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Abstract

Several trematodes including Opisthorchis viverrini utilize Bithynia siamensis goniomphalos as
a snail intermediate host in their life cycles. In order to capture a comprehensive range of
host–parasite interactions and their transmission dynamic patterns, B. s. goniomphalos were
sampled monthly over 4 consecutive years in an irrigated paddy-field habitat in northeast
Thailand. Using a standard cercarial shedding method, a high diversity of trematodes
(17 types) was recovered. Virgulate xiphidiocercariae were the most prevalent (7.84%) fol-
lowed by O. viverrini (0.71%). In addition to seasonal and environmental factors, the quantity
of irrigation water for rice cultivation correlated with transmission dynamics of trematodes in
B. s. goniomphalos. The peak prevalence of all trematode infections combined in the snails
shifted from the cool-dry season in 2010–2012 to the hot-dry season in 2013 associated
with an increasing quantity of water irrigation. A low frequency of mixed trematode infections
was found, indicating that the emergence of virgulate cercariae, but not of O. viverrini, was
negatively impacted by the presence of other trematodes in the same snail. Taken together,
the observed results suggest that interactions between host and parasite, and hence transmis-
sion dynamics, depend on specific characteristics of the parasite and environmental factors
including irrigated water for rice cultivation.

Introduction

Parasites are a major problem, both in terms of their influence on human health and their
economic significance in animal husbandry (Petney, 1997). Over 100 species of food-borne
trematodes are known to parasitize humans, many of which also infect domestic animals
(Keiser and Utzinger, 2009). At least 750 million people are at risk of infection by food-borne
trematodes and more than 40 million people are infected (Hotez et al., 2008; Keiser and
Utzinger, 2009). All these trematodes use gastropods as intermediate hosts in their life cycles
and many employ freshwater fish or crustaceans as second intermediate hosts. Second inter-
mediate host species are often used in aquaculture, a valuable source of nutrition, employment
and export trade, especially in developing countries. Infection of these hosts by metacercariae
of food-borne trematodes is a cause of considerable economic losses in aquaculture (Keiser
and Utzinger, 2005; Clausen et al., 2012).

In order to incorporate the parasite ecology into the epidemiology of infections and to increase
efficient control and prevention measures in the future, the correct identification of trematodes at
all life-cycle stages is important. The transmission of digenetic trematodes from the snail to the
next host in the life cycle depends largely on the proportion and density of snails that release cer-
cariae, as well as the number of cercariae released from each infected snail (Anderson and May,
1991; Petney et al., 2012; Kiatsopit et al., 2015). In Thailand, the family Bithyniidae is represented
by three genera. However, only snails of the genus Bithynia are of medical importance (Brandt,
1974). There are three currently recognized taxa in this genus that have been reported as inter-
mediate hosts of Opisthorchis viverrini. These taxa are widely distributed in continental Southeast
Asia and appear to be extremely susceptible to diverse trematode infections (Brandt, 1974;
Lohachit, 2004–2005; Ngern-klun et al., 2006; Sri-Aroon et al., 2007; Chontananarth et al.,
2013; Tesana et al., 2014). Our recent report revealed that as many as 20 different types of
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trematode cercariae are found in Bithynia siamensis goniomphalos
(Kiatsopit et al., 2015). In addition to O. viverrini, several groups
of trematodes can be found concurrently in B. s. goniomphalos,
including virgulate xiphidiocercariae. In endemic areas of O. viver-
rini, B. s. goniomphalos have varying trematode prevalence levels
that are associated with seasonal and host factors (Kiatsopit et al.,
2012; Namsanor et al., 2015). We recently reported the influence
of water irrigation schemes and seasonality on transmission dynam-
ics of O. viverrini in B. s. goniomphalos in the rice paddy fields in
northeast Thailand (Kopolrat et al., 2020). In addition to O. viver-
rini, this study also reported several other trematode cercariae found
in B. s. goniomphalos, but how the environmental conditions, i.e.
irrigation and seasonality affect the transmission of these trema-
todes is not clear. Furthermore, data on host–parasite interactions
between B. s. goniomphalos and their multi-trematode parasites
are limited, with most coming from cross-sectional surveys of the
prevalence of infections. Long-term studies to capture yearly vari-
ation, the effect of seasonality and human land use have not been
reported. We hypothesize that seasonality and land use for agricul-
ture have a profound impact on transmission dynamics of trema-
tode cercariae in B. s. goniomphalos similar to that observed in
the case of O. viverrini cercariae previously reported (Kopolrat
et al., 2020).

To understand the transmission dynamics of trematode parasites
in their snail hosts, we investigated the impact of season, year-to-
year variation, amount of rainfall and snail host factors, as well as
fluctuations in the release of irrigation water, on the prevalence
and diversity of trematode infection in B. s. goniomphalos.

Materials and methods

Study area and sampling periods

The study area was a rice paddy-field habitat of B. s. goniomphalos
in Sakon Nakhon Province, northeast Thailand, the same area as
discussed in our previous report where detailed ecology and land-
use practices in paddy rice cultivation were described (Kopolrat
et al., 2020). The area has a tropical monsoon climate with the
year being divided into three seasons. The hot-dry season is
from March to May, the rainy season and cool-dry season
occur from June to October and November to February, respect-
ively (Namsanor et al., 2015).

Snail collection and cercarial shedding

To measure the prevalence of trematode infection in naturally
occurring snail populations, monthly collections were made at ten
sampling sites in an irrigated area of approximately 4879m2 from
January 2010 to December 2013. Snails were collected by handpick-
ing from objects and solid surfaces and by dredging the sediment
with a scoop from shallow water for 10min/site by two collectors.
The snails were then cleaned, blotted dry and placed into plastic
bags, and transported to the laboratory where they were identified
using standard morphological criteria (Brandt, 1974; Upatham
et al., 1983; Chitramvong, 1992). We obtained monthly data on
the rainfall (mm), and release of irrigation water for the study
area (×105m3) during the sampling period from the Thai
Meteorological Office and the Royal Irrigation Department.

Trematode infection in B. s. goniomphalos was examined by cer-
carial shedding (Kiatsopit et al., 2012). Individual snails were
placed separately into a plastic container (3 cm in diameter by
2.5 cm high) filled with dechlorinated tap water. The containers
were covered with a lid studded with pins to prevent the snail
from escaping. The snails were then exposed to a light intensity
of 1200 lux, with the lamp placed 30 cm above the container, for
5 hours during the daytime at room temperature (25 ± 2°C). The

presence of cercariae in water was observed under a stereoscopic
microscope. Trematode cercariae were identified morphologically
under a high-magnification compound microscope. Cercariae
were fixed with 1% iodine and were photographed using software
DP2-BSW by Olympus (Olympus DP 25; Olympus, Tokyo,
Japan) fitted to an Olympus BX 51 microscope. Cercariae were
identified using keys or other information as in Ditrich et al.
(1997); Ito et al. (1962); Schell (1970) and Yamaguti (1975).

From the initial shedding, those snails infected with either
O. viverrini or with virgulate or those with mixed infections of
the two were allowed to stay in the dark for 12 h under laboratory
conditions before being exposed to light from 6.00 am to 6.00 pm,
as above. The cercariae were counted under a stereomicroscope
after staining with 1% Lugol’s iodine solution.

To investigate the influence of snail size on prevalence, the
shell length was measured using digital vernier calipers. The
length of a snail shell was measured between the tip of the apex
and the lower edge of the lip.

Diversity index calculation

The following parameters and indices were used to describe spe-
cies abundance and diversity (Spellerberg and Fedor, 2003;
Tabbabi et al., 2011). Relative abundance, defined as the mean
proportion of cercariae of each species contributed by a single
snail individual, was calculated and expressed as a percentage to
assess dominance. Species richness was defined as the total num-
ber of trematode species in sampled snails. Shannon’s diversity
index (H ) was computed to evaluate the trematode diversity
across infected snails with the following formula:

H = −
∑n

i=1

pi ln pi

where pi is the proportion of snails infected with the ith trematode
species (i.e. a relative abundance of species i). A higher value indi-
cates a large number of species with similar abundances, whereas
a lower value indicates low diversity dominated by one or a few
species (Hill, 2005). Species evenness (E), describing equality of
the prevalence of each trematode species, was computed with
the following formula:

E = H/ln S

where S is the total number of species/types (i.e. species richness)
and H refers to Shannon’s diversity index. The values of E range
from 0 to 1; values closer to zero represent communities that are
dominated by one species, while values closer to 1 represent com-
munities comprised of several species with similar abundances
(Hillebrand, 2008).

Statistical analyses

Data were analysed using SPSS version 21.0 software (IBM Software
Company, Chicago, IL) and GraphPad Prism 5 (La Jolla, CA).
Environmental profile data and prevalence of all trematode infec-
tions combined in B. s. goniomphalos were obtained at monthly
intervals. By using individual snails as a study unit, odds ratios
(OR) with 95% confidence intervals (CI) from logistic regression
analyses were calculated to investigate the association between
environmental variables (rainfall and irrigation water) and the
prevalence of all trematode infections combined. Factors associated
with the prevalence of trematode infections were first analysed
using univariate analysis, and covariates were considered for further
analysis using a mixed-effects multivariable logistic regression
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model. To avoid collinearity in the multivariable models, the
covariance of the selected variables was investigated pairwise to
determine the correlation among the variables. Since the patency
of trematodes takes around 4 weeks in a snail (Sorensen and
Minchella, 2001; Mohammed et al., 2016), a lag period of 4
weeks is included in data analysis in the logistic regression analyses.
The prevalence of all trematode cercariae in B. s. goniomphalos was
calculated as a percentage for each cercarial type. χ2 tests were per-
formed to compare the prevalence of all trematode infections com-
bined between seasons in different study years. Independent t-tests
and analysis of variance (ANOVA) were used for normally distrib-
uted data to assess size differences between groups of infected and
uninfected snails. The correlation of cercarial emergences/snail/day
between single and mixed infections was evaluated by linear regres-
sion and Pearson’s correlation coefficient. Kruskal–Wallis tests
were used to compare cercarial emergences/snail/day between sin-
gle and mixed infections. A P value of <0.05 was considered statis-
tically significant.

Results

Profiles of trematode infection, environmental and irrigation
factors

The patterns of rainfall were consistent between years while the
duration of irrigation and amount of irrigated water varied during

the study period as previously reported (Kopolrat et al., 2020)
(Fig. 1). Rainfall averages about 120–170mm per month and
falls mostly between April and the end of October. The amount

Fig. 1. Profiles of monthly prevalence of trematodes in Bithynia siamensis goniomphalos in relation to rainfall, irrigation water and number of snails sampled over
the 4-year period from 2010 to 2013. (A) Mean rainfall and irrigation water (Kopolrat et al., 2020) and (B) prevalence of trematodes and number of snails examined.

Table 1. Numbers and percent of Bithynia siamensis goniomphalos samples
categorized by the status of trematode infection and sampling years and
seasons

Factors No snails (n) %

Total no. of snails 59 727 100.00

Positive for trematodes 6134 10.27

Negative 53 593 89.73

Years

2010 16 977 28.42

2011 15 548 26.03

2012 14 021 23.48

2013 13 181 22.07

Seasons

Hot-dry 19 362 32.42

Rainy 23 273 38.97

Cool-dry 17 092 28.62
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of irrigated water in the whole study area increased during 2011
and again at the start and towards the end of 2012 and remained
high until mid-2013. The abundance of snails varied widely over
the sampling period, but there was no relationship with the season.
The total number of snails collected was 59 727 and the highest
number collected on a single occasion was 4192 in March 2010.

As reported previously (Kopolrat et al., 2020), 17 types of tre-
matodes cercariae belonging to eight taxonomic groups were
found in B. s. goniomphalos snails (Fig. S1). The details of snail
samples categorized by infection status and sampling times by
season and year are shown in Table 1. The monthly prevalence
of all trematode cercariae was variable over season and study
years (Fig. 1).

Association between the prevalence of trematode infection
and environmental variables

The results by multivariable logistic regression model with a lag
period of 4 weeks to allow cercarial development in the snail
host shown as crude (cOR) and adjusted (aOR) odd ratios (i.e.
by year, season, rainfall, irrigated water and snail size) are shown
in Table 2. There was an association between the prevalence of
all trematode infections combined in B. s. goniomphalos and with
reference to 2010, the aOR was significant for 2012 and 2013 (P
< 0.001). Considering the seasonal factor in using the hot-dry sea-
son as the reference, there was a significant association of all trema-
tode prevalence with the cool-dry season (aOR = 2.779, P < 0.001).
The prevalence of trematode infections was found to be negatively
associated with the amount of rainfall, i.e. increased rainfall volume

reduced the risk of trematode infection in B. s. goniomphalos (P <
0.001). There was a significant association between the prevalence
of trematode infections and levels of irrigation water, in compari-
son with the baseline level, the aORs being 1.579 and 1.395 for
medium and high irrigation water categories, respectively (P <
0.001). In addition, the prevalence of trematode infections was sig-
nificantly associated with the snail size (shell length) when adjusted
by year and season (P < 0.001), i.e. larger snail size had a higher risk
of trematode infection.

Profiles of trematode infection and seasonality

The prevalence of all cercarial infections in B. s. goniomphalos for
each year and season is shown in Fig. 2. Overall, the prevalence
varied significantly between years (P < 0.001) and season (P <
0.001). In 2010, the highest prevalence occurred in the cool-dry
season, followed by the rainy season and the lowest prevalence
was in the hot-dry season (P < 0.001). In 2011, the prevalence
peaked in the cool-dry season and was low in the hot-dry and
rainy seasons (P < 0.001). In 2012, the greatest prevalence was
in the cool-dry season being significantly higher than in the hot-
dry and rainy seasons (P < 0.001). In 2013, peak prevalence
occurred in hot-dry, followed by the rainy season and the lowest
prevalence was in the cool-dry season (P < 0.001).

Only 80 snails (0.14%) were parasitized with more than one
type of trematode larvae. Table 3 details the single infections
with each trematode type. Almost all the multiple infections
were double infections with virgulate cercariae being one of the
groups involved (Table S1). Only in a single snail was

Table 2. Associations between prevalence of combined trematode infection and environmental (season, rainfall and irrigated water) and biological factors (size of
snail)

Factors No. of snails examined No. of snails infected (%) cOR aOR 95% CI P value

Yeara

2010 16 977 1182 (7.0) Ref Ref

2011 15 548 1156 (7.4) 1.073 1.053 0.967–1.148 0.233

2012 14 021 1942 (13.9) 2.148*** 1.903 1.761–2.057 <0.001

2013 13 181 1854 (14.1) 2.187*** 1.728 1.595–1.871 <0.001

Seasonb

Hot-dry 19 362 1289 (6.7) Ref Ref

Rainy 23 273 1730 (7.4) 1.126** 0.954 0.884–1.030 0.229

Cool-dry 17 092 3115 (18.2) 3.125*** 2.779 2.589–2.983 <0.001

Rainfallc

Low (0–150 mm) 35 950 4386 (12.2) Ref Ref

Medium (151–300 mm) 13 714 1231 (9.0) 0.710*** 0.947 0.877–1.023 0.166

High (>300 mm) 10 063 517 (5.1) 0.390*** 0.577 0.522–0.639 <0.001

Irrigation waterd

Low (0–500 000m3) 24 155 1621 (6.7) Ref Ref

Medium (500 001–1 000 000 m3) 27 441 3445 (12.6) 1.996*** 1.579 1.475–1.692 <0.001

High (1 000 001–1 500 000 m3) 8131 1068 (13.1) 2.102*** 1.395 1.263–1.541 <0.001

Size of snail (shell length)e

Small (<8.00 mm) 847 219 (25.9) Ref Ref

Medium (8.01–10.00 mm) 3422 1388 (40.6) 1.957*** 2.212 1.857–2.635 <0.001

Large (>10.01 mm) 1953 1207 (61.8) 4.640*** 5.677 4.692–6.869 <0.001

Data presented were analysed by logistic regression model showing cOR and aOR with 95% CI and P values.
aOR by a: season, b: year, c: year, season and irrigated water, d: year, season and rainfall, e: year and season.
**, *** indicate cORs with a significance level of P < 0.01 and P < 0.001, respectively.
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echinostome cercariae 1 and 2 found together. Within six multi-
ply infected snails, O. viverrini cercariae existed together with vir-
gulate cercariae. As shown in Fig. 3, there was a significant
correlation between the prevalence of single and multiple trema-
tode infections (R2 = 0.77, P < 0.001).

The diversity of trematodes across year and season

Details of species richness, abundance, diversity and evenness
separated by year and season are shown in Table S2. The species

richness peaked in the cool-dry season except in 2012–2013 when
it peaked in the hot-dry season. Similarly, abundances were high-
est in the cool-dry season in 2010–2012 but the hot-dry season in
2013. Shannon index and species evenness are variable and incon-
sistent with no clear pattern.

Snail size distribution in different seasons

A total of 6222 snails were included for size comparisons from
2011 to 2013. Of these, 2433 snails were infected by virgulate

Fig. 2. Prevalence of single and multiple trema-
tode infections in B. s. goniomphalos at different
seasons and years. Single trematode infections
(A, C, E and G). Data shown are percent positive
of infection in the snails and number positive
over the number of snails examined. Multiple
trematode infections (B, D, F and H). *P < 0.05;
**P < 0.01; ***P < 0.001.
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Table 3. Seasonal and yearly prevalence of trematode diversity in B. s. goniomphalos in Sakon Nakhon Province, Thailand

Type of cercariae

2010 2011 2012 2013

Number of infections (%) Number of infections (%) Number of infections (%) Number of infections (%)

Hot-dry Rainy Cool-dry Hot-dry Rainy Cool-dry Hot-dry Rainy Cool-dry Hot-dry Rainy Cool-dry

(N = 7,839) (N = 4,989) (N = 2,277) (N = 4,766) (N = 7,852) (N = 3,270) (N = 4,268) (N = 5,607) (N = 6,125) (N = 2,489) (N = 4,825) (N = 2,349)

Xiphidiocercariae

1. Virgulate 1 35 (0.45) 102 (2.04) 85 (3.73) 156 (3.27) 141 (1.80) 465 (14.22) 291 (6.82) 441 (7.87) 965 (15.76) 233 (9.36) 347 (7.19) 80 (3.41)

2. Virgulate 2 - 33 (0.66) 7 (0.31) 65 (1.36) 37 (0.47) 80 (2.45) 12 (0.28) 19 (0.34) 40 (0.65) 14 (0.56) 4 (0.08) 1 (0.04)

3. Virgulate 3 5 (0.06) 28 (0.56) 89 (3.91) 56 (1.17) 34 (0.43) 11 (0.34) 6 (0.14) 25 (0.45) 63 (1.03) 29 (1.17) 54 (1.12) 31 (1.32)

4. Virgulate 4 - - - - - - - - - 6 (0.24) 13 (0.27) 4 (0.17)

Pleurolophocercous cercariae

5. Opisthorchis viverrini cercariae - 4 (0.08) 3 (0.13) 6 (0.13) 52 (0.66) 19 (0.58) 7 (0.16) 44 (0.78) 149 (2.43) 53 (2.13) 42 (0.87) 10 (0.43)

6. Parapleurolophocercous cercariae 7 (0.09) 3 (0.06) 7 (0.31) 2 (0.04) - 18 (0.55) 1 (0.02) 8 (0.14) 10 (0.16) 13 (0.52) 1 (0.02) -

Cystophorous cercariae (Hemiuridae)

7. Cystophorous cercariae 1 36 (0.46) 2 (0.04) 22 (0.97) 36 (0.76) 20 (0.25) 18 (0.55) 7 (0.16) 5 (0.09) 36 (0.59) 14 (0.56) 13 (0.27) 5 (0.21)

8. Cystophorous cercariae 2 - - - - 1 (0.01) 1 (0.03) 2 (0.05) 1 (0.02) - - - -

Monostome cercariae

9. Monostome - 1 (0.02) - 8 (0.17) 12 (0.15) 9 (0.28) 32 (0.75) 16 (0.29) 76 (1.24) 22 (0.88) 4 (0.08) 6 (0.26)

Furcocercouscercariae

10. Furcocercous cercariae 1 1 (0.01) - 3 (0.13) 1 (0.02) 5 (0.06) 4 (0.12) 3 (0.07) 3 (0.05) - 2 (0.08) - 3 (0.13)

11. Furcocercous cercariae 2 - 1 (0.02) 1 (0.04) - - 2 (0.06) - - - - - -

12. Longifurcate-pharyngeate cercariae 1 1 (0.01) 17 (0.34) 1 (0.04) - 12 (0.15) 3 (0.09) 5 (0.12) 17 (0.30) 13 (0.21) 17 (0.68) 10 (0.21) 1 (0.04)

13. Longifurcate-pharyngeate cercariae 2 - - - - 2 (0.03) 1 (0.03) 1 (0.02) - - - - -

Mutabile cercariae

14. Mutabile 45 (0.57) - 4 (0.18) 2 (0.04) - 2 (0.06) 11 (0.26) - 2 (0.03) 4 (0.16) - -

Echinostome

15. Echinostome cercariae1 - 6 (0.12) 2 (0.09) 5 (0.10) 9 (0.11) 5 (0.15) 1 (0.02) 3 (0.05) 6 (0.10) 1 (0.04) 10 (0.21) 5 (0.21)

16. Echinostome cercariae 2 - - - 1 (0.02) 1 (0.01) 1 (0.03) - 1 (0.02) - 1 (0.04) 4 (0.08) -

Amphistome cercariae

17. Amphistome 14 (0.18) 15 (0.30) - - 1 (0.01) 1 (0.03) 1 (0.02) - - - - -

Data shown are number and percent positive snails.
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cercariae combined, and 381 snails were infected by O. viverrini
cercariae. The frequency distributions of snail size (shell length)
between uninfected compared with infected snails by virgulate
and O. viverrini cercariae during the different seasons of each
year are shown in Fig. 4. The shell length was significantly influ-
enced by season and infection status (ANOVA, P < 0.001). Over 3
years, snails infected with virgulate and O. viverrini cercariae were
significantly larger than uninfected snails in all seasons (t-test, P
< 0.001) but were similar in the cool-dry season in 2012. The aver-
age shell length ranged from 8.76 to 10.69 mm. Small snails (<8
mm) made up 6.12% of those measured, 48.34% were pre-
reproductive and of medium size (8–10 mm) and 45.54% were
reproductive, large snails (>10 mm).

Cercarial emergence of single and double trematode infection

In the March 2013 sample, there were 51 snails infected with O.
viverrini cercariae and 188 virgulate cercariae-infected snails.
There were five snails with mixed infections which were used
for cercarial emergence examinations (Fig. 5). Opisthorchis viver-
rini cercarial emergence was similar in single and in double infec-
tions. Significantly more virgulate cercarial emerged in single
infections compared with double infections (P < 0.05).

Discussion

One of the main findings in this study is the discovery of up to 17
types of cercariae, including O. viverrini, in B. s. goniomphalos
from a single locality compared with 20 types previously reported
across several localities (Kiatsopit et al., 2015), indicating the rich
trematode fauna in the rice-paddy habitat which receives regular
irrigation water. Our data also confirm the high trematode diver-
sity and susceptibility to infection in B. s. goniomphalos. All
trematode cercariae were found in 9.95% of the snails sampled,
with the highest prevalence (49.18%) in the cool-dry season in
January 2010. The 17 morphologically identified larval trema-
todes included types similar to those found in other studies (Ito
et al., 1962; Wykoff et al., 1965; Ditrich et al., 1990, 1992;
Giboda et al., 1991; Adam et al., 1993; Nithiuthai et al., 2002;
Lohachit, 2004–2005; Sri-Aroon et al., 2005, 2007; Tesana et al.,
2014; Kiatsopit et al., 2015). Previous studies have also shown
that individual species of snails can act as intermediate hosts
for several trematode species (Sousa, 1993; Esch et al., 2001;
Loy and Haas, 2001).

Natural infections of O. viverrini in B. s. goniomphalos were few.
The monthly infection rates in our study ranged from 0.01 to
4.10%, and the average infection rate was 0.71% (Kopolrat et al.,

2020). These results were similar to Brockelman et al. (1986) and
Lohachit (2004,–2005) who reported infection rates of 0.10–
0.36%. In contrast, the virgulate group was present in 7.84% of
all snails that we examined. Virgulate cercaria is a stage in the life-
cycle of a very complex group of trematodes with many different
subgroups (Schell, 1970). Kiatsopit et al. (2015) and Namsanor
et al. (2015) recently reported that B. s. goniomphalos shows
particularly high susceptibility to infection by virgulate cercariae,
making them the dominant cercarial fauna. Moreover, this particu-
lar group of cercariae can be found in other snails, such as
Melanoides tuberculata (Krailas et al., 2014), Thiara scabra
(Ukong et al., 2007) in Thailand and Biomphalaria tenagophila
from South America (Moraes et al., 2009).

The strongest factor relating to high all trematode prevalence
rates and double infection was the season, with a high prevalence
in the cool-dry season in 2010–2012. However, this is not consist-
ent as prevalence peaked in the hot-dry season in 2013. Seasonal
variations are the major extrinsic factor associated with preva-
lence, particularly the amount of rainfall plays an important
role in the complex interplay between host and parasite
(Brockelman et al., 1986). Seasonal changes in rainfall cause
marked fluctuations in the transmission rates of diseases and
parasites (Mouritsen and Poulin, 2002; Cattadori et al., 2005;
Kim et al., 2005; Altizer et al., 2006).

In addition to environmental factors, our study found that
irrigation intensity in 2012 also influenced all trematode preva-
lence rates in the snails. In this study, we showed an increase in
the prevalence of all trematode infections combined in
B. s. goniomphalos with an increasing quantity of irrigation
water (45.36–64.67%) in 2012 compared with 2011 and 2013.
Irrigation in paddy-field agriculture makes a second crop of rice
in the cool-dry season possible. This practice can alter the natural
cycle of snails by increasing the snail population density in rice
fields, resulting in a higher prevalence in the hot-dry season in
2013 as opposed to the conventional peak prevalence in the cool-
dry seasons in 2010–2012. The changes in the seasonal pattern are
probably due to irrigation ditches being functionally connected to
domestic and wild animals, human and snail hosts through the
transport of feces from households and villages. In areas where
sanitary facilities are underdeveloped, human or animal reservoirs
host feces containing trematode eggs that can be flushed into
water bodies directly or through irrigation ditches in the monsoon
season. Trematode eggs from animal and human hosts are likely
to sediment quickly and may not disperse over a large distance
unless substantial water flow occurs, however, infected snails
may travel with water flow to the paddy fields. Thus, the biological
characteristics of the cercariae, the snail host population together
with the environmental conditions, play important roles in trema-
tode transmission (Haas, 1994; Petney et al., 2012; Ziegler et al.,
2013; Wang et al., 2015).

Interestingly, the virgulate type, being the most common class
of cercariae in B. s. goniomphalos, was a major type found in dou-
ble infections. Nevertheless, only 0.14% of the infected snails har-
boured more than one larval trematode species, which is not
unexpected based on the low percentages reported in previous
studies (Sousa, 1990, 1993; Lafferty et al., 1994). This finding
may represent inter-specific competition among trematode para-
sites, including O. viverrini, occurring in the natural environment
(Bayne and Loker, 1987; Jourdane and Theron, 1987). Some
trematode parasites, particularly the virgulate group, may have
evolved their competitive ability by becoming more efficient
resource users and by developing interference mechanisms that
keep competing species from using scarce resources. Thus, virgu-
late cercariae are the most successful group parasitizing the field
population of B. s. goniomphalos, whereas cercariae of O. viverrini
are only of moderate prevalence in the paddy-field habitat.

Fig. 3. Relationship between monthly prevalence of single and multiple (double)
trematode infections in B. s. goniomphalos (dots) during the 4-year study period.
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How the virgulate trematode interacts with O. viverrini is not
known. Nevertheless, the fact that they are smaller in body size
compared with O. viverrini (Schell, 1970) and appear to have
lower rates of cercarial emergence in mixed infections, suggests
that they are unlikely to exert a substantial negative effect on O.

viverrini. Laboratory studies of freshwater snail–trematode asso-
ciations have demonstrated the presence of strong antagonistic
interactions between the intra-molluscan of redia and sporocyst
stages of species that infect the same host individual and that dou-
ble infections are more pathogenic to the snails when compared

Fig. 4. Comparison of snail size distributions in different seasons between the snails with virgulate (xiphidiocercaria) and Opisthorchis viverrini cercariae in com-
parison with uninfected snails (vertical dotted line represents the mean shell length of uninfected snails). (A) 2011, (B) 2012 and (C) 2013.
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to infections of only one trematode species (Lim and Heyneman,
1972; Sousa, 1992; Lafferty et al., 1994). The competition among
larvae from different trematode species inside mollusks can
reduce both parasite number and the snail population (Basch
et al., 1969; Lim and Heyneman, 1972; Frandsen, 1987). Larvae
of Schistosoma mansoni do not develop in B. tenagophila previ-
ously infected by longifurcate cercariae with or without an eyespot
(Machado et al., 1988). These authors observed that mollusks
infected by echinostome and other cercariae were protected
from S. mansoni infection at about 73 to 87%, respectively. The
time of the first infection may have some impact on additional
cercarial infections, and internal mechanisms repel further cercar-
ial infections in an already infected snail. Fluke development in
intermediate hosts depends on genetic factors as well as environ-
mental factors, which might facilitate eggs and miracidia disper-
sion (Williams and Esch, 1991; Fernandez and Esch, 1991a,
1991b). Since the trematode infection is usually harmful to the
mollusk host, the impact of double or even triple infections on
the snail host should be investigated in the future. In addition,
a similar study in a paddy rice field that received no irrigation
is needed for comparison.

The current study revealed that the virgulate species and O.
viverrini tended to infect larger snails. This is consistent with
the results of Namsanor et al. (2015) who showed that larger
snails were more susceptible to virgulate infection than were
small snails. For snail–trematode interactions, gigantism is often
postulated to benefit the parasite as a larger host provides a
greater volume for parasite occupation and reproduction
(Sandland and Minchella, 2003; McCarthy et al., 2004). In the
case of O. viverrini, a possible explanation involves the irrigation
water. Our previous report shows that the prevalence of O. viver-
rini was positively associated with the size of B. s. goniomphalos in
2010, 2011 and 2013, but the relationship was reversed in 2012
(Kopolrat et al., 2020). This may be partially explained by the
fact that in 2012 there were more snails available as a result of
more irrigated water, hence more small snails (pre-reproductive
size) were infected compared with larger snails in the rainy and
cool-dry seasons.

In conclusion, this study demonstrated that B. s. goniomphalos
in paddy-field habitats supports a high diversity of trematode
fauna led by virgulate cercariae and followed by O. viverrini.
Irrigation water for rice cultivation has a strong influence on
the transmission dynamics of the trematodes by supporting the
abundance of snails and hence shifting the peak of all trematode
prevalence in the snails from the cool-dry to the hot-dry season.
The findings of very low levels of mixed trematode infections and
potential interference of cercarial emergence in virgulate cer-
cariae, but not O. viverrini, indicates the importance of trema-
todes developing in the snail, which may contribute to host

gigantism and parasite-induced mortality. Taken together, the
observed results suggest that interactions between host and para-
site depend not only on a specific characteristic of the parasite but
also the environmental factors including irrigation practices for
rice cultivation, which affects the transmission dynamics. In add-
ition, this 4-year study shows that variation between years can be
considerable and that short-term studies are unlikely to unravel
the complexity of factors influencing trematode population
biology.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182021001992.
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