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Sharp affine Trudinger–Moser inequalities:
A new argument

Nguyen Tuan Duy, Nguyen Lam, and Phi Long Le

Abstract. We set up the sharp Trudinger–Moser inequality under arbitrary norms. Using this result

and the Lp Busemann-Petty centroid inequality, we will provide a new proof to the sharp affine

Trudinger–Moser inequalities without using the well-known affine Pólya–Szegö inequality.

1 Introduction

Geometric and functional inequalities together with their sharp constants and
extremal functions have been the main subject of a lot of research. �ey play
important roles in several problems arising in the calculus of variations, partial
differential equations, geometry, etc. Among those inequalities, the Sobolev-type
inequalities are probably one of the most important and interesting, and there is a
vast literature.

In [39], J. Moser proved a sharp limiting Sobolev inequality, namely, the embed-
ding W 1,N

0 (Ω) ⊂ LφN
(Ω), where LφN

(Ω) is the Orlicz space associated with the
Young function φN(t) = exp(α∣t∣N/(N−1)) − 1 for some α > 0, on any finite-measure
domainΩ in the Euclidean spaceRN .�is inequalitywas studiedwithout its best form
independently by Pohozaev [43], Trudinger [48], and Yudovich [50].�is embedding
can be considered as the sharp border-line Sobolev inequality, because it provides
information on the optimal target space for the Sobolev embedding in the limiting
case. Indeed, it is well known that W 1,p

0 (Ω) ⊂ Lq(Ω) for 1 ≤ q ≤ p∗ = pN

N−p when

p < N andW
1,p
0 (Ω) ⊂ Lq(Ω) for 1 ≤ q < ∞ when p = N butW0

1,p(Ω) ⊈ L∞(Ω).
Using the symmetrization arguments, J. Moser proved the following theorem.

�eorem A Let Ω be a domain with finite measure in Euclidean N-space RN , N ≥ 2.
�en the following holds:

sup
u∈W 1,N

0
(Ω)∶∫Ω ∣∇u∣N dx≤1

1

vol(Ω) ∫Ω [ exp(αN ∣u∣N ′) − 1] dx < ∞,(1.1)

with αN = Nω
1/(N−1)
N−1 , where ωN−1 is the area of the surface of the unit N-ball. Here,

N ′ = N
N−1 .
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Moser also constructed the following Moser sequence to show that the constant

αN = Nω
1/(N−1)
N−1 is optimal in the sense that if we replace αN by any number α > αN ,

then the above supremum is infinite:

un(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1

ωN−1
)
1/N

( n
N
)
(N−1)/N

, 0 ≤ ∣x∣ ≤ e−(n/N) ,

( N

ωN−1n
)
1/N

log( 1

∣x∣ ), e−(n/N) < ∣x∣ < 1,
0, ∣x∣ ≥ 1.

(1.2)

Moreover, it can be checked that the constant αN is indeed sharp in the following
sense:

sup
u∈W 1,N

0
(Ω)∶∫Ω ∣∇u∣

N dx≤1

1

vol(Ω) ∫Ω exp(αN ∣u∣N/(N−1))∣u∣a dx = ∞, ∀a > 0.

Moser used the following classical Schwarz rearrangement argument: every func-
tion u ≥ 0 is associated with a radially symmetric function u# such that the sublevel-
sets of u# are balls with the same volume as the corresponding sublevel-sets of u.
Moreover, u# is a positive and non-increasing function defined on BR(0) where
vol (BR(0)) = vol(Ω). Hence, by the layer cake representation, we can have that

∫
Ω
f (u) dx = ∫

BR(0)
f (u#) dx

for any function f that is the difference of two monotone functions. In particular, we
obtain

∥u∥p = ∥u#∥p ,
∫
Ω
exp (α∣u∣n/(n−1)) dx = ∫

BR(0)
exp (α∣u#∣n/(n−1)) dx .

In particular, the well-known Pólya–Szegö inequality

∫
BR(0)

∣∇u#∣p dx ≤ ∫
Ω
∣∇u∣p dx(1.3)

plays a crucial role in the approach of J. Moser.
�e sharp Trudinger–Moser inequalities can be improved and extended in many

ways. We refer the interested reader to, for instance, [1, 4, 9, 18, 27, 29, 33, 38, 44, 45,
47, 49]. In particular, the authors proved the following affine Trudinger–Moser
inequality in [11] where the standard LN energy of gradient (∫RN ∣∇u∣N dx)1/N is
replaced by the smaller quantity, namely, the affine energy EN(u):

sup
u∈W 1,N

0
(Ω)∶EN(u)≤1

1

vol(Ω) ∫Ω [ exp(αN ∣u∣N/(N−1)) − 1] dx <∞.
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Here, for p ≥ 1,
Ep(u) = (NωN)1/N(NωNωp−1

2ωN+p−2
)
1/p

(∫
SN−1
(∫

RN
∣∇u(x) ⋅ σ ∣p dx)−N/p dσ)−(1/N) .

Indeed, by theHölder inequality and Fubini’s theorem, it is easy to verify thatEp(u) ≤(∫RN ∣∇u∣p dx)1/p . Moreover, the ratio Ep(u)/(∫RN ∣∇u∣p dx)1/p can be made arbitrary
small. Hence, the sharp affine Trudinger–Moser inequalities are really stronger than
the standard Trudinger–Moser inequalities. It is worthmentioning that the argument
in [11] was again based on the Schwarz rearrangement. Indeed, using the Lp Brunn–
Minkowski theory, the authors in [11] were able to show the affine Pólya–Szegö
inequality

Ep(u∗) ≤ Ep(u).
For the applications of such inequalities to geometric analysis and nonlinear PDEs,

we refer the reader to the papers of Chang and Yang [10] and of de Figueiredo, do Ó,
and Ruf [16].

�e main purpose of this note is to provide a different point of view for the sharp
affine Trudinger–Moser inequalities without using the affine Pólya–Szegö inequality.
Our aim is to provide another option to study the affine Trudinger–Moser inequalities
in frameworks where the well-known Pólya–Szegö inequality is not available. It is
worth noting that there are many settings where the Schwarz rearrangement is not
applicable. �us, it is interesting and challenging to study the Trudinger–Moser
inequalities in such cases. For instance, when there is the presence of weights on both
sides of the inequalities, the classical Schwarz procedure is not available, even on the
Euclidean spaces. In this direction, Dong, Lam, and Lu [19] considered a suitable
quasiconformal transform to reduce the singular case to the nonweighted case and
proved, among other results, that for any α ≤ αN and 0 ≤ β < N ,

∫
Ω
exp(α(1 − β

N
)∣u∣N/(N−1)) dx∣x∣β ≲ ∫Ω

dx

∣x∣β .(1.4)

Again the constant αN is sharp.�is extends the results in [3] where the authors used
the Schwarz rearrangement to study an interpolation betweenMoser’s inequality and
the Hardy inequality in the singular case 0 ≤ β < N :

sup
u∈W 1,N

0
(Ω)∶∫Ω ∣∇u∣N dx≤1

1

vol(Ω)1−(β/N) ∫Ω exp(α(1 − β

N
)∣u∣N/(N−1)) dx∣x∣β ≤ c0(1.5)

for any α ≤ αN . Indeed, it is clear that ∫Ω dx
∣x ∣β ≤ vol(Ω)1−(β/N). Hence, (1.4) is an

improvement of (1.5). In fact, (1.4) is essentially stronger than (1.5), since the ratio
∫Ω

dx

∣x∣β/vol(Ω)1−(β/N) is not uniformly bounded from below by any positive constant, as
Ω ranges in the set of finite-volume domains. Another interesting situation where
we cannot use the rearrangement approach is the higher order Trudinger–Moser
inequalities, namely, the Adams inequalities. In this case, in [2], the author used a
lemma of O’neil [41] and the Fourier transform to control functions with compact
support by Riesz potential with explicit constants to overcome the lack of Pólya–Szegö
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type inequalities on higher order Sobolev spaces.�e ideas in [2] were also employed
to study the sharp Trudinger–Moser inequalities on other settings like, for example,
Riemannian manifolds [21], sub-Riemannian manifolds [6, 7, 12, 13, 14, 28, 30], and
measure spaces [22].

In this paper, we will follow the strategy in [17, 26, 40]. First, we will investigate
the sharp Trudinger–Moser inequalities with arbitrary norms. �en, for each f ∈
C∞0 (RN), we will apply these results for a suitable norm that depends on f and use the
Lp Busemann–Petty centroid inequality to derive the sharp affine Trudinger–Moser
inequalities.

To state our main results, let us now introduce some notation. Let C ∶ RN
→ R

+

be an even strictly convex function. We suppose that C is q-homogeneous for some
q > 1, that is

C(λx) = λqC(x) ∀λ ≥ 0, ∀x ∈ RN .

�en C∗, the Legendre transform of C, defined by

C∗(x) = sup
y

{⟨x , y⟩ − C(y)},
is even, strictly convex function and is p−homogeneous with p = q

q−1 .

We have that ⟨X ,Y⟩ ≤ C∗(X) + C(Y) for all X ,Y . Hence, ⟨X ,Y⟩ ≤ λpC∗(X) +
λ−qC(Y) for all λ > 0, X ,Y . Minimizing the right-hand side with respect to λ gives
the Cauchy–Schwarz inequality

X ⋅ Y ≤ [qC(Y)]1/q[pC∗(X)]1/p .
By Young’s inequality, we have

X ⋅ Y ≤ [qC(Y)]1/q[pC∗(X)]1/p ≤ C∗(x) + C(y).
Hence, we also have that

[pC∗(X)]1/p = sup
Y

X ⋅ Y
[qC(Y)]1/q .

In other words,

C∗(X) = sup
Y

∣X ⋅ Y ∣p
p[qC(Y)]p/q .

We will assume that for all x ∈ RN , there exists a unique vector x∗ such that

x ⋅ x∗ = qC(x) and C∗(x∗) = (q − 1)C(x) = q

p
C(x).

In other words, for all x ∈ RN , there exists a unique vector x∗ such that the equality
in the Cauchy-Schwarz inequality happens.

Our first aim of this article is to prove the following theorem.
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�eorem 1.1 Let C be N ′-homogeneous. �ere exists CN > 0 such that for every f ∈
W 1,N(RN) with 0 < vol ( supp( f )) <∞ and ∫RNNC∗(∇ f ) dx ≤ 1, we have

1

vol ( supp( f ))∫RN
[ exp (γC ∣ f (x)∣N/(N−1)) − 1] dx ≤ CN .

Here, the constant γC = NN/(N−1)
κ
1/(N−1)
C , κC = vol({N ′C(x) ≤ 1}), is optimal.

Now, we define the general Lp affine energy for f ∈W 1,p(RN) by

Eλ ,p( f ) = cN ,p

⎛
⎝∫SN−1

(∫
RN
[(1 − λ)(∇ f (x) ⋅ σ)p+

+ λ(∇ f (x) ⋅ σ)p−] dx)−(N/p) dσ⎞⎠−(1/N)

cN ,p = (NωN)1/N(NωNωp−1

ωN+p−2
)1/p .

Here, 0 ≤ λ ≤ 1. It can be noted that when λ = 1
2
, E1/2,p( f ) is the Lp affine energy

Ep( f ) introduced in [11], while E0,p( f ) is exactly the asymmetric Lp affine energy
E
+
p( f ) studied in [24].
Using �eorem 1.1 and the Lp Busemann–Petty centroid inequality, we establish

the following result.

�eorem 1.2 For every f ∈W 1,N(RN)with 0 < vol(supp( f )) <∞ andEλ ,N( f ) ≤ 1,
we have

1

vol(supp( f ))∫RN
[ exp (αN ∣ f (x)∣N/(N−1)) − 1] dx ≤ CN .(1.6)

Here, αN = NN/(N−1)ω
1/(N−1)
N is optimal.

As far as the existence of extremal functions of Moser’s inequality, the first
breakthrough was due to the celebrated work of Carleson and Chang [8] in which
they proved that the supremum

sup
u∈W 1,N

0
(Ω),∫Ω ∣∇u∣

N dx≤1

1

vol(Ω) ∫Ω [ exp (αN ∣u∣N/(N−1)) − 1] dx(1.7)

can be achieved when Ω is an Euclidean ball.�is result came as a surprise, because it
was known that the Sobolev inequality does not have extremal functions supported on
any finite ball. Subsequently, the existence of extremal functions has been established
on arbitrary domains in [15, 20, 34], and onRiemannianmanifolds in [31, 32], to name
just a few.
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Now, since Eλ ,N( f ) ≤ ∥∇ f ∥N , we get that
1

vol(supp( f ))∫RN
[ exp(αN ∣ f (x)

∥∇ f ∥N ∣
N/(N−1)) − 1] dx ≤

1

vol(supp( f ))∫RN
[ exp(αN ∣ f (x)

Eλ ,N( f ) ∣
N/(N−1)) − 1] dx .

Also, when f is radial, we have Eλ ,N( f ) = ∥∇ f ∥N . Hence, from the attainability of the
standard Trudinger–Moser inequality (1.7), we can deduce that optimal functions for
the affine Trudinger–Moser inequality (1.6) exist as well. Moreover, by the properties
of the affine energy Eλ ,N , composing of optimizers for the standard Trudinger–
Moser inequality (1.7), and any element in GL(N) also gives extremizers for the
affineTrudinger–Moser inequality (1.6).�is phenomenon has been already observed
in [11].

2 Preliminaries

2.1 Brunn–Minkowski Theory

We recall here some background material from the Brunn–Minkowski theory of
convex bodies. �e interested reader is referred to [35, 36, 46] and the references
therein.

A convex body K ⊂ RN is a convex compact subset ofRN with nonempty interior.
Its support function is defined as

hK(x) = sup
y∈K
⟨x , y⟩.

We also define the gauge ∥ ⋅ ∥K and radial rK(⋅) functions as
∥x∥K = inf{λ > 0 ∶ x ∈ λK},
rK(x) = sup{λ > 0 ∶ λx ∈ K}.

It is obvious that ∥x∥K = 1
rK(x)

.

For K ⊂ RN , we also define its polar body by

Ko = {x ∈ RN ∶ ⟨x , y⟩ ≤ 1 for all y ∈ K}.
Hence, hK = rKo . We also have that

vol(K) = 1

N
∫
SN−1

rNK (x) dx = 1

N
∫
SN−1
∥x∥−NK dx .

For each λ ∈ [0, 1], the general Lp centroid body of K is the convex body

Ŵλ ,pK = (1 − λ)Ŵ+pK + λŴ−pK ,
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where Ŵ
−
pK = Ŵ

+
p(−K). Here, Ŵ+pK is the asymmetric Lp centroid body of K that is

defined by

h
p

Ŵ
+
p K
(x) = 1

αN ,p vol(K)∫K⟨x , y⟩
p
+ dy,

αN ,p = ωN+p−2

(N + p)ωNωp−1
.

Hence, we get that

h
p
Ŵλ ,pK
(x) = 1

αN ,p vol(K)∫K[(1 − λ)⟨x , y⟩+
p + λ⟨x , y⟩p−] dy.

One of our main tools is the following general affine Lp Busemann–Petty centroid
inequality.

�eorem 2.1 Let p ≥ 1 and K be a convex body containing the origin in its interior. We
have

vol(Ŵλ ,pK) ≥ vol(K)
with the equality occurs if and only if K is an origin-centered ellipsoid.

�is affine isoperimetric inequality was investigated in [23] to strengthen the
affine Lp Busemann–Petty centroid inequality in [37] and generalize the classical
Busemann–Petty centroid inequality by Petty [42].

2.2 Affine Sobolev Inequality

Tohelp explain ourmethod, in this subsection, wewill recall a proof of the sharp affine
Sobolev inequalities [51] using the Sobolev type inequalities with arbitrary norm and
the Lp Busemann–Petty centroid inequality.�is proof could be found in [25, 26].

Let H ∶ RN
→ [0,∞) be a convex function satisfying the homogeneity prop-

erty H(tx) = ∣t∣H(x), ∀(x , t) ∈ RN ×R. Futhermore, we assume that α∣x∣ ≤ H(x) ≤
β∣x∣, ∀x ∈ RN for some positive constants α ≤ β. Hence, we can assume without loss
of generality that the convex closed set K = {H(x) ≤ 1} has volume vol(K) = ωN .
Denote

Ho(x) = hK(x) = sup
y∈K
⟨x , y⟩.

�en it is clear that Ho is a convex homogeneous function, and

Ho(x) = sup
y≠0

⟨x , y⟩
H(y) ; H(x) = sup

y≠0

⟨x , y⟩
Ho(y) .

Of course, Ho is the gauge of Ko = {Ho(x) ≤ 1}. We say that K and Ko are polar to
each other. Denote κN = vol(Ko). In [5, Corollary 3.2], using the convex symmetriza-
tion, the following Sobolev type inequality was proved.
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�eorem 2.2 We have that ∥ f ∥p∗ ≤ ω
1/N
N

κ
1/N
N

SN ,p(∫RnH
p(∇ f ) dx)1/p , where SN ,p is the

best constant in the Sobolev inequality with the standard euclidean norm.

Now, for f ∈ C∞0 (RN), we will use the following p-homogeneous function:

H p(x) = C∗f (x) = 1

p
∫
SN−1
∥y∥−N−p

p,λ , f
[(1 − λ)⟨x , y⟩p+ + λ⟨x , y⟩p−] dy

∥x∥p,λ , f = [∫
RN
(1 − λ)⟨x ,∇ f (y)⟩p+ + λ⟨x ,∇ f (y)⟩p− dy]

1/p

.

�en

∫
RN

H p(∇ f ) dx = (Eλ ,p( f )
cN ,p

)−N .
We also set

Kλ ,p( f ) = {x ∶ C f (x) ≤ 1

q
},

Lλ ,p( f ) = {x ∶ ∥x∥p,λ , f ≤ 1}
Byusing the Lp Busemann–Petty centroid inequality vol(Ŵλ ,pLλ ,p( f ))≥ vol(Lλ ,p( f )),
we get that

κC = vol (Kλ ,p( f )) ≥ [(N + p)αN ,p]N/p( 1

N
(Eλ ,p( f )

cN ,p

)−N)(N+p)/p .
Hence,

∥ f ∥p∗ ≤ ω
1/N
N

κ
1/N
N

SN ,p(∫
Rn
H p(∇ f ) dx)1/p

≤ ω1/N
N SN ,p

⎛
⎝[(N + p)αN ,p]N/p( 1

N
(Eλ ,p( f )

cN ,p

)−N)(N+p)/p)−(1/N)

× (Eλ ,p( f )
cN ,p

)−(N/p)
= SN ,pEλ ,p( f ),

which is the sharp affine Sobolev inequality.

3 Proof of Theorem 1.1

Let Ho(x) = [N ′C(x)]1/N ′ and H(x) = [NC∗(x)]1/N .
We will prove the following result.

https://doi.org/10.4153/S0008439520000806 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000806


Sharp affine Trudinger–Moser inequalities: A new argument 773

�eorem3.1 For 1 < p <∞, there is a constant A = A(p) such that for all f ∈ Lp(RN)
with support contained in Ω, vol(Ω) <∞,

∫
Ω
exp( 1

κC

∣ 1/((Ho)N−1 ∗ f (x))
∥ f ∥p ∣p′) dx ≤ Avol(Ω).

We will need the following result [2, Lemma 1].

Lemma 3.2 Let a(s, t) be a nonnegative measurable function on [0,∞) × [0,∞)
such that

a(s, t) ≤ 1 for 0 ≤ s ≤ t,
and

sup
t>0
(∫ ∞

t
a(s, t)N/(N−1)ds)(N−1)/N = b <∞.

�en there exists a constant c0 = c0(N , b) such that for φ(s) ≥ 0 and
∫
∞

0
φ(s)Nds ≤ 1,

it follows that

∫
∞

0
exp
⎡⎢⎢⎢⎢⎣
(∫ ∞

0
a(s, t)φ(s)ds)

N/(N−1)

− t
⎤⎥⎥⎥⎥⎦
dt ≤ c0.

We also recall the non-increasing rearrangement g∗ of a function g by

g∗(t) = inf {s > 0 ∶ vol ({∣g(x)∣ > s}) ≤ t}.
We also denote

g∗∗(t) = 1

t
∫

t

0
g∗(s)ds.

�en we have the following O’Neil lemma [41].

Lemma 3.3 For h = f ∗ g, we have

h∗∗(t) ≤ t f ∗∗(t)g∗∗(t) + ∫ ∞

t
f ∗(s)g∗(s)ds.

Proof of�eorem 3.1 Let g(x) = ( 1
κC
)(N−1)/N 1

(Ho(x))N−1 and h = g ∗ f . �en

g∗(t) = t−(1/N ′) and g∗∗(t) = Ng∗(t). Hence, by Lemma 3.3, we obtain

h∗(t) ≤ h∗∗(t) ≤ Nt−(1/N
′)∫

t

0
f ∗(s)ds + ∫ vol(Ω)

t
f ∗(s)s−(1/N ′) ds.
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We note that

∫
Ω
exp( 1

κC

∣ 1/((Ho)N−1 ∗ f (x))
∥ f ∥N ∣N/(N−1)) dx = ∫ vol(Ω)

0
exp ([h∗(t)]N/(N−1)) dt.

By changing of variables t = vol(Ω)e−τ , we obtain
∫
Ω
exp( 1

κC

∣ 1/((Ho)N−1 ∗ f (x))
∥ f ∥N ∣N/(N−1)) dx

≤ vol(Ω)∫ ∞

0
exp [h∗∗( vol(Ω)e−τ)N/(N−1) − τ] dτ.

By setting φ(s) = vol(Ω)1/N f ∗( vol(Ω)e−s)e−(s/N), we get
h∗∗( vol(Ω)e−τ) ≤ Neτ/N

′

∫
∞

τ
φ(s)e−(s/N ′) ds + ∫ τ

0
φ(s)ds.

Now, we can apply Lemma 3.2 with

a(s, t) = ⎧⎪⎪⎨⎪⎪⎩
1 0 ≤ s ≤ t,
Ne(t−s)/N

′

t < s <∞. ∎

Proof of�eorem 1.1 We begin with the well-known formula

f (x) = ∫ ∞

0
∇ f (x − σr) ⋅ σdr.

As a consequence,

∫
SN−1

f (x) 1

(Ho(σ))N dσ = ∫
SN−1
∫
∞

0

∇ f (x − σr)
(Ho(σ))N ⋅ σ dr dσ

= ∫
SN−1
∫
∞

0

∇ f (x − σr)
(Ho(rσ))N ⋅ rσrN−1 dr dσ .

Changing from polar coordinates to rectangular coordinate y = x − rσ , we have
f (x) = 1

NκC
∫
RN

∇ f (y) ⋅ (x − y)
(Ho(x − y))N dy.

Hence,

∣ f (x)∣ ≤ 1

NκC

( 1

(Ho)N−1 ∗H(∇ f ))(x)
Hence by�eorem 3.1, we get

∫
Ω
exp( 1

κC

(NκC)N/(N−1)∣ f (x)∣N/(N−1))
≤ ∫

Ω
exp( 1

κC

∣ 1

(Ho)N−1 ∗H(∇ f )∣N/(N−1)) ≤ C vol(Ω).
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�e optimality of γC can be verified using the following Moser-type sequences

un(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Ho(x) ≥ 1,
( 1

κCn
)1/N log( 1

Ho(x)), e−(n/N) < Ho(x) <, 1
( 1

NκC

)1/N( n
N
)(N−1)/N , 0 ≤ Ho(x) ≤ e−(n/N) .

(3.1)

∎

4 Proof of Theorem 1.2

Now, for f ∈ C∞0 (RN), we will use the following p-homogeneous function:

C∗f (x) = 1

p
∫
SN−1
∥y∥−N−p

p,λ , f
[(1 − λ)⟨x , y⟩p+ + λ⟨x , y⟩p−] dy,

∥x∥p,λ , f = [∫
RN
(1 − λ)⟨x ,∇ f (y)⟩p+ + λ⟨x ,∇ f (y)⟩p− dy]

1/p

.

We also set

Kλ ,p( f ) = {x ∶ C f (x) ≤ 1

q
},

Lλ ,p( f ) = {x ∶ ∥x∥p,λ , f ≤ 1}.
We note that

∫
RN

pC∗f (∇ f (x)) dx = ∫
RN
∫
SN−1
∥y∥−N−p

p,λ , f
[(1 − λ)⟨∇ f (x), y⟩p+ + λ⟨∇ f (x), y⟩p−] dy

= ∫
SN−1
∥y∥−N−p

p,λ , f ∫
RN
[(1− λ)⟨∇ f (x), y⟩p++ λ⟨∇ f (x), y⟩p−]dx dy

= ∫
SN−1
∥y∥−Np,λ , f dy

= N vol (Lλ ,p( f )) = (Eλ ,p( f )
cN ,p

)−N .
Moreover, from

h
p

Kλ ,p( f )
(x) = ∫

SN−1
∥y∥−N−p

p,λ , f
[(1 − λ)⟨x , y⟩p+ + λ⟨x , y⟩p−] dy

= (N + p)∫
SN−1
∫
∥y∥−1p,λ , f

0
[(1 − λ)⟨x , y⟩+ p + λ⟨x , y⟩p−]rN+p−1 dr dy

= (N + p)∫
Lλ ,p( f )

[(1 − λ)⟨x , y⟩+ p + λ⟨x , y⟩p−] dy
= (N + p)αN ,p vol (Lλ ,p( f ))hŴλ ,pLλ ,p( f )

p(x),
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we can deduce that

Kλ ,p( f ) = [(N + p)αN ,p vol (Lλ ,p( f ))]1/pŴλ ,pLλ ,p( f ).
�us, by the Lp Busemann–Petty centroid inequality vol(Ŵλ ,pLλ ,p( f ))≥ vol(Lλ ,p( f )),
we obtain

vol (Kλ ,p( f )) ≥ [(N + p)αN ,p]N/p( 1

N
(Eλ ,p( f )

cN ,p

)−N)(N+p)/p .(4.1)

�e equality occurs when Lλ ,p( f ) is an origin-centered ellipsoid.
In our case, C∗(x) = C∗f (x) with p = N . Hence,

κC = vol (Kλ ,N( f )) ≥ [(N + N)αN ,N]N/N( 1

N
(Eλ ,N( f )

cN ,N

)−N)(N+N)/N .
�us, if EN

λ ,N( f ) ≤ NNωN , then we have

∫
RN

pC∗f (∇ f (x)) dx = (Eλ ,N( f )
cN ,p

)−N

≤ NN2NαN ,N( 1

N
(Eλ ,N( f )

cN ,N

)−N)2
= NN

κC .

Hence, by�eorem 1.1,

∫
RN
[ exp (∣ f (x)∣N/(N−1)) − 1] dx ≤ CN vol (supp( f )).
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