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SUMMARY
In this paper, we present the design of two serial spherical mechanisms to substitute for a single
spherical joint that is usually used to connect the platform with the base in three degrees of freedom
parallel mechanisms. According to the principle derived from the conceptual design, through using
the two serial spherical mechanisms as the constraint limb, several redundantly actuated parallel
mechanisms are proposed for ankle rehabilitation. The proposed parallel mechanisms all can perform
the rotational movements of the ankle in three directions while at the same time the mechanism center
of rotations can match the ankle axes of rotations compared with other multi-degree-of-freedom
devices, due to the structural characteristics of the special constraint limb and platform. Two special
parallel mechanisms are selected to analyze their kinematical performances, such as workspace,
dexterity, singularity, and stiffness, based on the computed Jacobian. The results show that the
proposed scheme of actuator redundancy can guarantee that the redundantly actuated parallel
mechanisms have no singularity, better dexterity, and stiffness within the prescribed workspace in
comparison with the corresponding non-redundant parallel mechanisms. In addition, the proposed
mechanisms possess certain reconfigurable capacity based on control strategies or rehabilitation
modes to obtain sound performance for completing ankle rehabilitation exercise.

KEYWORDS: Ankle rehabilitation; Parallel mechanisms; Actuator redundancy; Singularity;
Stiffness.

1. Introduction
The human ankle joint complex (AJC) is one of the major weight bearing structures in the body.
As a result of this function and partly due to its structure, the ankle is the most commonly injured
joint, particularly for basketball and soccer players. Besides, neurological impairment after stroke
also can lead to the weakness of muscles around the ankle causing the inability of an individual
to move their foot.1 To regain the ability of motion, a patient has to undertake physical therapy,
involving rehabilitation. Ankle rehabilitation should be done slowly and carefully, starting with non-
weight bearing exercises, moving to resisted exercises, and then weight bearing activities as the
ankle recovers. But traditional rehabilitation therapy is a costly labor, which requires plenty of time
and patience. To reduce the physical workload and enhance the productivity of physiotherapists,
rehabilitation robotics is used and just beginning to play a great role in physical therapy.

More recently, ankle rehabilitation devices (ARD) have started to be developed by making use of
automatic systems to enforce or restore ankle motions specifically. These systems can be grouped
into active foot orthoses2–5 and stationary devices.6–13 One of the successful active foot orthoses is
the AAFO, an active variable-impedance orthoses that have certain clinical benefits for the treatment
of drop-foot gait compared to conventional ankle-foot orthoses that patients wear while walking
over ground.2 On the contrary to active foot orthoses, the patient is always placed in the same
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position without walking in a stationary system. The NUVABAT is a 2-DOF (degree of freedom)
mechatronic stationary device with a virtual reality interface that can perform ankle and balance
rehabilitation.7 The prominent product of several commercial stationary devices may be the Biodex
system 4,8 which can facilitate to achieve ROM/strengthening, and perform ankle inversion/eversion
and plantarflexion/dorsiflexion respectively, but the system can’t realize more complex movement.
To solve this problem, many researchers have been exploiting rehabilitation devices making use of
parallel mechanism, characterized by its considerably complex motion and high stiffness that just
match the properties of the human ankle. The “Rutgers Ankle” orthopedic rehabilitation interface,
based on a 6-DOF Stewart platform that applies variable forces and virtual reality exercises on the
patient’s foot, can perform any complicated spatial motions.9 But the translation of the foot segment
relative to the shank segment is slight and can be neglected in rehabilitation, in other words, 3-
DOF rotations may serve well to describe the ankle motions. Thus, some lower-mobility parallel
mechanisms for ankle rehabilitation were introduced subsequently. Dai et al.10 proposed a 3- or 4-
DOF parallel mechanisms with a central strut for ankle rehabilitation and analyzed the mobility and
the stiffness. Liu et al.11 discussed the 3-RSS/S parallel robot with three DOFs for ankle rehabilitation.
To overcome singularity inside the workspace that parallel mechanisms intrinsically possess, a special
2-DOF redundantly actuated parallel mechanism also with a central strut was developed and proved to
have sound performances than the non-redundant one.12 However, all the mentioned mechanisms10–12

have the same problem: the mechanism axes of rotation are far offset from the ankle axes of rotation,
causing unexpected movements to patients, such as translations induced by rotations, which is much
worse for the patient whose shank can’t move arbitrarily. To address this problem, Tsoi et al.13

proposed a 3-DOF redundantly actuated parallel robot with a middle passive link that is replaced with
the lower limb of the actual patient. The robot can match the nominal center of ankle rotation and
avoid singularity in the workspace through adding one more limb actuation, but unexpected loads
may be exerted on the patient’s foot, when rehabilitation exercises start.

From the development of ARDs mentioned above, it’s still a tough problem to design a 3-DOF
parallel mechanism for ankle rehabilitation with a simple structure, simultaneously satisfying the
condition of ensuring that the mechanism center of rotations matches the ankle axes of rotations as
closely as possible while having no singularity and sound performance in workspace. Therefore,
we have designed two special serial spherical mechanisms as the constraint limb to construct
several new 3-DOF parallel mechanisms for addressing the issue of centers’ non-coincidence.
Moreover, a new arrangement of actuator redundancy is proposed to eliminate singularity and improve
kinematic performances within the workspace. As such, the proposed parallel mechanisms possess
certain reconfigurable capacity based on control strategies or rehabilitation modes to obtain sound
performance for completing ankle rehabilitation exercises.

The presentation of this work is structured as follows. In Section 2, the anatomy and kinematics of
ankle are introduced and then the conceptual design is detailed. The forward, inverse kinematics
and Jacobian analysis are studied In Section 3. Kinematic performances such as workspace
volume, dexterity, singularity, and stiffness are studied In Section 4. Finally, conclusion and further
developments of this work are given in Section 5.

2. Design Specification and Conceptual Design

2.1. Design specification
As shown in Fig. 1,14 the human ankle joint complex (AJC) consists of two separate subjoints: the
true ankle joint and the subtalar joint.15 Dettwyler et al.16 concluded that motion of the foot-shank
complex is the result of a simultaneous motion at the talocrural and subtalar joints, where neither of
these two joints has a fixed axis and the subtalar axis especially shows a greater variability. Hence,
angular displacements in the two ankle joints produce rotations of the foot in the sagittal, frontal,
and transverse planes and the rotations can be defined as plantar/dorsiflexion, inversion/eversion,
and adduction/abduction (also called internal/external rotation), as illustrated in Fig. 2. The more
complicated motion is adduction/abduction achieved through a combination of the motions of the
two subjoints, as well as rotation of the tibia and fibula.15 Thanks to previous work, the estimated
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Fig. 1. Ankle joint complex.14

Fig. 2. Definitions on the ankle motion.

Table I. Range of motion of the AJC13.

Type of motion Max. allowable motion

Dorsiflexion 20.3◦ − 29.8◦
Plantarflexion 37.6◦ − 45.8◦
Inversion 14.5◦ − 22.0◦
Eversion 10.0◦ − 17.0◦
Abduction 15.4◦ − 25.9◦
Adduction 22.0◦ − 36.0◦

range of motion (ROM) of the AJC in each direction is given in Table I.13 It is worthy of noting that
the ROM can vary greatly among different persons.

Although some researches indicated that the first two motions are the dominant actions in
proprioceptive training and ankle rehabilitation,12 exercises that involve the abduction or adduction of
the foot, such as drawing the alphabet letters, are still included in rehabilitation protocols. After all for
the ankle rehabilitation, the joints, tendons, and muscles as a whole unit are to be exercised throughout
of all the range of motion. Moreover, 3-DOF rotations can finish more complex trajectories that are
helpful for rehabilitation exercise. In a word, the third rotation is necessary for ankle rehabilitation,
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Fig. 3. Constraint limb with a single spherical joint (a), or a serial spherical mechanism (b).

so our objective is to design an ARD with 3-DOF rotational movements that satisfies the motion
requirements and has high torque output.

2.2. Conceptual design
It is obvious that any serial spherical mechanism can be one possible alternative to actualizing 3-DOF
rotations, such as gimbal mechanisms. One characteristic of serial mechanisms is related to the fact
that the actuator of the first joint must bear the weight of the others. On the contrary, all the actuators in
parallel mechanisms are mounted on the ground, which brings one advantage that parallel mechanisms
provide larger forces than serial mechanisms with the same sized actuators. While considering the
design of an ankle rehabilitation device, due to the rotations allowable at the AJC involved with
large moments, parallel mechanisms are more competent than serial mechanisms particularly when
performing 3-DOF rotations. However, the parallel mechanism has its own drawbacks, such as small
available workspace, singularity caused by complex configurations or constraints, which restrain its
practical application in industry and real life. Except for the 6-DOF Gough-type parallel manipulators
extensively used in industry, there are just several types of lower-mobility parallel manipulators
succeeding in application, such as Delta,17 H4,18 Tricept,19 Agile eye.20 Therein, the Agile eye is a
spherical manipulator that can actualize 3-DOF rotational movements, but its geometrical constraints
are so complex that it couldn’t be fully satisfied if forces and moments acted on the platform are
large. Interestingly, the Tricept manipulator is different from the others in terms of type design. It
is composed of a platform linked to the base (ground) by three identical non-constraint limbs (UPS
limb) and the constraint UP limb (the letter P represents a prismatic joint, U a universal joint, and S a
spherical joint). The constraint limb determines the degrees of freedom and the motion characteristic
of the Tricept; adding one actuator into each non-constraint limb can actuate the mechanism and the
number of non-constraint limbs is commonly equal to the DOFs. This type design at some extent
incorporates the merits of both parallel mechanisms and serial mechanisms. According to the type
design theory, a 3-DOF spherical parallel mechanism can be easily deduced, just substituting the UP
limb with a spherical limb, such as reference.10 In fact, the general method is to use a single spherical
joint linking the platform with the base, but it raise the problem as mentioned above: the mechanism
axes of rotation are far offset from the ankle axes of rotation, causing unexpected movements to
patients. On the other hand, the serial spherical mechanism has its own separate axis that can be
conveniently rearranged, so why not substitute the single spherical joint with the serial spherical
mechanism? Then Fig. 3 depicts the two different structures, where the letter R represents a revolute
joint. Figure 3(a) displays the usual structural arrangement with a single spherical joint; Fig. 3(b)
shows that the constraint limb is made up of a serial spherical mechanism, three axes of which
may be oriented in any arbitrary direction, but intersect at the center O1. Certainly, one available
alternative is the case of the three axes that are, respectively, parallel to the vertical, the sagittal, and
the frontal ones. After considering kinematic and dynamic performance, we proposed two kinds of
serial spherical mechanisms, or called equivalent spherical joint, with symmetrical structure as shown
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Fig. 4. Two serial spherical mechanisms: the axes of R1 and R2 are not orthogonal (a), and orthogonal (b).

in Fig. 4, where the axes of R2 and R3 are orthogonal for the two equivalent spherical joints and the
only difference lies that the axes of R1 and R2 are not orthogonal for the first shown in Fig. 4(a), but
orthogonal for the second shown in Fig. 4(b).

Subsequently, we still do not address the problem that singularity lies in the workspace of parallel
mechanisms. One possible choice is to add one more limb, as the research13 did. If so, there will
be four active non-constraint limbs for the mechanism depicted in Fig. 3(b). Then every single
movement needs to be fulfilled by precise cooperation of the four limbs, which is not energy-
efficient and possibly increases interference. In order to make use of the kinematical feature of
the serial spherical mechanism, the redundant actuator will be added on the revolute joint linked
to the base (the R1 joint is actuated and signified by an underline as shown in Fig. 4) instead
of adding one more limb. The non-constraint limb has many choices, such as UPS limb, RUS
limb, or even cable driven limb. Here the UPS limb is selected for its fitness to utilize all the two
spherical mechanisms, so the novel 3-UPS/RRR redundantly actuated parallel mechanism is what
we desire. Then the following sections will discuss the effectiveness of this actuator redundancy
arrangement.

The CAD models of the 3-UPS/RRR redundant parallel robot for ankle rehabilitation are developed
as shown in Fig. 5. The first spherical mechanism is applied to the two mechanisms as illustrated
in Figs. 5(a) and 5(b), denoted as ARDS1-R and ARDS1-R2 respectively, but the directions of the
axes of R1 joint are different; the second spherical mechanism is applied to the third mechanism
shown in Figs. 5(c) and 5(d), denoted as ARDS2-R. To enlarge the motion angle, the spherical joint
is redesigned, consisting of three single revolute joints. Besides, the platform is made up of two
parts: the lower and upper platforms; the position of the upper platform relative to the lower one
can be adjusted by a screw mechanism; meanwhile, the platform shapes the profile of the human
being’s foot. Owing to the novel mechanical design of the serial spherical mechanism and platform,
the mechanism center of rotations can easily match the ankle axes of rotations. Before starting
rehabilitation exercise, as shown in Fig. 5(d), patient would better align his or her malleolus with the
axis of R2 (or R3 for the ARDS1-R and ARDS1-R2), and adjust the distance between the bottom
of foot and the axis of R2 (or R3) through altering the position of the upper platform. By virtual
of these arrangements, the proposed mechanisms can provide good flexibility for different patients
to ensure the coincidence of rotational centers while at same time possesses sound performances.
Particularly, when the redundant actuator of the R1 joint is self-locked, the ARDS2-R manipulator
depicted in Fig. 5(c) becomes a 3-UPS/U redundantly actuated parallel mechanism with two DOFs;
in other words, this robotic system can be reconfigured into either a 2-DOF rehabilitation device
or a 3-DOF one just depending on rehabilitation exercise modes, all which enhances the flexibility
of the system. Although the ARDS1-R and ARDS1-R2 manipulators have distinct arrangements,
they have similar kinematical performances. Hence, the two mechanisms, ARDS1-R and ARDS2-
R, and their own non-redundantly actuated mechanisms (denoted as ARDS1-N and ARDS2-N
respectively, that is, there are no actuators on the R1 joints) are mainly discussed in the following
sections.
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Fig. 5. CAD models of the redundantly actuated parallel mechanisms: ARDS1-R (a); ARDS1-R2 (b); ARDS2-R
(c); front view of the ARDS2-R (d).

3. Kinematics Analysis
Figure 6 describes the geometrical models of the ARDS1-R and ARDS2-R redundant robots. The
reference frames XbYbZbOb and XpYpZpOp attach at the base and the moving platform respectively,
and locate at the center point of the machine rotations, convenient for describing the orientation of
the AJC. The parameters used in kinematics are defined as follows:

d1 =
∥∥∥−−→
O1Bi

∥∥∥ , d2 =
∥∥∥−−→
OAi

∥∥∥ , l1 =
∥∥∥−−−→
O1Ob

∥∥∥ , l2 =
∥∥∥−−→
OOb

∥∥∥,

where Ai(i = 1, 2, 3) are fixed endpoints of the prismatic actuators and uniformly distributed on
the base; Bi are moving endpoints of the prismatic actuators and also uniformly distributed on the
lower platform; u, v and w are unitary vectors respectively collinear to the axes of the constraint
limb; the angle between the vector u and v is determined by the geometrical constraint, defined as ϕ.
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Fig. 6. Geometrical models of the ARDS1-R (a) and ARDS2-R (b).

The lengths of the three prismatic actuators are denoted as q1, q2, q3; the angle around the vector u is
denoted as q4.

There are several ways for expressing the orientation of a moving body, such as direction cosine
matrix, RPY method, Euler angles. Euler angles have many categories. Due to the characteristics of
the equivalent spherical joint, the ZYX and ZXY types are respectively selected for the ARDS1-R
and ARDS2-R. Here α denotes the angle of the rotation around X axis; β the angle around Y axis;
γ the angle around Z axis. Once the angles are given, the orientation or rotation matrix bRp of the
moving platform (body p) with respect to the fixed base (body b) can be easily represented as follows:

bRp = Rz(γ )Ry(β)Rx(α), for the ARDS1-R, (1)

bRp = Rz(γ )Rx(β)Ry(α), for the ARDS2-R. (2)

3.1. Forward kinematics
Forward kinematics is a tough problem for parallel mechanism, there is no exception in this study.
Usually the possible orientations of the moving platform should be computed by a given set of
actuators displacements, but here other ways can be selected. Thanks to the design of the equivalent
spherical joint, through adding position sensors (such as optical encoders) to the joints of the constraint
chain, the orientation of the platform can be calculated.

As illustrated in Fig. 4, the equivalent spherical joint is a 3-DOF chain, so its posture can be
completely described by three joint variables, denoted as θ1, θ2 and θ3. Applying the Denavit-
Hartenberg (D-H) convention, the transformation from the moving platform to the fixed base can be
written as

bTp = bT1(θ1)1T2(θ2)2T3(θ3)3Tp, (3)

where iTj denotes the 4 × 4 D-H transformation matrix. As shown in Fig. 6, the first link frame is
attached to the first moving link with the z1 axis collinear to the vector u; the second link frame is
attached to the second moving link with the z2 axis collinear to the vector v; the third link frame
is attached to the moving platform with the z3 axis collinear to the vector w; 3Tp signifies the
transformation from the moving frame p to the third link frame.
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Table II. D-H parameters of the constraint limb of the
ARDS1-R.

Link αi ai θi di

Base (b) 0 0 0 0
1 −90◦ 0 θ1 0
2 ϕ 0 θ2 0
3 90◦ 0 θ3 0
Platform (p) −90◦ 0 −90◦ 0

Table III. D-H parameters of the constraint limb
of the ARDS2-R.

Link αi ai θi di

Base (b) 0 0 0 0
1 0 0 θ1 0
2 90◦ 0 θ2 0
3 90◦ 0 θ3 0
Platform (p) 90◦ 0 0 0

Equating (1) or (2) to (3) produces a loop-closure equation as follows:

bT1(θ1)1T2(θ2)2T3(θ3)3Tp =
[

bRp 0
0 1

]
. (4)

Substituting the D-H parameters given in Tables II or III, and the joint angle values measured by
sensors into the transformation matrixes and the resulting expression into the Eq. (4) can obtain the
orientation matrix bRp.

3.2. Inverse kinematics
The inverse kinematics here can be stated as follows: given the orientation (α, β, γ ) of the moving
platform, compute the displacements (q1, q2, q3, q4) of the actuators.

The coordinates of the points Bi(i = 1, 2, 3) attached at the moving platform, expressed in the
reference frame XbYbZbOb and the frame XpYpZpOp, respectively, can be represented as bbi and
pbi , and bbi can be computed by the equation as follows:

bbi=bRp
pbi , i = 1, 2, 3. (5)

Due to the geometrical constraints, the following equality can be simply written:

q2
i = (

bai − bbi

)τ (
bai − bbi

)
, i = 1, 2, 3 , (6)

where bai are the coordinates of the points Ai attached at the base and expressed in the reference
frame XbYbZbOb.

Meanwhile, the angle between the vector v and w always stays a constant value, 90◦, no matter
how the orientation of the platform changes. Therefore, the following equality can be simply written:

(Ru (q4) v)T bRpw = 0, (7)

where Ru(q4) a rotation matrix signifies rotating around u axis up to the angle of q4, here q4 = θ1.
This relationship leads to

M sin q4 + N cos q4 = T , (8)
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where

M = sin ϕ sin β,

N = sin ϕ cos β cos γ,

T = cos ϕ cos β sin γ,

1) The ARDS1-R manipulator: Resorting to the new variable t = tan (q4/2) results in

q4 = 2 tan−1

(
−b + √

b2 − 4ac

2a

)
, (9)

where

a = T + N,

b = −2M,

c = T − N.

2) The ARDS2-R manipulator: Simplifying Eq. (9) results in

q4 = γ (10)

3.3. Jacobian matrix
The Jacobian matrix is to establish the relations between, on one side, the angular velocities of the
platform referred to the world frame and which are grouped in the vector w = [wx, wy, wz]T and, on
the other side, the active joint velocities grouped in the vector q̇ = [q̇1, q̇2, q̇3, q̇4]T . The relationship
also can be represented as follows

Jxw = Jq q̇. (11)

According to the study of J. Gallardo-Alvarado et al.,21 it’s efficient for solving the problem to
make use of screws and reciprocal wrenches. Let V = [wT ; vT ]T = [wT ; 0]T be the instantaneous
twist of the platform; where v is the linear velocity of a point (always coincident with the origin Ob

of the base frame) fixed at the platform, and equal to 0. The twist also can be expressed through any
of the four limbs as a linear combination of the joint velocity rate w as follows:

V =
mi∑

j=1

jwi
j $i , i = 1, . . . , 4 , (12)

where mi is the number of joints of the ith limb; j $i denotes a unite screw associated with the jth
joint of the ith limb; 1wi = q̇i is the joint velocity rate of the active joint of ith limb.

In order to eliminate the velocities of passive joints, the concept of reciprocal wrenches will be
used. With the actuators locked, a constraint wrench $r

i being reciprocal to all the passive joint screws
of each limb can be found. For limb 1, 2, 3, the constraint wrench passes through U joint and S joint;
for limb 4, the wrench is parallel to the vector w and intersects with the vector v. Applying the Klein
form, {∗; ∗},21 to both sides of Eq. (11) leads to the following four expressions

{
$r

1; V
} = q̇1,{

$r
2; V

} = q̇2,{
$r

3; V
} = q̇3,{

$r
4; V

} = q̇4 · {
$r

4; 1$4
}
.

(13)
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Table IV. Architectural parameters
of the ARDS1-R.

Parameter Value

ϕ 50 deg
d1 0.120 m
d2 0.130 m
l1 0.0 m
l2 0.335 m

Table V. Architectural parameters
of the ARDS2-R.

Parameter Value

d1 0.120 m
d2 0.130 m
l1 0.110 m
l2 0.290 m

Casting the four equations above in a matrix-vector form and Simplifying leads to

⎡
⎢⎢⎢⎣

(
bb1 × sr

1

)T(
bb2 × sr

2

)T(
bb3 × sr

3

)T(
bb4 × sr

4

)T

⎤
⎥⎥⎥⎦ w =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0

(
bb4 × sr

4

)τ
s1

4

⎤
⎥⎥⎦

⎡
⎢⎣

q̇1

q̇2

q̇3

q̇4

⎤
⎥⎦ , (14)

where bb4 is the position vector of the point B4, a point of the axis collinear to the vector v; sr
i is the

unitary direction vector of the wrench $r
i ; 1s4 is the unitary direction vector of the screw1$4.

Therefore, provided Jq is invertible, the following equation can be written

Jw = q̇, (15)

where

J = J−1
q Jx.

4. Kinematic Performance Analysis

4.1. Workspace analysis
Inverse kinematical model has been used to determine the displacements of the actuators required
to achieve the desired orientation of the platform. Once one of the displacement values exceeds
the predetermined limit, the set pose is unreachable and excluded. The architectural parameters
of the ARDS1-R and ARDS2-R manipulators are presented in Tables IV and V, where the two
manipulators have the same values of d1 and d2 that mainly determine kinematical performance, and
different values of l1 and l2, due to distinct structures. The prismatic actuator’s stroke is constrained to
170 mm; the angle between BiO1 and BiAi should be more than 40 degrees. Moreover, the constraint
limb of the ARDS1-R also restricts the movement of the platform. It is obvious that the chain arrives
at boundaries if all the three axes are coplanar, that is, the chain is singular and the value of the angle
θ2 is

sin θ2 = cos β sin γ

− sin ϕ
. (16)
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Fig. 7. The available workspaces of the ARDS1-R (a) and ARDS2-R (b).

Table VI. Workspace limits of the ARDS1-R.

Direction of motion Angle limits

Dorsiflexion 43 deg
Plantarflexion 48 deg
Inversion/Eversion 45 deg
Abduction / Adduction 50 deg

Table VII. Workspace limits of the ARDS2-R.

Direction of motion Angle limits

Dorsiflexion 60 deg
Plantarflexion 46 deg
Inversion/Eversion 48 deg
Abduction / Adduction >60 deg

In view of the above equality, it can be seen that the angle θ2 has nothing to do with the Euler
angle α. When the angles β and γ meet the condition | sin θ2| ≥ 1, it means the limb lies at the
boundary, so the corresponding pose should be deserted. Therefore, through discretizing the potential
region for platform orientations and searching for those poses that satisfy the conditions mentioned
above, the workspaces of the ARDS1-R and ARDS2-R are numerically determined and depicted in
Figs. 7(a) and 7(b) separately. In fact, the non-redundant ARDS1-N and ARDS2-N respectively
have the same workspace as that their own redundant type has. Owing to the restriction of the
constraint limb, there is a concave surface on the top of the workspace as illustrated in Fig. 7(a),
which is different from the workspace shown in Fig. 7(b). Although, the constraint limb restricts
the workspace of the ARDS2-R too, but it always occurs at the workspace boundary. By analyzing
various ‘slice’ of the workspace, the maximum achievable displacement in each direction are given
in Tables VI and VII. In comparison with the statistics data of Table I, it is suggested that the devices
meets the requirements of the ankle ROM. At the same time, in application, to have proper condition
number and stiffness, the workspace is limited to ±50◦ at X Euler angle (plantar/dorsiflexion), ±30◦
at Y Euler angle (inversion/eversion), ±40◦ at Z Euler angle (adduction/abduction), and thus the
following discussions are confined to the prescribed workspace.

4.2. Dexterity analysis
The condition number is often used to evaluate a mechanism’s dexterity. According,22 the condition
number can be regarded as an error amplification factor, reflecting how a relative error in q gets
multiplied and leads to a relative error in x (here x = w). Though here the Jacobian Matrix J is not a
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Fig. 8. The distribution of dexterity for the ARDS1-N (a) and ARDS1-R (b) in the plane of γ = 0◦; the ARDS1-N
(c) and ARDS1-R (d) within the whole prescribed workspace.

square matrix, its singular value σi still can be calculated as

σi =
√

λi(JT J), (17)

where λi is the eigenvalue of the matrix JT J. Then the condition number κ can be given as follows:

1 ≤ κ = σmax

σmin
≤ ∞, (18)

where σmax and σmin are the maximum and minimum singular values of the matrix J, respectively.
One objective of mechanism design is to obtain reasonable values of the condition number for

sound dexterity. When the condition number is equal to 1, the dexterity of the mechanism is the best
and the mechanism is isotropic; conversely, if the condition number tends to infinity, the mechanism
is close to singularity. Hence, the closer to 1 the condition number is, the better the dexterity of the
mechanism is.23 Figure 8 and 9 respectively illustrate the distributions of dexterity of the two redundant
manipulators and their own non-redundant types. It can be observed that the condition numbers of
the ARDS1-N and ARDS2-N have sudden peak values much greater than 500 in the plane of γ = 0
deg as shown in Figs. 8(a) and 9(a), which indicates that the mechanisms are nearly singular at these
poses; on the contrary, the ARDS1-R and ARDS2-R have better values between 5 and 25 as shown in
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Fig. 9. The distribution of dexterity for the ARDS2-N (a) and ARDS2-R (b) in the plane of γ = 0◦; the ARDS2-N
(c) and ARDS2-R (d) within the whole prescribed workspace.

Figs. 8(b) and 9(b). To reveal a considerable comprehensive distribution of the condition number
within the whole prescribed workspace, computing results of the four mechanisms (ARDS1-N,
ARDS1-R, ARDS2-N and ARDS2-R) in three-dimensional space are respectively presented in
Figs. 8(c), 8(d), 9(c) and 9(d). The results reveal that the ARDS1-N and ARDS2-N both have
bad dexterity inside the middle workspace with the condition numbers greater than 500 and fine
dexterity at other poses with the condition numbers smaller than 10, which is not acceptable for ankle
exercises that mainly operate in the center part of the workspace; the situations of the ARDS1-R and
ARDS2-R are inverse: the highest values of the condition number, more than 20 and less than 36,
just occur at the boundary of the workspace and the lower values appears in the core zone, which
guarantees the mechanisms have good dexterity values in the middle of the workspace. Furthermore,
the condition numbers of the ARDS1-R are more than two times as large as ones of the ARDS2-R that
are between 5 and 8 in the middle workspace, so theARDS2-R has better dexterity than the ARDS1-R.
All the results also suggest that the condition number of redundantly actuated manipulators varies
smoothly in its vicinity, has no sudden peak values and lies within a reasonable limit in the entire
workspace. In addition, this analysis shows that actuator redundancy does not ensure the dexterity
index of the redundant manipulator to be always superior to the non-redundant one at every pose, but
indeed enhance the minimum of dexterity index, especially ones near singularity loci.
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4.3. Singularity analysis
Subsequently, the condition number also can be used to evaluate how close a mechanism tends to
be singular. Singularities in parallel manipulators usually have been associated with either losing or
gaining one or more DOF, cut a workspace apart into several pieces and hinder further applications,
such as trajectory planning and control. So far, various approaches, most of which are based on
Jacobian analysis, have been developed to address this problem. According to the previous work,24,25

singularity for parallel mechanism can be generally classified into three main types: constraint
singularity, inverse kinematic singularity, direct kinematic singularity.

(1) Constraint singularity

This kind of singularity depends on the alteration of the constraints acted on the platform within
the workspace. Here the platform suffers from three force wrench constraints, which restrain spatial
translations, provided by the constraint limb. In fact, constraint singularity happens for the four
mechanisms if and only if the three axes of the serial spherical mechanism are coplanar, but the pose
doesn’t lie in the prescribed workspace.

(2) Inverse kinematic singularity

This kind of singularity occurs when det(Jq) = 0. For the ARDS1-N and ARDS2-N, Jq =
diag[1, 1, 1], the unit matrix will never degenerate, so the two mechanisms don’t have this type
singularity. For the ARDS1-R and ARDS2-R, Jq = diag[1, 1, 1 (bb4 × sr

4)τ 1s4], the diagonal matrix
degenerates if and only if the following equation is tenable.

(
bb4 × sr

4

)τ 1s4 = 0 (19)

The above equality is satisfied as the 1s4 lies on the plane containing the vectors bb4 and sr
4, that is,

all the three axes of the serial spherical mechanism are coplanar and the constraint limb reaches its
boundary. Hence, this type of singularity for the ARDS1-R and ARDS2-R lies out of the prescribed
workspace, and simultaneously occurs with the constraint singularity.

(3) Direct kinematic singularity

This kind of singularity occurs when the matrix Jx or Jxn (Jx for the ARDS1-R and ARDS2-R, Jxn

for the ARDS1-N and ARDS2-N) degenerates. As opposed to the second type, this one lies inside the
workspace and should be carefully computed. According to Eq. (14), the square matrix Jxn consists
of three vectors (bbi × sr

i ), and degenerates if det(Jxn) = 0 or rank(Jxn) < 3; the 4 × 3 non-square
matrix Jx consists of four vectors, and the rank deficiency results from rank(Jx) < 3. However, it’s
tough to solve the equality det(Jx) = 0 or the inequality rank(Jx) < 3 in analytical expressions, so
the possible method is to use numerical computation. Because Jxn is a square matrix, its condition
number can be easily calculated by its eigenvalues. Although the matrix Jx is a non-square matrix, its
condition number can be still accessed through using Eqs. (17) and (18). Hence, through computing
the eigenvalues of the matrix JT

x Jx and the singular values of Jx , it can be judged whether the matrix
Jx degenerates. If the Jacobian matrix Jx degenerates, the minimum of singular values is zero and
the condition number of Jx is infinity. As mentioned above, the higher the condition number is, the
closer to singularity a mechanism is. Therefore, the condition number of Jx or Jxn can be used to
evaluate how far away parallel manipulators are from singularity. Considering the aforementioned
dexterity analysis results, the mechanism is deemed to be almost close to singularity when the matrix
Jx or Jxn has a condition number greater than 1000. Through searching the region of interest in task
space, platform orientations with condition numbers over the limit can be found. The fact is that
there is no condition number beyond the designated limit for the matrix Jx , that is, the ARDS1-R
and ARDS2-R manipulators have no direct kinematic singularity within the prescribed workspace,
but it’s not true for the ARDS1-N and ARDS2-N, singular zones of which within the designated
workspace are separately presented in Figs. 10(a) and 10(b). Figure 10(a) reveals that the points of
the condition number more than 1000 nearly form a saddle surface spreading between the planes of
γ = −20 deg and 20 deg that divides the workspace of the ARDS1-N into two parts; the singular
surface of the ARDS2-N illustrated in Fig. 10(b) is a more twisted saddle surface, even spreading all
over the workspace. These singular surfaces mean that the ARDS1-N and ARDS2-N manipulators
can only continuously operate in one part per time, which is bad for ankle rehabilitation that needs
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Fig. 10. Regions close to singularity with condition number >1000 for the ARDS1-N (a) and ARDS2-N (b).

full range motion. Meanwhile, it can be observed that the singularity zones depicted in Figs. 10(a)
and 10(b) are in accordance with the regions with large condition number presented in Figs. 8(c) and
9(c) respectively.

Based on the distributions of singularity and dexterity, the ARDS1-R can easily switch between two
modes depending on some control strategies: actuating the R1 joint when close to singularity; free the
R1 joint when dexterity is much better in this mode. Similarly, the ARDS2-R also has another mode:
by virtual of the partially decouple kinematical feature of the constraint limb, when the actuator of
the R1 joint is self-locked, the ARDS2-R can be reconfigured into a2-DOF 3-UPS/U mechanism, still
redundantly actuated and performing plantar/dorsiflexion and inversion/eversion, which kinematical
performance is also different from the aforementioned mechanisms as23 researched. In conclusion,
dexterity and singularity analyses prove the viewpoint that the actuator redundancy arrangement
proposed in this paper can improve the dexterity value and eliminate singularity in the prescribed
workspace.

4.4. Stiffness analysis
Stiffness is one of the most important performances of parallel mechanisms, because it reflects the
amount of deflection as the moving platform suffers from external forces or moments. It’s important
for an ARD to have reasonable stiffness, since it needs certain stiffness to achieve the passive ROM
exercise and keep patients safe simultaneously. Our objective is to explore the impact on stiffness
resulting from actuator redundancy for further application. Many previous works26,27 have established
various kinds of stiffness models, involving several factors, such as the size and material of the links,
mechanical transmission mechanisms, actuators, control system and even internal preload torque
distribution for parallel mechanisms with actuator redundancy.28 In this paper, actuators stiffness is
considered as the main source of the stiffness of the four mechanisms. The following discussion on
stiffness modeling will be based on this viewpoint.

Let M = [mx, my, mz]T be the three-dimensional vector of end-effector output moment,
�θ = [�θx, �θy, �θz]T denote the vector of virtual angular displacement of the platform, τ =
[τ1, τ2, τ3, τ4]T denote the vector of actuated joints forces, �q = [�q1, �q2, �q3, �q4]T denote the
vector of virtual displacement associated with the active joints. Applying the principle of virtual work
results in

wT M = q̇T τ (20)

Substituting Eq. (15) into Eq. (20) leads to

M = JT τ (21)
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According to the definition of Jacobian matrix and Eq. (15), the following equation can be obtained:

J�θ = �q. (22)

Furthermore, τ can be associated with �q using a 4 × 4 diagonal matrix χ = diag [k1, ...ki ..., k4] in
which each diagonal element signifies the stiffness of the ith joint actuator. The relationship can be
represented as follows:

�q = χ−1τ. (23)

Substituting Eqs. (23) and (22) into Eq. (21) leads to

M = JT χ�q = JT χJ�θ. (24)

Hence, the stiffness matrix can be written as

K = JT χJ. (25)

It should be noted from Eq. (25) that the stiffness is mainly determined by the singular values or
eigenvalues of the matrix J and changes with the variation of the manipulator configurations in
workspace. There are many ways for stiffness evaluation, such as the determinant, the condition
number, and the eigenvalues of the stiffness matrix.27 Here the minimum and maximum eigenvalues
are selected, for they reveal the limits of stiffness in the corresponding eigenvectors. For comparison
among the four mechanisms, the stiffness constant for all prismatic actuators is set to 105 N/m, and for
the revolute actuator is set to 105 Nm/rad too. The maximum and minimum eigenvalues of stiffness
matrixes of the four mechanisms at each pose within the predefined workspace have been computed
at various values of Euler angle γ . Figures 11 and 12 illustrate the distributions for the minimum
and maximum eigenvalues in the plane of γ = 0 deg. Based on the results, the following inferences
confirmed by other numerical computations in different γ values as well can be concluded.

(1) The maximum stiffness eigenvalues of the ARDS1-R and ARDS2-R are respectively rather higher
than the ones of the ARDS1-N and ARDS2-N.

(2) The minimum stiffness eigenvalues of the ARDS1-R and ARDS2-R are respectively quite higher
than the ones of the ARDS1-N and ARDS2-N.

(3) For the non-redundant ARDS1-N and ARDS2-N, the minimum stiffness close to a singular
configuration is almost equal to zero; however, the redundant ARDS1-R and ARDS2-R still
possess a sound stiffness index.

(4) For the redundant ARDS1-R and ARDS2-R, the minimum stiffness eigenvalues in the middle
part of the workspace is always superior to ones around the boundary of the workspace; Fig. 11(b)
shows the minimum stiffness eigenvalues of the ARDS1-R are almost around 800 in the middle
workspace, and the minimum stiffness eigenvalues of the ARDS2-R are almost around 2000
shown in Fig. 12(b), so the ARDS2-R has better minimum eigenvalues than the ARDS1-R.

As discussed earlier, the eigenvalues of the stiffness matrix K are mainly dependent on the singular
values of the Jacobian matrix J, so the minimum eigenvalue of the matrix K inevitably tends to a
small value when the condition number of the matrix J is very small. It is reasonable to say that
the distribution of the condition number considerably reflects the trend of the minimum eigenvalues.
Therefore, in view of Figs. 8(d) and 9(d), the conclusion can be testified again that the minimum
eigenvalues of the ARDS1-R and ARDS2-R possess sound values in the middle of the workspace
and smaller values at the boundary, and the minimum eigenvalues of the ARDS2-R is superior to the
ones of the ARDS1-R. On all accounts, in terms of this analysis, the proposed actuator redundancy
design can significantly improve the stiffness of parallel manipulators; the stiffness of the actuator
of the R1 joint has a great impact on the stiffness of the ARDS1-R and ARDS2-R, so it’s critical for
good performance to select a proper motor to actuate the R1 joint.
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Fig. 11. The distribution of the minimum eigenvalues for the ARDS1-N (a) and ARDS1-R (b) in the plane of
γ = 0◦; the distribution of the maximum eigenvalues for the ARDS1-N (c) and ARDS1-R (d) in the plane of
γ = 0◦.

5. Conclusions and Future Work
The work reported in this paper shows that there exist at least two advantages for substituting a single
spherical joint with two redesigned serial spherical mechanisms based on the conceptual design. One
advantage is that we can easily fabricate several redundantly actuated parallel mechanisms for ankle
rehabilitation, which are not only capable of actualizing the 3-DOF rotations, but also guarantee the
mechanism center of rotation matches the ankle axes of rotation as closely as possible. Subsequently,
the kinematical performance analyses show that the new arrangement of actuator redundancy can
ensure the redundantly actuated ARDS1-R and ARDS2-R manipulators have no singularity, better
dexterity and stiffness within the prescribed workspace in comparison with the corresponding non-
redundantly actuated ARDS1-N and ARDS2-N manipulators. In fact, the ARDS2-R has much better
dexterity and stiffness than the ARDS1-R, but the ARDS1-R can easily switch between two modes
based on certain control strategies, actuating the R1 joint when close to singularity and freeing the
R1 joint when dexterity is much better in this mode, to obtain better performance. Moreover, the
ARDS2-R can be reconfigured into a 2-DOF 3-UPS/U mechanism when the actuator of the R1 joint
is self-locked. The second advantage is just the reconfigurable capacity possessed by the ARDS1-R
and ARDS2-R. All the results show that the proposed serial spherical mechanisms have different
kinematical characteristics, and the constructed parallel mechanisms based on them are suitable for
ankle rehabilitation. Furthermore, how to optimize design parameters, customize actuators and build
the real prototype will be discussed later.
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Fig. 12. The distribution of the minimum eigenvalues for the ARDS2-N (a) and ARDS2-R (b) in the plane of
γ = 0◦; the distribution of the maximum eigenvalues for the ARDS2-N (c) and ARDS2-R (d) in the plane of
γ = 0◦.
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