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Tornadoes are one type of violent flow phenomenon and occur in many places in
the world. There are many research methods that aim to reduce the loss of human
lives and material damage caused by tornadoes. One effective method is numerical
simulation such as that in Ishihara et al. (J. Wind Engng Ind. Aerodyn., vol. 99, 2011,
pp. 239–248). The swirling structure of the Navier–Stokes flow is significant for both
the mathematical analysis and numerical simulations of tornadoes. In this paper, we try
to clarify the swirling structure. More precisely, we performed numerical computations
on axisymmetric Navier–Stokes flows with a no-slip flat boundary. We compared a
hyperbolic flow with swirl and one without swirl, and observed that the following
phenomenon occurs only in the swirl case: the distance between the point with the
maximum magnitude of velocity |v| and the z-axis changed drastically at a specific
time (which we call the turning point). Besides, an ‘increasing velocity phenomenon’
occurred near the boundary, and the maximum value of |v| was obtained near the axis
of symmetry and the boundary when the time was close to the turning point in the
swirl case.

Key words: mathematical foundations, Navier–Stokes equations

1. Introduction

In this study we considered the local behaviour of the three-dimensional (3D)
Navier–Stokes flow near a saddle point (with hyperbolic flow configuration) and
no-slip flat boundary. The Navier–Stokes equations with no-slip flat boundary are
expressed as

∂tv + (v · ∇)v − ν1v +∇p= 0 in R3
+ × [0, T),

v0 = v|t=0, v|∂R3+ = 0, ∇ · v = 0 in R3
+ × [0, T),

}
(1.1)

† Email address for correspondence: pyhsu@ms.u-tokyo.ac.jp
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where v is a vector field representing the velocity of the fluid, and p is the pressure.
We will use bold to denote vector-valued functions throughout this paper. The term
‘hyperbolic flow configuration’ used hereafter can be defined in cylindrical polar
coordinates as follows: there is δ > 0 (depending on t) such that vz > 0, vr < 0, or
vz < 0, vr > 0 for 0 < r < δ and 0 < z < δ, where vz and vr represent the axial and
radial components of velocity v. A simple modification is required for defining a
two-dimensional (2D) hyperbolic flow configuration.

Recently, the Euler flow with a saddle point (with hyperbolic flow configuration) has
been extensively studied. Bourgain & Li (2015a) obtained strong local ill-posedness
results in the Sobolev spaces Wn/p+1,p for any 1 < p <∞ and in the Besov spaces
Bn/p+1

p,q with 1 < p < ∞ and 1 < q 6 ∞ and n = 2 or 3 by using a combination
of Lagrangian and Eulerian techniques with a saddle point (with hyperbolic flow
configuration) structure. In particular, they settled the borderline Sobolev case Hn/2+1.
After that Elgindi & Masmoudi (2014) and Bourgain & Li (2015b) produced similar
results for the C1 case (also the Cm case). On the other hand, Kiselev & Sverak
(2014) (also refer to Itoh, Miura & Yoneda (2014), Kiselev & Zlatos (2015) and
Xu (2014) for related topics) showed a 2D Euler flow with a saddle point (with
hyperbolic flow configuration) in a disk for which the gradient of vorticity exhibited
a double-exponential growth in time for all times. Their estimate is known to be
sharp, namely, the double-exponential growth is the fastest possible growth rate.
These results show that the saddle point (with hyperbolic flow configuration) causes
some type of unstabilizing effects.

In the next part of § 1, for the convenience of readers belonging to different
research fields, the related results are organized as follows. First, we introduce results
obtained from mathematical analysis, and then discuss the research on tornado-like
vortices. Finally, we provide several references of related literature in each research
field (mathematical analysis, numerical analysis and research on tornadoes) for the
convenience of readers.

In the following four paragraphs, we introduce classical regularity results and
a new regularity criterion on the direction of vorticity for 3D Navier–Stokes flow,
and then introduce recent results on the hyperbolic flow structure considered in the
axisymmetric Navier–Stokes (or Euler) system.

Let us briefly look back at the history of the 3D Navier–Stokes equations. Modern
regularity theory for solutions to the Navier–Stokes equations began with the works
of Leray (1934) and Hopf (1951). They showed the existence of a weak solution
v:[0,∞)×R3→R3 lying in the class of L∞(0,∞;L2(R3))∩L2(0,∞; Ḣ1(R3)), which
satisfies the global energy inequality, where Ḣ1 is a homogeneous Sobolev space with
degree one.

After that, work by Prodi (1959), Serrin (1963) and Ladyzhenskaya (1967), and
their joint efforts, led to the following Prodi–Serrin–Ladyzhenskaya criterion for the
Leray–Hopf weak solutions.

THEOREM 1.1 (Prodi–Serrin–Ladyzhenskaya). Let v ∈ L∞(0,∞; L2(R3)) ∩ L2(0,∞;
Ḣ1(R3)) be a Leray–Hopf weak solution to (1.1), which also satisfies v ∈ Lp(0, T;
Lq(R3)), for some p, q satisfying 2/p + 3/q = 1, with q > 3. Then, the solution v is
smooth and unique on (0, T] ×R3.

It is also worthwhile to mention that the exceptional case of v ∈ L∞(L3) was finally
established in the work of Escauriaza, Seregin & Sverak (2003). After the appearance
of the Prodi–Serrin–Ladyzhenskaya criterion, many different regularity criteria for
solutions to (1.1) were established by different researchers working on the regularity
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theory of (1.1). For example, a regularity criterion along streamlines (characteristic
curves) was constructed (see Chan & Yoneda 2012). Besides these, other important
works have attracted much attention, such as Giga, Hsu & Maekawa (2014) – in
which type I blow-up was excluded for solutions to (1.1) under a regularity condition
on the direction of vorticity in the half space with no-slip boundary condition (see
also Constantin & Fefferman (1993), which is the pioneering work in this field) –
and Chen et al. (2009) and Koch et al. (2009) for axisymmetric solutions to (1.1)
– the equation for the axisymmetric case can be rewritten as (1.3) – in the whole
space. We now recall that a singularity of a Navier–Stokes solution v at a time T is
called type I if

sup
x
|v(x, t)|6 C√

T − t
(1.2)

for some C> 0, where x= (x1, x2, z) denotes a space variable in Cartesian coordinates.
If the singularity of v does not satisfy condition (1.2), then the singularity is called
a type II singularity (refer to Koch et al. (2009) for the type of singularity). The
axisymmetric Navier–Stokes equations are expressed as

∂tur + ur∂rur + uz∂zur − uθ 2

r
+ ∂rp=∆ur − ur

r2
,

∂tuθ + ur∂ruθ + uz∂zuθ + uruθ
r
=∆uθ − uθ

r2
,

∂tuz + ur∂ruz + uz∂zuz + ∂z p=∆uz,

∂r(rur)

r
+ ∂zuz = 0,


(1.3)

where ur = ur(r, z, t), uθ = uθ(r, z, t), uz = uz(r, z, t) and ∆= ∂2
r + (1/r)∂r + ∂2

z . The
vector-valued function v := urer + uθeθ + uzez with er := (1/

√
x2

1 + x2
2)(x1, x2, 0), eθ :=

(1/
√

x2
1 + x2

2)(−x2, x1, 0) and ez = (0, 0, 1) represents the velocity of the fluid, and p
is the pressure.

It is known that axisymmetric solutions for flows with no swirl (namely, uθ ≡ 0)
have to be regular (see Ladyzhenskaya 1968; Ukhovskii & Iudovich 1968; Koch
et al. 2009). On the other hand, Caffarelli, Kohn & Nirenberg (1982) showed that
the axisymmetric Navier–Stokes solution could only blow up on the axis.

Choi et al. (2014) considered a one-dimensional (1D) transport equation with
an additional variable that comes from the square of the swirl component uθ of
the velocity field in the 3D axisymmetric Euler flow. They showed that the transport
equation can exhibit finite-time blow-up from smooth initial data by using an argument
by contradiction, and they concluded that, in a 3D axisymmetric Euler flow, the best
chance for possible singularity formation seemed to be at the hyperbolic saddle (see
also Luo & Hou 2014). Indeed, the finite-time singularity numerically identified in
Luo & Hou (2014) is located on the solid wall (lateral surface) of the cylinder,
and the cylindrical domain considered by these authors is periodic in z (the axial
direction), which means that no ‘flat boundary’ has been used to truncate the domain.
Nevertheless, the special symmetries imposed in Luo & Hou (2014) forced the
normal velocity component (uz) of the flow to vanish on z = 0, effectively turning
the plane into an ‘impermeable wall’ through which no fluid particle can pass. The
1D model considered in Choi et al. (2014) can be viewed as a projection of the
3D Euler equations onto the solid wall. It tried to model the hyperbolic saddle
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6.185 10 12 14 17.32 4.717 8 10 14.14

z
x y

z
x y

(a) (b)

FIGURE 1. (Colour online) Initial data for a= 1/8: (a) swirl, and (b) no swirl.

lying at the intersection of the solid wall and the symmetry plane z = 0. On the
other hand, Kang (2004) constructed a regularity theory. More precisely, suitable
weak solutions of the 3D axisymmetric Navier–Stokes flow in a half space without
swirl are Hölder-continuous up to the boundary except for the origin. His result
suggests that, even in the case of the Navier–Stokes flow, the best possible position
of singularity formation may be at the saddle point.

Although there are many fruitful results based on mathematical analysis, as
mentioned above, it is not easy to locally analyse such fluid mechanics in order to
go a step further mathematically. Thus, it would be effective to attempt a numerical
approach.

Besides, from the above mathematical literature, the saddle point seems to be a
key place and the hyperbolic flow with swirl might be a key structure. Actually,
the swirl ratios are very significant in the research on tornadoes (see Wan & Ding
2005; Ishihara, Oh & Tokuyama 2011; Nolan 2012; Ishihara & Liu 2014). There
are several methods for studying tornadoes. Although studies on real tornadoes
that occur outdoors and simulated tornadoes in the laboratory are also important,
numerical simulations provide a safe and cost-effective way to analyse the behaviour
of tornadoes. We concentrate on numerical computation for the swirl case and
the behaviour near the axis of symmetry (saddle point) at the boundary. From a
mathematical point of view, the saddle point causes some type of unstabilizing
effects. From the point of view of studies on tornadoes, the behaviour inside the
core of a tornado (the centre region near the z-axis) is significant and might be very
different compared to the behaviour outside the core. The behaviour near the ground
(lower boundary) is also very significant for preventing damage caused by tornadoes.
Our numerical result can be compared with the mathematical literature (especially
regularity results; see Constantin & Fefferman 1993; Giga et al. 2014) and also
with two-celled vortex structures in the research on tornadoes (especially numerical
simulations). For more references, the reader should refer to Giga et al. (2014) for
regularity results, to Luo & Hou (2014) for numerical studies of the Navier–Stokes
and Euler equations, and to Nolan (2012) and Ishihara & Liu (2014) for studies on
tornado-like vortices.

In the next section, we will describe the numerical computation used to observe
the differences between the swirl case and the no-swirl case. We also show that the
maximum value of |v| occurs at the place near the axis of symmetry (saddle point)
and the boundary when the time approaches the critical turning point (t = 0.35 and
t= 1.0) (refer to figures 1–7, especially figure 7).
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2. Setting of the initial data and numerical results for the axisymmetric Navier–
Stokes flow
In this section we set the initial data of the axisymmetric Navier–Stokes flow with

a saddle point (with hyperbolic flow configuration). We compared two flows: the swirl
(uθ 6≡ 0) and no-swirl (uθ ≡ 0) cases. In our numerical computation, we used the
cylindrical domain Ω ,

Ω :=
{

x= (x1, x2, z) ∈R3 : −a< z< 4a,
√

x2
1 + x2

2 < 1
}
, (2.1)

and imposed the no-slip boundary condition,

v = 0 on ∂Ω. (2.2)

We set the initial data in the following manner (see also figure 1 and Remark 2.2).
We let ϕ(a, ε, σ ) = (a2 + ε)σ , and we set the initial velocity for the swirl case as
follows:

uz = ϕ(r, ε1,−β1)ϕ(z, ε2,−β2), (2.3)
ρ = ϕ(r, ε3,−β3)ϕ(z, ε4, β4), (2.4)

ur = sign(z)ρuz, (2.5)
uθ = ϕ(r, ε5,−β5)ϕ(z, ε6,−β6), (2.6)

where εi and βi (i= 1, 2, . . . , 6) are constants. In the following numerical calculation,
we set all εi and βi equal to 1. As for the no-swirl case, we only changed the term
uθ to zero.

Remark 2.1. By our setting of the initial data, the initial magnitude of velocity |v| at
(x1, x2, z)= (0, 0, 0) (we call this point the centre of the initial velocity) was larger
than those at other places. The phenomena observed in this study were more clear
when the centre of the initial velocity is close to the lower boundary (but not on the
boundary). This is the reason for our choice of the computational domain Ω like (2.1)
instead of a symmetric one. Please refer to the Appendix for a comparison between
the behaviours of the two different centres.

Let τ > 0 be a time increment of the computation and h> 0 a (representative) mesh
size. We performed the computation by using a stabilized Lagrange–Galerkin (finite
element) scheme (Notsu 2008; Notsu & Tabata 2008, 2015a,b) based on the idea

1
τ
{vk(x)− vk−1(x− vk−1(x)τ )} − 1

Re
1vk +∇pk = 0, (2.7a)

∇ · vk − δ0h21pk = 0, (2.7b)

for k = 1, 2, . . . , where v(x, kτ) is simply denoted by vk(x), Re is the Reynolds
number, and the stabilization parameter is set as δ0 = 1. We note that, under some
conditions, the scheme has mathematical convergence properties of order O(τ + h) for
the velocity in H1(Ω) and for the pressure in L2(Ω) and of order O(τ + h2) for the
velocity in L2(Ω). The maximum, minimum and average mesh sizes were 1.88× 10−2,
1.48× 10−3 and 8.95× 10−3, respectively, where the mesh size around the z-axis was
smaller than that of the other part. The time increment was set as τ = 1.25× 10−2. In
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FIGURE 2. (Colour online) Graphs of (a) the maximum value of |v| versus t and (b) the
distance from the maximum point of |v| to the z-axis versus t for the swirl case with
Reynolds numbers 50 000 (red), 10 000 (green), 5000 (blue) and 1000 (purple).

the following sections, we show only the numerical results obtained using the mesh
size and the time increment mentioned above, where the numerical results with a
coarser mesh size and a larger time increment were qualitatively similar. Refer to
the Appendix for the discussion on the dependence of the numerical results on the
discretization parameters h and τ .

Remark 2.2. The initial velocities for the swirl and no-swirl cases did not satisfy the
divergence-free and no-slip boundary conditions. The computational velocities after the
first time step, however, satisfied both the conditions numerically, where the former
condition was satisfied in the sense that (2.7b) held. The structure of the initial data
is useful for observing the swirling flow. It is also reasonable to consider the initial
data (2.3)–(2.6) as a pre-stage, and the velocities after the first time step as real initial
velocity in the numerical computation. Although this construction of the initial data
is useful for observing phenomena in numerical approaches before the construction
of more smooth initial data, a more careful choice of the initial data is desirable for
mathematical analysis.

Remark 2.3. The axial symmetry was not explicitly imposed in the 3D numerical
computation by the stabilized Lagrange–Galerkin scheme, while the problem setting
including the initial velocity had symmetry. We performed the computation in order
to show the qualitative properties of the effect of swirl.

The figures show the numerical results obtained in our study for a= 1/8 and Re=
1000, 5000, 10 000 and 50 000. Hereafter, we call the point at which the maximum
value of |v| was attained as ‘the maximum point of |v|’ and the cross-section {x ∈
Ω : x1 = 0} as simply ‘the plane x1 = 0’.

Figure 2 shows the graphs of maximum values of |v| versus time t and the distance
from the maximum point of |v| to the z-axis versus time t for the swirl case, where
four colours are used for the graphs of Re= 50 000 (red), 10 000 (green), 5000 (blue)
and 1000 (purple). Figure 3 expresses the corresponding graphs for the no-swirl case.
From figures 2 and 3 we can see that different phenomena occur in the swirl and no-
swirl cases. The typical phenomenon observed in the swirl case is the drastic changes
of the distance from the maximum point of |v| to the z-axis at approximately t= 0.35
and 1.0, which is not observed in the no-swirl case. The difference becomes clearer
for a higher-Reynolds-number flow. In order to understand the difference, we display
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FIGURE 3. (Colour online) Graphs of (a) the maximum value of |v| versus t and (b) the
distance from the maximum point of |v| to the z-axis versus t for the no-swirl case with
Reynolds numbers 50 000 (red), 10 000 (green), 5000 (blue) and 1000 (purple).
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4.717 8 10 14.14 4.717 8 10 14.14

4.717 8 10 14.14 4.717 8 10 14.14

4.717 8 10 14.14 4.717 8 10 14.14

(a) (b)

(c) (d)

(e) ( f )

FIGURE 4. (Colour online) Time evolution of the velocity magnitude |v| on the plane
x1= 0 for the no-swirl case with Re= 50 000: t= 0.1 (a), 0.3 (b), 0.7 (c), 1.1 (d), 1.7 (e)
and 3.0 ( f ).

time evolutions of velocity on the plane x1 = 0 for both cases with Re = 50 000 in
figures 4–6. Figures 4 and 5 show the time evolutions of |v| on the plane for the no-
swirl and swirl cases, respectively, and figure 6 exhibits the time evolution of the axial
velocity uz (z-component of v) for the swirl case. They imply that the flow dissipates
in a straightforward manner as t increases in the no-swirl case and that an interesting
flow structure is observed near the z-axis in the swirl case.

From figures 2, 5 and 6 it can be observed that a downward flow arises near the
z-axis at approximately t = 0.3, and the maximum value of |v| is attained near the
z-axis and the lower boundary at approximately the same time (t= 0.3). In addition,
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(a) (b)
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FIGURE 5. (Colour online) Time evolution of the velocity magnitude |v| on the plane
x1 = 0 for the swirl case with Re= 50 000: t = 0.1 (a), 0.3 (b), 1.0 (c), 1.3 (d), 2.3 (e)
and 3.0 ( f ).

a new upward flow arises near the z-axis at approximately t = 1.3, and the velocity
attains its maximum value near the z-axis and the upper boundary at approximately
the same time (t= 1.3).

Remark 2.4. The scale may be different in each figure. The red region represents a
region of high magnitude.

3. Mathematical support for ‘increasing velocity near the axis of symmetry and
the lower boundary’

When unstabilizing effects are observed (such as increasing velocity in the time
evolution), it is better to compare with stabilizing effects (such as regularity results
mentioned in the introduction). The Giga–Hsu–Maekawa criterion (Giga et al. 2014,
hereafter GHM criterion) was considered for the numerical computation described in
the previous section. According to the GHM criterion (refer to (3.1) and also Giga
et al. (2014, theorem 1.3)), type I blow-up solutions to (1.1) do not exist under a
continuous alignment condition on the vorticity direction in the half space with no-slip
boundary condition. More precisely, if the direction of vorticity can be controlled at
places where the absolute value of the vorticity is large, the flow is regular. Conversely,
if we can construct solutions that do not satisfy such continuous conditions at those
places, there is a better possibility to determine the clue for possible blow-up solutions.
As even in this study we could not construct a blow-up solution, this kind of thought
might help us in explaining or predicting some phenomena with unstabilizing effects
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FIGURE 6. (Colour online) Time evolution of the axial velocity uz on the plane x1= 0 in
the swirl case with Re= 50 000: t= 0.1 (a), 0.3 (b), 1.0 (c), 1.3 (d), 2.3 (e) and 3.0 ( f ).
Note that the red and blue colours represent positive and negative values in this figure.

(such as the increasing velocity phenomena in this study). It should be noted that in
our numerical computation, even if the cylindrical domain was used instead of the half
space, the behaviour near the centre of the lower (and upper) boundary is expected
to be similar to the boundary of the half space under the same boundary condition.
Now we provide mathematical support for why the maximum value is increasing near
the saddle point on the boundary. Let ū = uθeθ + urer and ū⊥ = ureθ − uθer. We
can calculate the vorticity on the boundary as ω = ∂zū⊥. Note that ∂zur(r, 0)→ 0
as r→ 0 because of the symmetry. We can show that the direction of the vorticity
ω/|ω| is not continuous at the saddle point. In this case we need to assume ∂zuθ 6= 0
(on the boundary) and ∂ruθ 6= 0 (on the axis) near the saddle point. These non-zero
conditions may express a ‘shear flow effect by the swirl’. The vorticity along the axis
is expressed as ω = 2∂ruθez. Thus ω/|ω| along the z-axis and on the boundary is
not continuous. It breaks the following continuous alignment condition in the GHM
criterion: ∣∣∣∣ ω|ω|(t, x)− ω

|ω|(t, y)
∣∣∣∣6 ρ(|x− y|), (3.1)

where ρ(|x− y|) is any modulus continuous function. However, this jump discontinuity
in vorticity direction is irrelevant as far as phenomena with unstabilizing effects are
concerned, since it takes place at a point where the vorticity ω vanishes completely.
Nevertheless, through numerical computations, we observe that there are high-vorticity
regions near the saddle point and the boundary. We observe |ω| and three components
of ξ = ω/|ω| under a line that contains a point (0, 0.05, −0.125) on the boundary
and parallel to the z-axis at t = 0.4, as shown in figure 8 (figure 9 shows the case

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.174


A local analysis of the axisymmetric Navier–Stokes flow 453

z
x y

z
x y

z
x y

z
x y

6.185 10 12 14 17.32

6.185 10 12 14 17.32

1.580 2000 3000 4000 5444

1.580 2000 3000 4000 5444

(a)

(b)

(c)

(d)

FIGURE 7. (Colour online) Contours on the plane x1= 0 of the velocity magnitude |v| at
t= 0.4 (a) and t= 1.4 (b); and the vorticity magnitude |ω| at t= 0.4 (c) and t= 1.4 (d)
in the swirl case with Re= 50 000.

where the line is parallel to the x2-axis). The bottom axis in figure 8 represents the
distance from the lower boundary, while the bottom axis in figure 9 represents the
distance from the saddle point. It should be noted that the coordinate of the saddle
point is (0, 0, −0.125) and the axial velocity uz = 0 on the boundary. At the point
(0, 0.05, −0.125) on the boundary, the magnitude of the vorticity |ω| is 60, and
it clearly attains the maximum value along the line in figure 8. Moreover ω/|ω|
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FIGURE 8. (Colour online) Graphs of |ω| (a) and three components of ξ (b) at t = 0.4
on the line parallel to the z-axis through the point (0, 0.05,−0.125).
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FIGURE 9. (Colour online) Graph of three components of ξ at t= 0.4 on the line parallel
to the x2-axis through the point (0, 0.05,−0.125).

also changes drastically (highly oscillating) near the boundary (see figures 8 and 9).
It shows some type of instability of ξ at the location where the magnitude of the
vorticity is large.

4. Conclusion
From the literature, it is natural to consider that hyperbolic flow with swirl might

be the key structure of flow and that a saddle point at the boundary might be the
probable place for instability effects to occur near the no-slip flat boundary. We
showed a clear structure of axisymmetric hyperbolic flow with swirl and observed the
following phenomena that are distinctly different from those without swirl. (1) The
distance between the maximum point of the velocity and the z-axis changed drastically
at a specific time; we called it the turning point. (2) The velocity increased and
attained its maximum value near the axis of symmetry and the boundary when the
time was close to the turning point. The comparison of these results with studies on
tornadoes might help in understanding the behaviour of the velocity of wind near the
ground, which is very significant in research on tornadoes for reducing the damage
caused by tornadoes or similar phenomena. (3) The downward flow near the z-axis
was observed (refer to figure 6, the time evolution diagram). The downward wind
inside the core of a real tornado was also observed in a two-celled vortex structure in
the studies of numerical simulations for time-averaged velocity, as shown in Ishihara
et al. (2011, figure 4b). By comparing our observation with studies on tornadoes, we
might enhance our understanding about the behaviour inside the core of a tornado for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.174


A local analysis of the axisymmetric Navier–Stokes flow 455

a high swirl ratio. Furthermore, we also observed the properties of vorticity and its
directions (refer to § 3), on which there are only a few studies in the literature of the
numerical simulations of tornadoes. Those phenomena might be clues for helping us
understand the behaviour near the saddle point and near the boundary. Moreover, our
numerical approach might be helpful for other boundary shapes and other equations
related to fluid mechanics in future work. It might be useful for studies on tornadoes
that arise or pass by different landforms instead of a flat plane.
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Appendix
Here, we present additional numerical results in order to show two observations:

the first is that the dependence of the numerical results described in § 2 on the
discretization parameters h and τ is qualitatively small; and the second observation
describes the reason behind the choice of the range of z in Ω , i.e. −a< z< 4a.

First, we consider the former observation. We computed the no-swirl and swirl
cases for Re = 50 000, 10 000 and 5000 by using the stabilized Lagrange–Galerkin
scheme with a coarse mesh and a large time increment. The maximum, minimum and
average mesh sizes of the coarse mesh were 2.48× 10−2, 1.93× 10−3 and 1.20× 10−2,
respectively, where the strategy of the mesh generation was the same, i.e. the mesh
size around the z-axis was smaller than that of the other part. The time increment
was set as τ = 1.66 × 10−2. Hereafter, we denote the numerical results described
in § 2 as ‘results A’ and the numerical results obtained using the coarse mesh and
the large time increment as ‘results B’. We compared results B with results A for
Re = 50 000, 10 000 and 5000. Figure 10 shows graphs of maximum values of |v|
versus t and the distance from the maximum point of |v| to the z-axis versus t in the
swirl case for Re= 50 000 (a,b), 10 000 (c,d) and 5000 (e, f ), where the red and green
colours are employed for results A and results B, respectively. Figure 11 displays
the corresponding graphs for the no-swirl case for Re = 50 000. From figures 10
and 11, we can see that the two graphs in each figure are qualitatively similar, while
there is a quantitative difference. Here, the graphs for Re = 10 000 and 5000 for
the no-swirl case are omitted, since they are also qualitatively similar. We display
additional information of results B in figure 12, which shows the contours of |v| (a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.174


456 P.-Y. Hsu, H. Notsu and T. Yoneda

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

ta
nc

e 
fr

om
m

ax
im

um
 p

oi
nt

 to
 z

-a
xi

s(a) (b)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0
D

is
ta

nc
e 

fr
om

m
ax

im
um

 p
oi

nt
 to

 z
-a

xi
s(c) (d )

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.1

0.2

0.3

0.4

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

D
is

ta
nc

e 
fr

om
m

ax
im

um
 p

oi
nt

 to
 z

-a
xi

s

t

(e) ( f )

M
ax

im
um

 v
al

ue
 o

f
M

ax
im

um
 v

al
ue

 o
f

M
ax

im
um

 v
al

ue
 o

f

FIGURE 10. (Colour online) Graphs of (a,c,e) the maximum values of |v| versus t and
(b,d, f ) the distance from the maximum point of |v| to the z-axis versus t in the swirl case
for Re= 50 000 (a,b), 10 000 (c,d) and 5000 (e, f ), where the red and green colours are
employed for results A and results B, respectively.
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FIGURE 11. (Colour online) Graphs of (a) the maximum values of |v| versus t and (b) the
distance from the maximum point of |v| to the z-axis versus t in the no-swirl case for
Re= 50 000, where the red and green colours are employed for results A and results B,
respectively.
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FIGURE 12. (Colour online) Contours on the plane x1 = 0 of the velocity magnitude
|v| (a,b) and the vorticity magnitude |ω| (c,d) for the swirl case with Re = 50 000 for
results B, at t= 0.4 (a,c) and 1.4 (b,d).
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FIGURE 13. (Colour online) Graphs of (a) the maximum values of |v| versus t and (b) the
distance from the maximum point of |v| to the z-axis versus t in the swirl case for
Re= 50 000, where the red and green colours are employed for results B and results C,
respectively.

and |ω| (c,d) on the plane x1= 0 at t= 0.4 (a,c) and 1.4 (b,d), for Re= 50 000 in the
swirl case. By comparing figure 7 (results A) with figure 12 (results B) we can see
that the behaviour of the two graphs is almost similar, although the magnitudes are
slightly different. These results imply the former observation, i.e. the dependence of
the numerical results in § 2 on the discretization parameters h and τ is qualitatively
small.

Now we consider the latter observation. Let Ω ′ be a domain defined by Ω ′ :=
{(x1, x2, z)∈R3 : −5a/2< z< 5a/2,

√
x2

1 + x2
2 < 1}. We note that the centres of Ω and

Ω ′ are (0, 0, 3a/2) and the origin, respectively. We computed the swirl case in the
domain Ω ′ for Re= 50 000 by using the stabilized Lagrange–Galerkin scheme with a
coarse mesh and a large time increment, where the initial data were set by the same
functions in (2.3)–(2.6). The mesh sizes and the time increment were the same as
those used in results B. (The mesh was generated by a translation of the mesh for
results B.) We denote the numerical results as ‘results C’. We compare results C with
results B in figure 13, which shows the graphs of the maximum values of |v| versus
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t and the distance from the maximum point of |v| to the z-axis versus t in the swirl
case for Re = 50 000, where the red and green colours are employed for results B
and results C, respectively. It is observed that the ‘increasing velocity phenomenon’
in results B is clearer than that in results C, and that drastic changes of the distance
from the maximum point of |v| to the z-axis are observed in both the results. Hence,
Ω is better than Ω ′ in order to observe both the ‘increasing velocity phenomenon’
and ‘drastic changes’. These results explain the reason behind the choice of the range
of z in Ω , −a< z< 4a.
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