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In this paper, we investigate real-time behavior of constant-gain stochastic gradient (SG)
learning, using the Phelps model of monetary policy as a testing ground. We find that
whereas the self-confirming equilibrium is stable under the mean dynamics in a very large
region, real-time learning diverges for all but the very smallest gain values. We employ a
stochastic Lyapunov function approach to demonstrate that the SG mean dynamics is
easily destabilized by the noise associated with real-time learning, because its Jacobian
contains stable but very small eigenvalues. We also express caution on usage of perpetual
learning algorithms with such small eigenvalues, as the real-time dynamics might diverge
from the equilibrium that is stable under the mean dynamics.
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1. INTRODUCTION

Recently, asymptotic stability criteria such as E-stability or stochastic gradient
(SG) and generalized SG stability were put forward as criteria a good mone-
tary policy rule should satisfy, making possible anchoring of agents’ inflation
expectations on a desired equilibrium through a learning process; see Bullard
and Mitra (2002) and Evans et al. (2010). A number of papers [Orphanides and
Williams (2007), Milani (2008), Bullard et al. (2010), Slobodyan and Wouters
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(2012), Hommes and Lux (2013)] have simulated or estimated macro models
with expectations formed using adaptive learning algorithms. This development
puts the problem of looking for models and adaptive learning algorithms that are
well behaved not only asymptotically but also in real time at the forefront of the
research agenda in the monetary policy literature.

Studies of the Phelps problem of a government controlling inflation while adap-
tively learning the approximate Phillips curve using constant-gain recursive least
squares (CG RLS) have discovered a phenomenon known as “escape dynamics”;
see Sargent (1999), Cho et al. (2002) (CWS hereafter), and Berardi (2013). “Es-
cape” is a sudden deviation of government beliefs from the neighborhood of the
equilibrium, in which a nonzero inflation–unemployment tradeoff is perceived to
exist, toward vertical Phillips curve beliefs. During the escape, average inflation
drops from a high (Nash equilibrium) value to zero. Escapes are observed despite
the fact that the equilibrium is E-stable and thus asymptotically stable under the
mean, or average, dynamics of beliefs updated by RLS.

It is clearly interesting to study real-time properties of other learning algorithms
in the Phelps model. In this note we study constant-gain (CG) SG learning, which
is simpler than RLS, and for certain priors could be robust to agents’ uncertainty
about their beliefs, as well as appropriate to the case of time-varying parameters;
see Evans et al. (2010). We find that the mean dynamics under SG learning remains
stable in a large region, and that there are no escapes, but real-time learning
diverges for all but very low values of the gain. Low convergence speed of the
mean dynamics in a high-dimensional space is a major cause of such behavior.
Thus, a policy maker conducting monetary policy that is optimal given current
beliefs would lead the economy along a divergent path.

To establish our results, we use a stochastic Lyapunov function approach that
is novel in the adaptive learning literature. Although our analytical results are
limited, this tool turns out to be useful in understanding the sources of instability
of CG SG learning in the Phelps model.

We briefly summarize the model of CWS and define SG learning in Section 2.
In Section 3, we present the nonlocal effects arising under CG SG learning and
discuss the possible explanations for the difference in behavior between the mean
dynamics and the actual real-time learning algorithm. Section 4 concludes.

2. THE MODEL AND LEARNING ALGORITHMS

The CWS model of a government adaptively learning a misspecified Phillips curve
can be summarized as follows. The economy consists of the government and the
private sector. The government attempts to minimize losses from inflation πn and
unemployment Un:

min
{xn}∞n=0

E
∑∞

n=0
βn

(
U 2

n + π2
n

)
. (1)
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The true Phillips curve is given by

Un = u − χ (πn − x̂n) + σ1W1n, u > 0, θ > 0. (2)

The government uses the monetary policy instrument xn to control πn, as shown
in

πn = xn + σ2W2n. (3)

It holds misspecified beliefs about the Phillips curve,

Un = γ1πn + γ T
−1Xn−1 + ηn, (4)

whereas in (2) unemployment is affected only by unexpected inflation. The private
sector possesses rational expectations x̂n = xn about the inflation rate, and thus
unexpected inflation shocks come only from monetary policy errors.

In a “dynamic” version of the model, which we consider in this paper, Xn−1

contains a constant and two lags of π and U . W1n and W2n are zero-mean, unit-
variance independent Gaussian shocks.1 A 6-dimensional vector γ = (γ1, γ

T
−1)

T

represents the government’s beliefs about the Phillips curve. ηn, the residual in
the misspecified Phillips curve defined by (4), is perceived by the government as
a white noise uncorrelated with regressors πn and Xn−1.

The equilibrium is defined as a vector of beliefs γ at which the government’s
assumption about orthogonality of ηn to the space of regressors is indeed consistent
with observations:

E
[
ηn · (πn,Xn−1)

T
] = 0. (5)

CWS call this point a self-confirming equilibrium, or SCE. Williams (2009) shows
that at the SCE, γ = γ = [−χ, 0, 0, 0, 0, u(1 + χ2)]T , and thus the government
perceives a nonzero inflation-unemployment tradeoff. As a result, it sets the policy
instrument xn equal to χu > 0 (which is also the average inflation at the SCE)
because costs of higher unemployment are perceived to be too high. For a detailed
description of the model, see CWS.

In period n, the government solves (1), subject to (3) and (4), assuming that
current beliefs γn will never change. The monetary policy action xn is cor-
rectly anticipated by the private sector. Un is generated according to (2), and
the government’s beliefs are adjusted in a constant-gain adaptive learning step.
Let ξn = [ W1n W2n XT

n−1 ]T and g(γn, ξn) = ηn · (πn,X
T
n−1)

T . Under the SG
learning the next period’s beliefs γn+1 are given by

γn+1 = γn + εg(γn, ξn), (6)

which together with the law of motion for the state variable ξn,

ξn+1 = A(γn)ξn + B · [
W1n+1 W2n+1

]T
, (7)

with suitably defined matrices A and B constitutes a stochastic recursive algorithm
(SRA). Finally, the approximating ordinary differential equation corresponding to
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this SRA is given by

γ̇ = lim
n→∞E[g(γ, ξn)] = h (γ ) . (8)

The right-hand side of this ordinary differential equation (ODE) is obtained as
follows. For every parameter vector γ, construct the state vector process ξn corre-
sponding to this γ as in (7), with A(γn) becoming a fixed matrix A(γ ). ξn is thus a
VAR with constant coefficients. The mathematical expectation in (8) is then taken
with respect to the invariant distribution induced by this VAR. Solution of (8) is
called the “mean dynamics trajectory” of the real-time learning dynamics (6) and
(7), with the right-hand side of (8) being the “mean dynamics.” For details and
derivations, see Evans and Honkapohja (2001), referred to as EH in the remainder
of the paper. The SCE γ is the only equilibrium of this ODE.2

Another local continuous-time approximation of the SRA around the SCE γ

can be derived in the constant-gain case, as shown by EH, Proposition 7.8:

dγt = J · (γt − γ̄ ) dt + √
ε�1/2(γ̄ )dWt . (9)

The matrix J = Dγ h|γ=γ̄ is the Jacobian of the mean dynamics linearized around
the SCE. The matrix � contains covariances of elements of g(γ, ξn) summed
over all leads and lags of ξn. See EH (Sections 7.4 and 14.4) for details.3 We also
consider a generalized diffusion approximation to the SRA,

dγt = h(γt )dt + √
ε�1/2(γt )dWt . (10)

Notice that (9) is a linear approximation of (10) around the SCE.

3. BEHAVIOR OF SIMULATIONS

The discussion that follows refers to the model as parameterized in CWS: σ1 =
σ2 = 0.3, u = 5, χ = 1, β = 0.98. We also explore the sensitivity of the results
to parameter values.

For these parameter values the SCE is stable under the flow defined by (8), or
SG-learnable using a term from Evans et al. (2010): J has one “fast” eigenvalue,
λ1 = −75.5, three “slow” ones, ranging from −0.12 to −0.07, and two “extremely
slow” eigenvalues as small as −1.4×10−4.4 As a consequence, any deviation from
the SCE results in a fast movement along the dominant or “fast” eigenvector v1,

and then an extremely slow convergence back to the SCE along the remaining five
“slow” directions.

The convergent dashed line in the left panel of Figure 1 presents the norm of
deviations of beliefs from the SCE, ‖γt − γ ‖, along one such trajectory. Note that
stability of the mean dynamics (8) is observed for initial conditions in a very wide
region. However, simulations of the real-time learning algorithm (6) and (7) show
that the beliefs move away from the SCE in a fashion that looks like a deterministic
trend with a strong stochastic component, as evidenced by the left panel of Figure
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FIGURE 1. Evolution of the distance from the SCE and value of the Lyapunov function for
mean dynamics trajectory (dashed line) and simulated SRA (black dots) under SG learning.

1, black dots.5,6 The divergence in Figure 1 is documented for ε = 0.006, but
similar behavior was observed for ε as low as 10−5. For ε � 10−5 we observe
typical fluctuations of beliefs around the SCE. For very high values of ε (above
0.027), one of the eigenvalues of the matrix εJ + (1− ε)I is located outside a unit
circle, which also leads to divergence of simulations. Because the mechanism of
divergence for large ε was described previously by Evans and Honkapohja (2009),
we do not discuss it here.

There is thus a significant discrepancy between the mean dynamics and the
simulations of real-time learning for ε � 10−5. To explain this discrepancy,
we utilize a stochastic Lyapunov function approach, described in detail in the
Appendix.7 As a Lyapunov function, we choose a quadratic form V (γ ) = (γ −
γ )T P (γ −γ ). Under the (linearized) mean dynamics, the time derivative of V (γ )

along the solution path of linearized equation (8),

γ̇ = J (γ − γ ) , (11)

equals V̇ (γ ) = (γ − γ )T · (PJ + J T P ) · (γ − γ ). Given that J is stable, for any
symmetric positive definite matrix Q we can find P such that

PJ + J T P + Q = 0.

The derivative of the Lyapunov function along the solution path, V̇ (γ ), equals
−(γ − γ )T Q(γ − γ ) and is always negative. To construct a suitable matrix Q,

we take the orthonormal basis of the subspace spanned by the “slow” eigenvectors
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of J plus the complement of this subspace, collected into matrix W, and retain
the eigenvalues of −J. Thus, Q = W · diag[eig(−J )] · WT . By construction, Q

is positive definite, and therefore P exists. Also by construction, the Lyapunov
function V (γ ) decreases very gradually in the subspace spanned by the “slow”
eigenvectors of J and falls very fast in the complement of this subspace, resembling
the spatial behavior of the linearized mean dynamics (11) to a significant degree.8

For a linear system such as (11), V̇ (γ ) will be negative everywhere but at the
stationary point.

The Lyapunov function constructed in the preceding delivers stability results for
the mean dynamics linearized around the SCE. For the nonlinear mean dynamics
ODE (8), the expression for V̇ (γ ) becomes

V̇ (γ ) = 2h (γ )T P (γ − γ ) .

There is no guarantee that the same Lyapunov function would work for nonlinear
as well as linearized systems; in practice, it serves surprisingly well. Observe the
dashed line in Figure 1, right panel. After an initial increase V (γ ) falls very slowly
but monotonically, meaning that V̇ (γ ) becomes negative, even though we are
simulating the nonlinear mean dynamics (8). However, along the simulation path
of (6) and (7) (black dots), the situation is very different: V (γ ) increases steadily
instead. Under the influence of stochastic shocks, the very slow convergence along
the “slow” eigenvectors of J is replaced by divergence.

To get a deeper insight into the properties of (6) and (7), we utilize its nonlinear
diffusion approximation (10), use the same Lyapunov function V (γ ), and derive
a stochastic analog of V̇ (γ ). The concept of stochastic Lyapunov function is
described in the Appendix:

LV (γ ) = V̇ (γ ) + ε · trace(�P ) = 2h (γ )T P (γ − γ ) + ε · trace(�P ).

We then calculateLV at every twentieth point of a typical simulation run of (6) and
(7) with ε = 0.006, and the increment of V (γ ) within the next twenty iterations.
Recall that LV > 0 means that V is expected to increase. The simulation results
are presented in Figure 2. First, there indeed is a strong positive correlation of
∼ 0.7 between LV (γ ) and the subsequent increment of V (γ ). Second, stochastic
shocks often push the beliefs into areas where LV is positive and large; this is
explained by the fact that away from the SCE the mean dynamics is often unstable.
Even when it is stable, the positive LV term, ε · trace(�P ), can be larger than
the negative term, 2h(γ )T P (γ − γ ), given the very slow convergence of the
mean dynamics. As a result, the average value of LV turns positive after several
iterations of (6) and (7).9

Although it is impossible to derive a Lyapunov function for the nonlinear diffu-
sion approximation (10) and formally prove instability of the SCE, this discussion
is useful in illuminating the potential factors, which could lead to the discrepancy
between the stability of mean dynamics trajectories and of real-time learning
process (6) and (7). We identify three such factors.
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FIGURE 2. Value of the Lyapunov derivative and consecutive increments of the Lyapunov
function, SG learning.

First, the linearized mean dynamics has two extremely “slow” eigenvalues that
are very close to zero. Once the beliefs are disturbed away from the SCE, they
linger for a long time in the subspace spanned by these eigenvectors.10 Second,
the symmetric part of J is not stable, which implies that random deviation of
beliefs in a certain direction will be initially driven even further away from the
SCE.11 Finally, and most importantly, after such a deviation away from the SCE,
the linear approximation (9) is no longer valid and (10) often has an unstable drift
term: we observed a largest eigenvalue of locally linearized h(γ ) as high as +4.5.
A locally unstable drift term leads to the Lyapunov derivative along the simulation
run being positive on the average: Figure 3 plots the running average value of
LV, evaluated at the same points as in Figure 2. For almost all time intervals, the
average value of LV is positive and increasing, which means that the value V (γ )

is expected to grow with ever higher speed. This is exactly the behavior observed
in the right panel of Figure 1, black dots.

The first two factors mean that because of the slow convergence of the mean
dynamics, stochastic noise of the real-time learning has plenty of time to derail
convergence of beliefs to the SCE, once an initial deviation has occurred. The
third factor implies that the noise could be taking the beliefs into regions where
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FIGURE 3. Cumulative Lyapunov derivative along a typical simulation path, SG learning.

the mean dynamics is divergent, not convergent, making further expansion of the
deviation away from the SCE inevitable. Such regions are rather close to the SCE,
because it might take a very small change in beliefs to move an eigenvalue from
a stable −10−4 to an unstable 10−4.

To further stress the importance of nonlinearities and locally unstable mean
dynamics, we perform the following exercise. After calculating the invariant dis-
tribution of beliefs implied by (9),12 we evaluate the largest eigenvalue of the
locally linearized mean dynamics at 10,000 points, randomly drawn from this dis-
tribution. Averaging over the draws produces a stark result: even for ε = 6×10−6,

the average equals 0.16. Mean dynamics is locally unstable more often than stable,
even in a very small neighborhood of the SCE.

Our conclusion is that the formal proof of the mean dynamics stability may
matter little when eigenvalues close to the imaginary axis are present, as the actual
real-time learning may still diverge. In itself, this is not surprising, as both the
mean dynamics approximation (8) and the nonlinear diffusion approximation (10)
are valid only as ε → 0. The novelty of our approach lies in showing that we
were able to use the nonlinear diffusion approximation to ascertain the divergence
of the real-time learning process for values of the constant gain ε close to those
commonly used in the literature, using a stochastic Lyapunov function approach.

We have to comment on the stochastic stabilization and destabilization literature,
in particular Mao (1994). Theorems 4.1 and 4.2 and Corollary 5.2 in that paper
state that any nonlinear system of ODE could be destabilized by a Brownian
motion with sufficiently high variance, provided the dimension of the system was
greater than one. Destabilizing a given ODE requires a Brownian motion with
lower variance when the norm of the linearized diffusion term (mean dynamics in
our notation) is smaller. In our case this norm is essentially zero in some directions,
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which makes destabilization very easy indeed. The variance of the noise term in
(10) is proportional to ε, and therefore destabilization becomes impossible for
extremely low values of ε, which is exactly what we observe.

As noted earlier, Evans et al. (2010) study SG learning in the “static” version
of the Phelps model. The discrepancy between the mean dynamics convergence
and real-time learning divergence is not observed in that paper. We note that in
the “static” version of the model the Jacobian J is two-dimensional, with one
eigenvalue being very “fast” and another “slow.” Therefore, the “slow” subspace
has dimension equal to one. As shown in Mao (1994), it is impossible to destabilize
one-dimensional stable ODE with stochastic noise.

SG real-time learning is divergent for gains greater than 10−5. Does this range
include values of ε that are “reasonable” for a macro model? Consider two rules
of thumb for selecting ε. When CG adaptive learning is used in environments with
time-varying parameters or structural breaks, for instance, in regime-switching
model of Branch et al. (2013), the characteristic time 1/ε is related to the typical
time until a break, or to the time during which the variation becomes “large.” The
second rule imagines agents who could use CG with an infinite amount of data or
run OLS regression with T data points. In OLS regression, the mean age of a data
point is T/2. A CG learning algorithm is equivalent to a weighed LS with weights
proportional to points’ age, giving 1−ε

ε
as the mean age. Therefore, ε ≈ 2/T

produces a CG algorithm approximately equivalent to the OLS regressions with
sample length T ; see Orphanides and Williams (2009). For the Phelps problem at
best monthly data are available, and ε ∼ 0.002 ÷ 0.01 seems to be empirically
justified.

Recently, several papers have presented empirical estimates of ε. For example,
Orphanides and Williams (2007) find ε between 0.01 and 0.03 fitting the data in a
model with CG RLS learning. They also use ε = 0.005 for CG SG learning of a
natural real rate and a natural unemployment rate. Branch and Evans (2006) find
that CG RLS with gains of 0.007 (GDP growth) and 0.062 (inflation) produces the
smallest RMSE of out-of-sample forecasts. Milani (2008) estimates a simple New
Keynesian model under a variety of policy and CG RLS specifications and finds
gains between 0.01 and 0.03. Finally, Slobodyan and Wouters (2012) estimate
a medium-scale DSGE model under several specifications of CG RLS and find
gains from 0.001 to 0.02.

Could it be that the divergence that we document is a fragile property caused by
very specific parameter values? To answer this question, we consider alternative
values of the average unemployment rate u ∈ [1; 4]. The SCE remains stable
under mean dynamics for all values of u. When u decreases from 5 to 1, the
slowest eigenvalue of J gets faster, moving from −1.4 × 10−4 to −2.9 × 10−3.
As the slowest eigenvalue increases its magnitude, two effects happen. First, the
deterministic contribution to LV, 2h(γ )T P (γ − γ ), becomes more negative.
Second, larger deviations of beliefs from the SCE are required to make the locally
linearized mean dynamics unstable by turning one of its eigenvalues positive. Both
effects make the divergence harder, and thus we expect that lowering u will lead
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to slower divergence of the real-time learning out of any given neighborhood of
the SCE.

To test the conjecture, we simulated (6) and (7) until the beliefs exit from the ball
of radius 0.4 around the SCE. We use the same value of ε = 0.006 as previously.
For u ≥ 2 we still observe a time path of Lyapunov function V that looks almost
deterministic, as in Figure 1. In full accordance with our intuition, as u decreases
from 5 to 2, average number of periods needed for a deviation increases by a factor
of 4.13 On the other hand, divergence is observed for the model with u = 1 only
for ε as high as 0.02. The result supports our message: it is closeness of the slowest
eigenvalues of J to the imaginary axis that matters for the observed divergence. At
u = 1, the mean dynamics is too fast to be destabilized by the real-time learning
noise. In addition, nonlinearities, which are much milder in this case, ensure that
the largest positive eigenvalue of the locally linearized mean dynamics never gets
beyond approximately 0.05, which also prevents divergence.

As shown by Evans et al. (2010), SG learning is not scale-invariant, and thus
the estimated gain could depend on the measurement units, whereas for RLS this
problem does not appear. To test the dependence of our results on scaling, we
switch to measuring unemployment and inflation as decimal proportions rather
than percentages. Correspondingly, we set u equal to 0.05 and σ1 = σ2 to 0.003,
which leads to the same problem as before.14 The “fast” eigenvalue becomes much
less extreme at ∼−0.5, whereas the “slowest” ones get even smaller, of order 10−5.
However, as the positive constant trace(�P ) decreases in absolute value by much
more than V̇ (γ ), the negative component of the stochastic Lyapunov function, the
divergence result is now observed only for significantly larger values of the gain
ε, as high as 1 × 10−2.

4. CONCLUSION

We studied the performance of constant-gain stochastic gradient learning in a
Phelps model of monetary policy that has been extensively studied previously for
the RLS learning case. We showed that the model dynamics is divergent for all
values of a constant gain greater than a very small threshold. This behavior occurs
despite the fact that the mean dynamics is stable in a large neighborhood of the
SCE. The divergence is caused by the mean dynamics being locally almost unstable
at the SCE and unstable at many points close to the SCE. Shocks associated with
constant-gain learning then take the beliefs into unstable regions often enough
to lead to the divergence, which is reversed only for very small gain values. We
implemented a Lyapunov function approach to confirm the intuition described
in the preceding and showed that it is possible to infer the behavior of the SRA
from the expected value of the derivative of the Lyapunov function LV along the
SRA trajectory. We believe this to be the first application of the stochastic Lya-
punov function approach to the analysis of destabilization of asymptotically stable
adaptive learning algorithms under real-time learning dynamics in the economic
literature.
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The behavior of SG learning in real time leads us to express a warning. For
constant gain values that are not very small, checking that the mean dynamics is
asymptotically stable is not enough to guarantee that the learning algorithm in real
time is “well behaved”; moreover, checking that the mean dynamics trajectories
are stable in a large region is not enough either. If many eigenvalues of the mean
dynamics are close to the imaginary axis and thus the mean dynamics is very slow,
the SRA might exhibit divergent behavior despite convergent mean dynamics.
This discrepancy dissapears for “sufficiently small” values of the gain, as implied
by the theory developed in EH, but these values might prove to be empirically
irrelevant.

The mechanism that leads to destabilization of the convergent mean dynamics
by noise related to real-time learning under realistic values of the constant gain is
rather general and might manifest itself in RLS learning cases as well, when some
of the eigenvalues of the E-stability ODE are close to the imaginary axis. We also
believe that this mechanism is not specific to constant-gain learning and would
appear in other perpetual learning algorithms such as the Kalman filter, provided
the mean dynamics possesses several stable yet very small eigenvalues.

Bullard and Mitra (2002) argued that a good monetary policy rule should deliver
equilibrium that is E-stable and thus learnable under RLS. Unfavorable outcomes
of simple learning behavior in the Phelps model, both under RLS (studied by
CWS and others) and under SG, suggest that a desirable policy rule should also
be “well-behaved” in real time for a broad class of learning algorithms. Finding
rules satisfying these additional restrictions is a topic for further research.

NOTES

1. Evans et al. (2010) report simulations of the “static” version of this model under CG SG learning.
2. Note that at the SCE, E[g(γ , ξ)] = 0 because of (5).
3. In fact, EH show that approximation (9) holds for any initial beliefs γ̃ , not just γ .
4. The intuition for the existence of slow eigenvalues is that if the ratio σ 2/u is low, the rows of the

mean dynamics Jacobian J become almost linearly dependent. Alternatively, the noise is weak relative
to the average value of unemployment and inflation at the SCE, and the regressors in the government’s
Phillips curve (4) are almost collinear. This feature is independent of inclusion of the lags of inflation
and unemployment in the government’s misspecified Phillips curve.

5. The same trend is observed for simulation runs that are driven by other sequences of shocks. If
we observe the simulations even longer, the beliefs γ eventually reach values at which the stochastic
process for Xn loses stationarity and the government’s control problem becomes nonstabilizable,
making derivation of an optimal policy impossible.

6. To emphasize the difference between the mean dynamics and real-time learning, we initiate the
mean dynamics simulations of (8) at the last point of simulation of (6) and (7).

7. Informally, if there is a Lyapunov function V that is zero at the stationary point O of an ODE
and strictly positive outside of it, and the full derivative of V along the ODE solutions, V̇ , is always
negative, then the ODE solutions approach O as t → ∞, and thus O is asymptotically stable. The
stochastic analog of V̇ is an expectation of this derivative, usually denoted LV. If LV is always
negative, then V is expected to decrease over time, which for V positive everywhere but at O proves
that as t → ∞, the solution converges to O with probability one.

8. For a symmetric matrix J , this construction results in P equal to the identity matrix, and the
Lyapunov function being the squared Euclidean distance from γ .

https://doi.org/10.1017/S1365100514000583 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100514000583


788 SERGEY SLOBODYAN ET AL.

9. This effect is not observed if the linear approximation (9) remains valid everywhere. In this case,
the negative contribution of the drift term to LV, (γ − γ )T · (PJ + J T P ) · (γ − γ ), overcomes a
positive but constant diffusion contribution ε · trace(�P ) for large values of γ − γ .

10. A variance–covariance matrix of the beliefs along a typical simulation trajectory has a dominant
component that explains more than 90% of total variance for sufficiently small values of the con-
stant gain. The eigenvector associated with this component is essentially collinear with the subspace
spanned by the two slowest eigenvalues of the linearized mean dynamics: the angle between them is
approximately 3◦. Therefore, over time, most of the movement in the simulated trajectory occurs along
the directions associated with the two slowest eigenvalues of J .

11. For a solution of the ODE γ̇ = J (γ − γ ), the angle between the current deviation γ − γ and
its speed of change is determined by

(γ − γ )T J (γ − γ ) = (γ − γ )T
J + J T

2
(γ − γ ) = (γ − γ )T J SYM (γ − γ ) .

The symmetric part of J is unstable: its largest eigenvalue equals +10.35. Thus, any deviation in the
direction of the corresponding eigenvector, wSYM

1 , is initially strongly amplified. wSYM
1 is essentially

collinear to the subspace spanned by the “slow” eigenvectors of J in which the mean dynamics
trajectory spends most of the time; therefore such amplification is very likely to occur.

12. This is a multivariate Gaussian distribution N(γ , εC), with C given by

C =
∫ ∞

0
esDγ h(γ )�esDT

γ h(γ )ds.

For details, see EH, Theorem 7.9.
13. Decreasing χ also makes the “slowest” eigenvalues faster, thus raising the number of periods

needed for a deviation. Increasing σ{1,2} makes mean dynamics faster but at the same time increases
variance of shocks hitting (6) and (7), thus making destabilization easier.

14. We thank an anonymous referee of this paper for suggesting this exercise.
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APPENDIX: LYAPUNOV FUNCTION IN
DETERMINISTIC AND STOCHASTIC SYSTEMS

The following short description of Lyapunov’s second (direct) method, both deterministic
and stochastic, is based on Loparo and Feng (1999). For a deterministic ODE such as (8),
consider a continuous function V (γ ) such that V (γ ) = 0 and V (γ ) > 0 for γ �= γ .

Suppose that for some c the set c = {γ : V (γ ) < c} is bounded and V has continuous
first partial derivatives in this set. As c → 0, the set c becomes {γ }. If the total derivative
of V along a solution of (8), defined as

V̇ (γ ) = dV (γ )

dt
= hT (γ )

∂V (γ )

∂γ
= −κ(γ ),

satisfies −κ(γ ) < 0 for all γ ∈ c\{γ }, then V is a monotonically decreasing function
of time. This implies that V (γt ) → 0 as t → ∞, and thus γt → γ as t → ∞. A useful
relation is given by

0 < V (γ0) − V (γt ) =
∫ t

0
κ(γs)ds.

The stochastic analog of the Lyapunov function is introduced in the following way.
Suppose that the system, such as (10), is Markov so that the solution process γt is a strong,
time-homogeneous Markov process. Then the infinitesimal generator of the process γt is
defined by

LV (γ0) = lim
t→0

Eγ0 [V (γ�t ) − V (γ0)]

�t
.

Thus, LV is a natural analog of the derivative of V along the solution path, V̇ , in the deter-
ministic case. Suppose that for some Lyapunov function V we have LV (γ ) = −κ(γ ) < 0.

Then the following relation holds:

0 < V (γ0) − Eγ0 [V (γt )] = Eγ0

∫ t

0
κ(γs)ds = −Eγ0

∫ t

0
LV (γs) ds < +∞,

and for t, s > 0,

Eγs [V (γt+s)] − V (γs) < 0 almost surely.
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The last expression means that V is a supermartingale, which could be used to infer that γt

converges to γ . A similar relation (with changed sign) holds when −κ(γ ) > 0, in which
case the Lyapunov method could be used to establish divergence of solution paths a.s.

We will not be able to prove stability or instability of the SCE, because the diffusion
term in (10) does not go to zero as γ → γ . However, we utilize the relation between the
integral of LV and the expected increment of V in our discussion of the likely behavior of
the simulation paths of (6) and (7).
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