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SUMMARY
The purpose of this study is to determine the dynamic load carrying capacity (DLCC) of a manipulator
that moves on the specified path using a new closed loop optimal control method. Solution methods for
designing nonlinear optimal controllers in a closed-loop form are usually based on indirect methods,
but the proposed method is a combination of direct and indirect methods. Optimal control law is
given by solving the nonlinear Hamilton–Jacobi–Bellman (HJB) partial differential equation. This
equation is complex to solve exactly for complex dynamics, so it is solved numerically using the
Galerkin procedure combined with a nonlinear optimization algorithm. To check the performance of
the proposed algorithm, the simulation is performed for a fixed manipulator. The results represent
the efficiency of the method for tracking the pre-determined path and determining the DLCC.
Finally, an experimental test has been done for a two-link manipulator and compare with simulation
results.
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1. Introduction
A major benefit of a robotic manipulator is their ability to move on a pre-specified path or between two
predefined points. Planning a proper trajectory is a fundamental issue to complete such operations.
Trajectory planning has been defined as finding the optimal trajectory from a specific origin to a
specified point (point to point motion) or finding the history of angular positions and velocities and
joint torques for a pre-specified end-effector trajectory (pre-specified path). In reality, the open-loop
method cannot be used for the motion of a robot in a specific path. Open-loop method is extremely
sensitive to parameter variations and has no robustness against disturbances and therefor the alternative
method is to use a closed-loop controller. At any moment, the closed-loop controller determined the
required torque due to the amount of error, actual and desired position, and the speed of the robot.

To increase the amount of load carrying capacity, it is necessary to select the appropriate control
method and the required torque for the robot actuators must be reduced. For this reason, a closed
loop nonlinear optimal control method is used. For solving a nonlinear optimal control problem in a
closed-loop form, the Hamilton–Jacobi–bellman (HJB) equation must be solved. Solving this equation
analytically for a nonlinear system is not possible and a numerical method can be used to solve this
equation. The numerical method for solving the HJB equation is complex and the process of controller
design is very difficult. In this paper, with a combination of direct and indirect methods, a new algorithm
was proposed to solve this equation. Initially, optimal conditions are applied according to the indirect
optimization method and then the structure of control law is designed and finally, unknown controller
parameters were determined by solving the resulting nonlinear optimization problem using MATLAB
software.
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In ref. [1] Optimal point-to-point motion planning has been investigated based on the Pontryagin’s
minimum principle for a heavy duty industrial robot to travel between two points in a fixed time
interval. In ref. [2], an iterative method for time optimal control of a general type of dynamic systems
is proposed. The method uses the indirect solution of the open-loop optimal control problem. The
necessary conditions for optimality are derived from Pontryagin’s minimum principle and the resulting
equations lead to a nonlinear two-point boundary value problem.

In ref. [3], two methods are presented for solving a closed-loop optimal control problem. These
control laws are based on the numerical solution to the nonlinear HJB equation. The first approach
is the successive approximation for finding the solution of the HJB equation in the closed-loop form,
and the second approach is based on solving a state-dependent Riccati equation, which is an extension
of the algebraic Riccati equation for nonlinear systems. In ref. [4], a new method is proposed to solve
a nonlinear optimal control problem.

Solution methods for designing nonlinear optimal controllers in a closed-loop form are usually
based on indirect methods, but the proposed method is a combination of direct and indirect methods.
As it mentioned the optimal control law of nonlinear dynamic systems with state feedback form
is given by the solution to the nonlinear HJB equation. The Galerkin procedure and a nonlinear
optimization algorithm are used to solve this equation numerically. Results show that the proposed
method can be used for trajectory planning and designing optimal control with closed form for
manipulators.

In ref. [5], optimal point-to-point motion planning of an elastic parallel manipulator is investigated.
The dynamic model of a 3R planar parallel manipulator is obtained using Kane equation and the
improved curvature based finite element method. Then, an adaptive Gauss Pseudospectral Method is
proposed to transcribe the trajectory optimization problem into the Nonlinear Programming (NLP)
problem, and the sequential quadratic programming (SQP) approach is used to solve this problem.
The proposed method in ref. [6] is compared with two closed-loop nonlinear methods that are usually
applied to robotic systems. The proposed method is compared with the feedback linearization, which
linearizes the nonlinear dynamic equations using a nonlinear state transformation and a nonlinear
feedback law and a robust sliding mode control method. Results show better performance of the
proposed nonlinear optimal control approach. Another major subject that is considered in this paper
is determining the maximum dynamic load carrying capacity (DLCC) of manipulators. The DLCC,
which is an important characteristic of the industrial manipulator, is the maximum allowable load that
can be carried by the manipulator in a point to point or predefined trajectory tasks. Finding DLCC of
a manipulator and related trajectory is turned out to be an optimization problem that can be solved
using various methods.

In ref. [7], a method is proposed for calculating the DLCC for flexible link manipulators with
an open-loop form based on Pontryagin minimum principle and indirect optimization. Dynamic
equations are based on the method that is detailed in ref. [8]. In ref. [9], a closed loop nonlinear optimal
control approach is investigated for flexible joint manipulators and the DLCC of these manipulators is
obtained through this approach. DLCC is calculated according to the limits in actuators and tracking
accuracy.

Guo et al.,10 proposed a direct optimization method for trajectory planning and obtaining maximum
DLCC for a five DOF hybrid manipulator. An approved evolutionary algorithm that was elitist
nondominated sorting genetic algorithm (NSGA-II) was used. Wu et al.11 presented a novel method
for obtaining the maximum DLCC of a redundant and non-redundant actuated parallel conveyor by
optimizing the internal forces. In ref. [12], two-level optimal approach was considered for point-to-
point motion planning of a flexible parallel manipulator. It was considered a rigid-flexible coupling
dynamic model and actuator dynamics. Then, the multi-interval Legendre–Gauss–Radau (LGR)
pseudospectral method was applied to transform the optimal control problem into the NLP problem.
Then, the multi-interval LGR Pseudospectral method was applied to transform the optimal control
problem into the NLP problem. Fen et al.,13 presented a new improved ant colony algorithm based
on the rule of finding a better path in a shorter time that was based on the D–H parameter method for
solving the inverse kinematics of a six DOF manipulator.

The load-carrying capacity of the manipulator is often considered to be the same throughout
their work space. However, the actual capacity of the manipulator largely depends on their
posture, their velocity, their acceleration, and their actuators limits. In ref. [14], a method is
proposed to increase the DLCC of the manipulator through trajectory optimization. In ref. [15],
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a new two-level method which is a combination of open and closed loop optimal control, is
proposed for calculating DLCC of nonholonomic Wheel Mobile Manipulator in the presence of
environmental obstacle. This method obtains the maximum load path and the maximum allowable
load in a specified time, subject to constraints such as motor torque and jerk limits, accuracy of
reaching to the final point, obstacle avoidance and vehicle kinematic and dynamic parameters. The
objective of16 is to identify the trajectory that accomplishes the assigned motion with the maximum
DLCC, which is subject to the constraints imposed by the manipulator structure kinematics and
dynamics.

In the previous works, the optimal trajectory with maximum DLCC is determined and then a
closed-loop controller is designed to realize this trajectory. The proposed method in this paper
resolves these deficiencies and designs a nonlinear optimal controller and optimal trajectory with
maximum DLCC at the same time. Also, updating and applying this method for a different robot
can be implemented without any complicated computations. The structure of paper is as follows; in
Section 2, the problem statement is presented and the direct and indirect procedures are explained
and the combined method is proposed through an applicable algorithm. Then in Section 3, the DLCC
of the manipulator is defined in detail and some of the constraints that deal with the optimization
problem are illustrated. Finally, in Section 4, simulations are applied to a rigid planar manipulator and
the experimental test is applied on a Puma-type manipulator to show the capability of the proposed
method.

2. Problem Statement
Optimal controller design is performed using combination of direct and indirect methods, where the
indirect method is based on solving the HJB equation and Galerkin approximation, and the direct
method is based on a direct search for an equivalent discrete dummy model. In this section, first the
initial optimal control problem is defined and the HJB equation is presented to solve this problem
indirectly. Finally the direct-optimization method that is based on the collocation procedure is used
to determine the unknown parameters in the resulting optimal control law.

2.1. Optimal control and H–J–B equation (indirect part)
A dynamic system with nonlinear state equation consider as (1). Also, the performance index function
and its nonlinear term are defined as (2) and (3).

ẋ(t ) = f (x(t )) + g(x(t ))u(x) x ∈ Rn; u ∈ Rr (1)

J (x) = h(x(t f ), t f ) +
t f∫

t0

(l (x) + uT (x)R̄u(x))dt (2)

l (x) = [x(t ) − xd (t )]T Q̄[x(t ) − xd (t )] (3)

where Q̄ is n × n symmetric positive semi-definite and R̄ is r × r symmetric positive definite matrixes,
also xd (t ) is vector of the desired state trajectory. This formulation of performance index causes the
states to track the desired values described in xd (t ).

The optimal value of J (x(t ), t ) is subject to input control vector u(t) denoted by J∗(x(t ), t ).

J∗(x, t ) = min
u(t )
0<t<t f

⎧⎨
⎩

t f∫
0

(l (x(t ), t ) + u(x, t )T R̄u(x, t ))dt

⎫⎬
⎭ (4)

The Hamiltonian is defined as follows:

H (x(t ), u(t ), p(t ), t ) = (l (x(t ), t ) + u(x, t )T R̄u(x, t )) + pT (t )[ f (x(t )) + g(x)u(x, t )] (5)
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where p(t) is the vector of co-states. According to calculus of variations, the necessary conditions for
u*(t) and x*(t), to be optimal control and optimal state, respectively, are as follows:

ẋ∗(t ) = ∂H

∂ p
(x∗(t ), u∗(t ), p∗(t ), t )

ṗ∗(t ) = −∂H

∂x
(x∗(t ), u∗(t ), p∗(t ), t )

H (x∗(t ), u∗(t ), p∗(t ), t ) ≤ H (x∗(t ), u(t ), p∗(t ), t )

(6)

The boundary conditions for two sets of ordinary differential equations are as follows:

x∗(t0) = x0; p∗(t f ) = ∂h

∂x
(x∗(t f ), t f ) = 0 (7)

As it shown in ref. [17], p∗(t ) = ∂J∗
∂x (x∗(t )) and Eq. (8) must be satisfied for J∗(x∗(t )) in order to

be the minimum value of J (x).

∂J∗

∂t
+

(
l (x∗, t ) + u∗(x∗, t )T R̄u∗(x∗, t )

)
+

[
∂J∗

∂x

]T [
f (x∗(t )) + g(x∗)u∗(x∗, t )

] = 0 (8)

This is HJB partial differential equation and it is not possible to obtain its analytical solution for
nonlinear systems. The solution of this equation for linear time invariant systems leads to a well-
known algebraic Riccati equation.17 A new approach for solving this equation for nonlinear systems
is presented using a combination of Galerkin approximation and dynamic optimization.

After solving H–J–B equation, the solution to the main optimal control problem is given by the
state feedback law.

u∗(x, t ) = 1

2
R̄−1gT (x)

∂J∗

∂x

(
x∗(t )

)
(9)

That J∗(x∗(t )) is solution to the HJB equation.

2.2. Galerkin approximation and nonlinear optimization (direct part)
According to the numerical Galerkin method,18 it is considered that one can find a complete set
of basic functions {φ j (x)}∞j=1 with boundary conditions {φ j (0) = 0}∞j=1 and the solution of the HJB
equation can be written as follows:

J∗ (x(t ), t ) =
∞∑
j=1

c j (t )φ j (x) (10)

It is assumed that this summation converges in a set of state variables such as �. An approximate
solution to the HJB equation is obtained by truncating this summation.

J∗
N (x(t ), t ) =

N∑
j=1

c j (t )φ j (x) (11)

Using this procedure, the optimal control law can be written as follow:

uN (x, t ) = 1

2
R̄−1gT (x)

∂J∗
N

∂x
=1

2
R̄−1gT (x)

⎡
⎣ N∑

j=1

c j (t )
∂φ j (x)

∂x

⎤
⎦ (12)

Nonlinear programming method is used to find time varying coefficients c j (t ). The controller
uN (x, t ) has a nonlinear form and has the same robustness as a linear quadratic controller.19 Important
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issue of this procedure is a proper selection of basic functions and �. Some controls should be taken
in the selection of basic functions, since their partials with respect to the states ( ∂φ j (x)

∂x ) will ultimately
appear in the control law. In this paper, second-order polynomial functions of states that will result
linear terms with respect to the states in control law are selected. It is shown in ref. [20] that selection
higher order terms to basic functions have no advantages. The optimal control problem explained by
Eq. (12) can be mentioned as a nonlinear optimization problem as follows to find unknown parameters
c j (t ).

Algorithm 1.

min
cj (t )

{
h(x(t f ), t f ) +

t f∫
0

(l (x(t ), t ) + uN (x, t )T R̄uN (x, t ))dt

}

Sub ject to :
ẋ = f (x(t )) + g(x)uN (x, t )
x(t ) ∈ �

x(0) = x0; x(t f ) = x f

uN (x, t ) = 1
2 R̄−1gT (x)

[
N∑

j=1
c j (t ) ∂φ j (x)

∂x

]

umin ≤ uN (x, t ) ≤ umax

This optimization problem, which has a differential constraint, can be solved using the collocation
method and the “fmincon” command from MATLAB software.20 It should be noted that MATLAB
software can only solve nonlinear optimization. It includes algebraic constraints and cannot solve
dynamic optimization problem. The collection of functions increases the capability of the MATLAB
optimization toolbox, especially of the constrained nonlinear minimization of the routine fmincon.

By definition of an additional state variable xn+1 and differential Eq. (13), the performance index
can be defined as the standard Mayer form (14).

ẋn+1 = l (x(t ), t ) + uN (x, t )T R̄uN (x, t ); xn+1 (0) = 0 (13)

J (u(t )) = h(x(t f ), t f ); x ∈ Rn+1 (14)

Using Eqs. (13) and (14), the optimization problem defined by Algorithm 1 is converted to the
following Mayer form optimization.

Algorithm 2.

min
C(t )

{h(x(t f ), t f )}
such that:
ẋ = f (x(t ),C(t ), t ) x(0) = x0

Eq(x(t ),C(t ), t ) = uN (x, t ) − 1
2 R̄−1gT(x)

[
N∑

j=1
c j (t ) ∂φ j (x)

∂x

]
= 0

g1(x(t ),C(t ), t ) = uN (x, t ) ≤ umax

g2(x(t ),C(t ), t ) = −uN (x, t ) ≤ −umin

xLB ≤ x(t ) ≤ xUB; � = [
xLB, xUB

]
where

C(t ) = [c1(t ), c2(t ), . . . , cN (t )]T (15)

Eq, g = {g1, g2}T, xLB; xUB, umin; umax are equality, inequality constraint vectors, state and input
profile bounds.

As it mentioned, the collocation finite element is used to convert the differential constraint equation
into an algebraic one. Based on the collocation method, the residual equations that are evaluated at
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Fig. 1. Time interval and collocation points (K = 2).

any shifted roots of Lagrange polynomials shown in Eq. (16), form a set of algebraic equations.20

xi(t ) =
K∑

j=0

xi, j

⎡
⎢⎣ K∏

k=0
k �= j

(
t − ti,k

)
(
ti, j − ti,k

)
⎤
⎥⎦ i = 1, ..., N (16)

ci(t ) =
K∑

j=0

ci, j

⎡
⎢⎣ K∏

k=0
k �= j

(
t − ti,k

)
(
ti, j − ti,k

)
⎤
⎥⎦ i = 1, ..., N (17)

Differential constraint equation, equality and inequality must be discretized into N time intervals,
also as shown in Fig. 1, each time interval (t ∈ [ζi, ζi+1]) is divided into K collocation points.
State and input variables on each point are approximated by Lagrange polynomials with xi, j and
ci, j unknown coefficients. In addition, the continuity conditions must be satisfied at any endpoints
(xi,0(ζi) = xi−1,K (ζi)). Using K = Kx = Ku point represent orthogonal collocation on finite elements.
This procedure leads to the following algebraic constraint optimization over its time interval:

Algorithm 3.

min
xi j ,ci j

[
h(x f , t f )

]
subject to:
x1,0 − x0 = 0
xi,0(ζi) − xi−1,K (ζi) = 0i = 2, ..., N j = 1, ..., K
x f − xN

N+1,0(ζN+1) = 0
xLB ≤ xi, j ≤ xUBi = 1, ..., N j = 1, ..., K
Eq(ti, j, xi, j, ui, j ) = 0
g(ti, j, xi, j, ui, j ) ≤ 0

Now, MATLAB Optimization Toolbox can be chosen to minimize objective function with respect
to nonlinear algebraic equality and inequality constraints. Output and inputs of nonlinear optimization
are shown in Fig. 2. In this Figure, � vector is second-order polynomial base functions that consider
as follows:

�(x) = {φ1(x), φ2(x), · · · , φ10(x)}T = {
x2

1, x1x2, x2
2, x1x3, x2x3, x2

3, x1x4, x2x4, x3x4, x2
4

}T
(18)

The output of this optimization is used in the nonlinear feedback controller as shown in Fig. 3.

3. Dynamic Load Carrying Capacity
DLCC of a manipulator is used as a criterion to measure the performance of a control system. It is
defined as the maximum allowable load that the manipulator can carry on the specified path from the
initial to the final point in the work space with a predefined acceptable accuracy. Other constraints
that limit the DLCC are the upper and lower limits for output torque in joints, which can be calculated
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Fig. 2. Nonlinear optimization problem.

Fig. 3. Nonlinear feedback control system.

from the following equation:21

umax = K1 − K2ω(t ) (19)

umin = −K1 − K2ω(t ) (20)

where

K1 = [
τs1, τs2, ..., τsn

]T
(21)

K2 =
[

τs1

ωs1

,
τs2

ωs2

, ...,
τsn

ωsn

]T

(22)

τs is stall torque and ωs is maximum no-load speed of the motor and ω(t ) is vector of angular velocity
of motor.

4. Simulation Results
As a first case study, a simple rigid manipulator with two links is shown in Fig. 4 is considered and
the new proposed algorithm is applied to design control law and find the DLCC of the manipulator
during the specified path. Also, characteristics of this manipulator are listed in Table I.
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Fig. 4. Simple rigid manipulator.

Table I. Characteristics of manipulator.

Parameter Value Unit

Length of links L1 = L2 = 1 m
Center of mass Lc1 = Lc2 = 0.5 m
Mass m1 = m2 = 2 kg
Moment of inertia I1 = I2 = 0.166 kg m2

Max.no load speed ωs1 = ωs2 = 5.6 Rad/sec
Actuator stall torque τs1 = τs2 = 50 N m

The state variables are selected to be x1 = θ1; x2 = θ2; x3 = θ̇1; x4 = θ̇2 so the state space model
of manipulator is as follows: ⎡

⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎦ =

⎡
⎣ x3

x4

D−1 [τ − C − G]

⎤
⎦ (23)

Matrix and vectors that appeared in Eq. (23) are as follows:

D =
[

a1 + a2 + 2a3cos(x2) a2 + a3cos(x2)
a2 + a3cos(x2) a2

]

G =
[

g(a4cos(x1) + a5cos(x1 + x2)
ga5cos(x1 + x2)

]

C =
[−a3sin(x2)(2x3x4 + x2

4 )

a3sin(x2)x2
3

] (24)

where constant coefficients are as follows:

a1 = I1 + m1L2
c1 + (m2 + mp)L2

1

a2 = I2 + m2L2
c2 + mpL2

2

a3 = L1(m2Lc2 + mpL2)

a4 = m1Lc1 + L1(m2 + mp)

a5 = m2Lc2 + mpL2

(25)

As it mentioned, second-order polynomial basic functions are selected as follows:

{
φ j

}10
j=1 = {

x2
1, x1x2, x2

2, x1x3, x2x3, x2
3, x1x4, x2x4, x3x4, x2

4

}
(26)

Final time t f is selected to be 1 second and the proposed algorithm is applied to this manipulator
to move on the path with the maximum available load carrying capacity. During simulation, the path
with maximum load carrying capacity is examined with two criteria. The first criterion is the error
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Fig. 5. Optimal path with maximum DLCC for point to point motion.

Fig. 6. Optimal angles with maximum DLCC.

between the actual and the desired angular displacement for the traveled path and the second criterion
is the maximum amount of torque that should be between the lower and upper allowable torque. Also a
point to point motion simulation is performed to compare validity and benefit of existing methodology
and literature.

4.1. Point to point motion
A point to point motion is simulated from initial point P0(1.1, 0) to final point Pf (0, 1.6) and results
are compared with ref. [4]. In ref. [4], the DLCC was computed as 5.7 kg while in present work and
using proposed methodology the DLCC is computed as 9 kg. Resulting end effector path and histories
of angular position and velocity of links also joint torques are shown in Figs. 5–9.

4.2. Polynomial trajectory
For this specified path, the parameters that must be selected in the algorithm and the angular
displacement of each link that represents the specified path of the robot end-effector motion are
shown in Table II. The simulation is performed and the DLCC of this robot is computed as 5.8 kg
and with this load carrying capacity the second criterion, that is, the maximum torque value checked.
Figure 10 shows that the first criterion, which is the error between the actual and the desired angular
displacement for the travelled path, is less than 0.1 rad. The specified path and the path travelled by the
end effector are shown in Fig. 11 with the obtained maximum DLCC mp = 5.8 kg. Angular velocity
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Fig. 7. Angular velocity of links.

Fig. 8. Torque applied on joint 1.

Fig. 9. Torque applied on joint 2.

of the links and angular position error are shown in Figs. 12 and 13. Torques need to be applied to
the joints are shown in Figs. 14 and 15. These figures illustrate high positive torque at the beginning
of motion and high negative torque to achieve zero velocity at the end of motion. The coefficients of
the closed-loop controller, which are outputs of the nonlinear optimization problem, are illustrated in
Figs. 16–18.
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Fig. 10. Optimal angles with maximum DLCC.

Fig. 11. Optimal path and configuration of links.

Fig. 12. Angular velocity of links.
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Fig. 13. Trajectory tracking error.

Fig. 14. Torque applied on joint 1.

Fig. 15. Torque applied on joint 2.
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Table II. Parameters of algorithm for finding DLCC.

Parameter Value

The first angular displacement θ1 = t2

The second angular displacement θ2 = 1 − t2

Final time t f = 1 sec
Allowable tracking error ε = 0.1 rad
Weight of states in J Q̄ = diag(0.1)
Weight of control in J R̄ = diag(1)

Fig. 16. Coefficients c1, c2, c3.

Fig. 17. Coefficients c4, c5, c6.

4.3. Harmonic trajectory
In this simulation, harmonic functions are selected for the desired angle of links. Table III mentions
the path parameters and the desired angular displacement of each link that represents the specified
path of robot end-effector motion. DLCC of this robot is 5 kg and with this load carrying capacity, the
first criterion is tested, error between actual and desired angular displacement for the travelled path.
The actual and specified angles with maximum DLCC (mp = 5 kg) are shown in Fig. 19. The optimal
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Fig. 18. Coefficients c7, c8, c9, c10.

Table III. Parameters of algorithm for finding DLCC.

Parameter Value

The first angular displacement θ1 = sin(ωt )
The second angular displacement θ2 = cos(ωt )
Final time t f = 1 sec
Allowable tracking error ε = 0.15rad
Weight of states in J Q̄ = diag(0.01)
Weight of control in J R̄ = diag(1)

Fig. 19. Optimal angles with maximum DLCC.

end-effector position and the angular velocity of the links are shown in Figs. 20 and 21. Torques
need to be applied to the joints are shown in Figs. 22 and 23. As in previous simulation, joint torque
histories show a high positive torque at the beginning of motion and a high negative torque to achieve
zero velocity at the end of motion. Closed-loop controller coefficients are mentioned in Figs. 24–26.
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Fig. 20. Optimal end-effector position

Fig. 21. Angular velocity of links.

Fig. 22. Torque applied on joint 1.
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Fig. 23. Torque applied on joint 2.

Fig. 24. Coefficients c1, c2, c3.

As can be seen, the DLCC using polynomial trajectory is more than DLCC using harmonic
trajectory and the error accrued is less than harmonic trajectory so in this case, polynomial trajectory
is better than harmonic trajectory.

5. Experimental Test
To show the capability of the proposed tracking controller design methodology, a simulation for a
three link manipulator with fixed base (Fig. 27) is applied and compared with experimental results.
Also, according to the existing limitations, only two links are examined and one of the links is fixed.
In this mechanical arm, the end effector of the robot is first placed at the point where it is intended.
Reverse kinematics is used to position the end effector of the robot in the desired position. In fact,
with the robot’s end point and the direction that the robot should approach this point, the robot’s
coordinates are positioned in such a way that the robot is in the desired position. Characteristics of
this robot can be seen in Table III. Specification of the end-effector path and other parameters are
shown in Tables IV and V, respectively.
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Fig. 25. Coefficients c4, c5.

Fig. 26. Coefficients c6, c7, c8, c9, c10.

Fig. 27. Experimental set.
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Table IV. Characteristics of manipulator.

Parameter Value Unit

Length of links
L1 = 0.21
L2 = 0.18

m

Center of mass
Lc1 = 0.105
Lc2 = 0.09

m

Mass
m1 = 0.42
m2 = 0.36

kg

Moment of inertia I1 = I2 = 0.166 kg m2

Max.no load speed ωs1 = ωs2 = 5.6 Rad/sec
Actuator stall torque τs1 = τs2 = 50 N m

Table V. Parameters of algorithm for finding DLCC of manipulator.

Parameter Value

The first angular displacement θ1 = t2

The second angular displacement θ2 = 1 − t2

Final time t f = 1 sec
Allowable tracking error ε = 0.08 rad
Weight of states in J Q̄ = diag(0.01)
Weight of control in J R̄ = diag(1)

Fig. 28. GUI of robot software.

A view of robot software that is programed using Visual C#, is shown in Fig. 28. Desired trajectory
is the input of software and controller is implemented in LPC2368 microcontroller. LPC2368 produces
required PWM to run AX-12A DC servo motors.

The algorithm is applied to the robot and the optimal path is obtained when the robot carries
the maximum load. Maximum load carrying capacity of the robot during the specified path with an
error less than 0.08 rad is equal to 5kg. The specified path and path traveled by the manipulator by
considering the maximum DLCC have been shown in Fig. 29. The actual and desired angular position
and speed of links are shown in Figs. 30 and 31. Error history of the path has been shown in Fig. 32,
also torques needed to be applied on joints are presented in Figs. 33 and 34.

These figures illustrate high positive torque at the beginning of motion and high negative torque to
achieve zero velocity at the end of motion. The coefficients of the closed-loop controller, which are
outputs of the nonlinear optimization problem, are shown in Figs. 35–37. Finally, an experimental
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Fig. 29. Optimal and desired path with maximum DLCC.

Fig. 30. Optimal angular position of links.

Fig. 31. Angular velocity of links.
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Fig. 32. Tracking error.

Fig. 33. Torque applied on joint 1.

Fig. 34. Torque applied on joint 2.
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Fig. 35. Coefficients c1, c2, c3.

Fig. 36. Coefficients c4, c5.

test was performed to compare simulation and actual results. Figures 38 and 39 show the simulated
and actual angular position of the links and illustrate the appropriate tracking accuracy.

6. Conclusion
The purpose of this paper is to use a combined direct–indirect methods for designing a tracking
controller, which realizes a pre-determined path for a manipulator with the lowest possible error and
maximum load carrying capacity. Main contribution from this work is listed below:

• Unlike previous studies, that the linear optimization method and the open loop optimal control
method have been used, the proposed method has not only a closed-loop form and therefore is
applicable, but also is based on nonlinear optimization technique.

• The method for solving a nonlinear optimal controller in a closed-loop form is based on the solution
of the HJB equation (indirect part). To reduce the required computation in solving this equation,
the coefficients appeared in the solution of the HJB equation are determined using a new direct
nonlinear optimization method.

• The simulation was performed to confirm the results for two different angular trajectories. The
results show that the proposed method can be used as well for tracking specified trajectory.

• It is shown that using polynomial trajectory the DLCC is more than one using harmonic trajectory.
and the error accrued is less than harmonic trajectory
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Fig. 37. Coefficients c6, c7, c8, c9, c10.

Fig. 38. Angular position of the first joint.

Fig. 39. Angular position of the second joint.
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• Experimental test express the applicability of the proposed method which is based on the fact that
the method has a closed-loop optimal manner.
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