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Abstract

We present a technique for the automated verification of abstract models of multithreaded

programs providing fresh name generation, name mobility, and unbounded control. As

high level specification language we adopt here an extension of communication finite-state

machines with local variables ranging over an infinite name domain, called TDL programs.

Communication machines have been proved very effective for representing communication

protocols as well as for representing abstractions of multithreaded software. The verification

method that we propose is based on the encoding of TDL programs into a low level language

based on multiset rewriting and constraints that can be viewed as an extension of Petri

Nets. By means of this encoding, the symbolic verification procedure developed for the low

level language in our previous work can now be applied to TDL programs. Furthermore, the

encoding allows us to isolate a decidable class of verification problems for TDL programs that

still provide fresh name generation, name mobility, and unbounded control. Our syntactic

restrictions are in fact defined on the internal structure of threads: In order to obtain a

complete and terminating method, threads are only allowed to have at most one local

variable (ranging over an infinite domain of names).

KEYWORDS: constraints, multithreaded programs, verification

1 Introduction

Gordon (Gordon 2001) defines a nominal calculus to be a computational formalism

that includes a set of pure names and allows the dynamic generation of fresh,

unguessable names. A name is pure whenever it is only useful for comparing for

identity with other names. The use of pure names is ubiquitous in programming

languages. Some important examples are memory pointers in imperative languages,

identifiers in concurrent programming languages, and nonces in security protocols.

In addition to pure names, a nominal process calculus should provide mechanisms for

concurrency and inter-process communication. A computational model that provides

all these features is an adequate abstract formalism for the analysis of multithreaded

and distributed software.
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The problem Automated verification of specifications in a nominal process calcu-

lus becomes particularly challenging in presence of the following three features:

the possibility of generating fresh names (name generation); the possibility of

transmitting names (name mobility); the possibility of dynamically adding new

threads of control (unbounded control). In fact, a calculus that provides all the

previous features can be used to specify systems with a state-space infinite in

several dimensions. This feature makes difficult (if not impossible) the application

of finite-state verification techniques or techniques based on abstractions of process

specifications into Petri Nets or CCS-like models. In recent years there have been

several attempts of extending automated verification methods from finite-state to

infinite-state systems (Abdulla and Nylén 2000; Kesten et al. 2001). In this paper we

are interested in investigating the possible application of the methods we proposed

in (Delzanno 2001) to verification problems of interest for nominal process calculi.

Constraint-based Symbolic Model Checking In (Delzanno 2001) we introduced a

specification language, called MSR(C), for the analysis of communication protocols

whose specifications are parametric in several dimensions (e.g. number of servers,

clients, and tickets as in the model of the ticket mutual exclusion algorithm

shown in (Bozzano and Delzanno 2002)). MSR(C) combines multiset rewriting over

first order atomic formulas (Cervesato et al. 1999) with constraints programming.

More specifically, multiset rewriting is used to specify the control part of a

concurrent system, whereas constraints are used to symbolically specify the relations

over local data. The verification method proposed (Delzanno 2005) allows us to

symbolically reason on the behavior of MSR(C) specifications. To this aim, following

(Abdulla et al. 1996; Abdulla and Nylén 2000) we introduced a symbolic represent-

ation of infinite collections of global configurations based on the combination of

multisets of atomic formulas and constraints, called constrained configurations.1

The verification procedure performs a symbolic backward reachability analysis by

means of a symbolic pre-image operator that works over constrained configurations

(Delzanno 2005). The main feature of this method is the possibility of automatically

handling systems with an arbitrary number of components. Furthermore, since we

use a symbolic and finite representation of possibly infinite sets of configurations,

the analysis is carried out without loss of precision.

A natural question for our research is whether and how these techniques can be

used for verification of abstract models of multithreaded programs.

Our Contribution In this paper we propose a sound, and fully automatic verification

method for abstract models of multithreaded programs that provide name generation,

name mobility, and unbounded control. As a high level specification language we adopt

here an extension with value-passing of the formalism of (Ball et al. 2001) based on

families of state machines used to specify abstractions of multithreaded software

libraries. The resulting language is called Thread Definition Language (TDL). This

1 Notice that in (Abdulla et al. 1996; Abdulla and Nylén 2000) a constraint denotes a symbolic state
whereas we use the word constraint to denote a symbolic representation of the relation of data
variables (e.g. a linear arithmetic formula) used as part of the symbolic representation of sets of states
(a constrained configuration).
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formalism allows us to keep separate the finite control component of a thread

definition from the management of local variables (that in our setting range over

a infinite set of names), and to treat in isolation the operations to generate fresh

names, to transmit names, and to create new threads. In the present paper we will

show that the extension of the model of (Ball et al. 2001) with value-passing makes

the model Turing equivalent.

The verification methodology is based on the encoding of TDL programs into a

specification in the instance MSRNC of the language scheme MSR(C) of (Delzanno

2001). MSRNC is obtained by taking as constraint system a subclass of linear

arithmetics with only = and > relations between variables, called name constraints

(NC). The low level specification language MSRNC is not just instrumental for

the encoding of TDL programs. Indeed, it has been applied to model consistency

and mutual exclusion protocols in (Bozzano and Delzanno 2002; Delzanno 2005).

Via this encoding, the verification method based on symbolic backward reachability

obtained by instantiating the general method for MSR(C) to NC-constraints can now

be applied to abstract models of multithreaded programs. Although termination is

not guaranteed in general, the resulting verification method can succeed on practical

examples as the Challenge-Response TDL program defined over binary predicates

we will illustrated in the present paper. Furthermore, by propagating the sufficient

conditions for termination defined in (Bozzano and Delzanno 2002; Delzanno 2005)

back to TDL programs, we obtain an interesting class of decidable problems for

abstract models of multithreaded programs still providing name generation, name

mobility, and unbounded control.

Plan of the paper In Section 2 we present the Thread Definition Language (TDL)

with examples of multithreaded programs. Furthermore, we discuss the expressive-

ness of TDL programs showing that they can simulate Two Counter Machines. In

Section 3, after introducing the MSRNC formalism, we show that TDL programs

can be simulated by MSRNC specifications. In Section 4 we show how to transfer

the verification methods developed for MSR(C) to TDL programs. Furthermore, we

show that safety properties can be decided for the special class of monadic TDL

programs. In Section 5 we address some conclusions and discuss related work.

2 Thread Definition Language (TDL)

In this section we define TDL programs. This formalism is a natural extension with

value-passing of the communicating machines used by (Ball et al. 2001) to specify

abstractions of multithreaded software libraries.

Terminology Let N be a denumerable set of names equipped with the relations =

and �= and a special element ⊥ such that n �= ⊥ for any n ∈ N. Furthermore, let

V be a denumerable set of variables, C = {c1, . . . , cm} a finite set of constants, and

L a finite set of internal action labels. For a fixed V ⊆ V, the set of expressions is

defined as E = V ∪ C ∪ {⊥} (when necessary we will use E(V ) to explicit the set of

variables V upon which expressions are defined). The set of channel expressions is
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defined as Ech = V ∪ C. Channel expressions will be used as synchronization labels

so as to establish communication links only at execution time.

A guard over V is a conjunction γ1, . . . , γs, where γi is either true, x = e or x �= e

with x ∈ V and e ∈ E for i : 1, . . . , s. An assignment α from V to W is a conjunction

like xi := ei where xi ∈ W , ei ∈ E(V ) for i : 1, . . . k and xr �= xs for r �= s. A message

template m over V is a tuple m = 〈x1, . . . , xu〉 of variables in V .

Definition 1

A TDL program is a set T = {P1, . . . , Pt} of thread definitions (with distinct names

for local variables and control locations). A thread definition P is a tuple 〈Q, s0, V , R〉,
where Q is a finite set of control locations, s0 ∈ Q is the initial location, V ⊆ V is a

finite set of local variables, and R is a set of rules. Given s, s′ ∈ Q, and a ∈ L, a rule

has one of the following forms2:

• Internal move: s
a−−→ s′[γ, α], where γ is a guard over V , and α is an assignment

from V to V ;

• Name generation: s
a−−→ s′[x := new], where x ∈ V , and the expression new

denotes a fresh name;

• Thread creation: s
a−−→ s′[run P ′ with α], where P ′ = 〈Q′, t,W , R′〉 ∈ T, and

α is an assignment from V to W that specifies the initialization of the local

variables of the new thread;

• Message sending: s
e!m−−→ s′[γ, α], where e is a channel expression, m is a message

template over V that specifies which names to pass, γ is a guard over V , and α

is an assignment from V to V .

• Message reception: s
e?m−−→ s′[γ, α], where e is a channel expression, m is a

message template over a new set of variables V ′ (V ′ ∩V = ∅) that specifies the

names to receive, γ is a guard over V ∪V ′ and α is an assignment from V ∪V ′

to V .

Before giving an example, we formally introduce the operational semantics of

TDL programs.

2.1 Operational Semantics

In the following we will use N to indicate the subset of used names of N. Every

constant c ∈ C is mapped to a distinct name nc �= ⊥ ∈ N, and ⊥ is mapped to ⊥.

Let P = 〈Q, s, V , R〉 and V = {x1, . . . , xk}. A local configuration is a tuple p =

〈s′, n1, . . . , nk〉 where s′ ∈ Q and ni ∈ N is the current value of the variable xi ∈ V for

i : 1, . . . , k.

A global configuration G = 〈N, p1, . . . , pm〉 is such that N ⊆ N and p1, . . . , pm are

local configurations defined over N and over the thread definitions in T. Note that

there is no relation between indexes in a global configuration in G and in T; G is a

pool of active threads, and several active threads can be instances of the same thread

definition.

2 In this paper we keep assignments, name generation, and thread creation separate in order to simplify
the presentation of the encoding into MSR.
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Given a local configuration p = 〈s′, n1, . . . , nk〉, we define the valuation ρp as

ρp(xi) = ni if xi ∈ V , ρp(c) = nc if c ∈ C, and ρp(⊥) = ⊥. Furthermore, we say that

ρp satisfies the guard γ if ρp(γ) ≡ true, where ρp is extended to constraints in the

natural way (ρp(ϕ1 ∧ ϕ2) = ρp(ϕ1) ∧ ρp(ϕ2), etc.).

The execution of x := e has the effect of updating the local variable x of a thread

with the current value of e (a name taken from the set of used values N). On

the contrary, the execution of x := new associates a fresh unused name to x. The

formula run P with α has the effect of adding a new thread (in its initial control

location) to the current global configuration. The initial values of the local variables

of the generated thread are determined by the execution of α, an assignment with

local variables of the parent thread. The channel names used in a rendez-vous are

determined by evaluating the channel expressions tagging sender and receiver rules.

Value passing is achieved by extending the evaluation associated to the current

configuration of the receiver so as to associate the output message of the sender to

the variables in the input message template. The operational semantics is given via

a binary relation ⇒ defined as follows.

Definition 2
Let G = 〈N, . . . , p, . . .〉, and p = 〈s, n1, . . . , nk〉 be a local configuration for P =

〈Q, s, V , R〉, V = {x1, . . . , xk}, then:

• If there exists a rule s
a−−→ s′[γ, α] in R such that ρp satisfies γ, then G ⇒

〈N, . . . , p′, . . .〉 (meaning that only p changes) where p′ = 〈s′, n′
1, . . . , n

′
k〉, n′

i =

ρp(ei) if xi := ei is in α, n′
i = ni otherwise, for i : 1, . . . , k.

• If there exists a rule s
a−−→ s′[xi := new] in R, then G ⇒ 〈N ′, . . . , p′, . . .〉 where

p′ = 〈s′, n′
1, . . . , n

′
k〉, ni is an unused name, i.e., n′

i ∈ N \ N, n′
j = nj for every

j �= i, and N ′ = N ∪ {n′
i};

• If there exists a rule s
a−−→ s′[run P ′ with α] in R with P ′ = 〈Q′, t0,W , R′〉, W =

{y1, . . . , yu}, and α is defined as y1 := e1, . . . , yu := eu then G ⇒ 〈N, . . . , p′, . . . , q〉
(we add a new thread whose initial local configuration is q) where p′ =

〈s′, n1, . . . , nk〉, and q = 〈t0, ρp(e1), . . . , ρp(eu)〉.
• Let q = 〈t, m1, . . . , mr〉 (distinct from p) be a local configuration in G associated

with P ′ = 〈Q′, t0,W , R′〉.
Let s

e!m−−→ s′[γ, α] in R and t
e′?m′

−−−→ t′[γ′, α′] in R′ be two rules such that m =

〈x1, . . . , xu〉, m′ = 〈y1, . . . , yv〉 and u = v (message templates match). We define

σ as the value passing evaluation σ(yi) = ρp(xi) for i : 1, . . . , u, and σ(z) = ρq(z)

for z ∈ W ′.

Now if ρp(e) = ρp(e
′) (channel names match), ρp satisfies γ, and σ satisfies γ′,

then 〈N, . . . , p, . . . , q, . . .〉 ⇒ 〈N, . . . , p′, . . . , q′, . . .〉 where p′ = 〈s′, n′
1, . . . , n

′
k〉, n′

i =

ρp(v) if xi := v is in α, n′
i = ni otherwise and for i : 1, . . . , k; q′ = 〈t′, m′

1, . . . , m
′
r〉,

m′
i = σ(v) if ui := v is in α′, m′

i = mi otherwise and for i : 1, . . . , r.

Definition 3
An initial global configuration G0 has an arbitrary (but finite) number of threads

with local variables all set to ⊥. A run is a sequence G0G1 . . . such that Gi ⇒ Gi+1

for i � 0. A global configuration G is reachable from G0 if there exists a run from

G0 to G.
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Thread Init(local idA, nA, mA);

initA
fresh−−−→ genA [nA := new]

genA
c!〈nA〉

−−−→ waitA [true]

waitA
nA?〈y〉

−−−−→ stopA [mA := y]

Thread Resp(local id, nB, mB);

initB
c?〈x〉

−−−→ genB [nB := x]

genB
fresh−−−→ readyB [mB := new]

readyB
nB !〈mB 〉

−−−−→ stopB [true]

Thread Main(local x);

initM
id−−→ create [x := new]

create
newA−−−→ initM [run Init with idA := x, nA := ⊥, mA := ⊥, x := ⊥]

create
newB−−−→ initM [run Resp with idB := x, nB := ⊥, mB := ⊥, x := ⊥B]

Fig. 1. Example of thread definitions.

Example 1

Let us consider a challenge and response protocol in which the goal of two agents

Alice and Bob is to exchange a pair of new names 〈nA, nB〉, the first one created by

Alice and the second one created by Bob, so as to build a composed secret key. We

can specify the protocol by using new names to dynamically establish private channel

names between instances of the initiator and of the responder. The TDL program

in Figure 1 follows this idea. The thread Init specifies the behavior of the initiator.

It first creates a new name using the internal action fresh, and stores it in the local

variable nA. Then, it sends nA on channel c (a constant), waits for a name y on a

channel with the same name as the value of the local variable nA (the channel is

specified by variable nA) and then stores y in the local variable mA. The thread Resp

specifies the behavior of the responder. Upon reception of a name x on channel c,

it stores in the local variable nB , then creates a new name stored in local variable

mB and finally sends the value in mB on a channel with the same name as the value

of nB . The thread Main non-deterministically creates new thread instances of type

Init and Resp. The local variable x is used to store new names to be used for the

creation of a new thread instance. Initially, all local variables of threads Init/Resp

are set to ⊥. In order to allow process instances to participate to several sessions

(potentially with different principals), we could also add the following rule

stopA
restart−−−→ initA[nA := ⊥, mA := ⊥]

In this rule we require that roles and identities do not change from session to

session.3 Starting from G0 = 〈N0, 〈init,⊥〉〉, and running the Main thread we can

generate any number of copies of the threads Init and Resp each one with a unique

3 By means of thread and fresh name creation it is also possible to specify a restart rule in which a given
process takes a different role or identity.

https://doi.org/10.1017/S1471068406002821 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002821


Constraint-based verification of abstract multithreaded programs 73

identifier. Thus, we obtain global configurations like

〈N, 〈initM,⊥〉,
〈initA, i1,⊥,⊥〉, . . . , 〈initA, iK ,⊥,⊥〉,
〈initB, iK+1,⊥,⊥〉, . . . , 〈initB, iK+L,⊥,⊥〉 〉

where N = {⊥, i1, . . . , iK , iK+1, . . . , iK+L} for K,L � 0. The threads of type Init and

Resp can start parallel sessions. For K = 1 and L = 1 one possible session is as

follows.

Starting from

〈{⊥, i1, i2}, 〈initM,⊥〉, 〈initA, i1,⊥,⊥〉, 〈initB, i2,⊥,⊥〉〉

if we apply the first rule of thread Init to 〈initA, i1,⊥,⊥〉 we obtain

〈{⊥, i1, i2, a1}, 〈initM,⊥〉, 〈genA, i1, a1,⊥〉, 〈initB, i2,⊥,⊥〉〉

where a1 is the generated name (a1 is distinct from ⊥, i1, and i2). Now if we apply

the second rule of thread Init and the first rule of thread Resp (synchronization on

channel c) we obtain

〈{⊥, i1, i2, a1}, 〈initM,⊥〉, 〈waitA, i1, a1,⊥〉, 〈genB, i2, a1,⊥〉〉

If we apply the second rule of thread Resp we obtain

〈{⊥, i1, i2, a1, a2}, 〈initM,⊥〉, 〈waitA, i1, a1,⊥〉, 〈readyB, i2, a1, a2〉〉

Finally, if we apply the last rule of thread Init and Resp (synchronization on channel

a1) we obtain

〈{⊥, i1, i2, a1, a2}, 〈initM,⊥〉, 〈stopA, i1, a1, a2〉, 〈stopB, i2, a1, a2〉〉

Thus, at the end of the session the thread instances i1 and i2 have both a local copy

of the fresh names a1 and a2. Note that a copy of the main thread 〈initM,⊥〉 is always

active in any reachable configuration, and, at any time, it may introduce new threads

(either of type Init or Resp) with fresh identifiers. Generation of fresh names is also

used by the threads of type Init and Resp to create nonces. Furthermore, threads

can restart their life cycle (without changing identifiers). Thus, in this example

the set of possible reachable configurations is infinite and contains configurations

with arbitrarily many threads and fresh names. Since names are stored in the local

variables of active threads, the local data also range over an infinite domain. �

2.2 Expressive Power of TDL

To study the expressive power of the TDL language, we will compare it with

the Turing equivalent formalism called Two Counter Machines. A Two Counters

Machine configurations is a tuple 〈�, c1 = n1, c2 = n2〉 where � is control location

taken from a finite set Q, and n1 and n2 are natural numbers that represent the

values of the counters c1 and c2. Each counter can be incremented or decremented

(if greater than zero) by one. Transitions combine operations on individual coun-

ters with changes of control locations. Specifically, the instructions for counter ci
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are as follows

Inc: �1: ci := ci + 1; goto �2;

Dec: �1: if ci > 0 then ci := ci − 1; goto �2; else goto �3;

A Two Counter Machine consists then of a list of instructions and of the initial state

〈�0, c1 = 0, c2 = 0〉. The operational semantics is defined according to the intuitive

semantics of the instructions. Problems like control state reachability are undecidable

for this computational model.

The following property then holds.

Theorem 1

TDL programs can simulate Two Counter Machines.

Proof

In order to define a TDL program that simulates a Two Counter Machine we

proceed as follows. Every counter is represented via a doubly linked list implemented

via a collection of threads of type Cell and with a unique thread of type Last

pointing to the head of the list. The i-th counter having value zero is represented as

the empty list Cell(i, v, v), Last(i, v, w) for some name v and w (we will explain later

the use of w). The i-th counter having value k is represented as

Cell(i, v0, v0), Cell(i, v0, v1), . . . , C(i, vk−1, vk), Last(i, vk, w)

for distinct names v0, v1, . . . , vk . The instructions on a counter are simulated by sending

messages to the corresponding Last thread. The messages are sent on channel Zero

(zero test), Dec (decrement), and Inc (increment). In reply to each of these messages,

the thread Last sends an acknowledgment, namely Yes/No for the zero test, DAck

for the decrement, IAck for the increment operation. Last interacts with the Cell

threads via the messages tstC , decC , incC acknowledged by messages z/nz, dack.

iack. The interactions between a Last thread and a Cell thread is as follows.

Zero Test Upon reception of a message 〈x〉 on channel Zero, the Last thread with

local variables id, last, aux checks that its identifier id matches x – see transition

from Idle to Busy – sends a message 〈id, last〉 on channel tstC directed to the cell

pointed to by last (transition from Busy to Wait), and then waits for an answer. If

the answer is sent on channel nz, standing for non-zero, (resp. z standing for zero) –

see transition from Wait to AckNZ (resp. AckZ) – then it sends its identifier on

channel No (resp. Yes) as an acknowledgment to the first message – see transition

from AckNZ (resp. Z) to Idle. As shown in Fig. 3, the thread Cell with local

variables idc, prev, and next that receives the message tstC , i.e., pointed to by a

thread Last with the same identifier as idc, sends an acknowledgment on channel z

(zero) if prev = next, and on channel nz (non-zero) if prev �= next.

Decrement Upon reception of a message 〈x〉 on channel Dec, the Last thread with

local variables id, last, aux checks that its identifier id matches x (transition from Idle

to Dbusy), sends a message 〈id, last〉 on channel decC directed to the cell pointed to

by last (transition from Busy to Wait), and then waits for an answer. If the answer

is sent on channel dack (transition from DWait to DAck) then it updates the local
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Thread Last(local id, last, aux);

(Zero test)

Idle
Zero?〈x〉

−−−−−→ Busy [id = x]

Busy
tstC!〈id,last〉

−−−−−−−→ Wait

Wait
nz?〈x〉

−−−→ AckNZ [id = x]

Wait
z?〈x〉

−−−→ AckZ [id = x]

AckZ
Yes!〈id〉

−−−−→ Idle

AckNZ
No!〈id〉

−−−−→ idle

(Decrement)

Idle
Dec?〈x〉

−−−−→ Dbusy [id = x]

DBusy
decC!〈id,last〉

−−−−−−−→ DWait

DWait
dack?〈x,u〉

−−−−−→ DAck [id = x, last := u]

DAck
DAck!〈id〉

−−−−−→ Idle

(Increment)

Idle
Inc?〈x〉

−−−−→ INew [id = x]

INew
new−−→ IRun [aux := new]

IRun
run−−→ IAck [run Cell with idc := id; prev := last; next := aux]

IAck
IAck!〈id〉

−−−−−→ Idle [last := aux]

Fig. 2. The process defining the last cell of the linked list associated to a counter

variable last with the pointer u sent by the thread Cell, namely the prev pointer

of the cell pointed to by the current value of last, and then sends its identifier on

channel DAck to acknowledge the first message (transition from DAck to Idle).

As shown in Fig. 3, a thread Cell with local variables idc, prev, and next that

receives the message decC and such that next = last sends as an acknowledgment

on channel dack the value prev.

Increment To simulate the increment operation, Last does not have to interact with

existing Cell threads. Indeed, it only has to link a new Cell thread to the head

of the list (this is way the Cell thread has no operations to handle the increment

operation). As shown in Fig. 2 this can be done by creating a new name stored in the
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Thread Cell(local idc, prev, next);

(Zero test)

idle
tstC?〈x,u〉

−−−−−→ ackZ [x = idc, u = next, prev = next]

idle
tstC?〈x,u〉

−−−−−→ ackNZ [x = idc, u = next, prev �= next]

ackZ
z!〈idc〉

−−−→ idle

ackNZ
nz!〈idc〉

−−−−→ idle

(Decrement)

idle
dec?〈x,u〉

−−−−−→ dec [x = idc, u = next, prev �= next]

dec
dack!〈idc,prev〉

−−−−−−−→ idle

Fig. 3. The process defining a cell of the linked list associated to a counter

Thread CM(local id1, id2);

...

(Instruction : �1 : ci := ci + 1; goto �2; )

�1

Inc!〈idi〉−−−−→ wait�1

wait�1
IAck!〈x〉

−−−−−→ �2 [x = idi]
...

(Instruction : �1 : ci > 0 then ci := ci − 1; goto �2; else goto �3; )

�1

Zero!〈idi〉−−−−−→ wait�1

wait�1
NZAck?〈x〉

−−−−−−→ dec�1 [x = idi]

dec�1
Dec!〈idi〉−−−−−→ wdec�1

wdec�1
DAck?〈y〉

−−−−−→ �2 [y = idi]

wait�1
ZAck?〈x〉

−−−−−→ �3 [x = idi]
...

Fig. 4. The thread associated to a 2CM.

local variable aux (transition from INew to IRun) and spawning a new Cell thread

(transition from IRun to IAck) with prev pointer equal to last, and next pointer

equal to aux. Finally, it acknowledges the increment request by sending its identifier

on channel IAck and updates variable last with the current value of aux.

Two Counter Machine Instructions We are now ready to use the operations provided

by the thread Last to simulate the instructions of a Two Counter Machine. As shown

in Figure 4, we use a thread CM with two local variables id1, id2 to represent the list
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Thread Init(local nid1, p1, nid2, p2);

init
freshId−−−−→ init1 [nid1 := new]

init1
freshP−−−−→ init2 [p1 := new]

init2
runC−−−→ init3 [run Cell with idc := nid1; prev := p1; next := p1]

init3
runL−−→ init4 [run Last with idc := nid1; last := p1; aux := ⊥]

init4
freshId−−−−→ init5 [nid2 := new]

init5
freshP−−−−→ init6 [p2 := new]

init6
runC−−−→ init7 [run Cell with idc := nid2; prev := p2; next := p2]

init7
runL−−→ init8 [run Last with idc := nid2; last := p2; aux := ⊥]

init8
runCM−−−−→ init9 [run 2CM with id1 := nid1; id2 := nid2]

Fig. 5. The initialization thread.

of instructions of a 2CM with counters c1, c2. Control locations of the Two Counter

Machines are used as local states of the thread CM. The initial local state of the

CM thread is the initial control location. The increment instruction on counter ci
at control location �1 is simulated by an handshaking with the Last thread with

identifier idi: we first send the message Inc!〈idi〉, wait for the acknowledgment on

channel IAck and then move to state �2. Similarly, for the decrement instruction on

counter ci at control location �1 we first send the message Zero!〈idi〉. If we receive

an acknowledgment on channel NZAck we send a Dec request, wait for completion

and then move to �2. If we receive an acknowledgment on channel ZAck we directly

move to �3.

Initialization The last step of the encoding is the definition of the initial state of the

system. For this purpose, we use the thread Init of Figure 5. The first four rules

of Init initialize the first counter: they create two new names nid1 (an identifier for

counter c1) and p1, and then spawn the new threads Cell(nid1, p1, p1), Last(nid1, p1,⊥).

The following four rules spawns the new threads Cell(nid2, p2, p2), Last(nid2, p2,⊥).

After this stage, we create a thread of type 2CM to start the simulation of the

instructions of the Two Counter Machines. The initial configuration of the whole

system is G0 = 〈init,⊥,⊥〉. By construction we have that an execution step from

〈�1, c1 = n1, c2 = n2〉 to 〈�2, c1 = m1, c2 = m2〉 is simulated by an execution run going

from a global configuration in which the local state of thread CM is 〈�1, id1, id2〉 and

in which we have ni occurrences of thread Cell with the same identifier idi for i : 1, 2,

to a global configuration in which the local state of thread CM is 〈�2, id1, id2〉 and in

which we have mi occurrences of thread Cell with the same identifier idi for i : 1, 2.

Thus, every executions of a 2CMM corresponds to an execution of the corresponding

TDL program that starts from the initial configuration G0 = 〈init,⊥,⊥〉. �

As a consequence of the previous theorem, we have the following corollary.
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Corollary 1

Given a TDL program, a global configurations G, and a control location �, deciding

if there exists a run going from G0 to a global configuration that contains � (control

state reachability) is an undecidable problem.

3 From TDL to MSRNC

As mentioned in the introduction, our verification methodology is based on a

translation of TDL programs into low level specifications given in MSRNC . Our goal

is to extend the connection between CCS and Petri Nets (German and Sistla 1992)

to TDL and MSR so as to be able to apply the verification methods defined in

(Delzanno 2005) to multithreaded programs. In the next section we will summarize

the main features of the language MSRNC introduced in (Delzanno 2001).

3.1 Preliminaries on MSRNC

NC-constraints are linear arithmetic constraints in which conjuncts have one of

the following form: true, x = y, x > y, x = c, or x > c, x and y being two variables

from a denumerable set V that range over the rationals, and c being an integer.

The solutions Sol of a constraint ϕ are defined as all evaluations (from V to �)

that satisfy ϕ. A constraint ϕ is satisfiable whenever Sol(ϕ) �= ∅. Furthermore, ψ

entails ϕ whenever Sol(ψ) ⊆ Sol(ϕ). NC-constraints are closed under elimination of

existentially quantified variables.

Let P be a set of predicate symbols. An atomic formula p(x1, . . . , xn) is such that

p ∈ P, and x1, . . . , xn are distinct variables in V. A multiset of atomic formulas is

indicated as A1 | . . . | Ak , where Ai and Aj have distinct variables (we use variable

renaming if necessary), and | is the multiset constructor.

In the rest of the paper we will use M, N, . . . to denote multisets of atomic

formulas, ε to denote the empty multiset, ⊕ to denote multiset union and � to denote

multiset difference. An MSRNC configuration is a multiset of ground atomic formulas,

i.e., atomic formulas like p(d1, . . . , dn) where di is a rational for i : 1, . . . , n.

An MSRNC rule has the form M −→ M′ : ϕ, where M and M′ are two (possibly

empty) multisets of atomic formulas with distinct variables built on predicates in P,

and ϕ is an NC-constraint. The ground instances of an MSRNC rule are defined as

Inst(M −→ M′ : ϕ) = {σ(M) −→ σ(M′) | σ ∈ Sol(ϕ)}

where σ is extended in the natural way to multisets, i.e. σ(M) and σ(M′) are MSRNC

configurations.

An MSRNC specification S is a tuple 〈P,I,R〉, where P is a finite set of predicate

symbols, I is finite a set of (initial) MSRNC configurations, and R is a finite set of

MSRNC rules over P.

The operational semantics describes the update from a configuration M to one

of its possible successor configurations M′. M′ is obtained from M by rewriting

(modulo associativity and commutativity) the left-hand side of an instance of a rule

into the corresponding right-hand side. In order to be fireable, the left-hand side must
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be included in M. Since instances and rules are selected in a non deterministic way,

in general a configuration can have a (possibly infinite) set of (one-step) successors.

Formally, a rule H −→ B : ϕ from R is enabled at M via the ground

substitution σ ∈ Sol(ϕ) if and only if σ(H) � M. Firing rule R enabled at M via σ

yields the new configuration

M′ = σ(B) ⊕ (M � σ(H))

We use M ⇒MSR M′ to denote the firing of a rule at M yielding M′.

A run is a sequence of configurations M0M1 . . .Mk with M0 ∈ I such that

Mi ⇒MSR Mi+1 for i � 0. A configuration M is reachable if there exists M0 ∈
I such that M0

∗⇒MSR M, where
∗⇒MSR is the transitive closure of ⇒MSR .

Finally, the successor and predecessor operators Post and Pre are defined on a

set of configurations S as Post(S) = {M′|M ⇒MSR M′,M ∈ S} and Pre(S) =

{M|M ⇒MSR M′,M′ ∈ S}, respectively. Pre∗ and Post∗ denote their transitive

closure.

As shown in (Delzanno 2001; Bozzano and Delzanno 2002), Petri Nets represent a

natural abstractions of MSRNC (and more in general of MSR rule with constraints)

specifications. They can be encoded, in fact, in propositional MSR specifications (e.g.

abstracting away arguments from atomic formulas).

3.2 Translation from TDL to MSRNC

The first thing to do is to find an adequate representation of names. Since all we

need is a way to distinguish old and new names, we just need an infinite domain

in which the = and �= relation are supported. Thus, we can interpret names in N
either as integer of as rational numbers. Since operations like variable elimination

are computationally less expensive than over integers, we choose to view names

as non-negative rationals. Thus, a local (TDL) configuration p = 〈s, n1, . . . , nk〉 is

encoded as the atomic formula p• = s(n1, . . . , nk), where ni is a non-negative rational.

Furthermore, a global (TDL) configuration G = 〈N, p1, . . . , pm〉 is encoded as an

MSRNC configuration G•

p•
1 | . . . | p•

m | fresh(n)
where the value n in the auxiliary atomic formula fresh(n) is a rational number

strictly greater than all values occurring in p•
1, . . . , p

•
m. The predicate fresh allows us

to generate unused names every time needed.

The translation of constants C = {c1, . . . , cm}, and variables is defined as follows:

x• = x for x ∈ V, ⊥• = 0, c•
i = i for i : 1, . . . , m. We extend the translation in the

natural way on a guard γ, by decomposing every formula x �= e into x < e• and

x > e•. We will call γ• the resulting set of NC-constraints.4

Given V = {x1, . . . , xk}, we define V ′ as the set of new variables {x′
1, . . . , x

′
k}.

Now, let us consider the assignment α defined as x1 := e1, . . . , xk := ek (we add

4 As an example, if γ is the constraint x = 1, x �= z then γ• consists of the two constraints x = 1, x > z
and x = 1, z > x.
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assignments like xi := xi if some variable does not occur as target of α). Then, α• is

the NC-constraint x′
1 = e•

1, . . . , x
′
k = e•

k .

The translation of thread definitions is defined below (where we will often refer

to Example 1).

Initial Global Configuration Given an initial global configuration consisting of the

local configurations 〈si, ni1, . . . , niki〉 with nij = ⊥ for i : 1, . . . , u, we define the

following MSRNC rule

init → s1(x11, . . . , x1k1) | . . . | su(xu1, . . . , xuku ) | fresh(x) :

x > C, x11 = 0, . . . , xuku = 0

here C is the largest rational used to interpret the constants in C.

For each thread definition P = 〈Q, s0, V , R〉 in T with V = {x1, . . . , xk} we translate

the rules in R as described below.

Internal Moves For every internal move s
a−−→ s′[γ, α], and every ν ∈ γ• we define

s(x1, . . . , xk) → s′(x′
1, . . . , x

′
k) : ν, α•

Name Generation For every name generation s
a−−→ s′[xi := new], we define

s(x1, . . . , xk) | fresh(x) → s′(x′
1, . . . , x

′
k) | fresh(y) : y > x′

i, x
′
i > x,

∧
j �=i
x′
j = xj

For instance, the name generation initA
fresh

−−−→ genA[n := new] is mapped into the

MSRNC rule initA(id, x, y)| fresh(u) −−→ genA(id
′, x′, y′) | fresh(u′) : ϕ where ϕ is the

constraint u′ > x′, x′ > u, y′ = y, id′ = id. The constraint x′ > u represents the fact

that the new name associated to the local variable n (the second argument of the

atoms representing the thread) is fresh, whereas u′ > x′ updates the current value of

fresh to ensure that the next generated names will be picked up from unused values.

Thread Creation Let P = 〈Q′, t0, V
′, R′〉 and V ′ = {y1, . . . , yu}. Then, for every thread

creation s
a−−→ s′[run P with α], we define

s(x1, . . . , xk) → s′(x′
1, . . . , x

′
k) | t(y′

1, . . . , y
′
u) : x′

1 = x1, . . . , x
′
k = xk, α

•.

E.g., consider the rule create
newA−−−→ initM[run Init with id := x, . . .] of Example 1. Its

encoding yields the MSRNC rule create(x) −−→ initM(x′) | initA(id′, n′, m′) : ψ, where

ψ represents the initialization of the local variables of the new thread x′ = x, id′ =

x, n′ = 0, m′ = 0.

Rendez-vous The encoding of rendez-vous communication is based on the use of

constraint operations like variable elimination. Let P and P ′ be a pair of thread

definitions, with local variables V = {x1, . . . , xk} and V ′ = {y1, . . . , yl} with V∩V ′ = ∅.

We first select all rules s
e!m−−→ s′[γ, α] in R and t

e′?m′

−−−→ t′[γ′, α′] in R′, such that

m = 〈w1, . . . , wu〉, m′ = 〈w′
1, . . . , w

′
v〉 and u = v. Then, we define the new MSRNC rule

s(x1, . . . , xk) | t(y1, . . . , yl) → s′(x′
1, . . . , x

′
k) | t′(y′

1, . . . , y
′
l) : ϕ

for every ν ∈ γ• and ν ′ ∈ γ′• such that the NC-constraint ϕ obtained by elim-

inating w′
1, . . . , w

′
v from the constraint ν ∧ ν ′ ∧ α• ∧ α′• ∧ w1 = w′

1 ∧ . . . ∧ wv = w′
v
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init −−→ fresh(x) | initM(y) : x > 0, y = 0.

fresh(x) | initM(y) −−→ fresh(x′) | create(y′) : x′ > y′, y′ > x.

create(x) −−→ initM(x′) | initA(id′, n′, m′) : x′ = x, id′ = x, n′ = 0, m′ = 0.

create(x) −−→ initM(x′) | initB(id′, n′, m′) : x′ = x, id′ = x, n′ = 0, m′ = 0.

initA(id, n, m)| fresh(u) −−→ genA(id, n
′, m) | fresh(u′) : u′ > n′, n′ > u.

genA(id1, n, m)| initB(id2, u, v) −−→ waitA(id1, n, m) | genB(id′
2, u

′, v′) : u′ = n, v′ = v

genB(id, n, m)| fresh(u) −−→ readyB(id, n, m′) | fresh(u′) : u′ > m′, m′ > u.

waitA(id1, n, m)| readyB(id2, u, v) −−→ stopA(id1, n, m
′) | stopB(id2, u, v) : n = u, m′ = v.

stopA(id, n, m) −−→ initA(id
′, n′, m′) : n′ = 0, m′ = 0, id′ = id.

stopB(id, n, m) −−→ initB(id′, n′, m′) : n′ = 0, m′ = 0, id′ = id.

Fig. 6. Encoding of Example 1: for simplicity we embed constraints like x = x′ into the

MSR formulas.

init ⇒ . . . ⇒ fresh(4) | initM(0) | initA(2, 0, 0) | initB(3, 0, 0)

⇒ fresh(8) | initM(0) | genA(2, 6, 0) | initB(3, 0, 0)

⇒ fresh(8) | initM(0) | waitA(2, 6, 0) | genB(3, 6, 0)

⇒ . . . ⇒ fresh(16) | initM(0) | waitA(2, 6, 0) | genB(3, 6, 0) | initA(11, 0, 0)

Fig. 7. A run in the encoded program.

is satisfiable. For instance, consider the rules waitA
nA?〈y〉

−−−−→ stopA[mA := y] and

readyB
nB!〈mB〉

−−−−→ stopB[true]. We first build up a new constraint by conjoining the

NC-constraints y = mB (matching of message templates), and nA = nB, m
′
A = y, n′

A =

nA, m
′
B = mB, n

′
B = nB, id

′
1 = id1, id

′
2 = id2 (guards and actions of sender and receiver).

After eliminating y we obtain the constraint ϕ defined as nB = nA, m
′
A = mB, n

′
A =

nA, m
′
B = mB, n

′
B = nB, id

′
1 = id1, id

′
2 = id2 defined over the variables of the two

considered threads. This step allows us to symbolically represent the passing of

names. After this step, we can represent the synchronization of the two threads by

using a rule that simultaneously rewrite all instances that satisfy the constraints on

the local data expressed by ϕ, i.e., we obtain the rule

waitA(id1, nA, mA)| readyB(id2, nB, mB) −→
stopA(id

′
1, n

′
A, m

′
A) | stopB(id′

2, n
′
B, m

′
B) : ϕ

The complete translation of Example 1 is shown in Figure 6 (for simplicity we

have applied a renaming of variables in the resulting rules). An example of run in

the resulting MSRNC specification is shown in Figure 7. Note that, a fresh name is

selected between all values strictly greater than the current value of fresh (e.g. in

the second step 6 > 4), and then fresh is updated to a value strictly greater than all

newly generated names (e.g. 8 > 6 > 4).

Let T = 〈P1, . . . , Pt〉 be a collection of thread definitions and G0 be an initial

global state. Let S be the MSRNC specification that results from the translation

described in the previous section.

Let G = 〈N, p1, . . . , pn〉 be a global configuration with pi = 〈si, vi1, . . . , viki〉, and

let h : N � �+ be an injective mapping. Then, we define G•(h) as the MSRNC
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configuration

s1(h(v11), . . . , h(v1k1
)) | . . . | sn(h(vn1), . . . , h(vnkn )) | fresh(v)

where v is a the first value strictly greater than all values in the range of h. Given

an MSRNC configuration M defined as s1(v11, . . . , v1k1
) | . . . | sn(vn1, . . . , vnkn ) with

sij ∈ �+, let V (M) ⊆ �+ be the set of values occurring in M. Then, given a

bijective mapping f : V (M) � N ⊆ N, we define M•(f) as the global configuration

〈N, p1, . . . , pn〉 where pi = 〈si, f(vi1), . . . , f(viki )〉.
Based on the previous definitions, the following property then holds.

Theorem 2

For every run G0G1 . . . in T with corresponding set of names N0N1 . . ., there exist

sets D0D1 . . . and bijective mappings h0h1 . . . with hi : Ni � Di ⊆ �+ for i � 0, such

that init G•
0(h0)G

•
1(h1) . . . is a run of S. Vice versa, if init M0M1 . . . is a run of S, then

there exist sets N0N1 . . . in N and bijective mappings f0f1 . . . with fi : V (Mi) � Ni

for i � 0, such that M•
0(f0)M•

1(f1) . . . is a run in T.

Proof

We first prove that every run in T is simulated by a run in S.

Let G0 . . . Gl be a run in T, i.e., a sequence of global states (with associated set of

names N0 . . . Nl) such that Gi ⇒ Gi+1 and Ni ⊆ Ni+1 for i � 0.

We prove that it can be simulated in S by induction on its length l.

Specifically, suppose that there exist sets of non negative rationals D0 . . . Dl and

bijective mappings h0 . . . hl with hi : Ni � Di for 0 � i � l, such that

init Ĝ0(h0) . . . Ĝl(hl)

is a run of S. Furthermore, suppose Gl ⇒ Gl+1.

We prove the thesis by a case-analysis on the type of rule applied in the last step

of the run.

Let Gl = 〈Nl, p1, . . . , pr〉 and pj = 〈s, n1, . . . , nk〉 be a local configuration for the

thread definition P = 〈Q, s, V , R〉 with V = {x1, . . . , xk} and ni ∈ Nl for i : 1, . . . , k.

Assignment Suppose there exists a rule s
a−−→ s′[γ, α] in R such that ρpj satisfies γ,

Gl = 〈Nl, . . . , pj , . . .〉 ⇒ 〈Nl+1, . . . , p
′
j , . . .〉 = Gl+1 Nl = Nl+1, p

′
j = 〈s′, n′

1, . . . , n
′
k〉, and if

xi := yi occurs in α, then n′
i = ρpj (yi), otherwise n′

i = ni for i : 1, . . . , k.

The encoding of the rule returns one MSRNC rule having the form

s(x1, . . . , xk) → s′(x′
1, . . . , x

′
k) : γ′, α̂

for every γ′ ∈ γ̂.

By inductive hypothesis, Ĝl(hl) is a multiset of atomic formulas that contains the

formula s(hl(n1), . . . , hl(nk)).

Now let us define hl+1 as the mapping from Nl to Dl such that hl+1(n
′
i) = hl(nj) if

xi := xj is in α and hl+1(n
′
i) = 0 if xi := ⊥ is in α. Furthermore, let us the define the

evaluation

σ = 〈x1 �→ hl(n1), . . . , xk �→ hl(nk), x
′
1 �→ hl+1(n

′
1), . . . , x

′
k �→ hl+1(n

′
k)〉
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Then, by construction of the set of constraints γ̂ and of the constraint α̂, it follows

that σ is a solution for γ′, α̂ for some γ′ ∈ γ̂. As a consequence, we have that

s(n1, . . . , nk) → s′(n′
1, . . . , n

′
k)

is a ground instance of one of the considered MSRNC rules.

Thus, starting from the MSRNC configuration Ĝl(hl), if we apply a rewriting step

we obtain a new configuration in which s(n1, . . . , nk) is replaced by s′(n′
1, . . . , n

′
k), and

all the other atomic formulas in Ĝl+1(hl+1) are the same as in Ĝl(hl). The resulting

MSRNC configuration coincides then with the definition of Ĝl+1(hl+1).

Creation of new names Let us now consider the case of fresh name generation.

Suppose there exists a rule s
a−−→ s′[xi := new] in R, and let n �∈ Nl , and suppose

〈Nl, . . . , pj , . . .〉 ⇒ 〈Nl+1, . . . , p
′
j , . . .〉 where Nl+1 = Nl ∪ {v}, p′

j = 〈s′, n′
1, . . . , n

′
k〉 where

n′
i = n, and n′

j = nj for j �= i.

We note than that the encoding of the previous rule returns the MSRNC rule

s(x1, . . . , xk) | fresh(x) → s′(x′
1, . . . , x

′
k) | fresh(x′) : ϕ

where ϕ consists of the constraints y > x′
i, x

′
i > x and x′

j = xj for j �= i. By

inductive hypothesis, Ĝl(hl) is a multiset of atomic formulas that contains the

formulas s(hl(n1), . . . , hl(nk)) and fresh(v) where hl is a mapping into Dl , and v is the

first non-negative rational strictly greater than all values occurring in the formulas

denoting processes.

Let v be a non negative rational strictly greater than all values in Dl . Furthermore,

let us define v′ = v + 1 and Dl+1 = Dl ∪ {v, v′}.
Furthermore, we define hl+1 as follows hl+1(n) = hl(n) for n ∈ Nl , and hl+1(n

′
i) =

hl+1(n) = v′. Furthermore, we define the following evaluation

σ = 〈x �→ v, x1 �→ hl(n1), . . . , xk �→ hl(nk),

x′ �→ v′, x′
1 �→ hl+1(n

′
1), . . . , x

′
k �→ hl+1(n

′
k)〉

Then, by construction of σ and α̂, it follows that σ is a solution for α̂. Thus,

s(n1, . . . , nk) | fresh(v) → s′(n′
1, . . . , n

′
k) | fresh(v′)

is a ground instance of the considered MSRNC rule.

Starting from the MSRNC configuration Ĝl(hl), if we apply a rewriting step we

obtain a new configuration in which s(n1, . . . , nk) and fresh(v) are substituted by

s′(n′
1, . . . , n

′
k) and fresh(v′), and all the other atomic formulas in Ĝl+1(hl+1) are the

same as in Ĝl(hl). We conclude by noting that this formula coincides with the

definition of Ĝl+1(hl+1).

For the sake of brevity we omit the case of thread creation whose only difference

from the previous cases is the creation of several new atoms instead (with values

obtained by evaluating the action) of only one.

Rendez-vous Let pi = 〈s, n1, . . . , nk〉 and pj = 〈t, m1, . . . , mu〉 two local configurations

for threads P �= P ′, ni ∈ Nl for i : 1, . . . , k and mi ∈ Nl for i : 1, . . . , u.

Suppose s
c!m−−→ s′[γ, α] and t

c?m′

−−→ t′[γ′, α′], where m = 〈xi1 , . . . , xiv 〉, and m′ =

〈y1, . . . , yv〉 ( all defined over distinct variables) are rules in R.
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Furthermore, suppose that ρpi satisfies γ, and that ρ′ (see definition of the

operational semantics) satisfies γ′, and suppose that Gl = 〈Nl, . . . , pi, . . . , pj , . . .〉 ⇒
〈Nl+1, . . . , p

′
i, . . . , p

′
j , . . .〉 = Gl+1, whereNl+1 = Nl , p

′
i = 〈s′, n′

1, . . . , n
′
k〉, p′

j = 〈t′, m′
1, . . . , m

′
u〉,

and if xi := e occurs in α, then n′
i = ρpi (e), otherwise n′

i = ni for i : 1, . . . , k; if ui := e

occurs in α′, then m′
i = ρ′(e), otherwise m′

i = mi for i : 1, . . . , u.

By inductive hypothesis, Ĝl(hl) is a multiset of atomic formulas that contains the

formulas s(hl(n1), . . . , hl(nk)) and t(hl(m1), . . . , hl(mu)).

Now, let us define hl+1 as the mapping from Nl to Dl such that hl+1(n
′
i) = hl(nj)

if xi := xj is in α, hl+1(m
′
i) = hl(mj) if ui := uj is in α′, hl+1(n

′
i) = 0 if xi := ⊥ is in α,

hl+1(m
′
i) = 0 if ui := ⊥ is in α′.

Now, let us define σ as the evaluation from Nl to Dl such that

σ = σ1 ∪ σ2

σ1 = 〈x1 �→ hl(n1), . . . , xk �→ hl(nk), u1 �→ hl(m1), . . . , uu �→ hl(mu)〉
σ2 = 〈x′

1 �→ hl+1(n
′
1), . . . , x

′
k �→ hl+1(n

′
k), u

′
1 �→ hl+1(m

′
1), . . . , u

′
u �→ hl+1(m

′
u)〉.

Then, by construction of the sets of constraints γ̂, γ̂′, α̂ and α̂′ it follows that σ is a

solution for the constraint ∃w′
1. . . . ∃w′

p.θ ∧ θ′ ∧ α̂ ∧ α̂′ ∧ w1 = w′
1 ∧ . . . ∧ wp = w′

p for

some θ ∈ γ̂ and θ′ ∈ γ̂′. Note in fact that the equalities wi = w′
i express the passing

of values defined via the evaluation ρ′ in the operational semantics.

As a consequence,

s(n1, . . . , nk) | t(m1, . . . , mu) → s′(n′
1, . . . , n

′
k) | t′(m′

1, . . . , m
′
u)

is a ground instance of one of the considered MSRNC rules.

Thus, starting from the MSRNC configuration Ĝl(hl), if we apply a rewriting

step we obtain a new configuration in which s(n1, . . . , nk) has been replaced by

s′(n′
1, . . . , n

′
k), and t′(m′

1, . . . , m
′
k) has been replaced by t(m′

1, . . . , m
′
u), and all the other

atomic formulas are as in Ĝl(hl). This formula coincides with the definition of

Ĝl+1(hl+1).

The proof of completeness is by induction on the length of an MSR run, and by

case-analysis on the application of the rules. The structure of the case analysis is

similar to the previous one and it is omitted for brevity. �

4 Verification of TDL Programs

Safety and invariant properties are probably the most important class of correctness

specifications for the validation of a concurrent system. For instance, in Example

1 we could be interested in proving that every time a session terminates, two

instances of thread Init and Resp have exchanged the two names generated during

the session. To prove the protocol correct independently from the number of

names and threads generated during an execution, we have to show that from

the initial configuration G0 it is not possible to reach a configuration that violates

the aforementioned property. The configurations that violate the property are those

in which two instances of Init and Resp conclude the execution of the protocol

exchanging only the first nonce. These configurations can be represented by looking
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at only two threads and at the relationship among their local data. Thus, we can

reduce the verification problem of this safety property to the following problem:

Given an initial configuration G0 we would like to decide if a global configuration

that contains at least two local configurations having the form 〈stopA, i, n, m〉 and

〈stopB, i′, n′, m′〉 with n′ = n and m �= m′ for some i, i′, n, n′, m, m′ is reachable.

This problem can be viewed as an extension of the control state reachability

problem defined in (Abdulla and Nylén 2000) in which we consider both control

locations and local variables. Although control state reachability is undecidable (see

Corollary 1), the encoding of TDL into MSRNC can be used to define a sound

and automatic verification methods for TDL programs. For this purpose, we will

exploit a verification method introduced for MSR(C) (Delzanno 2001, 2005). In

the rest of this section we will briefly summarize how to adapt the main results

(Delzanno 2001, 2005) to the specific case of MSRNC .

Let us first reformulate the control state reachability problem of Example 1 for

the aforementioned safety property on the low level encoding into MSRNC . Given

the MSRNC initial configuration init we would like to check that no configuration

in Post∗({init}) has the following form

{stopA(a1, v1, w1), stopB(a2, v2, w2)} ⊕ M

for ai, vi, wi ∈ � i : 1, 2 and an arbitrary multiset of ground atoms M. Let us call

U the set of bad MSRNC configurations having the aforementioned shape. Notice

that U is upward closed with respect to multiset inclusion, i.e., if M ∈ U and

M � M′, then M′ ∈ U. Furthermore, for if U is upward closed, so is Pre(U).

On the basis of this property, we can try to apply the methodology proposed in

(Abdulla and Nylén 2000) to develop a procedure to compute a finite representation

R of Pre∗U). For this purpose, we need the following ingredients:

1. a symbolic representation of upward closed sets of configurations (e.g. a set of

assertions S whose denotation [[S]] is U);

2. a computable symbolic predecessor operator SPre working on sets of formulas

such that [[SPre(S)]] = Pre([[S]]);

3. a (decidable) entailment relation Ent to compare the denotations of symbolic

representations, i.e., such that Ent(N,M) implies [[N]] ⊆ [[M]]. If such a relation

Ent exists, then it can be naturally extended to sets of formulas as follows:

EntS (S, S ′) if and only if for all N ∈ S there exists M ∈ S ′ such that Ent(N,M)

holds (clearly, if Ent is an entailment, then EntS (S, S ′) implies [[S]] ⊆ [[S ′]]).

The combination of these three ingredients can be used to define a verification

methods based on backward reasoning as explained next.

Symbolic Backward Reachability Suppose that M1, . . . ,Mn are the formulas of our

assertional language representing the infinite set U consisting of all bad configura-

tions. The symbolic backward reachability procedure (SBR) procedure computes a

chain {Ii}i�0 of sets of assertions such that

I0 = {M1, . . . ,Mn}
Ii+1 = Ii ∪ SPre(Ii) for i � 0
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The procedure SBR stops when SPre produces only redundant information, i.e.,

EntS (Ii+1, Ii). Notice that EntS (Ii, Ii+1) always holds since Ii ⊆ Ii+1.

Symbolic Representation In order to find an adequate represention of infinite sets

of MSRNC configurations we can resort to the notion of constrained configuration

introduced (Delzanno 2001) for the language scheme MSR(C) defined for a generic

constraint system C. We can instantiate this notion with NC constraints as follows.

A constrained configuration over P is a formula

p1(x11, . . . , x1k1
) | . . . | pn(xn1, . . . , xnkn ) : ϕ

where p1, . . . , pn ∈ P, xi1, . . . , xiki ∈ V for any i : 1, . . . n and ϕ is an NC-constraint.

The denotation a constrained configuration M
.
= (M : ϕ) is defined by taking the

upward closure with respect to multiset inclusion of the set of ground instances,

namely

[[M]] = {M′ | σ(M) � M′, σ ∈ Sol(ϕ)}
This definition can be extended to sets of MSRNC constrained configurations with

disjoint variables (we use variable renaming to avoid variable name clashing) in the

natural way.

In our example the following set SU of MSRNC constrained configurations (with

distinct variables) can be used to finitely represent all possible violations U to the

considered safety property

SU = { stopA(i1, n1, m1) | stopB(i2, n2, m2) : n1 = n2, m1 > m2

stopA(i1, n1, m1) | stopB(i2, n2, m2) : n1 = n2, m2 > m1}

Notice that we need two formulas to represent m1 �= m2 using a disjunction

of > constraints. The MSRNC configurations stopB(1, 2, 6) | stopA(4, 2, 5), and

stopB(1, 2, 6) | stopA(4, 2, 5) | waitA(2, 7, 3) are both contained in the denotation

of SU . Actually, we have that [[SU]] = U. This symbolic representation allows us to

reason on infinite sets of MSRNC configurations, and thus on global configurations

of a TDL program, forgetting the actual number or threads of a given run.

To manipulate constrained configurations, we can instantiate to NC-constraints

the symbolic predecessor operator SPre defined for a generic constraint system in

(Delzanno 2005). Its definition is also given in Section Appendix A in Appendix.

From the general properties proved in (Delzanno 2005), we have that when applied

to a finite set of MSRNC constrained configurations S , SPreNC returns a finite set

of constrained configuration such that [[SPreNC (S)]] = Pre([[S]]), i.e., SPreNC (S)

is a symbolic representation of the immediate predecessors of the configurations

in the denotation (an upward closed set) of S . Similarly we can instantiate the

generic entailment operator defined in (Delzanno 2005) to MSRNC constrained

configurations so as to obtain an a relation Ent such that EntNC (N,M) implies

[[N]] ⊆ [[M]]. Based on these properties, we have the following result.

Proposition 1

Let T be a TDL program with initial global configuration G0, Furthermore,

let S be the corresponding MSRNC encoding. and SU be the set of MSRNC

constrained configurations denoting a given set of bad TDL configurations. Then,
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init �∈ SPre∗
NC (SU) if and only if there is no finite run G0 . . . Gn and mappings

h0, . . . , hn from the names occurring in G to non-negative rationals such that

init• G•
0(h0) . . . G

•
n(hn) is a run in S and G•

n(hn) ∈ [[U]].

Proof
Suppose init �∈ SPre∗

NC (U). Since [[SPreNC (S)]] = pre([[S]]) for any S , it follows that

there cannot exist runs initM0 . . .Mn in S such that Mn ∈ [[U]]. The thesis then

follows from the Theorem 2. �

As discussed elsewhere (Bozzano and Delzanno 2002), we have implemented our

verification procedure based on MSR and linear constraints using a CLP system

with linear arithmetics. By the translation presented in this paper, we can now

reduce the verification of safety properties of multithreaded programs to a fixpoint

computation built on constraint operations. As example, we have applied our CLP-

prototype to automatically verify the specification of Figure 6. The unsafe states are

those described in Section 4. Symbolic backward reachability terminates after 18

iterations and returns a symbolic representation of the fixpoint with 2590 constrained

configurations. The initial state init is not part of the resulting set. This proves our

original thread definitions correct with respect to the considered safety property.

4.1 An Interesting Class of TDL Programs

The proof of Theorem 1 shows that verification of safety properties is undecid-

able for TDL specifications in which threads have several local variables (they

are used to create linked lists). As mentioned in the introduction, we can ap-

ply the sufficient conditions for the termination of the procedure SBR given in

(Bozzano and Delzanno 2002; Delzanno 2005) to identify the following interesting

subclass of TDL programs.

Definition 4
A monadic TDL thread definition P = 〈Q, s, V , R〉 is such that V is at most a

singleton, and every message template in R has at most one variable.

A monadic thread definition can be encoded into the monadic fragment of MSRNC

studied in (Delzanno 2005). Monadic MSRNC specifications are defined over atomic

formulas of the form p or p(x) with p is a predicate symbol and x is a variable, and

on atomic constraints of the form x = y, and x > y. To encode a monadic TDL

thread definitions into a Monadic MSRNC specification, we first need the following

observation. Since in our encoding we only use the constant 0, we first notice that

we can restrict our attention to MSRNC specifications in which constraints have no

constants at all. Specifically, to encode the generation of fresh names we only have

to add an auxiliary atomic formula zero(z), and refer to it every time we need to

express the constant 0. As an example, we could write rules like

init −−→ fresh(x) | initM(y) | zero(z) : x > z, y = z

for initialization, and

create(x) | zero(z) −−→ initM(x′) | initA(id′, n′, m′) | zero(z) :

x′ = x, id′ = x, n′ = z, m′ = z, z′ = z

https://doi.org/10.1017/S1471068406002821 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002821


88 G. Delzanno

for all assignments involving the constant 0. By using this trick an by following the

encoding of Section 3, the translation of a collection of monadic thread definitions

directly returns a monadic MSRNC specification. By exploiting this property, we

obtain the following result.

Theorem 3

The verification of safety properties whose violations can be represented via an

upward closed set U of global configurations is decidable for a collection T of

monadic TDL definitions.

Proof

Let S be the MSRNC encoding of T and SU be the set of constrained configuration

such that SU = U. The proof is based on the following properties. First of all, the

MSRNC specification S is monadic. Furthermore, as shown in (Delzanno 2005),

the class of monadic MSRNC constrained configurations is closed under application

of the operator SPreNC . Finally, as shown in (Delzanno 2005), there exists an

entailment relation CEnt for monadic constrained configurations that ensures the

termination of the SBR procedure applied to a monadic MSRNC specification.

Thus, for the monadic MSRNC specification S, the chain defined as I0 = SU ,

Ii+1 = Ii ∪ SPre(Ii) always reaches a point k � 1 in which CEntS (Ik+1, Ik), i.e. [[Ik]]

is a fixpoint for Pre. Finally, we note that we can always check for membership of

init in the resulting set Ik . �

As shown in (Schnoebelen 2002), the complexity of verification methods based

on symbolic backward reachability relying on the general results in (Abdulla and

Nylén 2000; Finkel and Schnoebelen 2001) is non primitive recursive.

5 Conclusions and Related Work

In this paper we have defined the theoretical grounds for the possible application

of constraint-based symbolic model checking for the automated analysis of abstract

models of multithreaded concurrent systems providing name generation, name

mobility, and unbounded control. Our verification approach is based on an encoding

into a low level formalism based on the combination of multiset rewriting and

constraints that allows us to naturally implement name generation, value passing,

and dynamic creation of threads. Our verification method makes use of symbolic

representations of infinite set of system states and of symbolic backward reachability.

For this reason, it can be viewed as a conservative extension of traditional finite-state

model checking methods. The use of symbolic state analysis is strictly related to the

analysis methods based on abstract interpretation. A deeper study of the connections

with abstract interpretation is an interesting direction for future research.

Related Work The high level syntax we used to present the abstract models of multi-

threaded programs is an extension of the communicating finite state machines used in

protocol verification (Bochmann 1978), and used for representing abstraction of mul-

tithreaded software programs (Ball et al. 2001). In our setting we enrich the form-

alism with local variables, name generation and mobility, and unbounded control.
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Our verification approach is inspired by the recent work of Abdulla and Jonsson. In

(Abdulla and Jonsson 2003), Abdulla and Jonsson proposed an assertional language

for Timed Networks in which they use dedicated data structures to symbolically

represent configurations parametric in the number of tokens and in the age (a real

number) associated to tokens. In (Abdulla and Nylén 2000), Abdulla and Nylén

formulate a symbolic algorithm using existential zones to represent the state-space

of Timed Petri Nets. Our approach generalizes the ideas of (Abdulla and Jonsson

2003; Abdulla and Nylén 2000) to systems specified via multiset rewriting and with

more general classes of constraints. In (Abdulla and Jonsson 2001), the authors

apply similar ideas to (unbounded) channel systems in which messages can vary

over an infinite name domain and can be stored in a finite (and fixed a priori)

number of data variables. However, they do not relate these results to multithreaded

programs. Multiset rewriting over first order atomic formulas has been proposed

for specifying security protocols by Cervesato et al. in (Cervesato et al. 1999). The

relationships between this framework and concurrent languages based on process

algebra have been recently studied in (Bistarelli et al. 2005).

Apart from approaches based on Petri Net-like models (as in (German and

Sistla 1992; Ball et al. 2001)), networks of finite-state processes can also be verified

by means of automata theoretic techniques as in (Bouajjani et al. 2000). In this

setting the set of possible local states of individual processes are abstracted into

a finite alphabet. Sets of global states are represented then as regular languages,

and transitions as relations on languages. Differently from the automata theoretic

approach, in our setting we handle parameterized systems in which individual

components have local variables that range over unbounded values. The use of

constraints for the verification of concurrent systems is related to previous works

connecting Constraint Logic Programming and verification, see e.g. (Delzanno and

Podelski 1999). In this setting transition systems are encoded via CLP programs

used to encode the global state of a system and its updates. In the approach

proposed in (Delzanno 2001; Bozzano and Delzanno 2002), we refine this idea by

using multiset rewriting and constraints to locally specify updates to the global state.

In (Delzanno 2001), we defined the general framework of multiset rewriting with con-

straints and the corresponding symbolic analysis technique. The language proposed

in (Delzanno 2001) is given for a generic constraint system C (taking inspiration from

CLP the language is called MSR(C)). In (Bozzano and Delzanno 2002), we applied

this formalism to verify properties of mutual exclusion protocols (variations of the

ticket algorithm) for systems with an arbitrary number of processes. In the same

paper we also formulated sufficient conditions for the termination of the backward

analysis. The present paper is the first attempt of relating the low level language

proposed in (Delzanno 2001) to a high level language with explicit management of

names and threads.
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Appendix A Symbolic Predecessor Operator

Given a set of MSRNC configurations S , consider the MSRNC predecessor operator

Pre(S) = {M|M ⇒MSR M′,M′ ∈ S}. In our assertional language, we can define a

symbolic version SPreNC of Pre defined on a set S containing MSRNC constrained

multisets (with disjoint variables) as follows:

SPreNC (S) = { (A ⊕ N : ξ) | (A −→ B : ψ) ∈ R, (M : ϕ) ∈ S,

M′ � M, B′ � B,
(M′ : ϕ) =θ (B′ : ψ), N = M � M′,

ξ ≡ (∃x1. . . . xk.θ)

and x1, . . . , xk are all variables not in A ⊕ N}.

where =θ is a matching relation between constrained configurations that also takes

in consideration the constraint satisfaction, namely

(A1 | . . . | An : ϕ) =θ (B1 | . . . | Bm : ψ)

provided m = n and there exists a permutation j1, . . . , jn of 1, . . . , n such that the

constraint θ = ϕ ∧ ψ ∧
∧n
i=1 Ai = Bji is satisfiable; here p(x1, . . . , xr) = q(y1, . . . , ys)

is an abbreviation for the constraints x1 = y1 ∧ . . .∧xr = ys if p = q and s = r, false

otherwise.

As proved in (Delzanno 2005), the symbolic operator SPreNC returns a set of

MSRNC constrained configurations and it is correct and complete with respect to

Pre, i.e., [[SPreNC (S)]] = Pre([[S]]) for any S . It is important to note the difference

between SPreNC and a simple backward rewriting step.

For instance, given the constrained configurations M defined as p(x, z) | f(y) : z >

y and the rule s(u, m) | r(t, v) → p(u′, m′) | r(t′, v′) : u = t, m′ = v, v′ = v, u′ = u, t′ =

t (that simulates a rendez-vous (u, t are channels) and value passing (m′ = v)),

the application of SPre returns s(u, m) | r(t, v) | f(y) : u = t, v > y as well as

s(u, m) | r(t, v) | p(x, z) | f(y) : u = t, x > y (the common multiset here is ε).
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