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Abstract We present a new approach to Davie’s theorem on the uniqueness of solutions to the equation

dXt = b(t, Xt) dt + dWt

for almost all Brownian paths. A generalization of this result and a discussion of some closely related
problems are given.
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1. Introduction

In this paper we consider the stochastic differential equation

Xt = x + Wt +
∫ t

0
b(s, Xs) ds. (1.1)

When the drift coefficient b is a Borel measurable bounded mapping, the uniqueness of
the strong solution follows from the well-known result by Veretennikov [10]. Later, the
result of Veretennikov was extended to the case of locally unbounded measurable drift
by Gyongy and Martinez [6] and Krylov and Röckner [8] (see also [2,3] and references
therein). After Veretennikov had proved his result, Krylov suggested the problem of
showing the uniqueness of the solution in a stronger sense. Namely, that for almost every
Wiener trajectory the solution of the corresponding integral equation is unique.

In [1] Davie proved the following theorem.

Theorem 1.1. Let b : [0, T ] × R
d �→ R

d be a Borel measurable bounded mapping.
Then for almost all Brownian paths, (1.1) has exactly one solution.

The proof of Davie is quite self-contained, but rather technically complicated. In par-
ticular, it does not rely on the uniqueness of strong solutions. It turns out that in some
cases the pathwise uniqueness can be proved with a slightly simpler approach. The main
idea is to use the Hölder regularity of the flow generated by the strong solution proved
in [3] and a modification of the van Kampen uniqueness theorem for ordinary differential
equations with a Lipschitz flow and continuous coefficients (see [9]). This approach also
enables us to extend Davie’s result to some other classes of irregular drifts.
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2. Auxiliary results

The proof of Davie uses the following estimate.

Proposition 2.1. Let b ∈ C([0, 1], C1
b (Rd, Rd)), ‖b‖∞ � 1. There exist positive con-

stants C, α (that do not depend on b) such that the following inequality holds:

E exp
(

α

∣∣∣∣
∫ 1

0
b′
x(t, Wt) dt

∣∣∣∣
2)

� C.

An interesting discussion of this inequality and some similar problems can be found
in [4]. The original proof of Davie is quite long and relies on some explicit computations
for the Gaussian kernel. Since our approach to Davie’s theorem in the case of a Borel
measurable drift also uses this estimate, below we present a proof that seems to be less
technical than that in [1].

Proof. We first prove the desired inequality for d = 1. Let

Zs := b(s, Ws).

For the quadratic covariation of the processes Z and W we have the following represen-
tations (see [5]):

[Z, W ]1 =
∫ 1

0
b′
x(s, Ws) ds,

[Z, W ]1 = lim
∑

(Zti+1 − Zti)(Wti+1 − Wti),

[Z, W ]1 =
∫ 1

0
Zt d∗Wt −

∫ 1

0
Zt dWt,

where ∫ 1

0
Zt d∗Wt =

∫ 1

0
Z1−s dW̃s, W̃s = W1−s.

The process W̃t (the time-reversed Brownian motion) satisfies the integral equality

W̃t = W̃0 + Bt +
∫ t

0

−W̃s

1 − s
ds,

where B is another Brownian motion. Then∫ 1

0
b′
x(t, Wt) dt

=
∫ 1

0
b(1 − t, W1−t) dBt +

∫ 1

0

−W1−tb(1 − t, W1−t)
1 − t

dt −
∫ 1

0
b(t, Wt) dWt

= I1 + I2 + I3.

It is easy to notice that the terms I1 and I3 can be estimated by means of the Dubins–
Schwarz theorem and the well-known formula for the distribution of the maximum of a
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Wiener process on the interval [0, 1]. The assumption that ‖b‖∞ � 1 implies that there
exist constants α1, C1 > 0 such that

E exp(α1(I2
1 + I2

3 )) � C1.

Let us estimate the term I2. Applying Jensen’s inequality we obtain the following esti-
mates:

E exp( 1
16I2

2 ) = E exp
(

1
4

( ∫ 1

0
b(1 − t, W1−t)

W1−t

2 − 2t
dt

)2)

� E

∫ 1

0
exp

(
1
4b2(1 − t, W1−t)

∣∣∣∣ W1−t√
1 − t

∣∣∣∣
2) dt

2
√

1 − t

� E

∫ 1

0
exp

(
1
4

∣∣∣∣ W1−t√
1 − t

∣∣∣∣
2) ds

2
√

1 − t

� C2 < ∞.

Now it is trivial to complete the proof in the case d = 1.
Let d > 1. We have

b(t, x) = (b1(t, x1, . . . , xd), . . . , bd(t, x1, . . . , xd)),

Wt = (W 1
t , . . . , W d

t ).

It is easy to see that in this case it suffices to prove the inequality

E exp
(

α

∣∣∣∣
∫ 1

0
b′
x1

(t, W 1
t , . . . , W d

t ) dt

∣∣∣∣
2)

� C

for all functions b with ‖b‖∞ � 1. This estimate is a consequence of the following chain
of inequalities:

E exp
(

α

∣∣∣∣
∫ 1

0
b′
x1

(t, W 1
t , . . . , W d

t ) dt

∣∣∣∣
2)

= E

[
E

[
exp

(
α

∣∣∣∣
∫ 1

0
b′
x1

(t, W 1
t , . . . , W d

t ) dt

∣∣∣∣
2) ∣∣∣∣ W 2, . . . , Wn

]]
� EC = C,

where the one-dimensional case has been used. �

Corollary 2.2. There exist constants C, α > 0 such that, for any Borel measurable
mapping b ∈ L∞([r, u]×R

d, Rd) with ‖b‖∞ � 1, any Borel measurable functions h1, h2 ∈
L∞([r, u], Rd) and any λ � 0, the following inequality holds:

P

[∣∣∣∣
∫ u

r

b(s, Ws + h1(s)) − b(s, Ws + h2(s)) ds

∣∣∣∣ � λl1/2‖h1 − h2‖∞

]
� C exp(−αλ2),

where l = u − r.
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Proof. Taking into account the scale invariance of the Brownian motion it is easy to
notice that we can assume that r = 0 and u = 1. One can easily show that it is also
sufficient to prove the desired estimate just for smooth functions with compact supports.
In this case we have

E exp
(

α

∣∣∣∣
∫ 1

0

b(s, Ws + h1(s)) − b(s, Ws + h2(s))
‖h1 − h2‖∞

ds

∣∣∣∣
2)

= E exp
(

α

∣∣∣∣
∫ 1

0

∫ 1

0
b′
x(s, Ws + h2(s) + θ(h1(s) − h2(s)))

h1(s) − h2(s)
‖h1 − h2‖∞

dθ ds

∣∣∣∣
2)

�
∫ 1

0
E exp

(
α

∣∣∣∣
∫ 1

0
b′
x(s, Ws + h2(s) + θ(h1(s) − h2(s)))

h1(s) − h2(s)
‖h1 − h2‖∞

ds

∣∣∣∣
2)

dθ

�
∫ 1

0
C dθ = C.

In the last inequality, for each θ we have applied Proposition 2.1 to the function

b̂(s, x) = b(s, x + h2(s) + θ(h1(s) − h2(s)))
h1(s) − h2(s)
‖h1 − h2‖∞

.

Now the necessary estimate follows by the Chebyshev inequality. �

The next proposition will play the crucial role in the proof of the main results.

Proposition 2.3. Let

b ∈ Lq([0, T ], Lp(Rd)),
d

p
+

2
q

< 1.

Then there exists a Hölder flow of solutions to (1.1). More precisely, for any filtered
probability space (Ω, F , {Ft}, P ) and a Brownian motion W , there exists a mapping
(s, t, x, ω) �→ ϕs,t(x)(ω) with values in R

d, defined for 0 � s � t � T , x ∈ R
d, ω ∈ Ω,

such that for each s ∈ [0, T ] the following conditions hold:

(1) for any x ∈ R
d the process Xx

s,t = ϕs,t(x) is a continuous Fs,t-adapted solution to
(1.1);

(2) P -almost surely the mapping x �→ ϕs,t(x) is a homeomorphism;

(3) P -almost surely for all x ∈ R
d and 0 � s � u � t � 1

ϕs,t(x) = ϕu,t(ϕs,u(x));

(4) P -almost surely for each α ∈ (0, 1) and each positive N ∈ R one can find
C(α, N, ω) < ∞ such that for all x, y ∈ R

d : |x|, |y| < N and s, t ∈ [0, T ], s � t,

|ϕs,t(x) − ϕs,t(y)| � C(α, T, N, ω)|x − y|α.

https://doi.org/10.1017/S0013091515000589 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000589


Some remarks on Davie’s uniqueness theorem 1023

The existence of a flow possessing properties (1)–(3) is proved in [3, Theorem 1.2].
Instead of property (4), Fedrizzi and Flandoli prove (see [3, Lemma 5.11]) a slightly
weaker assertion that almost surely for any fixed s, t ∈ [0, 1], s � t, the mapping ϕs,t is
Hölder continuous. For the sake of completeness, we present below a sketch of the proof
of Proposition 2.3 with necessary references to [2,3] and the key details of the proof of
property (4).

Step 1 (see [3, Theorem 3.3, Lemma 3.4 and Lemma 3.5]). Let

Lq
p(T ) = Lq([0, T ], Lp(Rd)),

H
q
α,p(T ) = Lq([0, T ], Wα,p(Rd)), H

β,q
p (T ) = W β,q([0, T ], Lp(Rd)),

Hq
α,p(T ) = H

q
α,p(T ) ∩ H

1,q
p (T ).

Let U : [0, T ] × R
d → R

d be a solution to the equation

∂U

∂t
+ 1

2ΔU + b · ∇U = λU − b,

U(T, x) = 0,

⎫⎬
⎭ (2.1)

for sufficiently large positive λ such that

‖U‖Hq
2,p(T ) = ‖DtU‖Lq

p
+ ‖U‖Hq

2,p(T ) � C(d, T, p, q, λ)‖b‖Lq
p(T ),

sup
t∈[0,T ]

‖∇U‖Cb(Rd) � 1
2 .

Then the family of mappings ψt : R
d → R

d defined by the formula

ψt(x) = x + U(t, x)

possesses the following properties:

(1) for each t ∈ [0, T ] the mappings ψt, ψ−1
t are C1-diffeomorphisms of R

d,

(2) uniformly in t ∈ [0, T ] the mappings ψt, ψ−1
t have globally bounded Hölder-

continuous derivatives with respect to the space variable,

(3) the mapping (t, x) �→ ψt(x) belongs locally to the class Hq
2,p(T ).

Step 2 (see [3, Proposition 4.3]). The next step is transforming the original equa-
tion, (1.1) (considered as a stochastic equation with the identity diffusion matrix and
a Borel measurable drift), into an equation with more regular coefficients by means of
the family of the homeomorphisms constructed at the previous step. Let us apply Itô’s
formula to the process Xt and the function U (see [3, p. 4]):

dU(t, Xt) =
∂U

∂t
(t, Xt) dt + ∇U(t, Xt)(b(t, Xt) dt + dWt) + 1

2ΔU(t, Xt) dt

= λU(t, Xt) − b(t, Xt) dt + ∇U(t, Xt) dWt.
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Then the process
Yt := ψt(t, Xt) = Xt + U(t, Xt)

has the stochastic differential

dYt = λU(t, ψ−1
t (Yt)) dt + [I + ∇U(t, ψ−1

t (Yt))] dWt = b̃(t, Yt) dt + σ̃(t, Yt) dWt,

b̃(t, y) = λU(t, ψ−1
t (y)), σ̃(t, y) = I + ∇U(t, ψ−1

t (Yt)).

Step 3 (see [3, Proposition 5.2] and [2, pp. 13–14]). Taking into account the
aforementioned properties of the mappings ψt it is not difficult to see that it suffices to
prove the existence of a uniformly Hölder-continuous flow for the transformed equation.
Below we prove only the uniform Hölder continuity of the desired flow since all other
details (for example, the proof of its existence) can be found in [3].

We have
dYt = b̃(t, Yt) dt + σ̃(t, Yt) dWt. (2.2)

Let us show that for each a � 2 there exists a constant C(a, T ) such that for any x, y ∈ R
d

the following estimate holds:

E sup
t∈[0,T ]

|Y x
t − Y y

t |a � C(a, T )(|x − y|a + |x − y|a−1). (2.3)

In this case the existence of a uniformly Hölder-continuous flow will follow from the
well-known Kolmogorov continuity theorem. Following [2,3], let us define an auxiliary
process

At :=
∫ t

0

‖σ̃(s, Y y
s ) − σ̃(s, Y x

s )‖2

|Y y
s − Y x

s |2 I{Y y
s �=Y x

s } ds.

Then (see [3, Lemma 4.5]) for each k ∈ R we have

E[ekAT ] < ∞ (2.4)

(in the proof of this inequality the Sobolev regularity of σ̃ plays the crucial role).
Let

Zt := Y y
t − Y x

t .

Applying Itô’s formula to the process Zt and the function f : x �→ |x|a, where a � 2,
we obtain

1
a

d|Zt|a =
〈
(b̃(t, Y y

t ) − b̃(t, Y x
t )) dt, Za−1

t

〉
+

〈
(σ̃(t, Y y

t ) − σ̃(t, Y x
t )) dWt, Z

a−1
t

〉
+ 1

2 Tr([σ(t, Y y
t ) − σ(t, Y x

t )][σ(t, Y y
t ) − σ(t, Y x

t )]TD2f(Zt)) dt,

[D2f(Zt)]i,j = δi,j |Zt|a−2 + (a − 2)Zi
tZ

j
t |Zt|a−4.

Using the Lipschitz continuity of b̃ and the definition of the process At we obtain the
inequality

d|Zt|a � C|Zt|a dt + C|Zt|a dAt +
〈
(σ̃(t, Y y

t ) − σ̃(t, Y x
t )) dWt, Z

a−1
t

〉
.
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Let

Mt :=
∫ t

0

〈
(σ̃(t, Y y

t ) − σ̃(t, Y x
t )) dWt, Z

a−1
t

〉
.

Since the coefficient σ̃ is bounded and all moments of the random variable |Zt| are finite
(see [3, Proposition 2.7]), the process Mt is a square-integrable continuous martingale.
Then we have

d(e−CAt |Zt|a) = −Ce−CAt |Zt|a dAt + e−CAt d|Zt|a

� −Ce−CAt |Zt|a dAt + e−CAtC|Zt|a dt + e−CAtC|Zt|a dAt + e−CAt dMt

= Ce−CAt |Zt|a dt + e−CAt dMt.

Consequently, the following estimate holds:

Ee−CAt |Zt|a � |x − y|a + C

∫ t

0
Ee−CAt |Zt|a dt.

Applying Gronwall’s inequality we obtain the estimate

Ee−CAt |Zt|a � |x − y|aeCT .

Taking into account Hölder’s inequality and estimate (2.4) we have

E|Zt|a = EeCAte−CAt |Zt|a � [Ee2CAt ]1/2[Ee−2CAt |Zt|2a]1/2 � C(a, T )|x − y|a.

The next chain of inequalities easily follows from Doob’s martingale inequality and the
boundedness of σ̃:

E sup
t∈[0,T ]

e−2CAt |Zt|2a

� 4|Z0|2a + 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
Ce−CAs |Zs|a ds

∣∣∣∣
2

+ 4E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
e−CAs dMs

∣∣∣∣
2

� 4|x − y|2a + 4C2TE

∫ T

0
e−2CAt |Zt|2a dt

+ 16E

∫ T

0
e−2CAt‖σ̃(t, Y y

t ) − σ̃(t, Y x
t )‖2|Zt|2a−2 dt

� K|x − y|2a + KE

∫ t

0
e−2CAs |Zs|2a ds + KE

∫ t

0
e−2CAs |Zs|2a−2 ds

� K(a, T )(|x − y|2a + |x − y|2a−2).

Therefore,

E sup
t∈[0,T ]

|Zt|a � EeCAT sup
t∈[0,T ]

e−CAt |Zt|a � [Ee2CAT ]1/2
[
E sup

t∈[0,T ]
e−2CAt |Zt|2a

]1/2

� K ′(a, T )(|x − y|a + |x − y|a−1).

It is now easy to complete the proof.
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3. Main results

To illustrate the main idea let us prove Davie’s theorem for some (possibly unbounded)
drift coefficient b possessing Hölder continuity with respect to the space variable. It is
worth noting that the reasoning from [1] can not be directly applied in this case, since
they essentially use the global boundedness of the drift.

Theorem 3.1. Assume that the coefficient b satisfies the following conditions:

(1) there exists M1 ∈ Lq1([0, T ], R) such that

|b(t, x)| � M1(t), t ∈ [0, T ], x ∈ R
d;

(2) there exist M2 ∈ Lq2([0, T ], R) and β > 0 such that

|b(t, x) − b(t, y)| � M2(t)|x − y|β , t ∈ [0, T ], x, y ∈ R
d;

(3) one has

q1 � q2 > 2, β > 0,
β

p1
+

1
p2

> 1, where
1
p1

+
1
q1

= 1,
1
p2

+
1
q2

= 1.

Then there exists a set Ω′ with P (Ω′) = 1 such that for each ω ∈ Ω′ (1.1) has exactly
one solution.

Proof. Let Yt be a solution to (1.1) for a fixed Brownian trajectory W . Then the
estimate

max
t∈[0,T ]

|Yt| � |x| + max
t∈[0,T ]

|Wt| + T 1/p1‖M1‖Lq1 [0,T ] =: M(x, W )

holds, so without loss of generality we can assume that b(t, x) = b(t, x)I{|x|<N} for some
N > 0. Then Proposition 2.3 (it is clear that one can take q1 for q and any sufficiently
large positive number for p) yields that P -almost surely (1.1) has a Hölder-continuous
flow of solutions, which will be denoted by X(s, t, x, W ), s � t, x ∈ R

d.

Now let us prove that, for each trajectory W such that there exists the aforementioned
Hölder-continuous flow, (1.1) has exactly one solution. Let us fix t ∈ [0, T ] and define an
auxiliary function f by the formula

f(s) = X(s, t, Ys, W ) − X(0, t, x, W ), s ∈ [0, t].

From the definition of f and the Hölder continuity of the flow X(s, t, x, W ) we obtain
that for all u, r : 0 � u � r � t one has

|f(r) − f(u)| = |X(r, t, Yr, W ) − X(u, t, Yu, W )|
= |X(r, t, Yr, W ) − X(r, t, X(u, r, Yu, W ), W )|
� C(α, T, M(x, W ), ω)|Yr − X(u, r, Yu, W )|α.
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Let us estimate |Yr −X(u, r, Yu, W )|. It is clear that we have the following trivial bound:

|Yr − X(u, r, Yu, W )| �
∫ r

u

|b(s, Ys) − b(s, X(u, s, Yu, W ))| ds

� 2
∫ r

u

M1(s) ds

� 2‖M1‖Lq1 [0,T ]|r − u|1/p1 .

The previous estimate can be improved if we take into account the Hölder continuity of
the coefficient b:

|Yr − X(u, r, Yu, W )| �
∫ r

u

|b(s, Ys) − b(s, X(u, s, Yu, W ))| ds

�
∫ r

u

M2(s)|Ys − X(u, s, Yu, W )|β ds

� K ′
∫ r

u

M2(s)|r − u|β/p1 ds

� K ′‖M2‖Lq2 [0,T ]|r − u|β/p1+1/p2 .

Let us pick α ∈ (0, 1) such that

αβ

p1
+

α

p2
= 1 + δ, δ > 0.

Then we have
|f(r) − f(u)| � C(α, T, M(x, W ), ω)|r − u|1+δ.

Consequently, f ≡ 0 (here we have also used the fact that f(0) = 0, which is clear from
the definition of f). Finally, Yt = X(0, t, x, W ) and we obtain the desired assertion, since
t ∈ [0, T ] was arbitrary. �

Now we show how to prove the original result of Davie (his Theorem 1.1) for the
case in which b is merely Borel measurable. Similarly to the proof of Theorem 3.1, it is
readily seen that without loss of generality we can assume that b(t, x) = b(t, x)I{|x|<N}
and ‖b‖∞ � 1. In this case for each α ∈ (0, 1) (1.1) P -almost surely possesses a Hölder-
continuous flow of solutions that will be denoted by X(s, t, x, W ). The main aim of the
reasoning below is to find a substitute for the Hölder condition on the coefficient b that
allows us to repeat the proof of Theorem 3.1 with minor changes.

We will need the following set of functions:

LipN ([r, u], Rd)

:=
{

h ∈ C([r, u], Rd)
∣∣∣ |h(t) − h(s)| � |t − s|s, t ∈ [r, u], max

s∈[r,u]
|h(s)| � N

}

with the uniform metric 
(h1, h2) = ‖h1 − h2‖∞.
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Lemma 3.2. There exist constants C, γ > 0 such that for all N, ε > 0 the set
LipN ([r, u], Rd) contains an ε-net Nε with no more than

C

(
N

ε

)d

exp
(

γ
u − r

ε

)

elements.

Proof. This estimate can be easily obtained from [7, § 2, (7)]. �

Now let us temporarily fix N > 0 and r, u ∈ [0, T ] such that l = u − r � 1
2 .

Let

ϕ(h, W ) :=
∫ u

r

b(s, Ws + h(s)) ds.

Lemma 3.3. There exist constants C, ζ > 0, independent of l = u − r, a countable
dense subset N in LipN ([r, u], Rd), independent of b, and a set Ω′ such that

P (Ω \ Ω′) � C exp(−l−ζ),

and for any h1, h2 ∈ N with ‖h1 −h2‖∞ � 3l and W ∈ Ω′ the following inequality holds:

|ϕ(h1, W ) − ϕ(h2, W )| � Cl4/3.

Proof. Let α and γ be positive constants from Corollary 2.2 and Lemma 3.2, respec-
tively. Let us define sequences {εk}k�0, {λk}k�0 as follows:

εk = l1+k/4, λk = μl−1/6−k/6, where μ2 =
γ + 1

α
.

Let πk denote the mapping that sends a function from LipN ([r, u], Rd) to the nearest
element in the εk-net Nεk

. For each gk+1 ∈ Nεk+1 let

Ωgk+1 := {W : |ϕ(gk+1, W ) − ϕ(πk(gk+1), W )| � l1/2εkλk},

Ωk+1 :=
⋃

gk+1∈Nεk+1

Ωgk+1 .

Let θ be a positive constant, below we will explain how θ should be chosen. Now for each
pair of functions f1, f2 ∈ Nε0 with

‖f1 − f2‖∞ � θε0

we introduce the sets

Ωf1,f2 := {W : |ϕ(f1, W ) − ϕ(f2, W )| � l1/2θε0λ0},

Ω0 :=
⋃

f1,f2 : ‖f1−f2‖∞�θε0

Ωf1,f2 .
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One can observe that for any gk+1 ∈ Nεk+1 we have

‖gk+1 − πk(gk+1)‖∞ � εk.

Applying Corollary 2.2 we obtain the following inequalities:

P (Ωk+1) �
∑

gk+1∈Nεk+1

P (Ωgk+1) � C

(
N

εk+1

)d

exp
(

γl

εk+1
− αλ2

k

)
,

P (Ω0) �
∑
f1,f2

P (Ωf1,f2) � C2
(

N

l

)2d

exp (γ − αμ2l−1/3).

Since

Nd

εd
k+1

= Ndl−5d/4−dk � Ndl−5d(k+1)/4,

γl

εk+1
− αλ2

k = γl−1/4−k/4 − αμ2l−1/3−k/3

= γl−1/4−k/4 − (γ + 1)l−1/3−k/3

� −l−(k+1)/3,

it can be easily verified that there exist positive constants ζ and C such that for any
k � 0 the following inequalities hold:

P (Ωk+1) � C exp (−l−ζ(k+1)), P (Ω0) � C exp (−l−ζ).

Let

Ω′ := Ω \
∞⋃

k=0

Ωk, N :=
∞⋃

k=0

Nεk
.

Taking into account the reasoning above we have that

P (Ω \ Ω′) � C(T, N) exp (−l−ζ),

N is a dense subset of LipN ([r, u], Rd).

Let W be an arbitrary trajectory in Ω′ and let h1, h2 be two functions in N with
‖h1 − h2‖∞ � 3l. Let us assume that h1 ∈ Nεk1

, h2 ∈ Nεk2
. Then we can construct two

sequences of functions:

h1,k1 = h1, h1,k1−1 = πk1−1(h1,k1), h1,k1−2 = πk1−2(h1,k1−1), . . . , h1,0 = π0(h1,1),

h2,k2 = h2, h2,k2−1 = πk2−1(h2,k2), h2,k2−2 = πk2−2(h2,k2−1), . . . , h2,0 = π0(h2,1).

It is not difficult to show that due to our choice of W we can find a positive number K

(which does not depend on θ) such that the following inequalities hold:

‖h1 − h1,0‖∞ � Kl, ‖h2 − h2,0‖∞ � Kl.

https://doi.org/10.1017/S0013091515000589 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000589


1030 A. V. Shaposhnikov

Consequently, taking 2K + 3 for θ, we obtain

‖h1,0 − h2,0‖∞ � θl;

in particular, the set Ω0 contains Ωh1,0,h2,0 .
Now since W ∈ Ω′ and

l1/2εkλk = μl4/3+k/12,

we conclude that there exists a positive constant C = C(N, T ) such that the following
estimate holds:

|ϕ(h1, W ) − ϕ(h2, W )| � Cl4/3.

�

Lemma 3.4. For any ε, N > 0 there exists δ > 0 such that for each open set U ⊂
[0, 1] × R

n with λ(U) < δ there is a Borel set of Brownian trajectories Ωε with P (Ωε) �
1 − ε such that for any W ∈ Ωε, h ∈ LipN ([0, 1], Rd) the following inequality holds:

∫ 1

0
IU (s, Ws + h(s)) ds � ε.

Proof. Assume that we are given ε, N > 0. Let us choose l > 0 such that

2
l
C exp (−l−ζ) � ε

2
,

2
l
Cl4/3 � ε

2
,

where C, ζ are positive constants from Lemma 3.3. Next let us split the interval [0, 1] into
a collection of closed subintervals Δ1, . . . ,ΔM of length less than l, M � 2/l. Applying
Lemma 3.3 to each interval Δk we can find countable sets N1, . . . ,NM (here we also use
the fact that these subsets do not depend on b; see Lemma 3.3). Now in each Ns we take
a finite 3l-net that will be denoted by N ′

s. Let us pick δ > 0 such that for each open set
U with λ(U) � δ there exists a set Ω′ such that P (Ω′) � 1 − ε/2 and for any W ∈ Ω′,
h ∈ N ′

s one has ∫
Δs

IU (s, Ws + h(s)) ds � lε

4

(such a δ obviously exists). Let us prove that this δ satisfies the conditions stated above.
Let us fix an open set U with λ(U) � δ. Applying Lemma 3.3 for each s one can find

a set Ωs with
P (Ω \ Ωs) � C exp(−l−ζ)

such that for any h1, h2 ∈ Ns with ‖h1 −h2‖∞ � 3l and W ∈ Ωs the following inequality
holds: ∣∣∣∣

∫
Δs

IU (s, Ws + h1(s)) ds −
∫

Δs

IU (s, Ws + h2(s)) ds

∣∣∣∣ � Cl4/3.

Let

Ωε := Ω′ ∩
M⋂

s=1

Ωs.
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Let us observe that

P (Ωε) � 1 − ε

and for each hs ∈ Ns, ∫
Δs

IU (s, Ws + h(s)) ds � lε

4
.

Since U is open, applying Fatou’s lemma we conclude that the previous inequality is true
for all h ∈ LipN (Δs, R

d). It is now trivial to complete the proof. �

Lemma 3.5. Let b : [0, T ] × R
d �→ R

d be a bounded Borel measurable mapping with
‖b‖∞ � 1. Then there exists a set Ω′ with P (Ω′) = 1 such that for each W ∈ Ω′ and
each sequence of functions {hk} ⊂ LipN ([0, 1], Rd) pointwise converging to a function h

the following equality holds:

lim
k→∞

∫ 1

0
b(s, Ws + hk(s)) ds =

∫ 1

0
b(s, Ws + h(s)) ds.

Proof. Applying Lemma 3.4 for each εn = 1/2n we can find the corresponding δn > 0.
Next, applying Lusin’s theorem for each n one can find a function bn ∈ Cb([0, 1]×R

d, Rd)
and an open set Un ⊂ [0, 1] × R

d such that

‖bn‖∞ � 1, λ(Un) � δn, bn(t, x) = b(t, x) for all (t, x) /∈ Un.

Then there exists a set Ωn with the following properties:

P (Ωn) � 1 − εn

and for any W ∈ Ωn, h ∈ LipN ([0, 1], Rd),

∫ 1

0
IU (s, Ws + h(s)) ds � εn.

Next we observe that for any n,

∫ 1

0
bn(s, Ws + h(s)) ds − 2

∫ 1

0
IU (s, Ws + h(s)) ds

�
∫ 1

0
b(s, Ws + h(s)) ds

�
∫ 1

0
bn(s, Ws + h(s)) ds + 2

∫ 1

0
IU (s, Ws + h(s)) ds.
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Therefore, for each W ∈ Ωn and each sequence of functions {hk} ⊂ LipN ([0, 1], Rd)
pointwise converging to h, the following inequalities hold:

∫ 1

0
b(s, Ws + h(s)) ds − 4εn �

∫ 1

0
bn(s, Ws + h(s)) ds − 2εn

� lim inf
k→∞

∫ 1

0
bn(s, Ws + hk(s)) ds − 2εn

� lim inf
k→∞

∫ 1

0
b(s, Ws + hk(s)) ds,

∫ 1

0
b(s, Ws + h(s)) ds + 4εn �

∫ 1

0
bn(s, Ws + h(s)) ds + 2εn

� lim sup
k→∞

∫ 1

0
bn(s, Ws + hk(s)) ds + 2εn

� lim sup
k→∞

∫ 1

0
b(s, Ws + hk(s)) ds.

Let

Ω′ := lim inf
n→∞

Ωn =
∞⋃

m=1

∞⋂
n=m

Ωn.

Since

P (Ωn) � 1 − εn and
∞∑

n=1

εn < ∞,

by the Borel–Cantelli lemma P (Ω′) = 1. It is now trivial to complete the proof. �

Lemma 3.6. There exist constants C, ζ > 0, independent of l = u − r, and a set Ω′

such that
P (Ω \ Ω′) � C exp(−l−ζ),

and for any h1, h2 ∈ N with ‖h1 − h2‖∞ � 4l, W ∈ Ω′ the following inequality holds:

|ϕ(h1, W ) − ϕ(h2, W )| � Cl4/3.

Proof. This assertion follows directly from Lemmas 3.3 and 3.5. �

We can now proceed to the proof of Theorem 1.1.

Proof. Let us fix a positive number N . Let C, ζ be constants found in Lemma 3.6.
For each k we split the interval [0, 1] into M = 2k closed subintervals[

0,
1
M

]
, . . . ,

[
M − 1

M
, 1

]
.

Applying Lemma 3.6 to each interval [i/M, (i+1)/M ] we can find the corresponding sets
Ωk,i. Let

Ωk :=
M−1⋂
i=0

Ωk,i.
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With the help of the Borel–Cantelli lemma it is easy to show that the set

Ω′ := lim inf
k→∞

Ωk =
∞⋃

K=1

∞⋂
k=K

Ωk

has probability 1. Removing, if necessary, a set of zero probability from Ω′, we can assume
that for each W ∈ Ω′ there exists a Hölder-continuous flow ensured by Proposition 2.3.
Let us show that for each W ∈ Ω′ such that

|x| + max
t∈[0,1]

|Wt| + 1 � N,

(1.1) has a unique solution. Indeed, let Yt be a solution to (1.1). It is not difficult to see
that |Yt| � N for each t ∈ [0, 1]. Due to our choice of Ω′ there exists K = K(ω) such
that for all k � K the Brownian trajectory W belongs to Ωk. Let

M ′ = 2k′
, r =

i

M ′ , where k′ � K.

Let us define an auxiliary function f on the interval [0, r] by the following formula:

f(t) := X(0, r, x, W ) − X(t, r, Yt, W ).

We observe that for any s � t, by the definition of a flow we have

f(t) − f(s) = −X(t, r, Yt, W ) + X(s, r, Ys, W )

= −X(t, r, Yt, W ) + X(t, r, X(s, t, Ys, W ), W ).

Hence, there exists a positive constant C = C(N, W ) such that

|f(t) − f(s)| � C|Yt − X(s, t, Ys, W )|4/5.

The difference Yt − X(s, t, Ys, W ) can be represented as follows:

Yt − X(s, t, Ys, W ) =
∫ t

s

b

(
u, Ys + Wu − Ws +

∫ u

s

b(r, Yr) dr

)
du

−
∫ t

s

b

(
u, Ys + Wu − Ws +

∫ u

s

b(r, Xr) dr

)
du

=
∫ t

s

b(u, Wu + h1(u)) du −
∫ t

s

b(u, Wu + h2(u)) du,

where

h1(u) = Ys − Ws +
∫ u

s

b(r, Yr) dr, h2(u) = Ys − Ws +
∫ u

s

b(r, Xr) dr.

Let k � k′, M = 2k. If we take s, t of the form i/M and (i + 1)/M , respectively, then
we obtain the following estimate:

∣∣∣∣f
(

i + 1
M

)
− f

(
i

M

)∣∣∣∣ �
(

C

M4/3

)4/5

,
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and consequently

|f(r)| � C

M1/15 .

Due to the arbitrariness of k we conclude that

f(r) = X(0, r, x, W ) − Yr = 0.

Since r was an arbitrary dyadic number in [0, 1] with a sufficiently large denominator,
the continuity of Yt and X(0, t, x, W ) implies the equality Yt = X(0, t, x, W ) for each
t ∈ [0, 1]. The proof is complete. �

Remark 3.7. We remark that Theorem 1.1 can be generalized to the case in which
the drift b is Borel measurable and has linear growth

|b(t, x)| � C + C|x|.

Indeed, let Xt be a solution to (1.1). Then we have

|Xt| � |x| + max
t∈[0,T ]

|Wt| + Ct + C

∫ t

0
|Xt| dt

and Gronwall’s inequality yields the bound

max
t∈[0,T ]

|Xt| �
[
|x| + max

t∈[0,T ]
|Wt| + CT

]
eCT .

The desired statement easily follows from the uniqueness of solutions to the localized
equations with bounded drifts of the form b(t, x)I{|x|<N}.

Remark 3.8. It would be interesting to extend this result to the case of locally
unbounded drift considered in [6,8]. Under the assumptions from [8], Hölder-continuous
flow still exists but some other ingredients of the proof require refinements. There are
two main obstacles here. The first obstacle is that the estimate from Proposition 2.1
essentially uses boundness of b and the author is not aware of any natural counter-
parts for locally unbounded drifts. The second obstacle is that if b is locally unbounded,
then its integral is not Lipschitz continuous anymore. So one should take care of the
metric entropy of the corresponding compactum (a good candidate is a subset of Hölder-
continuous functions) to find a substitute for Lemma 3.3. The author believes that some
progress in this direction is possible but, in the interests of avoiding additional technical
complications, no details are presented here.
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