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The integration of the Global Positioning System (DGPS) with an Inertial Navigation
System (INS) has been implemented for several years. In an integrated INS/DGPS system,

the DGPS provides positions while the INS provides attitudes. In case of DGPS outages
(signal blockages), the INS is used for positioning until the DGPS signals are available again.
One of the major issues that limit the INS accuracy, as a stand-alone navigation system, is
the level of sensor noise. The problem with inertial data is that the required signal is buried

into a large window of high frequency noise. If such noise component could be removed, the
overall inertial navigation accuracy is expected to improve considerably. The INS sensor
outputs contain actual vehicle motion and sensor noise. Therefore, the resulting position

errors are proportional to the existing sensor noise and vehicle vibrations. In this paper,
wavelet techniques are applied for de-noising the inertial measurements to minimize the
undesirable effects of sensor noise and other disturbances. To test the efficiency of inertial

data de-noising, two road vehicle INS/DGPS data sets are utilized. Compared to the ob-
tained position errors using the original inertial measurements, the results showed that the
positioning performance using de-noised data improves by 34%–63%.
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1. INTRODUCTION. The last two decades have shown an increasing trend
in using integrated INS/DGPS systems in many applications requiring position and
attitude information. For example in mobile mapping systems, the INS/DGPS
navigation information (position and attitude) is used to georeference an imaging
sensor mounted on the same carrier of the integrated INS/DGPS system. Another
application of INS/DGPS that has received the attention of geodesists in the last
decade is airborne gravimetry. Using the INS/DGPS navigation solution and sub-
tracting the aircraft acceleration (obtained by twice differentiating DGPS positions)
and the total sensed acceleration (obtained by INS accelerometer specific force
measurements), the gravity field can be determined with high accuracy. In general,
GPS provides highly accurate position and velocity and can provide attitude infor-
mation when a multi-antenna system is used. However, GPS is not suitable enough
for many mapping and navigation applications that require continuous navigation
information (Schwarz and Wei, 1995). Cycle slips caused by loss of lock between
the receiver and a satellite are one of the limitations of GPS. In addition, some
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applications require a very high data rate (e.g. 100–200 Hz), which cannot be pro-
vided by current GPS receivers. This means that the GPS cannot sense dynamic
changes rapidly enough for some applications.

On the other hand, INS is a self-contained system, which in the short term, pro-
vides accurate position, velocity and attitude information at a very high data rate
(generally above 50 Hz), but has time dependent error growth when operated in a
stand-alone mode. Therefore, the two systems are complementary. In an integrated
INS/DGPS system, the primary function of the DGPS is to provide position infor-
mation while the primary function of the INS is to provide attitude information.
In addition, the short-term position accuracy of the INS can be used to detect and
correct cycle slip problems in the GPS carrier phase data. Finally, the DGPS can be
used for the in-motion calibration of inertial sensors, while the INS can be used for
positioning during DGPS outages.

In the standard operation of INS stand-alone navigation and INS/DGPS inte-
gration applications, the dynamic behavior of the INS is described using a system
of differential equations and then kinematic measurements are used to solve it to
provide positions, velocities and attitudes. Due to the INS sensor errors, the solution
of such system of differential equations contains errors. Therefore, these errors are
determined first through error models and then compensation for them is performed
through a Kalman Filter (KF), see Figure 1. The updates for the KF in INS stand-
alone positioning are Zero Velocity Update (ZUPT) measurements while in INS/
DGPS integration mode, the updates are the DGPS position and velocity. One of the
major problems that can affect the overall INS/DGPS integrated system accuracy
is the existence of frequent DGPS outage periods that are caused by GPS signal
blockages. As a solution to the positioning problem during DGPS outages, just the
INS is used for positioning without any updates until the GPS signal is re-acquired
with sufficient accuracy. This mode of INS stand-alone positioning is essentially a
prediction process. Thus, the solution accuracy in such situations is mainly governed
by the inertial system errors.

However, it is a well-known fact in inertial navigation that all gyro and acceler-
ometer technologies suffer from relatively high measurement noise. The noise affect-
ing inertial sensors contains two parts : a low frequency component and a high
frequency component. Both components are combined together and affect the inertial
sensor measurement accuracy. The high frequency component has white noise
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Figure 1. INS Stand-Alone and INS/DGPS Integration Schemes.
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characteristics while the low frequency component is characterized by correlated
noise. The correlated noise can be modelled with sufficient accuracy using random
process error models whereas the white noise part cannot. In inertial navigation
applications, the useful INS sensor signals (accelerometer specific forces and gyro
angular rates) are hidden in high frequency (white noise) measurement noise.
Therefore, if such white noise component could be separated (or removed) from the
measured inertial sensor signal, the performance of inertial measurements is expected
to improve. In turn, the overall INS accuracy will be improved. The separation of
the high frequency noise components can be performed by de-noising the inertial
measurements.

De-noising of INS sensor measurements using wavelet decomposition is presented
in this paper as an effective method to cope with inertial sensor noise in INS stand-
alone navigation and INS/DGPS integration applications. In INS/DGPS kinematic
applications, de-noising of INS data signals by wavelet decomposition techniques
has been successfully used in considerably reducing estimated attitude errors ; see
Ŝkaloud (1999) for more details. It also has been used to improve the estimation of
airborne gravity disturbance values, using INS data de-noised by wavelets, see
Bruton et al. (2000) for details. However in this case, the improvement was rather
minimal. Since the INS sensor outputs contain effects of actual vehicle motion and
sensor noise, the resulting position errors will be proportional to the existing inertial
sensor noise and vehicle vibrations. Wavelet techniques can be applied for removing
the high frequency noise in order to minimize the undesirable effects of sensor noise
and other high frequency disturbances. In such situations, it is expected that the
position errors obtained from de-noised INS data will be smaller than the ones
obtained from the original data.

In this paper, the Wavelet Transform (WT) will be presented first. After that, the
principle of wavelet multi-resolution analysis (multiple levels of wavelet decompo-
sition) will be introduced and then discussed considering both static and kinematic
mode situations. The effect of de-noising INS kinematic data will be analyzed after
comparing the obtained position errors, using both the original and the de-noised
INS data in kinematic stand-alone INS navigation and INS/DGPS integration with
some simulated DGPS outages. For this purpose, two kinematic road vehicle data
sets collected using two Inertial Measurement Units (IMUs) of high and medium
accuracy will be utilized. Finally, the obtained results are discussed and some con-
clusions are drawn.

2. WAVELETS AND THE WAVELET TRANSFORM (WT). Wave-
lets have received extensive attention in the engineering profession during the last
two decades. From the mid-1980s till now, wavelet techniques have been im-
plemented in many applications such as: image processing, medical diagnostics,
geophysical signal processing, pattern recognition, electromagnetic wave scattering,
boundary value problems, … etc. (Goswami and Chan, 1999). Wavelet techniques
are based on analyzing a signal through signal windowing but with variable win-
dow sizes. This gives an advantage to wavelets over other signal processing tech-
niques in that it is capable of performing local analyses, i.e. analyzing a localized
portion of a large signal (Polikar, 1996). This is possible since wavelets allow the
use of narrow windows (short-time intervals) if high frequency information is
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needed and wide windows (long-time intervals) if low frequency information is
required.

2.1. The Continuous Wavelet Transform. The Continuous Wavelet Transform
(CWT) Xm,v

C of a continuous-time domain signal x(t) is defined as the inner product
of the signal sequence with a family of functions ym,v(t), such as:

XC
m, n=hx(t),ym, n(t)i

=
Z1

x1

x(t)y*
m, n(t) dt

(1a)

where the * indicates complex conjugation and the family ym,v(t) is defined by con-
tinuous scaling (dilation or compression) parameters m and translation parameters
n of a single analyzing function y(t) such that :

ym, n(t)=
1ffiffiffi
m

p y
txn

m

� �
, m>0 (1b)

Substituting Equation 1b into Equation 1a, we obtain:

XC
m, n=

1ffiffiffi
m

p
Z1

x1

x(t) y*
txn

m

� �
dt (1c)

Therefore, the wavelet transformation of a time-domain signal, in general, is defined
in terms of the projections of this signal onto a family of basis functions that are
generated by dilations (or compressions) and translations of a single function. The
single analyzing function is called the ‘‘mother or prototype wavelet ’’ while the basis
functions are called ‘‘daughter wavelets ’’. Two conditions must be satisfied for y to
be a window function and also to give the ability to recover (or reconstruct) the signal
x(t) from Xm,n

C . The first condition is that y must be short and the second one is that
it must be oscillatory, i.e. y must have zero-mean and decay quickly at both ends
(Strang and Nguyen, 1996; Goswami and Chan, 1999; Keller, 2000). Figure 2 shows
some examples of existing mother wavelets that satisfy the above two conditions.

Wavelets offer the capability of detecting variable frequency components in a sig-
nal as well as the time of their existence. This is obtained through the dilation and
translation parameters m and n (Goswami and Chan, 1999). In Equation 1c, by
changing the value of m in y* txn

m

� �
, the time (or window) support of ym,n will also

Symlets (sym8) Daubechies (db2) Coiflets (coif1) Daubechies (db8)

Figure 2. Examples of Some Existing Mother Wavelets (Misiti et al., 2000).
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be changing. In other words, if m is reduced, the time window of ym,n(t) will narrow,
and thus, high-frequency information could be detected. The opposite is true when
m is increased. Therefore, the parameter 1/m is a measure of frequency and hence m
can be considered as a ‘‘scale ’’ that determines the oscillating behavior of a particular
daughter wavelet ym,n(t). On the other hand, the translation parameter n indicates
the time location of the wavelet window (i.e. the ‘‘shift ’’ of the wavelet along the time
axis), which provides the time localization information of the original signal.

From Equation 1c, if the signal at one of its locations has a spectral component
that is closely related to the current value of the scale m, the computed coefficient at
this point will have a relatively large value, and vice versa (Polikar, 1996; Mallat,
1998). The computation of the CWT coefficients starts at the beginning of the signal
using the most compressed wavelet that can detect the highest frequencies existing in
the signal. This is performed by choosing a scale value that represents the original
signal. Then, the wavelet is shifted by n along the time axis until the end of the signal.
The next step is to increase the scale m by some amount (thus expanding the wavelet
window to detect lower frequencies) and repeat the shifting procedure. The whole
procedure is repeated for each value of m until some ‘‘maximum’’ desired value of m
is reached.

2.2. The Discrete Wavelet Transform. Since inertial sensor signals are discrete-
time signals, the Discrete Wavelet Transform (DWT) is implemented instead of
the CWT. In this case, the basis functions are obtained by discretizing (sampling) the
continuous parameters m and n. In the DWT, the sampling of m and n is based on
powers of some constant number a and it takes the form:

m=an (3a)

n=man (3b)

where n and m are integer numbers representing the discrete dilation and translation
indices. Moreover, and from the practical aspects of the wavelet theory analysis, it
has been found that the most efficient way of determining m and n is the ‘‘dyadic’’
one, i.e. to take the value of a to be 2. By substituting Equations 3 into Equation 1c,
the CWT will take the form:

XC
m, n=

1ffiffiffiffiffi
an

p
Z1

x1

x(t) y(taxnxm)dt (4)

Then, by discretizing x(t) to x(k) assuming a sampling rate of 1 (i.e. k=t) and con-
sidering a=2, the DWT Xn,m

D of a discrete-time signal x(k) can be described by the
two integers n and m as:

XD
n,m=

1ffiffiffiffiffi
2n

p
X
k

x(k) y(k2xnxm) (5)

For many signals (especially INS sensor data), the low frequency component of the
signal is the one of interest since it gives the identity of such signal. On the other hand,
the high frequency component usually constitutes the signal noise. In wavelet ter-
minology, the low frequency component of a signal is called the ‘‘approximation
part ’’ while the high frequency component is called the ‘‘details part ’’. In the
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implementation of the DWT, the wavelet coefficients of a signal are computed by
passing such a signal through two complementary half-band filters : a Low-Pass (LP)
filter and a High-Pass (HP) filter. Therefore, the input signal in case of implementing
the DWT will be decomposed into two parts. The first part will be the output of the
HP filter (i.e. the details) while the second part will be the output of the LP filter
(i.e. the approximation), see Figure 3.

In the above discussion, it has been shown how the DWT can be used to analyze
(or decompose) a signal into its approximation and details components. However,
as in any application that involves transforming a signal from its time-domain to
another domain, the requirement after that is the reconstruction of the signal back
into its original domain without loosing any information. Basically, in the case of
wavelets, this will be obtained by applying the Inverse Discrete Wavelet Transform
(IDWT) on the previously computed wavelet coefficients. To reconstruct a signal
from its wavelet coefficients, the approximation and details coefficients are passed
separately through another LP and HP filters. The decomposition LP and HP filters
and the associated reconstruction LP and HP filters are not identical but are closely
related, and they form a known system in the signal processing literature that is called
‘‘quadrature mirror filters ’’ (Misiti et al., 2000). For more details about the design of
the decomposition and the corresponding reconstruction LP and HP filters, see
Strang and Nguyen (1996).

3. WAVELET MULTI-RESOLUTION ANALYSIS. Based on the
Nyquist theorem, if a signal has a sampling frequency of fs, the highest frequency
component that the signal would represent is fs/2 (Oppenheim and Schafer, 1999).
By applying the DWT to decompose a signal and recalling that the LP and HP
filters (shown in the filter bank of Figure 3) have half-band characteristics, then the
cutoff frequency of the LP filter is exactly at one half of the maximum frequency
appearing at the signal. Hence, if the DWT is applied on an inertial data of

SINS
Sensor
Signal

      Lowpass Filter

Approximation
Part

Half-Band
Filters

Highpass Filter

Details
Part

Figure 3. Signal Decomposition by the Discrete Wavelet Transform (DWT).
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sampling frequency fs, the approximation part will include those inertial signal
components that have frequencies of less than fs/2 while the details part will include
the components of frequencies between fs/4 and fs/2. To obtain the lower resolution
frequency components (i.e. that are less than fs/4), the approximation part can be
decomposed using the same process into two other approximation and details com-
ponents. In this case, the second approximation part will include all frequency com-
ponents of less than fs/8 while the second details part will include frequencies
between fs/8 and fs/4.

Therefore, to obtain finer resolution frequency components of a specific signal,
the signal is broken down into many lower-resolution components by repeating the
DWT decomposition procedure with successive decompositions of the obtained
approximation parts. This procedure is called either wavelet multi-resolution analysis
or wavelet multiple Level of Decomposition (LOD). However, this capability of
representing a signal at several levels of resolution constitutes one of the major
powerful facilities of wavelets over other signal processing techniques. Using wavelet
multi-resolution analysis, the signal can be represented by a finite sum of components
at different resolutions, and hence, each component can be processed adaptively
depending on the application at hand (Goswami and Chan, 1999). As mentioned
before, the signal is reconstructed by applying the IDWT on its computed wavelet
coefficients. Using wavelet multi-resolution analysis, the inertial sensor signal can
be represented as:

Inertial Signal=A1+D1

=A2+D2+D1

=A3+D3+D2+D1

=An+Dn+Dnx1+ . . .+D1 (6)

where A and D represent the signal approximation and details components, re-
spectively, and n=1, 2, 3 … is the wavelet LOD. Since the application at hand is
INS sensor data de-noising, the desired reconstructed signal is obtained by passing
the coefficients of the selected approximation level through the IDWT LP filter and
resetting the coefficients of all subsequent details to zero before passing them through
the IDWT HP filters.

4. SELECTION OF THE APPROPRIATE WAVELET LEVEL OF
DECOMPOSITION. In theory, the wavelet decomposition process of a signal
can be continued indefinitely, but in reality it can be performed only until the
individual details consist of a single sample. Practically, an appropriate Level of
Decomposition (LOD) is chosen based on the nature of the signal or on a specific
criterion (Misiti et al., 2000). In our case of INS sensor data, we have two modes
of operation: static and kinematic. For both operation modes, the selection of an
appropriate LOD is based on removing the high-frequency noise but keeping all
the useful information contained in the signal. For static inertial data, the sensors
outputs contain the following signals : the Earth gravity components, the Earth
rotation rate components and the sensors long-term errors (such as biases). These
signals have very low frequency, and hence, they can be separated easily from the
high frequency noise components by the wavelet multi-resolution analysis. To select
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an appropriate LOD in this case, several decomposition levels are applied and the
Standard Deviation (STD) is computed for each obtained approximation compo-
nent. As shown in Nassar et al. (2003), the proper LOD will be the one after which
the STD reaches its minimum value.

In case of kinematic inertial data de-noising, the output of the sensors contains
both effects of the actual vehicle motion dynamics and the sensor noise as well as
some other undesirable effects (e.g. vehicle engine vibrations). Therefore, the criterion
for the selection of the appropriate LOD will be different from the static data case.
Before applying the wavelet multi-resolution analysis on kinematic INS data, it
should be ensured that the decomposition or de-noising process does not remove any
actual motion information. To satisfy this condition, a spectral analysis of the used
kinematic INS sensor raw data should be performed first. In Geomatics engineering
of airborne, shipborne and land vehicle applications, the vehicle motion dynamics
is usually in the low frequency portion of the spectrum. Therefore, by analyzing the
raw data in the frequency domain, the low frequency range of the actual vehicle
motion can be detected. Then, the appropriate LOD can be selected in such a way
that the decomposition process will remove only the components that have fre-
quencies higher than the detected motion frequency range.

5. KINEMATIC INS AND INS/DGPS DATA TESTING USING
DE-NOISED INS DATA. To test the effect of de-noising inertial sensor data
on the system results, the positioning performance of INS stand-alone navigation
or INS/DGPS integration during DGPS outages is analyzed using two van data
sets. The first data set was collected in Laval, Québec using Ashtech Z12 GPS re-
ceivers and a navigation-grade (gyro drift of 0.005–0.01 deg/h) IMU (Honeywell
LRF-III) while the second test was performed in Calgary, Alberta using NovAtel
OEM4 GPS receivers and a tactical-grade (gyro drift of 1.0–10.0 deg/h) IMU
(Honeywell HG1700). The two van test trajectories are shown in Figure 4 while the
characteristics of both tests are summarized in Table 1.

For both data sets, a spectral analysis is performed first for the original INS raw
data to choose the appropriate wavelet LOD that removes only the undesirable
sensor noise and other vibrations and also maintains the actual motion dynamics.

Figure 4. INS/DGPS Van Test Trajectories.
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As mentioned before, the maximum frequency that can appear at the INS raw
signal is fs/2, where fs is the data sampling frequency (data rate in Hz). The data
rates of the used IMUs are 50 Hz for the LRF-III and 100 Hz for the HG1700.
Therefore, the data highest visible frequency will be 25 Hz for the first data set and
50 Hz for the second data set, respectively. To show the performed spectral analy-
sis, the spectrum of one set of sensor data from each test is shown. For the rest of
the two IMU sensors, the spectrum characteristics are quite similar. Figure 5 shows
the spectrum of one of the used gyros for each IMU. The figures clearly indicate
that the bandwidth that contains the majority of the motion dynamics for both tests
falls in the low frequency portion of the spectrum with a cutoff frequency, some-
what below 3 Hz.

However, a peak in the amplitude spectrum between 11 Hz and 13 Hz is observed
in Figure 5b (HG1700 gyro). This is most probably due to the van engine vibrations,
i.e. it is considered as undesirable noise in terms of motion detection. To check this
assumption, a spectral analysis for the gyro alignment static data is performed since
the van engine was on during the initial alignment period. The obtained spectrum for
the static data is shown in Figure 6. The figure shows a peak that is similar to the one
obtained in Figure 5b with the same magnitude and same frequency band. This

Figure 5. The Spectrum of One Gyro of Each Van Kinematic Data.

Table 1. Summary of the Performed INS/DGPS Kinematic Tests.

Kinematic Test

Laval, Québec

LRF-III IMU

Calgary, Alberta

HG1700 IMU

Static Initialization Time (minute) 15 18

Average Van Speed (km/h) 50 65

Number of Performed ZUPTs 19 35

Minimum Number of Available Satellites 7 5

Average Number of Available Satellites 8 6

Average PDOP 1.5 1.8

Maximum Rover-Master Distance (km) 4.0 6.0

GPS Data Rate (Hz) 1.0 1.0

SINS Data Rate (Hz) 50 100
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confirms that engine vibration noise is the most likely cause for the peak in the
spectrum.

For the selection of the proper wavelet LOD for each data set, the highest visible
frequency values for both data sets after applying five successive levels of wavelet
decomposition are computed and are listed in Table 2. From the figures in Table 2,
the expected maximum wavelet LOD that can be applied safely in this case is level
three for the LRF-III data and level four for the HG1700 data. This will remove
any frequency component that is greater than 3.125 Hz. To show graphically the
spectrum of the de-noised data, the LRF-III gyro data has been used. The spectra of
the selected gyro for four levels of wavelet decomposition are shown in Figure 7.
Figure 7d is compatible with the computations performed in Table 2 since it indicates
that after applying the 4th LOD, some motion dynamics are removed from the
required bandwidth and also the amplitude spectrum is reduced for the rest of the

Figure 6. The Spectrum of One Gyro of Van Static Alignment Data.

Table 2. Maximum Visible Frequency in Kinematic Inertial Data Before and After Successive Levels of

Wavelet De-noising.

Type of Inertial Data

Maximum Frequency

Appears in Data

Maximum Frequency Detected in Data (Hz)

Laval, Québec

LRF-III IMU

HG1700 IMU

Calgary, Alberta

Original Data fs/2 25 50

After Wavelet 1st LOD fs/4 12.5 25

After Wavelet 2nd LOD fs/8 6.25 12.5

After Wavelet 3rd LOD fs/16 3.125 6.25

After Wavelet 4th LOD fs/32 1.5625 3.125

After Wavelet 5th LOD fs/64 0.78125 1.5625
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needed components. Similar results were obtained for the HG1700 gyro data after
applying the 5th LOD.

To test the performance of inertial sensor data de-noising, two modes of processing
are applied on both data sets. The first mode of processing is INS stand-alone posi-
tioning with frequent ZUPTs while the second mode of processing is INS/DGPS
integration but with some intentionally induced DGPS outage periods. For each data
set, the reference solution is obtained by processing the data in a complete INS/
DGPS integration mode.

5.1. Testing Wavelet De-noising with Stand-Alone INS. Using INS stand-alone
navigation with ZUPTs as updates, the position errors obtained using the original
raw INS data (before de-noising) as well as the de-noised data with different wavelet
LOD were computed. The statistics of such position errors are given in Table 3 while
the position error Root Mean Square (RMS) values are shown in Figure 8. From
Table 3 and Figure 8, it is clear that de-noising the INS sensor data by wavelet
decomposition remarkably reduces the INS stand-alone position errors. Compared
to the original data results, the LRF-III position errors (RMS) are decreased by 63%
(using the 2nd LOD) while the HG1700 position errors (RMS) are decreased by 46%
(using the 4th LOD). As expected, the obtained positioning errors start to get worse
after applying decomposition levels that remove frequency components between

Figure 7. The Spectrum of LRF-III Gyro Data After Successive Wavelet Levels of

Decomposition.
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1.5625 Hz and 3.125 Hz (4th LOD in case of LRF-III and 5th LOD in case of
HG1700). Although the position errors after applying these decomposition levels are
larger than those obtained from the previous levels, they are still better than the
errors obtained from the original data. This can be explained by the fact that at this
point, there is some kind of a compromise between removing additional noise and
removing some motion information.

Moreover, and by examining the LRF-III test results, it can be seen that most of
the improvement occurred just after applying the 1st LOD. This indicates in this
case that the 1st LOD was capable of removing most of the undesirable noise in the
LRF-III data. On the other hand, this is not the case for the HG1700 results where
the improvement occurred gradually from the 1st LOD to the 4th LOD. This could
be the result of two different causes. The first one is that the HG1700 is a tactical-
grade IMU while the LRF-III is a navigation-grade IMU. Hence, the noise level
(amplitude) of the HG1700 sensors is much larger, which in turn implies that more

Figure 8. Stand-Alone INS Kinematic Position Errors Before and After Wavelet De-noising of

Inertial Sensor Measurements.

Table 3. Stand-Alone INS Position Errors Before and After Wavelet De-noising of Inertial Data.

Kinematic Test Type of Inertial Data

Error Statistics (m)

Mean Max RMS

Laval, Québec

LRF-III IMU

Original Data 1.76 4.49 1.98

After Wavelet 1st LOD 0.64 3.40 0.76

After Wavelet 2nd LOD 0.58 3.16 0.73

After Wavelet 3rd LOD 0.62 3.06 0.79

After Wavelet 4th LOD 1.57 4.67 1.76

Calgary, Alberta

HG1700 IMU

Original Data 43.72 148.78 53.11

After Wavelet 1st LOD 37.83 138.55 46.70

After Wavelet 2nd LOD 34.00 134.23 42.15

After Wavelet 3rd LOD 24.48 132.25 29.98

After Wavelet 4th LOD 24.19 130.51 28.91

After Wavelet 5th LOD 32.69 218.52 38.57
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decomposition levels are required to remove or minimize the HG1700 noise. The
second cause is that the HG1700 data rate (100 Hz) is higher than the LRF-III data
rate (50 Hz), and thus, more decomposition levels are required to remove the high
frequency components.

5.2. Testing Wavelet De-noising with INS/DGPS. For the first data set (LRF-III
IMU), a total number of 10 DGPS outages were selected, while 11 outages were
chosen for the second data set (HG1700 IMU). The selected outage intervals are
ranged from 70 s to 100 s (LRF-III IMU) and from 70 s to 180 s (HG1700 IMU). The
magnitude of the accumulated position errors during the selected DGPS outages of
both data sets (before any inertial data de-noising) are computed and are shown in
Figure 9.

The magnitude of position errors at the end of outage periods using the original
and de-noised INS data are summarized in Table 4 while the average values of these
errors are shown in Figure 10. These results agree with the obtained INS stand-alone
results in Table 3 and Figure 8. During DGPS outages, using de-noised inertial
data, the obtained position errors are improved by 34% in the case of the LRF-III
data (using the 2nd LOD) and by 13% in case of the HG1700 data (using the 4th
LOD).

However, it can be seen that the level of position error improvement in case of
the INS/DGPS integration with DGPS outages is less than the corresponding
improvement level in case of stand-alone INS navigation. This is due to the fact that
the navigation mode and the type of available updates for INS only and INS/DGPS
integration during DGPS outages are different. In INS stand-alone positioning,
updates are available only through frequent ZUPTs, and hence navigation is per-
formed in a prediction mode except at the ZUPT periods. Moreover, during any
ZUPT interval, positioning errors are not reset to zero, and thus the obtained posi-
tioning errors are accumulated for the whole mission.

On the other hand, in INS/DGPS positioning, navigation is performed in a fre-
quent update mode (using DGPS position and velocity updates) except at the DGPS
outage intervals where prediction is utilized. Also, before and after any DGPS out-
age, positioning errors are reset almost to zero. Therefore, the obtained positioning
errors during any outage are independent of the other outages (i.e. position errors

Figure 9. INS Position Errors During DGPS Outages (Before Inertial Data De-noising).
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Table 4. INS Position Errors During DGPS Outages Before and After Wavelet De-noising of Inertial Data.

Van Test LRF-III IMU Errors (m) (Laval, Québec) HG1700 IMU Errors (m) (Calgary, Alberta)

Inertial

Data Type

Outage

No.

Original

Errors

After

1st LOD

After 2nd

LOD

After 3rd

LOD

After 4th

LOD

Outage

No.

Original

Errors

After

1st LOD

After

2nd LOD

After

3rd LOD

After

4th LOD

After

5th LOD

1 1.23 0.54 0.73 0.67 0.93 1 13.83 13.72 12.04 10.76 13.26 18.95

2 1.69 1.42 2.10 2.31 0.90 2 30.23 37.73 39.77 40.70 39.37 40.75

3 1.84 1.06 0.78 0.77 1.13 3 15.49 18.35 19.57 21.25 22.32 21.64

4 0.63 0.30 0.35 0.47 0.42 4 24.04 16.80 24.78 22.37 23.16 24.25

5 1.56 1.56 1.47 1.25 0.74 5 30.89 27.41 29.59 16.01 14.79 37.05

6 2.05 1.19 0.84 0.63 0.66 6 12.89 13.18 9.30 18.41 18.30 11.23

7 0.96 1.32 0.69 1.10 1.45 7 59.32 57.43 46.11 35.17 33.92 34.66

8 0.56 0.53 0.36 0.33 0.45 8 21.70 14.73 12.91 8.21 9.05 10.36

9 1.86 1.04 1.09 0.97 0.58 9 38.55 33.98 31.46 35.56 34.76 35.64

10 1.13 0.78 0.48 0.72 2.19 10 24.11 25.38 23.64 19.71 19.06 19.50

11 10.03 11.63 13.19 16.32 16.47 16.57

Mean 1.35 0.97 0.89 0.92 0.95 25.55 24.58 23.85 22.23 22.22 24.60
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are not accumulated along the whole trajectory). As a result, INS only positioning is
much more affected by the system noise than INS/DGPS positioning during DGPS
outages. Consequently, removing or minimizing inertial sensor noise will improve
INS stand-alone position errors more than the obtained INS/DGPS position errors
during DGPS outages.

6. SUMMARY AND CONCLUSIONS. In this paper, the problem of
relatively high measurement noise of inertial sensors in INS stand-alone positioning
and INS/DGPS integration applications was discussed. To overcome such a prob-
lem, a technique based on wavelet multiple level of decomposition (multi-resolution
analysis) was proposed for de-noising inertial sensor data. Wavelet decomposition
was chosen since it has the advantage over other signal processing techniques that
it is capable of performing signal local analysis and for its ability to reconstruct a
signal without loosing any significant information. Wavelet de-noising was applied
on two road vehicle inertial data to reduce position errors in INS stand-alone and
INS/DGPS applications.

From the work performed in this article, it has been shown that before applying
wavelet de-noising of INS sensor kinematic measurements, a frequency analysis must
be carried out first for an appropriate choice of the used decomposition level. This
technique guarantees the removal of undesirable signal noise and the preservation of
the vehicle motion dynamics. Compared to the position errors (RMS) obtained in
road vehicle INS kinematic applications (with frequent ZUPTs as updates) using
the original INS data, the de-noised INS data results were better by 46%–63%. Using
de-noised INS data in INS/DGPS kinematic positioning during DGPS outages, the
accumulated position errors at the end of the DGPS outages were reduced by
13%–34%.
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