem, e.g. strong injection simulations with higher Rayleigh numbers
yield a greater fluctuation of space charge and velocity amplitude (Vazquez et al.
2008). In this paper, this knowledge is extended by examining three-dimensional
roll structures, both qualitatively and quantitatively, for a very similar geometry as
that used by Vazquez et al. (2008) using similar non-dimensional quantities. The
reader should also note that most of the investigations described above concentrate on
analysing instability criteria and electroconvection via deterministically investigating
electroconvective roll structures. There is little work on EHD turbulence where a
length scale distribution exists, and this is a focal point of this paper.

One of the very few theoretical papers published on two-way coupled EHD
turbulence is that of Hopfinger & Gosse (1971). They claim that the averaged
EHD equations may be simplified by a simple order-of-magnitude analysis. Their
approach immediately deems any term containing E′i negligible, greatly simplifying
the EHD Reynolds-averaged Navier–Stokes (RANS) equations which are presented in
Kourmatzis & Shrimpton (2009). The assumption of Hopfinger & Gosse (1971) is
a scaling analysis for the simple one-dimensional electroconvective problem between
two plates, where the overbar indicates a time average:

∂E1

∂x1
∼ E1

l0
(1.1)

and

∂E′1
∂x1
∼ E′1

l
(1.2)

where l is a length scale of turbulence and l0 is a large-scale reference length. Utilizing
Gauss’s law:

E′1
E1
∼ l

l0

q′

Q
. (1.3)
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232 A. Kourmatzis and J. S. Shrimpton

Hopfinger & Gosse then note that since q′ � Q, if the turbulent length scale is
small then E′i/Ei � 1 where q′ is the fluctuating value of charge. Assuming their
approximation is valid then the modelling of EHD turbulence becomes a much simpler
problem; however this assumption has not, until now, been analysed.

1.1. Plan and scope
The scope of the paper is two-fold. The first aim is to revisit the problem of
electroconvection between two plates qualitatively and deterministically in real and
spectral space in order to make comments regarding new features of EHD flow
acquired as a result of three-dimensional simulations. The focus is on the distribution
of length scales and thus the promotion of turbulent mixing that occurs due to the
presence of a third dimension in combination with elevated electrical Reynolds number.
The paper does not examine instability thresholds or perturbation growth, which are
concepts that have been well-classified in the literature (Castellanos 1991, 1998).
However, it should be noted that the method used in this paper does reproduce
instability regimes and hysteresis behaviour shown elsewhere (Chicon et al. 1997;
Vazquez et al. 2006, 2008) for the strong injection regimes considered here, where
a future publication shall address numerical implementation in much greater detail.
A further aspect of the first main aim is to analyse the transfer of energy from
electrical to hydrodynamic terms in spectral space but also to gain an understanding
of how energy is distributed amongst the eddy length scales or wavenumbers in real
and spectral space. These features shall be analysed as a function of non-dimensional
numbers, the latter being explained in § 2.

The second aim is to re-visit the assumption by Hopfinger & Gosse (1971), to test
its validity and therefore to examine second-order moment terms and budgets with the
overall aim of understanding EHD turbulence under strong injection from a statistical
point of view. A final minor aim is to make a comment on the practical significance
of the work here by making reference to the internal EHD flow of a charge injection
atomizer.

The paper is organized as follows: firstly, the governing equations of EHD are stated
and the significance of the relevant non-dimensional numbers discussed. Alongside
these, the governing equations for RBC while employing a Boussinesq approximation
are also presented, and this is done in order to draw analogies between the two
cases. The geometry used shall then be presented, along with the boundary conditions
employed and the choice of spatial and temporal discretization. A short section
regarding validation of the method shall then be provided followed by the results,
which shall include a qualitative discussion of the roll structures appearing and how
they compare to previous two-dimensional simulations. Quantitative analysis shall
concentrate on bivariate distributions and two-dimensional and one-dimensional two-
point correlations in space. This is then followed by the presentation of compensated
energy and dissipation spectra which further explain how turbulent kinetic and
electrical energies are distributed amongst length scales. Examination of profiles of
mean and second-order moments is then conducted and these profiles are utilized in
order to investigate the assumptions of Hopfinger & Gosse (1971) and to gain a better
understanding of EHD turbulence.

2. Problem formulation
2.1. Physics and governing equations

Charge transport may be due to diffusion, convection, and ionic drift due to an
electric field gradient, whereas heat may be transported by convection and diffusion
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Electrohydrodynamic convection between two plates 233

(conduction) alone, where viscous dissipation, along with the Dp/Dt term and Joule
heating are ignored (Getling 1998; Shishkina & Wagner 2006; Verzicco & Sreenivasan
2008). It is useful to present the governing equations in their non-dimensional form,
and firstly, relevant scales are presented (Kourmatzis & Shrimpton 2009):

V∗ = V/V0, E∗ = V0/d0, U∗ = U/U0, Q∗ = Q/Qref ,

t∗ = t/(d0/U0), Φ∗ =Φ/Φ0.

}
(2.1)

Throughout the paper, V is the voltage (volts), E is the electric field (V m−1), U
is the fluid velocity (m s−1), Q is the space charge (C kg−1), t is the time (s), DV is
the permittivity (F m−1), CP the specific heat (J kg−1 K−1), k the thermal conductivity
(W m−1 K−1), α the thermal expansion coefficient (K−1) and for forced convection
Qref = DVV0/ρ0d2

0. Using this scaling the non-dimensional governing equations for
EHD for a unipolar charge species in a pure incompressible forced flow (Kourmatzis
& Shrimpton 2009) and for the RBC case are

∂

∂x∗i
(U∗i )= 0 (2.2)

∂

∂t∗
(U∗i )+

∂

∂x∗j
(U∗i U∗j )=

1
Re

∂

∂x∗j

(
∂U∗i
∂x∗j

)
− ∂p∗

∂x∗i
+ GrE

Re2 Q∗E∗i︸ ︷︷ ︸
EHD

+ Gr

Re2 g∗i (Φ
∗ − 1)︸ ︷︷ ︸

RBC

(2.3)

∂

∂t∗
(Q∗)+ ∂

∂x∗i
(U∗i Q∗)= 1

Re

1
ScE

∂

∂x∗i

(
∂Q∗

∂x∗i

)
− κ0E0

U0

(
E∗i
∂Q∗

∂x∗i
+ Q∗2

)
(2.4)

∂

∂t∗
(Φ∗)+ ∂

∂x∗i
(Φ∗U∗i )=

1
Re

1
Pr

∂

∂x∗i

(
∂Φ∗

∂x∗i

)
(2.5)

∂

∂x∗i

(
∂V∗

∂x∗i

)
=−Q∗ (2.6)

where

GrE = ρ
2
0 V0d2

0

µ2
0

Qref (2.7)

Re= ρ0U0d0

µ0
(2.8)

ScE = µ0

ρ0D0
(2.9)

Pr = CP0µ0

k0
(2.10)

Gr = ρ
2
0 g0Φ0α0d3

0

µ2
0

(2.11)

Ra= GrPr (2.12)

and the electrical diffusion coefficient D0, is approximated as (Melcher 1981):

D0 = κ0

40
V. (2.13)

Equations (2.2)–(2.4) and (2.6) are for EHD and the equations for the RBC case
are (2.2), (2.3) and (2.5). An ‘EHD’ underbrace indicates the source term of the
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momentum equation for the case of EHD flow and the ‘RBC’ underbrace for the case
of RBC flow.

Equations (2.2)–(2.6) are the conservation of mass, momentum with an EHD or
RBC body force, space charge, energy (static enthalpy), and the Poisson equation for
the voltage respectively. The reader should note that in (2.3) the EHD source term
on the right-hand side is only due to an applied Lorentz force and electrostrictive
and dielectrophoretic forces are negligible for the simulation parameters used here
(Vazquez et al. 2006, 2008). The non-dimensional parameters appearing have been
fully explained elsewhere (Atten 1996; Castellanos 1998).

Equations (2.2)–(2.6) are non-dimensionalized with separate scales for the fluid
velocity U0 and electrical drift velocity κE0. In the free flow case U0 may be scaled to
κE0 and therefore the EHD momentum conservation and space charge equations have
a different form where now Qref = Q0 as opposed to Qref = ε0V0/ρ0l2

0 is the reference
value for charge Q (Castellanos 1998):

∂

∂t∗
(U∗i )+

∂

∂x∗j
(U∗i U∗j )=−

∂p∗

∂x∗i
+ 1

ReE

∂2U∗i
∂x∗j ∂x∗j

+ CM2Q∗E∗i (2.14)

∂

∂t∗
(Q∗)+ ∂

∂x∗i
(U∗i Q∗)= 1

ReE

1
ScE

∂

∂x∗i

(
∂Q∗

∂x∗i

)
−
(

E∗i
∂Q∗

∂x∗i
+ Q∗2

)
. (2.15)

The RBC source term is not included in (2.14) as the EHD free flow scaling U0 = κE0

is one specific to EHD. In the RBC free flow case, U0 is scaled to U0 =√gα1Φd0.
The parameter C characterizes the ‘injection strength’ referred to in the introduction,

which governs how ‘strong’ or ‘weak’ an injection is and is defined by

C = Q0d2
0

DVV0
= τd

τSC
(2.16)

where

τd = d2
0

κ0V0
(2.17)

τSC = DV

Q0κ0
. (2.18)

In strong injection, the electric field in the dielectric liquid is mainly influenced by the
space charge distribution, and in weak injection the electric field is mainly influenced
by the applied electrode voltage (Vazquez et al. 2008). A system is said to be under
a strong injection regime if C� 1 and under a weak injection regime if C� 1. This
term is the ratio of the ionic drift time scale τd to the Coulombic charge relaxation
time scale τSC and therefore the smaller τSC is, the more intense the injection.

The parameter T , given by

T = DVV0

κµ
= GrEPrE (2.19)

is the product of the electrical Grashof number GrE (now defined using Qref = Q0)
and the electrical Prandtl number PrE (Castellanos 1998) and may be thought of
as an electrical Rayleigh number (Castellanos 1991, 1998), making it an indicator
of electroconvective instability. For a strong injection case, roll structures have
been calculated, through instability analysis, to appear when T = 161 (Castellanos
1991, 1998) while for the weak injection case the instability threshold is reached
when T = 220.7/C2 (Castellanos 1991, 1998). These instability thresholds have been
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Value RBC S1 S2 S3 SP

Aspect ratio (L d−1) 6 6 5 5 5
Specific charge
Q0 = QB (C kg−1)

— 0.0006 0.0006 0.0006 0.001

Voltage VB (v) — 500 500 500 1780
Viscosity ν (m2 s−1) 1.75× 10−7 3.8×10−6 5× 10−7 3.5×10−7 1.7× 10−6

Density ρ (kg m−3) 1000 1000 1000 1000 1000
Ionic mobility
κ (m2 (Vs)−1)

— 7.9× 10−9 6× 10−8 8.6×10−8 1.8× 10−8

Injection strength C — 10 10 10 4.6
Rayleigh number Ra or T 140000 500 500 500 1780
Reynolds number Re or
ReE

355 1 60 120 19

TABLE 1. Simulation parameters for all cases with distance between plates d = 0.5 mm
and electrical permittivity DV = 3.03 × 10−11 F m−1. For the EHD cases (S1–S3, SP) the
Reynolds number is the electric Reynolds number ReE and the Rayleigh number = T
while for the RBC case Re and Ra are the conventional Reynolds and Rayleigh numbers
respectively.

subsequently confirmed through computational investigations (Chicon et al. 1997;
Vazquez et al. 2006, 2008); however a discrepancy exists between the experimentally
measured critical T = 100 value for strong injection and the theoretical T = 161
quoted above (Castellanos 1991). The parameter T may be compared to the thermal
Rayleigh number Ra in (2.12), where rather than it being the ratio of buoyancy force
to diffusion force it is now the ratio of electrical force to diffusion force.

The parameter M is a measure of electrohydrodynamic turbulence in a system
(Atten 1996, 1998) and is therefore related to the electrical Reynolds number ReE,
where T is defined in (2.19):

M = (DV/ρ)
1/2

κ
=
(

T

ReE

)1/2

, ReE = ρκV

µ
. (2.20)

The value of M physically represents the ratio of hydrodynamic to ionic mobility
and may be derived by equating the electrical energy to the kinetic energy and
utilizing the U0 = κE0 scaling. The electrical energy ((1/2)DVE2) is proportional to
Re2

E indicating that a greater ReE should result in more energetic eddies and wider
scale range. While (1/2)DVE2 is not the rate of input of energy, it is the electrical
energy which appears due to the applied field and Castellanos (1998) assumes that all
of this is converted to kinetic energy, physically appearing as electroconvective motion.

2.2. Geometry and numerical procedure
2.2.1. Simulation inputs

The coordinate system used is Cartesian and two plates of area= L×L normal to the
y-axis are separated by a distance d. The sides of a single control volume are referred
to as wx, wy and wz in the x, y and z directions respectively. Boundary conditions were
chosen so as to achieve strong injection conditions. Specifically, four strong injection
cases along with one RBC case with non-dimensional numbers outlined in table 1
were computed. The aspect ratio L/d was kept at the values shown in table 1 in order
to ensure that the domain width is significantly larger than the theoretical roll length
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(Vazquez et al. 2008). It should be noted that case ‘strong 1’ (S1) was run in two and
three dimensions in order to reproduce previous two-dimesional simulations available
in the literature (Vazquez et al. 2006, 2008). Cases ‘strong 2’ (S2) and ‘strong 3’
(S3) were run in order to investigate the effect of a higher ReE on three-dimensional
electroconvection for fixed T and C values.

The practical case ‘SP’ values are based on experimental studies carried out by the
authors. A typical charge injection atomizer with an orifice diameter φ = 100 µm and
d/φ = 1 as may be seen in figure 1 injects a current I ∼ 2 µA at a voltage ∼3000 V,
and operates using diesel oil which has a typical density of 840 kg m−3, and dynamic
viscosity equal to 0.002 Pa s, equating to κ = 1.5 × 10−8 m2 (Vs)−1 (Melcher 1981).
However in the simulations here, the same domain height is retained for case SP as
in cases S1, S2, S3 and RBC, namely d = 0.5 mm. For that reason, the boundary
conditions were altered, in order to achieve the same non-dimensional numbers as in
the experimental case, equating to T = 1780, C = 4.6 and ReE = 19. Running this
practical case will not only show how a practical atomization device could be affected
by turbulent EHD, but it will also illustrate the effect of a higher T in conjunction
with a higher ReE as opposed to cases S1 and S2 which contain a T value close to the
instability threshold. The reader should note that simulation SP carried out here is only
a first step towards understanding the complex EHD flow within a charge injection
atomizer.

2.2.2. Boundary conditions
For the charge injection boundary an x, z plane of control volumes (wy > y> 0), the

first row of control volumes next to the bottom wall boundary, are maintained at a
fixed value of charge, Q0 = QB (C kg−1) and at a fixed value of voltage, V0 = VB. The
x, z boundary below this plane of control volumes, at y = 0, requires dV/dy = 0 and
dQ/dy = 0, and the top x, z plane (y = d) is a wall with boundary conditions V = 0
and dQ/dy = 0. The left and right boundaries, normal to the x and z directions are a
periodic pair. The computational method agrees with the analytical solution of charge
injection to within typically 3 %.

For the RBC case, the bottom wall at y = 0 is at a fixed temperature ΦHOT while
the top wall at y = d is at a fixed temperature ΦCOLD. In contrast to the EHD
simulations, boundary conditions may be applied at a wall in RBC, by virtue of a
much simpler analytical solution which is not asymptotic at the wall boundaries. The
no-slip condition is employed for all walls for the velocity field for both the EHD and
RBC cases.

2.2.3. Numerical method
A parallelized version of FLUENT 6.3 was used. User defined functions were

written in order to incorporate the space charge transport and the Poisson equation
for the voltage, while scripts were also written to include a Lorentz source term
in the momentum conservation equation in three dimensions. The simulation was
carried out using a second-order implicit finite-volume scheme in both time and space.
More specifically, the second-order QUICK scheme (Versteeg & Malalasekera 1995)
was used to spatially discretize the momentum and space charge transport equations,
while time was discretized using a second-order fully implicit method. Pressure was
also discretized using a second-order method and the SIMPLE method (Versteeg &
Malalasekera 1995) was used to couple the pressure and velocity fields. Second-order
central schemes were used for both integration and diffusion.
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Scale RBC S1 S2 S3 SP

Kolmogorov length
η (m)

6.1× 10−6 7.9× 10−5 1.3× 10−5 9.7× 10−6 1.5× 10−5

Kolmogorov time τ (s) 2.0× 10−4 1.6× 10−3 3.0× 10−4 2.7× 10−4 1.3× 10−4

Spatial resolution 1.20η 0.09η 0.54η 0.51η 0.48η

TABLE 2. Kolmogorov microscales for all cases.

2.2.4. Spatial and temporal resolution
In order to acquire an initial estimate of the resolution required for the simulations

the Kolmogorov scales of the problem were estimated. In RBC, the rate of dissipation
is estimated via (Eckhardt, Grossman & Lohse 2007):

εdip ∼ ν3d−4Pr−2Ra(Nu− 1). (2.21)

An estimate for the Kolmogorov scale in EHD has been provided by Castellanos
(1991) and is given by:

εdip

d
∼
(

2700
M

)3/8(
M

T

M2

)−3/4

. (2.22)

Assuming the Kolmogorov hypotheses hold this may then be used to define the
hydrodynamic dissipative scales. Using the properties from table 1, the Kolmogorov
length and time scales for the various cases are provided in table 2. Based on the
Kolmogorov microscale estimates, and also accounting for the fact that the Courant
number must be ∼1, the spatial resolution employed in the ‘y’ direction is also
presented in table 2.

A non-uniform mesh was used for the strong injection simulations and mesh
independence tests in both two and three dimensions confirmed sufficient spatial
resolution. Although Kolmogorov scales and mesh independence testing validated the
simulations it must be noted that theoretically, the simulations are not a true direct
numerical simulation (DNS) by virtue of the large electrical Schmidt numbers.

The electrical Schmidt number ScE = µ/ρDQ defined as the ratio of momentum
diffusivity to the charge diffusivity gives an estimate of the ratio between the electrical
length scales and hydrodynamic length scales. This particular non-dimensional number,
to the authors’ knowledge has not been calculated or discussed in the available
literature that simulates EHD flow in two dimensions. For the strong injection cases
in this paper, ScE ranges from 163 (case S3) to 19 000 case (S1) which is very
significant. This suggests that for any of the cases, a true DNS using Eulerian methods
is not possible with computing power available today. Energy created on the small
electrical scales close to the bottom boundary may not be transferred to the larger
hydrodynamic length scales, which will inevitably create an error, especially in any
higher-order moment calculations. Furthermore, fixing the charge and voltage at a row
of control volumes is also theoretically incorrect, given that the values are fixed at
the cell centroids located several electrical length scales away from the bottom wall.
While this is an inherent problem with the simulations here, EHD simulations have
been carried out in the past with large ScE even though such issues have not been
discussed. Previous Eulerian methods such as those of Traore et al. (2010) proved
successful in simulating two-dimensional large-scale structures, however it is uncertain
how such a method would accurately calculate values of fluctuating electric field
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E′i, relevant in fully turbulent three-dimensional EHD, where E′i by definition is a
continuum variable that also exists on sub-Kolmogorov scales. As shall be shown in
this paper, the electric field fluctuations are not negligible close to the walls. Given
that it is demonstrated through results in § 6.4 and onwards that physical phenomena
are captured and validated, and budgets are reproduced within quantifiable errors, the
authors assume that the significance of electric field fluctuations close to the walls
is real. For further discussion on large-ScE simulations the reader is directed to the
original work by Batchelor (1959) and more recent work by Yeung, Xu & Sreenivasan
(2002), the latter dealing with Sc up to 64. In Batchelor (1959) a sub-Kolmogorov
length scale is defined as ηb = ((νDQ)/εdip)

1/4 = η/√ScE, and therefore given available
computing power today it is unlikely that any finite-volume method can capture the
‘Batchelor’ length scales for an EHD problem.

Concerning the time step, this was scaled to the Kolmogorov time scale, τ and also
relevant electrical time scales (Castellanos 1998). The time steps utilized were of the
order ∼0.1τ in order to achieve the desired Courant number of 1. The reader should
note that for all cases the relevant electrical time scales were larger than the calculated
Kolmogorov time scales. For example, for the S1 case the smallest relevant electrical
time scale is the space charge relaxation time scale equal to 4τ , for the S2 case the
smallest relevant electrical time scale is also the space charge relaxation time scale
at 3τ .

2.3. Plan of results
Having described the problem, the numerical methods and basic validation, the
simulation results will now be presented and discussed. The rest of the paper is
organized as follows. First, conditions for statistical stationarity are outlined. Results
from two-dimensional simulations run by the authors and others are then examined
(Vazquez et al. 2006, 2008) which validate our implementation, discretization
and boundary condition choices made here. Secondly, three-dimensional results are
qualitatively discussed by presenting a selection of non-dimensionalized contour plots.
Thirdly, quantitative characteristics of the instabilities are discussed via examination
of bivariate distributions, two-point correlations, and spectral data, the latter study
being carried out in order to understand the role of kinetic and electrical energy in
EHD turbulence. The paper then proceeds to discuss real-space mean and second-order
moment profiles, and budgets of the turbulent kinetic energy, turbulent scalar flux and
turbulent scalar variance. The second-order moment results and energy budgets are
also utilized in order to investigate the scaling made by Hopfinger & Gosse (1971).

3. Statistical stationarity
A necessary condition to meet before performing averaging on turbulent flow data

is for statistically stationary conditions, and here this is demonstated for the cases
of table 1. Analysing the evolution of 〈Q〉 with time will illustrate this requirement
while also revealing information regarding how 〈Q〉 progresses with time. 〈Q〉 here
is defined as the spatial average along a plane at a fixed y position and has been
non-dimensionalized with the charge level at the bottom wall QB. In figure 2 the
evolution of temperature 〈Φ〉 is also included, at a fixed y position in the centre and
therefore 〈N〉 in the y-axis represents charge or temperature for the EHD and RBC
cases respectively. The time axis has been non-dimensionalized by the theoretical eddy
turnover time equal to 2τd for the EHD case, and τrbc = d/ (gα1Φd)1/2 for the RBC
case. In order to make the plots clearer the time component of the RBC case has
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Evolution of 〈N〉/NB
(where 〈N〉 represents 〈Q〉 or 〈Φ〉) with τn at y = 0.5d for all cases of table 1, where for
example, 3DS1 indicates the result of a three-dimensional simulation run for case S1.

been divided by a factor of 30. This factor has been applied because the time scale
associated with statistical stationarity for the RBC case is related to the mechanical
diffusion time scale which is significantly larger than EHD time scales, in particular
τSC. Castellanos (1991) and Atten (1996) note that the tendency for a charged ‘packet’
to travel from the emitting electrode (bottom) to the collecting electrode (top) is
mainly counteracted by the relaxation of excess charge, and this can be seen here
as the EHD simulations take much less time to reach a statistically stationary state
when compared to the RBC simulation. Comparing to the S1 case as an example, the
RBC mechanical diffusion time scale is ∼200τSC. The fact that the diffusion time scale
is the stabilizing mechanism in RBC flow agrees with the literature (Getling 1998),
and towards the early development of the RBC simulation one can see two ‘kinks’
corresponding to the change from a pure thermal ‘conduction’ case, to the onset of
thermal convection and finally to the creation of RBC turbulence.

Of further interest is the fact that the value of 〈Q〉 reaches a similar stationary state
when comparing the two-dimensional to the three-dimensional cases. This is because
the stabilizing mechanism is present in the vertical (y) direction which is common in
both the two-dimensional and three-dimensional cases.

The reader should note that throughout the paper, averaged results denoted by
〈〈n〉〉 indicate the ensemble average of n, i.e. the values of n averaged along a
fixed plane in both space and time. This is done by determining the mean over a
number of realizations in time, while ensuring that data are sampled over a total
time corresponding to at least three eddy turnovers after the simulation has reached
statistically stationary conditions.

4. Two-dimensional validation
An extensive validation study of our method has been conducted by the present

authors (Kourmatzis & Shrimpton 2012) and will be published separately and therefore
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0.03 0.2 0.4 0.5 0.7 0.8 1.0

FIGURE 3. (Colour online) Normalized two-dimesional space charge distribution (Q/Q0) for
case S1 of table 1.

here we only present selected results for brevity. Two-dimensional simulation results
for strong injection at values of T ranging from 160 to 500(case S1 from table 1)
were run in order to reproduce simulations conducted by Vazquez et al. (2008)
before proceeding with three-dimensional simulations. It was assumed that only
bulk convection and ionic drift contribute to space charge transport (Vazquez et al.
2006, 2008). For strong injection, the instability threshold was found to be T ∼ 170
where below this value no rolls were observable; however when running simulations
with T above this critical value, rolls were clearly observable validating that the
code correctly captures the instability threshold for the strong injection case. As
observed by Vazquez et al. (2008) we also found a two-roll structure for the strong
injection simulations at values of approximately T = 400–500, while the finite-volume
simulation also revealed weak two-roll structures at values of T = 200–300 which was
not noted in the particle-in-cell (PIC) method of Vazquez. et al. but was observed for
the flux corrected transport (FCT) method.

Figure 3 shows an example of the normalized two-dimensional space charge
distribution (C kg−1) at T = 500, C = 10 and ReE = 1 for the two-dimensional
geometry (case S1 from table 1) run with L/d = 2.4 as utilized in Vazquez et al.
(2008) under statistically stationary conditions. The double roll structure observed by
Vazquez et al. (2008) is clearly visible and is unstable with time. The number of
rolls varies from one to approximately seven. Furthermore, as observed by Vazquez
et al. (2008) for the strong injection case, the majority of the charge is present on the
injector surface and then sharply decreases to a minimum.

5. Qualitative three-dimensional results
This section shall directly compare the three-dimensional results of S1 of table 1 to

the two-dimensional results noted in the previous section. The other strong cases of
table 1 and the RBC case are then examined in order to make some first observations
regarding more chaotic electroconvection in three dimensions.

5.1. Effect of third dimension (case S1)
Figure 4(a) shows the normalized velocity magnitude viewed on an iso-surface of
volume-average space charge (〈Q〉vol) for strong injection. Figure 5(a) is a two-
dimensional section of normalized space charge, at y = 0.5d for the S1 case. For
the strong injection case, in three dimensions irregularly shaped rolls are seen, which
is observable from figures 4(a) and 5(a).
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FIGURE 4. (Colour online) Normalized velocity magnitude Vmag/κE0 (a–d) and
Vmag/

√
gα1Φd (e) on Q = 〈Q〉vol or Φ = 〈Φ〉vol iso-surfaces for all cases of table 1: (a) S1

(L/d = 6); (b) S2 (L/d = 5); (c) S3 (L/d = 5); (d) SP (L/d = 5); (e) RBC (L/d = 6).

It is important to note that as opposed to the two-dimensional simulations of the
present authors and others, through the three-dimensional results a larger range of
roll structure size is observed, as the three-dimensional mixing in the domain is
encouraging the formation of smaller-scale eddies which are observable within the
hexagonal structures. This does suggest that certain physical mechanisms that create
turbulent EHD can be captured through three-dimensional simulations, but not through
the two-dimensional simulations which have been run in the past.

5.2. Effect of ReE (cases S1–S3 and RBC)
Having directly compared three-dimensional to two-dimensional results for low ReE

it is now of interest to examine the structure of the EHD flow between two plates
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FIGURE 5. (Colour online) Normalized space charge Q/(DVV0/ρd2
0) (a–d) and Φ/Φ0 (e) for

all cases of table 1 at y = 0.5d (a) S1 (L/d = 6); (b) S2 (L/d = 5); (c) S3 (L/d = 5); (d) SP
(L/d = 5); (e) RBC (L/d = 6).
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at an elevated electric Reynolds number ReE and compare to a high-Re RBC case,
namely cases S1–S3 and RBC of table 1 are examined. A higher ReE is of interest
as we expect to see a less-stratified space charge distribution throughout the domain
as the inherently three-dimensional turbulent mixing process becomes more relevant.
Figure 4(b,c) shows the normalized velocity magnitude viewed on an iso-surface of
volume-average space charge (〈Q〉vol) for the S2 and S3 cases respectively. While
qualitatively, the structures that arise look quite similar to case S1, there is one
distinct difference which shows how turbulent kinetic energy has begun to ‘mix’ the
space charge creating more randomized structures. It is clear from figure 4(b,c) that
the momentum is more evenly distributed as the non-dimensional velocity magnitude
range is from 0 to 3.3 for case S2 and 0 to 0.24 for case S3 in contrast to a range
from 0 to 6.2 for case S1 where the distribution is more stratified. The reader should
note that for most cases the non-dimensional velocity magnitude is greater than the
ionic drift velocity as stated by Lacroix, Atten & Hopfinger (1975); however here
it can be seen that case S3 yields a non-dimensional velocity of 0.24. While this
at first may seem a mistake, it is in direct agreement with the results of Lacroix
et al. (1975) where for M values less than ∼3 it was determined that the velocity
magnitude becomes smaller than the ionic drift velocity. This occurs as the electrical
Nusselt number NuE, proportional to M1/2 in the inertial state, approaches 1, which
Lacroix et al. (1975) state is equivalent to a low-Pr thermal RBC case. The fact that
this simulation has been able to capture this ‘saturation’ phenomenon shows that fully
turbulent EHD has been achieved.

Observing the RBC case of figure 4(e) where normalized velocity magnitude is
viewed on an iso-surface of volume-averaged temperature (〈Φ〉vol) it may be seen that
qualitatively, the structures look most similar to those of case S3 where the range of
non-dimensional velocity magnitude is from 0 to 0.5 showing contours over a narrower
range of velocity. The narrower range indicates that the roll velocity is becoming more
uniform throughout the domain, thus indicating an efficient mixing of charge in the
EHD case, and an efficient mixing of heat in the RBC case, and therefore the creation
of homogeneity. Particularly in cases S3 and RBC of figures 4(c) and 4(e) the roll
structures seem to be more random in direction when compared to cases S2 and S1.
Furthermore, generally observing any of the strong injection cases and comparing to
the RBC case, it is quite clear that in the RBC case the boundaries between hot
and cold plumes seem to be more diffuse when compared to the strong cases of
figure 5(a–d) where there are steeper gradients. The EHD boundary layer is much
thinner than the thermal counterpart, which is partly responsible for the less diffuse
boundaries in EHD. However, a further explanation may be provided via calculation of
the electrical Prandtl number PrE. This may be calculated from (2.19) and for cases
S1, S2, S3 and RBC PrE or Pr is equal to 0.09, 0.002, 0.001, and 1.1 respectively.
In RBC since the ratio of viscous diffusion to thermal diffusion is approximately
1, diffuse boundaries are observable in contrast to strong EHD cases where viscous
diffusion is significantly less than ‘electrical diffusion’.

Further information may be gained by observing two-dimensional cross-sectional
views of cases S1–S3 and RBC. It is observed that in the higher ReE case of
figure 5(b,c), the edges of the rolls have become thicker showing how the space
charge field is moving towards a less stratified distribution which is also reflected
in the momentum field as these two variables are intricately coupled. Through case
S3 it may be seen that the area ratio of lower charge to higher charge plumes is
decreasing moving to what is effectively observed in the RBC case of figure 5(e), a
well mixed, closer to uniform, distribution of the relevant scalar variable. The range of
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non-dimensional temperature in the RBC case lies between 1.36 and 2.06 as opposed
to the EHD cases where we can observe a much wider spectrum of charge level.
Case S3 of figure 5(c) shows a significant decrease in stratification where the plume
thickness is seen to have increased dramatically when compared to cases S2 and S1
showing the effect of ReE equal to 120. The reason for this decrease in stratification
with an increase in ReE is an increase in the turbulent kinetic energy when moving
from case S1 to S3 as shall also be seen in § 6.5.1.

5.3. Case SP: Effect of T

An increased level of mixing is also visible from figure 5(d) where within the space
charge rolls smaller scales can be seen as was also observed with cases S2 and S3;
however the edges of the rolls are not as thick as in figure 5(b,c) initially indicating
that ReE is the main governing parameter responsible for length scale distribution
within three-dimensional EHD convection.

Although there are small scales present in the case SP contour plot, comparing
figure 5(d) to any of the other strong cases one may see that case SP seems to be
the most similar to case S1. While case SP has a significantly higher T value, its
ReE is less than both cases S2 and S3 and furthermore, for case SP, PrE is equal
to 0.01, a value within the same order of magnitude as case S1 where PrE = 0.09.
This indicates that although this ‘practical’ charge injection case has ReE = 20 much
greater than the ReE = 1 for case S1, the fact that they have similar ratios of viscous to
electrical diffusivity means that the structures are stabilized in a similar manner. From
figure 4(d) it is again clear that cases S2 and S3 seem less stratified indicating that
the higher ReE of cases S2 and S3 have provided greater mixing when compared to
case SP of figure 4(d). Charge injection atomizers may be operated at even higher
ReE and case SP is only one example of a ‘practical’ case. What is clear however, is
that with a charge injection atomization device, in locations where the free-convection
assumption made here holds, there will certainly be significant EHD instability which
for high enough ReE will manifest into turbulent flow. For a more detailed discussion
on the internal flow of a charge injection device the reader is directed to Shrimpton &
Kourmatzis (2010).

6. Quantitative characteristics of the instabilities
In this section quantitative characteristics of three-dimensional EHD plumes are

reported, and the analysis begins by analysing real-space data such as bivariate
distributions and two-point correlations in order to extract further qualitative and
quantitative insight while also calculating integral length scales.

6.1. Bivariate distributions
The bivariate probability distributions of q′ versus v′ (for EHD) and Φ ′ versus v′ (for
RBC), where n′ = n− 〈〈n〉〉, are calculated at y= 0.5d in order to draw both qualitative
and quantitative comparisons between the three-dimensional EHD cases and the RBC
case. Here, 〈〈n〉〉 is the combined spatial and temporal average of n taken along a 2D
plane at a fixed y-position over a number of realizations under statistically stationary
conditions.

Concentrating on the RBC case of figure 6(e), a single mode is observed, indicating
that statistically, one cannot distinguish between those rolls travelling from the hot to
the cold wall, and then those travelling back down, which is a sign of conventional
buoyancy-driven turbulent flow. The RBC data of figure 6(e) are almost completely
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FIGURE 6. (Colour online) Bivariate distributions of non-dimensional vertical (y-direction)
velocity fluctuations v′/U0 and scalar fluctuations q′/Q0 or Φ ′/Φ0 for all cases of table 1
at y = 0.5d where contours represent the total number of binned samples; where here
Q0 = DVV/ρd2

0 and Φ0 is given by ΦHOT − ΦCOLD; U0 = κE0 for EHD and U0 =√gα1Φd0
for RBC: (a) S1; (b) S2; (c) S3; (d) SP; (e) RBC.

symmetric and the result here compares with probability distributions of turbulent flow
in the literature (Pope 2000). The dominant peak of this system occurs where both
v′ and Φ ′ are approximately equal to zero, unlike the EHD cases, the latter revealing
that the bivariate distributions are skewed or bi-modal. We now compare the EHD
distributions as ReE increases, as this can give us qualitative information regarding
mixing and turbulent statistics.

Concentrating on the bivariate distributions of cases S1–S3 of figure 6(a–c), as
ReE increases the probability distribution become more symmetric, moving closer to
the distribution shown in figure 6(e). However unlike in RBC, there is a bimodality
present which also agrees with figures 4(a–c) and 5(a–c) where some ordered upward
and downward travelling plumes are present. Observing case S1 it may be seen
that there is a very high probability at a single point, and a long tail is formed at
lower probabilities indicating the high skewness present. As ReE increases however,
this skewness is no longer present, and when moving from case S2 to S3 the
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difference in probability between the two peaks decreases, indicating that the upwards
and downwards travelling plumes are beginning to mix. Observation of case SP
of figure 6(d) reveals that severe asymmetry is observable, though a pronounced
bimodality is not present, making this distribution bear more similarity with the
bivariate distribution of case S1. The reason for this is the similar PrE between
these two cases, as outlined in § 5.

6.2. Two-point correlations
Two-point correlations of the velocity field calculated in one and two dimensions are
reported for the three-dimensional results, and we compare the one-dimensional two-
point correlations from the three-dimensional results to the two-dimensional results in
order to draw basic conclusions regarding length scales. Spatial integral measures that
arise from them are examined via calculation of the longitudinal velocity correlation
R22 given by:

R22(r, x)= 〈〈u2(x)u2(x+ r)〉〉
〈〈u2(x)u2(x)〉〉 (6.1)

where r is a displacement in the x, z plane.
For the one-dimensional correlation calculation from the three-dimensional

simulations (3D1D), R22 is calculated at a fixed z and y position along an x direction,
while the two-point correlation calculated from two dimensions (3D2D) applies (6.1)
in both the x and z directions, again at a fixed y position. The one-dimensional
two-point correlation results from the three-dimensional simulations described above
(3D1D) will be compared to two-point correlations in one dimension from the two-
dimensional simulations (2D1D), calculated at the same y position, and this will
further elucidate the effect of adding an extra dimension. Here, the effect of three-
dimensional EHD will be examined through length scale distribution and will support
the qualitative observations made in § 5.

The 3D1D result for the strong injection cases is calculated along a line of constant
z = 3d (halfway along the domain in the z direction = 6d/2, where the aspect ratio
L/d = 6) and this is determined at y= 0.5d. These calculations are presented alongside
1D two-point correlation results from two-dimensional simulations (2D1D) all at
y= 0.5d.

The integral length scale, indicating the typical eddy size is defined:

L22(x)= 1
R22(0, x)

∫ ∞
0

R22(e2r, x) dr (6.2)

where e2 is the unit vector in the x2 or y direction.
Some immediate differences between the 2D1D and 3D1D two-point correlations

are observed in figure 7. All of the correlations taken from the three-dimensional
simulations are broader than the two-dimensional ones, indicating that there are more
length scales present. Furthermore, the 3D1D R22 values are less correlated as r
increases, when compared to the 2D1D curves, indicating that when correlating from
two-dimensional simulations in one dimension, roll structures are more similar in
space.

The 3D2D curve provides a greater sampling size, which results in a more realistic
R22 curve. The integral scale, or the area under the R22 curve before the plot crosses
zero, for the strong injection case S1 (3D2DS1) is equal to 0.24d and this also agrees
with the qualitative information presented in figure 4(a).
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FIGURE 7. (Colour online) Two-point longitudinal velocity correlations for two- and three-
dimensional simulations for all cases at y= 0.5d where 1D, 2D and 3D denote one- two- and
three-dimensional, respectively, and ‘Sn’ = Strong case n of table 1.

Let us now concentrate on the 3D2DS2 or S2 results, the 3D2DS3 or S3 results and
the 3D2DSP, or SP results. Observing these curves in figure 7, it is quite clear that
the higher ReE cases are producing a larger range of roll structure size as they have
a much broader R22 curve than 3D2DS1. Furthermore, as with conventional turbulent
simulations and the RBC case (3D2DRBC), the 3D2D S2, S3 and SP curves show
little correlation after crossing the R22 = 0 point, indicating that there is little spatial
repeatability at larger scales throughout the domain unlike case S1. This shows that
there is energy present over a range of scales, since electro-inertial momentum transfer
ρκV is now much larger than µ. Although cases S1 and SP showed similarities in the
bivariate distributions and contour plots presented earlier, it is clear now that inside the
larger plumes of case SP (figure 5d), more energetic smaller scale eddies are present
than in case S1.

Furthermore, realizing that the 3D2D S2 and S3 curves are very similar to the RBC
curve of figure 7 it may be stated that in EHD a much lower Reynolds number is
required in order to achieve hydrodynamic turbulent mixing, and judging by these data,
it may be said that strong cases S2 and S3 seem to be the only cases that are strictly
in a hydrodynamic turbulent regime, as opposed to just in an unstable regime showing,
as in §§ 5.2 and 5.3 that a higher ReE does promote EHD turbulence. Lacroix et al.
(1975) state that a combination of M and ReE can promote turbulence; however in this
study a single variable was investigated; in future computational studies it may be of
interest to examine how length scale distributions change in three dimensions while
increasing the value of MReE = T/M.

6.3. Spectral analysis
Having presented and discussed real-space quantities it is now of interest to analyse
energy and dissipation spectra. First, this will allow a direct comparison between the
EHD cases and RBC case, providing further understanding pertaining to differences
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and similarities between the two areas of physics. Secondly, it will provide insight
regarding how energy is distributed amongst wavenumbers for different EHD regimes,
i.e. for lower- and higher-ReE problems. Presenting the plots as compensated spectra
will also allow comparison with conventional turbulent problems in the literature (Pope
2000).

For simplicity here, the turbulent kinetic and electrical energies are taken to be
only attributed to k = ρ〈〈u′22 〉〉 and ke = DV〈〈E′22 〉〉 respectively, as this is the dominant
direction. The spectrum is determined by taking the Fourier transform of U2 or E2,
multiplying by the complex conjugate, and summing the energy contribution E(K)
from each discrete node in the x and z directions, where K is the wavenumber
defined by 2π/L and takes values in the range nK0 − K0/2 6 |K| 6 nK0 + K0/2;
more detailed information regarding spectral analysis may be found in Castro (1989).
The dissipation spectrum for the turbulent kinetic energy may then be defined using
E(K) as D(K) = 2νK2E(K). The reader should note that theoretically, there is no
conventional dissipation spectrum for the turbulent electrical energy, and the reason for
this is described now.

The equation for the turbulent electrical energy in a form suitable for the
electroconvection between two plates was originally presented by Hopfinger & Gosse
(1971) and is displayed here in a slightly different form:

∂ke

∂t
+ (u′iE′i Q+ q′u′iE′i)−

DV

ρ

µ

ScE

∂q′E′2
∂x2︸ ︷︷ ︸

diff

=−ρκ(Ei q′E′i + E′2i Q+ q′E′2i ). (6.3)

The term labelled ‘diff ’ was neglected by Hopfinger & Gosse (1971) as it was
assumed that all turbulent electrical energy is converted to turbulent kinetic energy.
Here, the diffusion term ‘diff ’ is many orders of magnitude less than any of the
other terms. It is clear that as DV and µ are small and ScE is large as stated
in § 2.2.4, this term will be negligible. However, following from the discussion in
§ 2.2.4 concerning the large ScE, assuming this term is non-dimensionalized to the sub-
Kolmogorov ‘Batchelor’ electrical length scales then it may become more significant.
As was stated however, these scales are not resolved.

Furthermore, it should be noted that the only term appearing in (6.3) which is
always negative, is −ρκE2

i Q, and calculation of this term from DNS yielded no
conclusive evidence that this fully balances any produced energy, and this is probably
attributable to fluctuations in the electric field occurring at sub-Kolmogorov length
scales. Turbulent electrical energy ‘dissipation’ as a concept is not further discussed
here, as the majority of electrical energy is converted to kinetic energy as shall
be seen in § 6.5.1, and thus we only concentrate on the production of turbulent
electrical energy, and draw conclusions regarding its conversion to kinetic energy. The
dissipation of kinetic energy is also discussed, as it is a well-defined quantity, and fully
resolved.

6.3.1. Energy spectra
Observing figure 8(a) it can be seen that the general shape of the energy spectrum

follows the literature for a ‘turbulent’ problem, with an increase in Re generally
moving the peak in the spectrum to lower values of Kη, where η is the Kolmogorov
length, and it is further observed that using the compensated scaling, the S2 case
seems to be broadest, while case SP also covers a wide range of wavenumbers
indicating a varied scale size. One would expect case S3 to be broadest, however
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FIGURE 8. Compensated turbulent kinetic and electrical energy (a) and dissipation spectra
(b) on log–log scale for all strong EHD cases and for the RBC case of table 1 at y/d = 0.5
where v in the figure is equivalent to u2.

as will be seen in § 6.3.2, the S3 case has significantly more dissipation. Comparing
the 〈〈v′2〉〉 S2, S3 and SP cases it is noted that the spectrum at high Kη or at the
dissipation range, is of similar magnitude E(K). As in conventional turbulent flows it
is seen that the hydrodynamic energy of cases S2 to SP crudely follows what a model
Taylor spectrum does with an increase in Re, namely a shift in the peak to lower
Kη while the energy dissipation range remains constant, and interestingly, this is also
observed for the electrical energy spectra.

For the RBC spectrum curve, it is observed that the peak is shifted to the lower-
wavenumber range when plotted on a compensated x-axis indicating that it is one
of the more turbulent cases as may also be seen from table 1. The shape of the
curve closely follows conventional turbulent flows, while it also resembles spectral
distributions for RBC flows (Wu et al. 1990). For any of the EHD cases presented,
comparing the turbulent kinetic to electrical energy spectra, it may be seen that
the turbulent kinetic energy has a broader curve though the general distribution of
energy amongst the wavenumbers seems to be similar, with a peak at the lower
wavenumbers. It is of particular interest to note that an increase in ReE not only shifts
the kinetic energy spectrum to lower wavenumbers, but it also shifts the electrical
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energy spectrum. This indicates that ReE has an effect on how the turbulent electrical
energy is distributed amongst the scales, showing that a change in hydrodynamic
conditions will also have an impact on the electrical energy, even though turbulent
kinetic energy is dominant at higher ReE, as shall be seen in § 6.5.1. A change
in hydrodynamic conditions will affect the electric field distribution because charge,
velocity and electric field are all intertwined. The charge distribution is driven both by
a hydrodynamic component Ui and an ionic drift component κEi; and through Gauss’s
law, the charge will directly affect the electric field distribution.

It is of further interest to compare the energy spectra as a function of vertical
height y/d shown in figure 9(a), and this is done here by examining the energy
spectrum at a position close to the bottom wall at y = 2wy and at y = 0.5d for case
S2 of table 1. The spectrum for the turbulent kinetic energy is clearly of greater
magnitude for all wavenumbers as one observes data further from the bottom wall.
The opposite is observed for the turbulent electrical energy where the magnitude is
greatest for all wavenumbers closer to the bottom wall. This further exposes how the
energy is converted from an electrical origin to hydrodynamic energy as the plumes
accelerate away from the bottom boundary, and this energy is converted over all of the
wavenumbers.

6.3.2. Dissipation spectra
Attention is now drawn to figure 8(b). Observing the dissipation spectrum of the

turbulent kinetic energy for any of the cases, it is seen those with the largest viscosity,
such as case S1 peak at larger values of Kη though the particular curve covers a
narrower range of scales showing that it is less turbulent.

From these plots information regarding where the energy is dissipated may be
extracted in terms of scale size, and this was calculated by plotting D(K) as a function
of K as opposed to Kη (not shown here). As an example, the dissipation of kinetic
energy for case S2 is utilized in order to extract the value of L = 2π/K where D(K)
is significant. The dissipation curve for the fluid turbulent kinetic energy case broadens
over a range of scales, the mid-point of which is at approximately L = 33η or 0.6d,
suggesting that for the kinetic energy, the motions responsible for dissipation are in
what are referred to as the ‘inertial’ range of scales, as is observed in a Taylor model
spectrum.

From figure 9(b) similar observations are made as for the energy spectrum case of
figure 9(a), though what may be seen is that for the two curves, the rate of decrease
of D(K) as a function of Kη is less than in the energy spectrum case, showing that the
energy is dissipated at large values of Kη corresponding to smaller length scales.

The results are qualitatively very plausible as it is to be expected that turbulent
kinetic energy becomes less dominant near the wall. As stated by Castellanos (1998),
the only energy going into such a problem is the turbulent electrical energy, which
should be converted to turbulent kinetic energy in the bulk, and this has been observed
here over the full range of wavenumbers.

6.4. Mean profiles

While length scale, correlation and spectral information does reveal some details
regarding the nature of the EHD ‘turbulence’ further insight can be acquired by
examination of the spatial distribution of key variables across the domain, in the
vertical direction. The distribution of 〈〈Q〉〉 and 〈〈E2〉〉 along y for the various cases will
tell us how ReE, T and C affect key electrical mean quantities.
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FIGURE 9. Compensated turbulent kinetic and electrical energy (a) and dissipation spectra
(b) on log–log scale, at the domain mid-height y/d = 0.5 and at the bottom (labelled b on the
figure) at y= 2wy for case S2 of table 1.

The reader should note that the method of averaging employed for the mean and
second-order moments is the same as that employed for the two-point correlation
calculations, outlined in §§ 6.1 and 6.2. Any fluctuating quantity n′ as stated previously
is equal to n − 〈〈n〉〉. Prior to presenting results it is useful to state the relevant mean
RANS equations of the problem, namely the mean momentum, static enthalpy, and
charge equations respectively, in a commonly presented dimensional form:

∂ρUi

∂t
+ ∂

∂xj

(
ρUi Uj

)+ ∂

∂xj

(
ρu′iu

′
j

)
=− ∂P

∂xi
+ µ ∂

∂xj

(
∂Ui

∂xj

)
+ ρ(Ei Q+ E′iq′)︸ ︷︷ ︸

EHD

+ ρgiα(Φ −Φ0)︸ ︷︷ ︸
RBC

(6.4)

∂ρCPΦ

∂t
+ ∂

∂xi
ρCP(Φ Ui +Φ ′u′i)=

µ

Pr

∂

∂xi

∂

∂xi
Φ (6.5)

∂ρQ

∂t
+ ρ ∂

∂xi
(Q Ui + q′u′i)+ ρκ

∂

∂xi
(Q Ei + q′E′i)︸ ︷︷ ︸

drift

= µ

ScE

∂

∂xi

∂

∂xi
Q (6.6)
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FIGURE 10. 〈〈Q〉〉, 〈〈E2〉〉 and 〈〈Φ〉〉 versus vertical position for all cases of table 1.

where the term ‘drift’ may be re-written as:

ρκ
∂

∂xi

(
ρ

Q Q

DV
+ Ei

∂

∂xi
Q+ ρq′2

DV
+ E′i

∂

∂xi
q′
)
. (6.7)

A particularly important feature of the equations is the nonlinear ionic drift term
seen from (6.6) and (6.7) which was previously discussed in an instantaneous form.
The bulk convective scalar flux, which appears as q′u′i in (6.6) and Φ ′u′i in (6.5)
is common between the RBC and EHD equations. However, upon decomposing and
averaging the space charge equation it may be seen that the mean equation for charge
reveals a dependence on the scalar fluctuating variance of charge q′2 as opposed to the
static enthalpy equation that has no relation to its variance. This relation arises through
Gauss’s law for the electric field and shows how the scalar variance of charge is of
particular importance in EHD, and may also be used to describe why the mean profiles
of charge and temperature differ greatly, as shall be seen in figure 10.

As Vazquez et al. (2008) observed in two dimensions, a sharp decrease in the mean
charge profile occurs on moving away from the bottom wall for all the strong injection
cases as may be seen in figure 10. This is what occurs in the analytical case also;
however the presence of a flow moves charged carriers away from the wall making the
space charge distribution less nonlinear close to the wall. Comparison is firstly drawn
between the 〈〈Q〉〉 versus y/d profiles for strong cases S1, S2 and S3. Here, for the
same C and T values the lower-ReE case S1 has a charge that decreases nonlinearly
from the bottom wall and then slightly increases again at y/d = 1. This phenomenon
was also observed by Vazquez et al. (2008) in two dimensions, and is also observed
for our strong case S3. The reason for this occurrence is that charge accumulates at the
edges of the rolls and is ‘thrown’ around to the top side of the rolls. For the higher
ReE cases S2 and S3, this phenomenon is non-existent because charge is no longer
as strongly accumulated at the edge of the rolls because of mixing, which was also
visible in figure 5(b). For the practical strong case SP, the ‘kink’ at y/d = 1 is even
more pronounced, but the charge at the bottom wall also decreases less rapidly, which
is attributed to the lower C for strong case SP making it a medium to strong injection
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as opposed to the purely strong injection cases of S1, S2 and S3. Self-similarity is
clearly present for this range of ReE, which shows that even with a drastic increase in
input energy, mean electrical quantities remain fairly unchanged.

There is almost no observable difference in the strong mean 〈〈E2〉〉 profiles, and even
if they are normalized to VB/d, the same trend is observed, which indicates that a
more chaotic flow field has a negligible effect on the mean electric field distribution,
as 〈〈E2〉〉 is defined by the nonlinear space charge profile as opposed to any changes
in the hydrodynamic behaviour of the system. In the case of RBC the key mean
variable is now 〈〈Φ〉〉, and the evolution of this variable is quite different as there is no
strong nonlinearity present, which is due to the absence of an ionic drift term in the
governing equation for the temperature.

While the mean profiles have given some insight regarding how key variables evolve,
they have not shown any significant differences between the various cases, and a
better understanding can be acquired by examining higher-order averaged moment
distributions.

6.5. Second-order moment profiles
In this section four key second-order terms are examined. The turbulent kinetic energy
(k) or (1/2)ρu′iu′i, the turbulent electrical energy (ke) or (1/2)DVE′iE′i, the turbulent
scalar flux term or q′u′2 which appeared in (6.6), and the turbulent scalar variance or
q′q′ which also appeared in (6.6). The turbulent kinetic energy is examined in order to
draw conclusions regarding how turbulent energy is produced and transported in EHD
when compared to RBC.

6.5.1. Turbulent energy
According to Hopfinger & Gosse (1971), any term containing a fluctuating electric

field component is negligible which suggests that ke itself is negligible along with any
other terms in the governing EHD equations that contain an E′i term (Hopfinger &
Gosse 1971). In order to examine the validity of the claim in our problem, k and the
ratio ke/k across the domain are plotted for all of the EHD cases.

First, profiles of k for the various EHD cases and for the RBC case are examined.
Figure 11(a) shows k normalized by its maximum, in order to more clearly elucidate
differences between the EHD and RBC cases. As in RBC, k increases away from the
wall as the roll velocities increase and then reaches a peak in the middle; however
in RBC k is fairly constant in the bulk of the domain. This near constant k in the
bulk is not observed for the S1 case; however with the S2, S3 and SP cases it is
seen that the curves are broadening when compared to the S1 case showing that at
higher ReE, EHD chaos is distributing the kinetic energy more evenly throughout the
bulk, bringing it closer to the RBC distribution of energy. Of particular interest is
case S3 in figure 11(a) where it is seen that the distribution of k is almost symmetric
throughout the domain indicating a greater presence of mixing. Though it is not seen
in figure 11(a) the reader should note that case SP produced the highest k magnitude.
This indicates that the SP case should have a wide range of length scales which
was observable from the spectral data; however, even though case SP has a larger
magnitude of k the reader should recall that its length scale distribution as observed
from figure 7, is not as varied as in cases S2 and S3 which were run at a higher ReE.
The lower scale size distribution of case SP has been attributed to the PrE value of
this system which is similar to case S1, resulting in high input electrical energies but
also proportionally high levels of stabilization not allowing as random a length scale
distribution as cases S2 and S3.
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FIGURE 11. (a) Real-space non-dimensional turbulent kinetic energy for all cases of table 1
and (b) turbulent electrical energy to turbulent kinetic energy ratio for the strong EHD cases
of table 1.

There is clear self-similarity throughout the various cases and also similarity of
EHD and RBC even at the second-order averaged level. This shows that even though
mean profiles between RBC and EHD are quite different, their hydrodynamic turbulent
kinetic energy is distributed in a very similar way, showing to a certain extent that
the physical characteristics of the rolls of the two cases are also similar in a statistical
sense. This is a promising result as it indicates that models applicable in parallel-plate
RBC should be applicable in parallel-plate EHD as well. This further shows that
even though EHD has a spatially and temporally variant potential energy gradient
as opposed to the RBC case where it is a constant, the hydrodynamic energy is
fairly homogeneous throughout the bulk. However, in the RBC case, the energy is
almost perfectly symmetric and therefore much more predictable when compared to
the various strong cases which tend to be slightly skewed.

Having discussed distributions of k it is prudent to compare the curves to the ke

distributions and therefore investigate the validity of Hopfinger & Gosse’s assumption
outlined in § 1. Attention is drawn to figure 11(b) where it is observed that especially
close to the bottom wall, for all of the EHD cases ke is not negligible where for the
S1 case ke ∼ 1.8k, for the S2–SP cases ke ∼ 0.7k, and for the W case ke ∼ 0.2k. The
assumption that E′ and E′2 are negligible is also of dubious validity at the top wall
where the ke ∼ 0.2k. This finding however does not invalidate Hopfinger & Gosse’s
assumption as in the centre of the domain, k is indeed dominant over ke; however
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FIGURE 12. Budget of k for S2 case of table 1 as a function of y/d.

for low-ReE cases it is not small enough to be neglected as it is still 0.2k. As ReE

increases, the Hopfinger & Gosse high-ReE assumption becomes more valid, meaning
that the claim that ke � k is also validated, but only when sufficiently far from the
walls.

6.5.2. Turbulent kinetic energy budget
The distribution of turbulent kinetic energy provides some insight into self-

similarity; however it is also of interest to examine the budget of this quantity,
mainly in order to examine how EHD terms contribute to the production and transport
of turbulent kinetic energy. The turbulent kinetic energy, neglecting mean flow and
electrostriction and realizing that there are no gradients in the i = 1, 3 direction, may
be expressed as follows (Hopfinger & Gosse 1971):

∂k

∂t
+
∂ρ

u
′
2u
′
iu
′
i

2
∂x2︸ ︷︷ ︸

1

=− ∂p′u′2
∂x2︸ ︷︷ ︸

2

+µ∂
2k

∂x2
2︸ ︷︷ ︸

3

−µ
(
∂u′i
∂x2

)2

︸ ︷︷ ︸
4

+ ρQ u′iE′i︸ ︷︷ ︸
5

+ ρu′iq′ Ei︸ ︷︷ ︸
6

+ ρu′iq′E′i︸ ︷︷ ︸
7

. (6.8)

The novel terms are the averaged EHD body force terms 5, 6 and 7 in (6.8).
According to the assumption by Hopfinger & Gosse (1971) terms 5 and 7 should be
negligible throughout the majority of the bulk leaving term 6 as the only contributing
EHD term.

Figure 12 plots terms 1–7 from (6.8) as a function of y/d for a selected turbulent
case, namely S2 as this proved to be the closest to the RBC case from figure 7.
The reader should note that the turbulent transport term (term 1) was calculated
from the production, pressure transport, dissipation, and molecular diffusion terms
(term 1 = term 2 + term 3 + term 4 + term 5 + term 6 + term 7). The term
may also be calculated directly, and more details on direct calculation of turbulent
transport terms shall be presented in § 6.5.4. Close to the wall the budget is a balance
between molecular diffusion and dissipation as is the case in RBC (Kerr 2001) and
throughout the bulk of the domain the production term is counteracted by dissipation
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and transport. The only contributing production term in this instance is term 6, or the
turbulent scalar flux acting on the mean electric field q′u′2 Ei. Furthermore, those EHD
terms that contain E′i (terms 5 and 7) are negligible in this instance, and as in RBC,
the production term is the turbulent scalar flux term (Kerr 2001). Therefore, through
examination of this budget it may be stated that the assumption by Hopfinger & Gosse
(1971) is correct, and it is correct to claim that interactions between fluctuating electric
field and velocity or space charge have a negligible effect on the distribution of
turbulent kinetic energy. However, when discussion of the ke/k profile was undertaken
in § 6.5.1 it was mentioned that close to the wall, E′2i is significant, though in the k
budget, it is seen that terms containing E′i are negligible.

Finally, the reader should note that the profiles of terms 1–7 bear extreme similarity
with what is observed in RBC turbulent kinetic energy budgets (Kerr 2001) acting
as a point of confirmation that the simulation physics is able to capture higher-order
moment distributions accurately.

6.5.3. Turbulent scalar flux budget
The only flux term budget equation that is analysed here is the transport equation for

the turbulent scalar flux given by the term q′u′2, which also appeared in (6.6):

∂ρu′2q′

∂t
+ ρ u′2u′2

∂Q

∂x2︸ ︷︷ ︸
1

+ ∂ρu′2u′2q′

∂x2︸ ︷︷ ︸
2

+ ρκ

u′2q′
ρQ

DV︸ ︷︷ ︸
3

+ u′2E′2
∂Q

∂x2︸ ︷︷ ︸
4

+ ∂

∂x2
(ρE2 q′u′2)︸ ︷︷ ︸

5

+ ∂

∂x2
u′2q′E′2︸ ︷︷ ︸

6



=− q′
∂p′

∂x2︸ ︷︷ ︸
7

+
(
µ+ µ

ScE

) ∂

∂x2

∂

∂x2
q′u′2︸ ︷︷ ︸

8

+ ρq′E′2Q︸ ︷︷ ︸
9

+ ρq′2E2︸ ︷︷ ︸
10

+ ρq′2E′2︸ ︷︷ ︸
11

. (6.9)

Terms which now differ from a conventional passive scalar turbulent transport
equation are the averaged terms resulting from the decomposition and averaging of
the ionic drift term (terms 3–6) and the body force terms (terms 9–11); all of the
other terms are identical as in the equation for the turbulent scalar flux of a passive
scalar. More information on the meaning of these terms may be found in Kourmatzis
& Shrimpton (2009).

We wish to study the budget of this main hydrodynamic turbulence production term,
as discussed in § 6.5.2, and therefore the transport equation for the flux term κq′E′2,
which is negligible in the domain bulk is not examined here:

∂ρκq′E′2
∂t

+ ∂ρκq′u′2E′2
∂x2

+ ∂ρκ
2q′E′2E′2
∂x2

+ ρ2κ
q′2u′2
DV
+ κ2ρ2 q′2E′2

DV
+ E′2u′2

∂ρκQ

∂x2

+E′2E′2
∂ρκ2Q

∂x2
+ q′u′2

ρ2κQ

DV
+ κ2ρ2E2

q′2

DV
+ 3q′E′2

κ2ρ2Q

DV
+ ∂ρκE2 q′E′2

∂x2

= ∂

∂x2

κµ

ScQ

∂

∂x2
q′E′2 +

ρ

DV

κµ

ScE

∂q′2/2
∂x2

. (6.10)
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Figure 13 plots terms 1–11 from (6.9) again as a function of y/d for case S2. Close
to the wall the main source term is pressure scrambling (term 7) and is balanced by
molecular diffusion (term 8) of the scalar flux and by the EHD body force term 9.
Moving away from the wall the pressure scrambling stays as a source term along
with term 5, the production of turbulent scalar flux acting on the mean electric field.
Furthermore, the turbulent transport of space charge (term 2) also acts as a source
and is counteracted by term 1. The other main sink term is the space charge variance
EHD body force term 10 balanced by pressure scrambling (term 7) at the top wall.
The pressure scrambling term in conventional turbulence acts to make the turbulent
scalar flux more isotropic and here, it is observed that the dominant EHD body force
term 10 acts as a significant sink throughout most of the domain showing here how
EHD terms are hindering the action of pressure scrambling. The dominant EHD term
10 involves the turbulent scalar variance q′2 and is thus another budget that must be
investigated, and also one of the turbulent transport equations that Hopfinger & Gosse
derived as a product of their analysis. The scalar variance in RBC does not affect
the turbulent scalar flux budget and therefore on a statistical level we see that there
are differences between RBC and EHD regarding the transport of turbulent scalar
fluctuations.

Attention is now drawn to term 9 of (6.9), a quantity which would have been
neglected by Hopfinger & Gosse. This term is seen to act as the main sink term
next to the bottom wall, as it is of greater magnitude than the molecular diffusion,
making it effectively the only term that balances out the pressure scrambling close to
the wall. As with the ke distribution, fluctuations in the electric field in this instance
are shown to have a very important role to play and therefore should be taken into
consideration if models are to be proposed. Here, the electric field fluctuation present
is analogous to the velocity fluctuation in the turbulent scalar flux term q′u′2 only now
the vector component responsible for the turbulent convection of the space charge
is E′2. From a Reynold’s stress modelling (RSM) point of view it may be said here
that the only terms that need modelling from this transport equation are 7 and 2 as
transport equations may be derived for all of the other relevant EHD second-order
moments, namely the correlation between charge and electric field q′E′2 and the space
charge variance q′2. Clearly, term q′2 is very significant throughout the bulk of the
domain and therefore the transport equation for q′2 is stated and its budget discussed in
the following section.

6.5.4. Turbulent scalar variance budget
The transport equation for the turbulent scalar variance q′q′, which appeared in (6.6),

when employing the same assumptions as for (6.8) is

ρ2

∂(q′2/2)∂t
+ κ

2ρQ q′2

DV︸ ︷︷ ︸
1

+ q′E′2
∂Q

∂x2︸ ︷︷ ︸
2

+E2
∂(q′2/2)
∂x2︸ ︷︷ ︸
3

+ ∂

∂x2
q′q′E′2︸ ︷︷ ︸
4




+ ρ2

q′u′2
∂Q

∂x2︸ ︷︷ ︸
5

+ ∂

∂x2
q′q′u′2︸ ︷︷ ︸
6

−DQ
∂2(q′2/2)
∂x2∂x2︸ ︷︷ ︸
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+DQ

(
∂q′

∂x2

)2

︸ ︷︷ ︸
8

= 0. (6.11)
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FIGURE 13. Budget of turbulent scalar flux q′u′2 for S2 case of table 1 as a function of y/d
where v in the figure is equivalent to u2.
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FIGURE 14. Budget of turbulent scalar variance q′q′ for S2 case of table 1 as a function
of y/d.

This equation was also presented by Hopfinger & Gosse (1971) but did not include
terms 2 and 4. The budget for this equation is provided in figure 14 with the turbulent
transport term calculated directly (term 6 in figure 14) while also using the method
outlined in § 6.5.2 (term 6a in figure 14). Terms that are different when compared to a
passive scalar variance equation are those resulting from decomposition and averaging
of the ionic drift component, seen here from terms 1–4.

As shown in figure 14, at the bottom wall the correlation of charge–electric field
acting on mean charge gradient (term 2) acts as a sink and this is clearly a very
significant term, and one neglected by Hopfinger & Gosse. It serves to balance terms
1, 3, and 5, which are the variance acting on the mean space charge, the variance
gradient acting on the mean electric field and the turbulent scalar flux q′u′2 acting
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on the mean charge gradient, the latter being effectively the production of the space
charge variance by the turbulent scalar flux acting on the mean charge gradient.

Closer to the middle of the domain, the main two sources are terms 6 and 1 where
term 6 is a turbulent transport of the variance, and the terms are counteracted by term
5 which appeared as a source close to the bottom wall. There is a discrepancy between
the direct calculation of term 6, and calculation based on the sum of all of the other
terms (term 6a). Averaging for longer did not result to a change in this observation;
however it is clear that the two curves follow the same profile confirming that the
physics is captured. The error is likely to be due to energy not being transferred
from the small unresolved electrical length scales to the hydrodynamic scales, and is
significant as it is a third-order correlation resulting in an error of greater magnitude.
The maximum error calculated is approximately 36 % but the reader should note that
the two curves are qualitatively identical.

At the top of the domain the scalar variance is quite low, further showing the
nonlinearity of the space charge field and how any contributions to the scalar variance
occur close to the bottom wall.

Molecular diffusion of the scalar variance is entirely negligible, which is to be
expected given the very small ionic mobilities. Dissipation has some presence close
to the bottom wall but is again generally negligible. The reader should note however
that if gradients of these budgets were calculated based on sub-Kolmogorov electrical
scales, their magnitude would be significantly larger, therefore contributing more to the
energy budget.

7. Conclusions
The paper has presented qualitative and quantitative results analysing the structure of

three-dimensional electroconvection in dielectric liquid insulators both deterministically
and statistically. Two-dimensional results have been compared with the literature
(Vazquez et al. 2006, 2008) and confirm simulations carried out by researchers in
the field. Strong injection cases were run in two and three dimensions. The three-
dimensional EHD simulations show a more chaotic nature with a distribution of length
scales, which are observations that could not have been made from two-dimensional
domains. Two-point correlations showed that the strong injection cases with ReE = 60
and ReE = 120 were closest to the RBC case in terms of spatial size variation. Spectral
analysis revealed how turbulent kinetic and electrical energy is distributed amongst
wavenumbers for the various cases run. Turbulent kinetic energy is created and
dissipated over a wider range of wavenumbers when compared to electrical energy and
the conversion of turbulent electrical energy to kinetic energy was further investigated
by analysing spectra as a function of vertical position. Second-order moments of
turbulent kinetic energy, turbulent electrical energy, turbulent scalar flux and turbulent
scalar variance were analysed and it was found that the turbulent kinetic energy
and turbulent scalar flux followed similar trends as with the RBC case though the
distribution of k was not as spatially uniform for the EHD cases. The assumption
by Hopfinger & Gosse (1971) stating that E′i is negligible, was revisited, and it was
determined that close to the walls the assumption is invalid, making the modelling of
EHD turbulence much more complex for practical problems. The budgets of turbulent
kinetic energy, turbulent scalar flux and turbulent scalar variance were analysed with
respect to vertical position y/d and the results revealed dominant terms acting as
sources and sinks. There is an inevitable inherent error with the higher-order moment
and budget calculations due to the very large Schmidt number of the problem; however
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this initial investigation has provided invaluable fundamental information regarding the
physics of three-dimensional EHD turbulence, and the research has revealed practical
information regarding what terms must be closed in EHD turbulence if modelling is to
be undertaken using a Reynolds stress closure approach.
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