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The virial corrections to short-time self- and collective diffusion coefficients as well
as the effective viscosity are calculated for suspensions of hard spheres with the
same radii and constant (blocked within the particle) magnetization modelled by a
point dipole. Analytic, integral formulae derived from basic principles of statistical
mechanics are provided for both cases – in the absence and in the presence of an
external magnetic field. In the former case the diffusion and viscosity coefficients are
evaluated numerically as a function of the strength of magnetic interactions between
the particles and it is reported that the translational collective diffusion coefficient
is significantly greater than all the other coefficients. In the presence of an external
magnetic field the coefficients become anisotropic and are evaluated in the asymptotic
regime of weak interparticle magnetic interactions.

Key words: colloids, low-Reynolds-number flows, magnetic fluids

1. Introduction

Suspensions of magnetic nanoparticles and their macroscopic properties have been
a subject of intense investigations in the past few decades due to the large variety of
applications, both biomedical and technical. The action of the magnetic field on the
suspended magnetic nanoparticles opens the possibility for control of the self-diffusion
processes (studied by e.g. Pusey & van Megen 1983; Cichocki & Felderhof 1988;
van Megen & Underwood 1989, and many others) and likewise the process of
sedimentation, i.e. the collective movement of a suspension under a given force field
or light scattering (cf. Batchelor 1972; Cebula et al. 1981; Kops-Werkhoven & Fijnaut
1981, 1982; Segre, Behrend & Pusey 1995). However, arguably the most important
applications of ferrofluids result from the possibility of controlling their effective
viscosity with an externally applied magnetic field. Here we study the short-time,
or equivalently high-frequency, transport coefficients, in which case the transport

† Email address for correspondence: kamiz@igf.edu.pl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:kamiz@igf.edu.pl
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.48&domain=pdf
https://doi.org/10.1017/jfm.2016.48


238 K. A. Mizerski and E. Wajnryb

processes do not affect the probability distribution of particles, which is the same as
the thermal equilibrium distribution.

The potentially relevant biomedical applications include magnetic hyperthermia
and thermoablation in cancer treatment, which, besides stopping tumour growth by
raising its temperature, reduce the side effects on healthy tissue (cf. Pankhurst
et al. 2003; Trahms 2009). The temperature rise at least partly results from
dissipation of the magnetic energy of the external field alternating at high frequency
(∼102 kHz) into viscous heating of the nanoparticles. Another interesting application
is magnetorelaxometry, which uses alternating magnetic fields to monitor biological
binding reactions and is often described by the Smoluchowski model (Sonntag &
Strenge 1988), where binding results from diffusion-driven collisions of particles. The
response of the magnetic suspension to the alternating magnetic field depends strongly
on the effective viscosity (see the review by Trahms 2009). On the other hand, there
are also technical applications of ferrofluids where high-frequency magnetic fields are
used and the effective viscosity, in particular the high-frequency effective viscosity,
plays a crucial role in the dynamics. These involve worm-like locomotion systems,
where an elastic capsule filled with a ferrofluid travels in an external magnetic field
alternating at frequencies up to kHz or locomotion of magnetic fluid layers driven by
travelling external magnetic field waves (cf. Zimmermann et al. 2007; Trahms 2009).
Another example includes magnetofluidic dampers in which the oscillatory magnetic
field is used to control the viscosity of a ferrofluid inside a damper (cf. Bayat et al.
2009).

To the best knowledge of the authors a systematic study of the high-frequency
transport coefficients of ferrofluids relying on basic principles of statistical mechanics
has never been done. There have been numerous studies into the long-time transport
coefficients for ferrofluids, such as, for example, Buevich, Zubarev & Ivanov (1989),
Morozov (1993), Bacri et al. (1995), Morozov (1996) and Pshenichnikov, Elfimova
& Ivanov (2011) based on the idea of transport driven by the chemical potential
gradient. Here we determine the self- and collective diffusion coefficients as well as
the effective viscosity at short times for diluted magnetic suspensions within the scope
of the virial expansion and without any phenomenological input to the theory. We
consider a dilute suspension of spherical particles subject to a quasiperiodic flow or
alternating magnetic field. The period of oscillation T of the flow and/or the magnetic
field is less than the time necessary for a particle to diffuse across its diameter,
i.e. T < (2a)2/D0, where D0 = kBT/6πηa is the single-particle diffusion mobility
coefficient, η is the ambient-fluid viscosity, and 2a is the particle diameter, so that
the contribution from Brownian motions is negligible. The Reynolds number based on
the size L of the system (characteristic length scale of the flow) and the characteristic
velocity uc is assumed to be low compared with unity – that is, Re = ucL/ν � 1,
where ν is the kinematic viscosity, i.e. we consider the Stokes limit. The flow and the
magnetic field are quasisteady in the sense that their period T is small compared with
the typical time L/uc, so that the fluid performs small oscillations and the particle
positions and orientations are practically frozen. It follows that the nonlinear term
in the Navier–Stokes equation is negligible compared to the time derivative of the
velocity field. However, the period T is large compared with the typical time L2/ν for
the diffusion of vorticity of the flow, so that the quasisteady Stokes equations apply;
in other words, the velocity time derivative is much smaller than the viscous term
and can be neglected. In summary, we consider the range L2/ν� T� L/uc, which is
consistent with Re� 1 and T < (2a)2/D0. Under these assumptions we evaluate the
so-called short-time transport coefficients. In the literature they are often referred to
as high-frequency transport coefficients.
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Short-time transport coefficients of dilute magnetic suspensions 239

The physical meaning of the assumptions made is as follows. The inequality
L2/ν � (2a)2/D0 has to be satisfied in a system, so that a time scale T can be
chosen satisfying L2/ν� T < (2a)2/D0. The inequality L2/ν� (2a)2/D0 is equivalent
to η�√kBTρL2/24πa3 and hence the latter can be considered a condition for the
applicability of the analysis presented in this paper. This condition is satisfied, for
example, for paraffin-based ferrofluids (cf. Hezaveh, Fazlali & Noshadi 2012), in
which case the viscosity is in the range η ∼ 10–103 Pa s. In general, the short-time
transport coefficients are relevant and should be considered in the case of ferrofluids
with relatively large magnetic particles, say 10–50 nm, and high viscosities of the
carrier fluid η.

Our analysis generalizes the results of Cichocki, Ekiel-Jezewska & Wajnryb (1999,
2003) and Cichocki et al. (2002) to the case of ferrofluids. We assume that the
particles are ‘magnetically hard’, i.e. the magnetic moment is ‘blocked’ within each
particle and no Néel relaxation mechanism occurs (which of the two relaxation
mechanisms for magnetized particles under the action of an external magnetic field
dominates depends mainly on the sizes of particles and the temperature of the
suspension). All the particles are also assumed to have magnetic moments of the same
magnitude. The liquid in which the magnetic particles are immersed is assumed to be
non-magnetic. Furthermore, the well-known effect of forming chain-like agglomerates
or clusters by the nanoparticles, which is present when nanoparticles exceed a certain
critical size, and in such a case strongly affects the fluid’s viscous behaviour (see e.g.
Odenbach 2003, 2004; Zubarev & Chirikov 2010), is assumed negligible here. The
paper is structured as follows. First, in § 2, we calculate the transport coefficients
for suspensions of magnetically interacting nanoparticles, but in the absence of an
external magnetic field. The dependence of the transport coefficients on the parameter
measuring the strength of the interparticle interactions is established. Section 3 is
devoted to the calculation of the transport coefficients under the influence of an
external magnetic field. The complete integral formulae are provided and then the
asymptotic limit of weak interparticle magnetic interactions, which should be relevant
to suspensions of small magnetic nanoparticles (cf. Odenbach 2003, 2004), is studied.
In this limit the analytical dependence of the transport coefficients on the magnitude
of the external magnetic field is derived. We end with some concluding remarks
in § 4.

2. The diffusion coefficients and viscosity in the absence of an external magnetic
field

2.1. Formulae
The short-time transport coefficients are given as the equilibrium ensemble average of
N-particle hydrodynamic mobility matrices. To evaluate this average we assume that
the suspension of particles is semidilute, i.e. its volume fraction is not large, and we
expand the ensemble average in powers of the volume fraction φ, keeping only the
lowest powers of φ. The coefficients at the order of φ and φ2 (virial coefficients) are
given as two-particle ensemble averages of the corresponding two-particle mobilities
(see Cichocki et al. 1999, 2002, 2003). Now the ensemble averages contain the
two-particle Boltzmann factors related to the interactions between pairs of particles’
magnetic moments; in the case when the external magnetic field is present, studied in
§ 3, additional Boltzmann factors correspond to the interactions of particles’ moments
with the external magnetic field.
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Let us define the volume fraction for the suspended spherical particles, each of
radius a, as

φ = 4
3πa3n, (2.1)

where n = N/V is the number of particles per unit volume. Cichocki et al. (1999,
2003) and Cichocki et al. (2002) derived explicit formulae for the virial expansion
coefficients of the self-diffusion, collective diffusion and effective viscosity for
suspensions of spherical particles interacting only via the hydrodynamic interactions.
We exploit their first-order formulae, i.e. linear in the volume fraction φ for the
self-diffusion and collective diffusion (sedimentation coefficient):

Dqq =D0(1+Dqqφ + · · ·), Kqq = 1+ (Kqq
overlap +Kqq)φ + · · ·, (2.2a,b)

where the superscript qq = tt for translational degrees of freedom and qq = rr for
rotational degrees of freedom. Kqq

overlap is the contribution from virtual overlaps
(cf. Cichocki et al. 2002), which can be evaluated analytically for both the
translational degrees of freedom Ktt

overlap = −5 and rotational degrees of freedom
Krr

overlap = −1 (cf. Cichocki & Felderhof 1989). In case of the effective viscosity
of a suspension of hard spherical particles immersed in a fluid of viscosity η, the
first-order correction 5ηφ/2 derived by Einstein (1956) is obtained by neglecting
any interparticle interactions, and hence it is necessary to consider the next-order
correction, which is quadratic in the volume fraction φ,

ηeff = η[1+ 5
2φ + ( 5

2 + G)φ2 + · · ·], (2.3)

where the virtually overlapping part is equal to 5φ2/2 (cf. Cichocki et al. 2003). In
that way we calculate the corrections to all the aforementioned coefficients, i.e. Dtt,
Drr, Ktt, Krr and G which include interactions between pairs of suspended particles.

In the case of magnetic particles with magnetic moments mi, all of the same length
‖mi‖=m, where i is the particle number, the magnetic interactions between them must
be included via the probabilistic factor

e−Eij/kBT, (2.4)

where

Eij = µ0m2

4πa3r3
ij
[m̂i · m̂j − 3(m̂i · r̂)(m̂j · r̂)] (2.5)

is the potential energy of magnetic interaction between a pair of particles, µ0 is
the magnetic permeability of vacuum, kB the Boltzmann constant, T the temperature
and m̂i = mi/mi. Moreover, we denote the position vector of particle i by Ri, the
interparticle position vector, i.e. the vector of position of particle i with respect to
particle j, by Rij = Ri − Rj, its length by Rij, and with this notation rij = Rij/a and
r̂ij=Rij/Rij. Assuming the z axis to be along the non-dimensional interparticle position
vector rij and the dipole moment mi in the xz plane, the first-order virial corrections
to the self- and collective diffusion coefficients and second-order virial correction
to the effective viscosity can be expressed by the following formulae (for detailed
derivations see Cichocki et al. 1999, 2002, 2003)
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Dqq = ζ qq

8π

∫ π

0
dθ ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′ sin θr2dqq(r)

× exp
[
− ε

r3
(sin θ ′ sin θ cos ϕ − 2 cos θ ′ cos θ)

]
, (2.6)

Kqq = ζ qq

8π

∫ π

0
dθ ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′ sin θr2

×
{

kqq(r) exp
[
− ε

r3
(sin θ ′ sin θ cos ϕ − 2 cos θ ′ cos θ)

]
− κqq(r)

}
, (2.7)

G = 3ζ dd

16π

∫ π

0
dθ ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′ sin θr2

×
{

g(r) exp
[
− ε

r3
(sin θ ′ sin θ cos ϕ − 2 cos θ ′ cos θ)

]
− γ dd(r)

}
, (2.8)

ε = µ0m2

4πkBTa3
, (2.9)

where again qq= tt or qq= rr for translational and rotational coefficients, respectively.
In the above, ζ tt = 6πηa, ζ rr = 8πηa3 and ζ dd = 20πηa3/3 are the single-sphere
translational, rotational and hydrodynamic dipole friction coefficients, θ ′ is the angle
between the magnetic dipole moment mi and the z axis (cf. figure 3a), and r
is a variable corresponding to the interparticle distance no longer dependent on
the particular particle numbers i and j after taking the volume average in the virial
expressions. The hydrodynamic mobility functions dqq(r), kqq(r) and g(r) are obtained
in the following way. The necessary mobility matrix components can be expressed as
follows:

µ
qq
11(r)=

1
ζ qq
[I +Mqq

11‖(r)r̂r̂+Mqq
11⊥(r)(I − r̂r̂)], (2.10a)

Mqq
11‖(r)=

∞∑
n=1

aqq
‖n

rn
, Mqq

11⊥(r)=
∞∑

n=1

aqq
⊥n

rn
, (2.10b,c)

µ
qq
12(r)=

1
ζ qq
[Mqq

RP(r)+Mqq
12‖(r)r̂r̂+Mqq

12⊥(r)(I − r̂r̂)], (2.11a)

Mqq
12‖(r)=

∞∑
n=4

bqq
‖n

rn
, Mqq

12⊥(r)=
∞∑

n=4

bqq
⊥n

rn
, (2.11b,c)

µdd
11(r)=

1
ζ dd
[I +Mdd

11 0(r)t0(r̂)+Mdd
11 1(r)t1(r̂)+Mdd

11 2(r)t2(r̂)], (2.12a)

µdd
12(r)=

1
ζ dd
[Mdd

RP(r)+Mdd
12 0(r)t0(r̂)+Mdd

12 1(r)t1(r̂)+Mdd
12 2(r)t2(r̂)], (2.12b)

Mdd
11 0(r)=

∞∑
n=6

cdd
11 0n

rn
, Mdd

11 1(r)=
∞∑

n=6

cdd
11 1n

rn
, Mdd

11 2(r)=
∞∑

n=6

cdd
11 2n

rn
, (2.12c−e)

Mdd
12 0(r)=

∞∑
n=6

cdd
12 0n

rn
, Mdd

12 1(r)=
∞∑

n=6

cdd
12 1n

rn
, Mdd

12 2(r)=
∞∑

n=6

cdd
12 2n

rn
, (2.12f−h)

where the subscript RP for the mobility tensor denotes the Rotne–Prager–Yamakawa
level of approximation for hydrodynamic interactions (cf. Rotne & Prager 1969;
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Yamakawa 1970; Wajnryb et al. 2013), corresponding to the effect that a flow
modified by the presence of one particle has on the velocities of another particle;
thus, terms are included up to order (1/r)3 in the mobility components M tt

RP(r) and
Mrr

RP(r),

Mqq
RP(r)=

3∑
n=1

bqq
‖n

rn
r̂r̂+

3∑
n=1

bqq
⊥n

rn
(I − r̂r̂), (2.13)

and up to order (1/r)5 in the dipolar component Mdd
RP(r),

Mdd
RP(r)=

5∑
n=3

cdd
12 0n

rn
t0(r̂)+

5∑
n=3

cdd
12 1n

rn
t1(r̂)+

5∑
n=3

cdd
12 2n

rn
t2(r̂); (2.14)

where the fourth-rank tensors t0(r̂), t1(r̂) and t2(r̂) are given in appendix A (cf.
also Cichocki, Felderhof & Schmitz 1988; Kim & Karrila 1991). Coefficients aqq

‖n,
aqq
⊥n, bqq

‖n, bqq
⊥n and cdd

11 0n, cdd
11 1n, cdd

11 2n, cdd
12 0n, cdd

12 1n, cdd
12 2n are calculated from n = 0 up

to n = 1000 via the multipole expansion method using the HYDROMULTIPOLE
code (cf. Cichocki et al. 1994; Zurita-Gotor, Blawzdziewicz & Wajnryb 2007).
The final formulae for the functions dqq(r), kqq(r) and g(r), according to Cichocki
et al. (1999, 2003) and Cichocki et al. (2002), are obtained by subtracting the
Rotne–Prager–Yamakawa level terms and contracting the tensor indices in the
following way:

dqq(r)= Tr
[
µ

qq
11(r)−

1
ζ qq

I

]
= 1
ζ qq
[Mqq

11‖(r)+ 2Mqq
11⊥(r)], (2.15)

kqq(r) = Tr
[
µ

qq
11(r)−

1
ζ qq

I +µ
qq
12(r)

]
= 1
ζ qq

[
Mqq

11‖(r)+Mqq
12‖(r)+

3∑
n=1

bqq
‖n

rn
+ 2

(
Mqq

11⊥(r)+Mqq
12⊥(r)+

3∑
n=1

bqq
⊥n

rn

)]
,

(2.16)

κ tt(r)= 1
ζ tt

Tr M tt
RP(r)=

3∑
n=1

btt
‖n + 2btt

⊥n

rn
, κ rr(r)= 1

ζ rr
Tr Mrr

RP(r)=
3∑

n=1

brr
‖n + 2brr

⊥n

rn
= 0,

(2.17a,b)

g(r) =
[
µdd

11(r)−
1
ζ dd

I +µdd
12(r)

]
αββα

= 1
ζ dd

[
Mdd

11 0(r)+Mdd
12 0(r)+

5∑
n=3

cdd
12 0n

rn
+ 2

(
Mdd

11 1(r)+Mdd
12 1(r)+

5∑
n=3

cdd
12 1n

rn

)

+ 2

(
Mdd

11 2(r)+Mdd
12 2(r)+

5∑
n=3

cdd
12 2n

rn

)]
, (2.18)

γ dd(r)= 1
ζ dd

Tr Mdd
RP(r)=

5∑
n=3

cdd
12 0n + 2cdd

12 1n + 2cdd
12 2n

rn
= 0, (2.19)

where Tr A= Aαα. Note that κ rr(r)= γ dd(r)= 0, and only κ tt(r) 6= 0.
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2.2. Monotonicity of coefficients and their numerical calculation
Because the mobility functions satisfy

dqq(r) < 0, ktt(r) > 0, krr(r) < 0, g(r) > 0, for all r> 2 and qq= tt or rr,
(2.20a−d)

it is a simple task to demonstrate that the following inequalities for the diffusion
coefficients and the viscosity must be satisfied

dDqq

dε
< 0,

d2Dqq

dε2
< 0, (2.21a,b)

dKrr

dε
< 0,

d2Krr

dε2
< 0, (2.21c,d)

dK tt

dε
> 0,

d2K tt

dε2
> 0, (2.21e,f )

dηeff

dε
> 0,

d2ηeff

dε2
> 0, (2.21g,h)

and for the virial corrections we have

Dqq < 0, Krr < 0, G > 0. (2.22a−c)

The proof of the above relations is done by simply taking the derivatives in
(2.6)–(2.8) with respect to ε and considering the dominant contribution in the
integrand determined by the positive sign under the exponential function, i.e.
(sin θ ′ sin θ cos ϕ − 2 cos θ ′ cos θ) < 0. Therefore, the virial corrections to the
self-diffusion coefficients Dtt and Drr and the rotational collective diffusion coefficient
Krr are negative and decrease at an increasing rate with increasing strength of the
magnetic interactions ε between particles. The virial corrections to the collective
diffusion coefficient Ktt and the effective viscosity G increase at an increasing
rate with ε; G is positive for all values of ε, whereas Ktt is negative for ε = 0
and monotonically increases to reach positive values for ε greater than some
critical value εcrit defined by Ktt(εcrit) = 0. Furthermore, by making use of the
MAPLE software we have numerically computed the integrals in (2.6)–(2.8), and
the dependence on ε of the virial corrections to all the diffusion and effective
viscosity coefficients is depicted on figure 1. The dashed lines represent the
asymptotic dependence of each of the plotted coefficients in the limit of weak
magnetic interactions ε � 1, studied in detail in § 3. The explicit asymptotic
dependencies are provided in appendix B. Note that the asymptotic formulae (B 4a–e)
provide a good approximation of the coefficients Dtt, Drr, Krr and G even for values
of ε up to approximately 10. However, in the case of the translational collective
diffusion coefficient Ktt the asymptotic approximation for ε � 1 is satisfactory only
for very small values of ε. This is because of the term

ζ tt

8π
sin θ ′ sin θr2κ tt(r)

{
exp

[
− ε

r3
(sin θ ′ sin θ cos ϕ − 2 cos θ ′ cos θ)

]
− 1
}

= ζ tt

8π
sin θ ′ sin θ3r

{
exp

[
− ε

r3
(sin θ ′ sin θ cos ϕ − 2 cos θ ′ cos θ)

]
− 1
}

(2.23)

in the integrand of expression (2.7), the Taylor expansion of which is convergent for
all values of r > 2 only for small values of ε. Moreover, it is the above term (2.23)
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FIGURE 1. The dependencies of the first-order virial corrections to the self-diffusion
coefficients Dtt, Drr, the collective diffusion coefficients Ktt, Krr and the second-order
virial corrections to the effective viscosity G on the energy of magnetic interactions
between particles measured by the parameter ε=µ0m2/4πkBTa3. Solid lines represent the
numerically evaluated integrals in (2.6)–(2.8) and dashed lines represent the asymptotic
dependencies for ε� 1 provided in appendix B.

which, for moderate and large values of ε, makes the coefficient Ktt significantly
larger than the other diffusion and viscosity coefficients. In fact, at ε ≈ 10 the virial
correction to the coefficient of translational collective diffusion is of different sign and
approximately 25 times greater in absolute value than its non-magnetic limit, whereas
the absolute values of the virial corrections to Dtt, Drr, Krr and G are increased by
approximately 10–30 %.

In the non-magnetic limit, ε = 0, the short-time transport coefficients take the form
(cf. (2.2a,b), (2.3) and (B 4a–e))

Dtt ≈D0(1–1.8315φ), (2.24a)
Drr ≈D0(1–0.6305φ), (2.24b)

K tt ≈ 1–6.5464φ, (2.24c)
Krr ≈ 1–1.5131φ, (2.24d)

ηeff ≈ η(1+ 2.5φ + 5.0021φ2), (2.24e)

which agrees very well with previous calculations of these coefficients first done by
Batchelor & Green (1972) and Batchelor (1976) and then with higher precision due
to inclusion of hydrodynamic interactions at higher orders by Cichocki & Felderhof
(1988), Jones (1988), Wajnryb & Dahler (1997), Cichocki et al. (1999), Cichocki et al.
(2002) and Cichocki et al. (2003).

It is also worth pointing out that, since the absolute values of the coefficients Dqq,
Kqq and G increase quickly with ε, the validity of the asymptotic expansion in the
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volume fraction φ may break down for large values of ε; in other words for ε� 1
the two-particle corrections are no longer much smaller than unity.

3. The diffusion coefficients and viscosity in an external magnetic field
When the external magnetic field, denoted by B, is switched on one must also

include the energy of interaction of the magnetic particles with the field, mi · B, thus
the energies of particle interactions with the magnetic field generated by other particles
and the external magnetic field take the form (cf. (2.5))

Eij

kBT
= ε

r3
ij
[m̂i · m̂j − 3(m̂i · r̂ij)(m̂j · r̂ij)], (3.1)

EBij

kBT
= E (m̂i + m̂j) · B̂, E = mB

kBT
. (3.2)

In such a case the diffusion coefficients and the effective viscosity are anisotropic.
The self- and collective diffusion coefficients along the field B are different from
the coefficients in the directions perpendicular to the external field; the former will
be denoted by subscript ‖B and the latter by subscript ⊥B. However, the effective
viscosity in the presence of an external magnetic field has three different components
associated with three different types of strain in the flow of the suspension with
respect to the direction of the field B. These are the axially symmetric strain along
the field B, which will be denoted by subscript ‖B, strain at an angle π/4 with
respect to the field B, which will be denoted by subscript 6 B and strain in the plane
perpendicular to the field B, which will be denoted by subscript ⊥B. Assuming a
coordinate system such that the z axis is aligned with the external field B and a
flow at infinity in which the magnetic particles are immersed in linear form in the
coordinates

v∞ = A∞ · x, (3.3)

where A∞ is a constant matrix, the three different types of strain flow are obtained
by double contraction of the axial tensors t0(ê), t1(ê) and t2(ê), where ê denotes the
unit vector along the z axis (cf. appendix A and (2.12a), (2.12b)), with the symmetric
part of the velocity gradient As

∞, i.e.

[v‖B]α = [t0(ê)]αβγ δAs
∞γ δxβ ⇒ v‖B = As

∞11

−
1
2 0 0

0 − 1
2 0

0 0 1


x

y
z

 , (3.4)

[v 6 B
]α = [t1(ê)]αβγ δAs

∞γ δxβ ⇒ v 6 B
=
 0 0 As

∞13

0 0 As
∞23

As
∞13 As

∞23 0

x
y
z

 , (3.5)

[v⊥B]α = [t2(ê)]αβγ δAs
∞γ δxβ

⇒ v⊥B =


1
2(A

s
∞11 − As

∞22) As
∞12 0

As
∞12 − 1

2(A
s
∞11 − As

∞22) 0
0 0 0


x

y
z

 . (3.6)

The above types of flow are depicted in figure 2.
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z

z z

y y

x

x x

y

(a)

(b) (c)

(d ) (e)

FIGURE 2. Three different types of strain flows v‖B (a), v 6 B (b,c) and v⊥B (d,e) associated
with three different viscosity components. The arrows correspond to the choice of As

∞11>0
for (a), As

∞13<0 for (b), As
∞23<0 for (c), (As

∞11−As
∞22)/2<0 for (d) and As

∞12<0 for (e).

At this stage it is important to point out that the term linear in concentration in the
expression for the effective viscosity ηeff = η[1 + 5/2φ + (5/2 + G)φ2 + · · ·] comes
from the single-particle hydrodynamic contribution to the stress on the particle. The
particle rotation in the shear flow under the action of the external magnetic field is
described by the mobility functions, which appear in the integrands of the presented
formulae, and in a spherical geometry they do not depend on the external field. Since
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Short-time transport coefficients of dilute magnetic suspensions 247

the particles are spherical and their hydrodynamic mobilities are independent of the
orientation of the magnetic dipole moment, averaging over all possible orientations
(with the normalized distribution function (E /sinh E )2 exp(−m · B/kBT)) leads to the
same result for the order-φ term as in the non-magnetic case, i.e. 5/2.

3.1. Self- and collective diffusion coefficients
3.1.1. Parallel to B

When an external magnetic field B = Bê is present, the parallel components of
the virial corrections to the diffusion coefficients are given by the following sixfold
integrals:

Dqq
‖B =

3ζ qq

32π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2dqq
‖B(r, θ

′′) exp
[
−E+ EB

kBT

]
, (3.7)

Kqq
‖B =

3ζ qq

32π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2

{
kqq
‖B(r, θ

′′) exp
[
− E

kBT

]
− κqq

‖B (r, θ
′′)
}

exp
[
− EB

kBT

]
, (3.8)

with

E
kBT
= ε

r3
[sin θ ′ sin θ cos ϕ′ cos ϕ(1− 3 sin2 θ ′′)+ sin θ ′ sin θ sin ϕ′ sin ϕ

+ cos θ ′ cos θ(1− 3 cos2 θ ′′)− 3 sin θ ′′ cos θ ′′ (sin θ cos θ ′ cos ϕ
+ cos θ sin θ ′ cos ϕ′)], (3.9)

EB

kBT
= E (cos θ ′ + cos θ) (3.10)

where (E /sinh E )2 in front of the integrals is a normalization factor associated with
the interactions of particles with the external magnetic field and the hydrodynamic
functions dqq

‖B(r, θ
′′) and kqq

‖B(r, θ
′′) are obtained by double contraction of the mobility

matrix components (2.10) and (2.11) with the tensor êê in the following way:

dqq
‖B(r, θ

′′)=
[
µ

qq
11(r)−

1
ζ qq

I

]
αβ

eβeα = 1
ζ qq

[
Mqq

11⊥(r)+ (Mqq
11‖(r)−Mqq

11⊥(r))
z2

r2

]
, (3.11)

kqq
‖B(r, θ

′′)=
[
µ

qq
11(r)−

1
ζ qq

I +µ
qq
12(r)

]
αβ

eβeα

= 1
ζ qq

[
Mqq

11⊥(r)+Mqq
12⊥(r)+

3∑
n=1

bqq
⊥n

rn

+
(

Mqq
11‖(r)+Mqq

12‖(r)−Mqq
11⊥(r)−Mqq

12⊥(r)+
3∑

n=1

bqq
‖n − bqq

⊥n

rn

)
z2

r2

]
, (3.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

48
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.48


248 K. A. Mizerski and E. Wajnryb

z(a) (b) z

x x

y y

i
i

j j

a
a B

FIGURE 3. A schematic picture of the particles i, j and their magnetic dipole moments;
the notation used for integration in the formulae for the virial corrections to the diffusion
coefficients and the effective viscosity is also depicted.

κ
qq
‖B (r, θ

′′)= 1
ζ qq
[Mqq

RP(r)]αβeβeα = 1
ζ qq

[
3∑

n=1

bqq
⊥n

rn
+ z2

r2

3∑
n=1

bqq
‖n − bqq

⊥n

rn

]
, (3.13)

z2

r2
= cos2 θ ′′. (3.14)

Furthermore θ , ϕ are the spherical angles associated with the magnetic dipole vector
mj; θ ′, ϕ′ are the spherical angles associated with mi; and θ ′′ is the angle between the
magnetic field induction B and rij in the xz plane (see figure 3b).

3.1.2. Perpendicular to B
With the notation introduced above the virial corrections to perpendicular diffusion

coefficients are defined as follows

Dqq
⊥B
= 3ζ qq

32π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2dqq
⊥B
(r, θ ′′) exp

[
−E+ EB

kBT

]
, (3.15)

Kqq
⊥B
= 3ζ qq

32π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2

{
kqq
⊥B
(r, θ ′′) exp

[
− E

kBT

]
− κqq

⊥B
(r, θ ′′)

}
exp

[
− EB

kBT

]
, (3.16)

where E/kBT and EB/kBT are given in (3.9) and (3.10) and the hydrodynamic
functions dqq

⊥B
(r, θ ′′) and kqq

⊥B
(r, θ ′′) are obtained by double contraction of the mobility

matrix components (2.10) and (2.11) with the tensor I − êê in the following way:
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dqq
⊥B
(r, θ ′′) = 1

2

[
µ

qq
11(r)−

1
ζ qq

I

]
αβ

(δβα − eβeα)

= 1
ζ qq

[
Mqq

11⊥(r)+
1
2
(Mqq

11‖(r)−Mqq
11⊥(r)) sin2 θ ′′

]
, (3.17)

kqq
⊥B
(r, θ ′′) = 1

2

[
µ

qq
11(r)−

1
ζ qq

I +µ
qq
12(r)

]
αβ

(δβα − eβeα)

= 1
ζ qq

[
Mqq

11⊥(r)+Mqq
12⊥(r)+

3∑
n=1

bqq
⊥n

rn

+ 1
2

(
Mqq

11‖(r)+Mqq
12‖(r)−Mqq

11⊥(r)−Mqq
12⊥(r)+

3∑
n=1

bqq
‖n − bqq

⊥n

rn

)
sin2 θ ′′

]
,

(3.18)

κ
qq
⊥B
(r, θ ′′)= 1

2ζ qq
[Mqq

RP(r)]αβ(δβα − eβeα)= 1
ζ qq

[
3∑

n=1

bqq
⊥n

rn
+ 1

2
sin2 θ ′′

3∑
n=1

bqq
‖n − bqq

⊥n

rn

]
.

(3.19)
In the limit of vanishing magnetic field the potential energy of magnetic interactions
for a particle reduces to (2.5) and, since

∫ π

0 sin θ ′′ cos2 θ ′′ dθ ′′=2/3,
∫ π

0 sin3 θ ′′ dθ =4/3
and

∫ π

0 sin θ ′′ dθ = 2, both the parallel (3.7), (3.8) and perpendicular (3.15), (3.16)
coefficients become equal to the non-magnetic coefficients (2.6)–(2.8).

3.2. Effective viscosity – three components
The three components of the effective viscosity associated with different directions of
strain with respect to the applied field are given by

G‖B =
15ζ dd

64π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2

{
g‖B(r, θ

′′) exp
[
− E

kBT

]
− γ dd

‖B (r, θ
′′)
}

exp
[
− EB

kBT

]
, (3.20)

G 6 B
= 15ζ dd

64π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2

{
g 6 B

(r, θ ′′) exp
[
− E

kBT

]
− γ dd

6 B
(r, θ ′′)

}
exp

[
− EB

kBT

]
, (3.21)

G⊥B =
15ζ dd

64π2

(
E

sinh E

)2 ∫ π

0
dθ ′′

∫ π

0
dθ ′
∫ 2π

0
dϕ′
∫ π

0
dθ
∫ 2π

0
dϕ
∫ ∞

2
dr sin θ ′′

× sin θ ′ sin θ r2

{
g⊥B(r, θ

′′) exp
[
− E

kBT

]
− γ dd

⊥B
(r, θ ′′)

}
exp

[
− EB

kBT

]
, (3.22)
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where E/kBT and EB/kBT are given in (3.9) and (3.10) and the hydrodynamic
functions g‖(r, θ ′′), g 6 (r, θ ′′) and g⊥(r, θ ′′) are obtained by double contraction of the
dipolar mobility matrix components (2.12a) and (2.12b) with the tensors t̂0(ê), t1(ê)
and t2(ê) (cf. appendix A) respectively in the following way:

g‖B(r, θ
′′) =

[
µdd

11(r)−
1
ζ dd

I +µdd
12(r)

]
αβγ δ

[t0(ê)]γ δβα

= 1
ζ dd

[(
Mdd

11 0(r)+Mdd
12 0(r)+

5∑
n=3

cdd
12 0n

rn

)(
9
4

cos4 θ ′′ − 3
2

cos2 θ ′′ + 1
4

)

+ 3

(
Mdd

11 1(r)+Mdd
12 1(r)+

5∑
n=3

cdd
12 1n

rn

)
(−cos4θ ′′ + cos2 θ ′′)

+ 3

(
Mdd

11 2(r)+Mdd
12 2(r)+

5∑
n=3

cdd
12 2n

rn

)(
1
4

cos4 θ ′′ − 1
2

cos2 θ ′′ + 1
4

)]
,

(3.23)

γ dd
‖B (r, θ

′′) = 1
ζ dd
[Mdd

RP(r)]αβγ δ[t0(ê)]γ δβα

= 1
ζ dd

[(
9
4

cos4 θ ′′ − 3
2

cos2 θ ′′ + 1
4

) 5∑
n=3

cdd
12 0n

rn

+ 3(−cos4θ ′′ + cos2 θ ′′)
5∑

n=3

cdd
12 1n

rn

+ 3
(

1
4

cos4 θ ′′ − 1
2

cos2 θ ′′ + 1
4

) 5∑
n=3

cdd
12 2n

rn

]
, (3.24)

g 6 B
(r, θ ′′) = 1

2

[
µdd

11(r)−
1
ζ dd

I +µdd
12(r)

]
αβγ δ

[t1(ê)]γ δβα

= 1
ζ dd

[
3
2

(
Mdd

11 0(r)+Mdd
12 0(r)+

5∑
n=3

cdd
12 0n

rn

)
(−cos4θ ′′ + cos2 θ ′′)

+ 1
2

(
Mdd

11 1(r)+Mdd
12 1(r)+

5∑
n=3

cdd
12 1n

rn

)
(4 cos4 θ ′′ − 3 cos2 θ ′′ + 1)

+ 1
2

(
Mdd

11 2(r)+Mdd
12 2(r)+

5∑
n=3

cdd
12 2n

rn

)
(−cos4θ ′′ + 1)

]
, (3.25)

γ dd
6 B
(r, θ ′′) = 1

ζ dd
[Mdd

RP(r)]αβγ δ[t1(ê)]γ δβα

= 1
ζ dd

[
3
2
(−cos4θ ′′ + cos2 θ ′′)

5∑
n=3

cdd
12 0n

rn
+ 1

2
(4 cos4 θ ′′ − 3 cos2 θ ′′ + 1)

×
5∑

n=3

cdd
12 1n

rn
+ 1

2
(−cos4θ ′′ + 1)

5∑
n=3

cdd
12 2n

rn

]
, (3.26)
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g⊥B(r, θ
′′) =

[
µdd

11(r)−
1
ζ dd

I +µdd
12(r)

]
αβγ δ

[t2(ê)]γ δβα

= 1
ζ dd

[
3
8

(
Mdd

11 0(r)+Mdd
12 0(r)+

5∑
n=3

cdd
12 0n

rn

)
(cos4 θ ′′ − 2 cos2 θ ′′ + 1)

+ 1
2

(
Mdd

11 1(r)+Mdd
12 1(r)+

5∑
n=3

cdd
12 1n

rn

)
(−cos4θ ′′ + 1)

+ 1
8

(
Mdd

11 2(r)+Mdd
12 2(r)+

5∑
n=3

cdd
12 2n

rn

)
(cos4 θ ′′ + 6 cos2 θ ′′ + 1)

]
,

(3.27)

γ dd
⊥B
(r, θ ′′) = 1

ζ dd
[Mdd

RP(r)]αβγ δ[t2(ê)]γ δβα

= 1
ζ dd

[
3
8
(cos4 θ ′′ − 2 cos2 θ ′′ + 1)

5∑
n=3

cdd
12 0n

rn
+ 1

2
(−cos4θ ′′ + 1)

5∑
n=3

cdd
12 1n

rn

+ 1
8
(cos4 θ ′′ + 6 cos2 θ ′′ + 1)

5∑
n=3

cdd
12 2n

rn

]
. (3.28)

When the magnetic field vanishes and the potential energy of magnetic interactions
for a particle reduces to (2.5), the integrals over θ , θ ′ and ϕ, ϕ′ become elementary
and, since

∫ π

0 sin θ ′′ cos4 θ ′′ dθ ′′= 2/5,
∫ π

0 sin θ ′′ cos2 θ ′′ dθ ′′= 2/3,
∫ π

0 sin3 θ ′′ dθ ′′= 4/3
and

∫ π

0 sin θ ′′ dθ ′′ = 2, all three effective viscosity coefficients (3.20)–(3.22) become
equal to the non-magnetic coefficient (2.8).

3.3. Limit of weak interparticle interactions for ferrofluids (up to O(ε4))
To make analytical progress we will study now the limit of weak magnetic
interparticle interactions, the strength of which is measured by

ε = µ0m2

4πkBTa3
� 1, (3.29)

a limit mostly relevant to magnetic suspensions of rather small magnetic nanoparticles.
In principle, the strength of the interactions of particles with the magnetic field can
be arbitrary; however, naturally we would assume that they dominate the interparticle
interactions (but we emphasize that this assumption is not strictly necessary), i.e.

E = mB
kBT
� ε ⇒ B� µ0m

4πa3
. (3.30)

Under these assumptions one may expand the exponential term

exp
{
− ε

r3
[sin θ ′ sin θ cos ϕ′ cos ϕ(1− 3 sin2 θ ′′)+ sin θ ′ sin θ sin ϕ′ sin ϕ

+ cos θ ′ cos θ(1− 3 cos2 θ ′′)− 3 sin θ ′′ cos θ ′′ (sin θ cos θ ′ cos ϕ

+ cos θ sin θ ′ cos ϕ′)]
}

(3.31)
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in powers of ε up to ε2 and compute explicitly the integrals in (3.7), (3.8), (3.15),
(3.16) and (3.20)–(3.22). Simple symmetry arguments allow one to show the odd-
power corrections to be zero. Therefore, the virial corrections to the four self-diffusion
coefficients take the asymptotic form

Dqq
‖B =Dqq

0 + ε2Dqq
‖B2(E )+O(ε4), (3.32)

Dqq
⊥B
=Dqq

0 + ε2Dqq
⊥B2(E )+O(ε4), (3.33)

Dqq
0 =

∞∑
n=1

1
2n−3(n− 3)

[aqq
‖n + 2aqq

⊥n], (3.34)

Dqq
‖B2(E ) =

1
35

f (E )2
∞∑

n=1

1
2n+3(n+ 3)

(29aqq
‖n + 118aqq

⊥n)

+ 2
35
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

(11aqq
‖n + 10aqq

⊥n)

+ 18
35

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

(3aqq
‖n + 4aqq

⊥n), (3.35)

Dqq
⊥B2(E ) =

1
35

f (E )2
∞∑

n=1

1
2n+3(n+ 3)

(59aqq
‖n + 88aqq

⊥n)

+ 2
35
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

[5aqq
‖n + 16aqq

⊥n]

+ 18
35

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

(2aqq
‖n + 5aqq

⊥n), (3.36)

the virial corrections to the four collective diffusion coefficients in the asymptotic
regime ε� 1 are

Kqq
‖B =Kqq

0 + ε2Kqq
‖B2(E )+O(ε4), (3.37)

Kqq
⊥B
=Kqq

0 + ε2Kqq
⊥B2(E )+O(ε4), (3.38)

Kqq
0 =

∞∑
n=4

1
2n−3(n− 3)

[aqq
‖n + bqq

‖n + 2(aqq
⊥n + bqq

⊥n)], (3.39)

Kqq
‖B2(E ) =

1
35

f (E )2
∞∑

n=1

1
2n+3(n+ 3)

[29(aqq
‖n + bqq

‖n)+ 118(aqq
⊥n + bqq

⊥n)]

+ 2
35
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

[11(aqq
‖n + bqq

‖n)+ 10(aqq
⊥n + bqq

⊥n)]

+ 18
35

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

[3(aqq
‖n + bqq

‖n)+ 4(aqq
⊥n + bqq

⊥n)],

(3.40)
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Kqq
⊥B2(E ) =

1
35

f (E )2
∞∑

n=1

1
2n+3(n+ 3)

[59(aqq
‖n + bqq

‖n)+ 88(aqq
⊥n + bqq

⊥n)]

+ 2
35
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

[5(aqq
‖n + bqq

‖n)+ 16(aqq
⊥n + bqq

⊥n)]

+ 18
35

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

[2(aqq
‖n + bqq

‖n)+ 5(aqq
⊥n + bqq

⊥n)],
(3.41)

and finally the virial corrections to the three effective viscosities for ε� 1 take the
form

G‖B = G0 + ε2G‖B2(E )+O(ε4), (3.42)
G6 B
= G0 + ε2G6 B2(E )+O(ε4), (3.43)

G⊥B = G0 + ε2G⊥B2(E )+O(ε4), (3.44)

G0 = 3
2

∞∑
n=6

1
2n−3(n− 3)

[cdd
11 0n + cdd

12 0n + 2(cdd
11 1n + cdd

12 1n)+ 2(cdd
11 2n + cdd

12 2n)], (3.45)

G‖B2(E ) = 3
14

f (E )2
∞∑

n=1

1
2n+3(n+ 3)

[9(cdd
11 0n + cdd

12 0n)+ 14(cdd
11 1n + cdd

12 1n)

+ 26(cdd
11 2n + cdd

12 2n)] +
3
7
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

[3(cdd
11 0n + cdd

12 0n)

+ 2(cdd
11 1n + cdd

12 1n)+ 2(cdd
11 2n + cdd

12 2n)] +
3
7

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

×[3(cdd
11 0n + cdd

12 0n)+ 12(cdd
11 1n + cdd

12 1n)+ 6(cdd
11 2n + cdd

12 2n)], (3.46)

G6 B2(E ) =
3

14
f (E )2

∞∑
n=1

1
2n+3(n+ 3)

[7(cdd
11 0n + cdd

12 0n)+ 20(cdd
11 1n + cdd

12 1n)

+ 22(cdd
11 2n + cdd

12 2n)] +
3
7
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

[cdd
11 0n + cdd

12 0n

+ 4(cdd
11 1n + cdd

12 1n)+ 2(cdd
11 2n + cdd

12 2n)] +
3
7

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

×[6(cdd
11 0n + cdd

12 0n)+ 7(cdd
11 1n + cdd

12 1n)+ 8(cdd
11 2n + cdd

12 2n)], (3.47)

G⊥B2(E ) = 3
14

f (E )2
∞∑

n=1

1
2n+3(n+ 3)

[13(cdd
11 0n + cdd

12 0n)+ 22(cdd
11 1n + cdd

12 1n)

+ 14(cdd
11 2n + cdd

12 2n)] +
3
7
[1− 2f (E )]2

∞∑
n=1

1
2n+3(n+ 3)

[cdd
11 0n + cdd

12 0n

+ 2(cdd
11 1n + cdd

12 1n)+ 4(cdd
11 2n + cdd

12 2n)] +
3
7

f (E )[1− 2f (E )]
∞∑

n=1

1
2n+3(n+ 3)

×[3(cdd
11 0n + cdd

12 0n)+ 8(cdd
11 1n + cdd

12 1n)+ 10(cdd
11 2n + cdd

12 2n)], (3.48)
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where

f (E )= E coth E − 1
E 2

; (3.49)

alternatively f (E ) = L(E )/E can be expressed by the Langevin function L(E ) =
(E coth E − 1)/E . Note that the anisotropy associated with the presence of an
external magnetic field does not appear at the leading order ε0, but is evident at
the order ε2. The computation of the sums in the above equations leads to the
final formulae for the virial corrections to the diffusion coefficients and the effective
viscosity (cf. (2.2a,b), (2.3))

Dtt
‖B =−1.8315− ε2 [2.4742× 10−3 − 3.5237× 10−3f (E )

+ 1.6124× 10−3f (E )2] +O(ε4), (3.50a)
Dtt
⊥B
=−1.8315− ε2 [1.4248× 10−3 − 9.0001× 10−4f (E )

+ 3.1866× 10−3f (E )2] +O(ε4), (3.50b)
Drr
‖B =−0.6305− ε2 [1.3753× 10−3 − 7.2477× 10−4f (E )

+ 3.3641× 10−3f (E )2] +O(ε4), (3.50c)
Drr
⊥B
=−0.6305− ε2 [2.0259× 10−3 − 2.3512× 10−3f (E )

+ 2.3883× 10−3f (E )2] +O(ε4), (3.50d)
Ktt
‖B =−1.5464+ ε2 [1.9169× 10−2 − 2.1331× 10−2f (E )

+ 2.4430× 10−2f (E )2] +O(ε4), (3.50e)
Ktt
⊥B
=−1.5464+ ε2 [1.7007× 10−2 − 1.5926× 10−2f (E )

+ 2.7673× 10−2f (E )2] +O(ε4), (3.50f )
Krr
‖B =−0.5131− ε2 [1.4346× 10−4 + 1.6875× 10−3f (E )

+ 3.8772× 10−3f (E )2] +O(ε4), (3.50g)
Krr
⊥B
=−0.5131− ε2 [1.9745× 10−3 − 2.8900× 10−3f (E )

+ 1.1307× 10−3f (E )2] +O(ε4), (3.50h)
G‖B = 2.5021+ ε2 [1.6371× 10−2 − 5.7779× 10−2f (E )

+ 6.8250× 10−2f (E )2] +O(ε4), (3.50i)
G 6 B
= 2.5021+ ε2 [2.5682× 10−3 + 1.8898× 10−2f (E )

− 3.7556× 10−2f (E )2] +O(ε4), (3.50j)
G⊥B = 2.5021+ ε2 [3.3301× 10−3 − 4.0920× 10−3f (E )

+ 2.4556× 10−2f (E )2] +O(ε4). (3.50k)

The above transport coefficients are plotted in figure 4. To give an idea of the
influence of magnetic field and magnetic interactions on the short-time transport
coefficients, one could estimate the relative change in the coefficients at some
significant values of ε and E . We have seen, in the previous section, that the
asymptotic formulae (B 4a–e) describing the effect of magnetic interactions between
particles in the absence of an external magnetic field give a good approximation of
the precise numerical results even up to ε = 10. With the external magnetic field
switched on, the ε2 corrections to the transport coefficients are all analytic functions
of E and, for fixed ε, of the same order or even smaller than the ε2 corrections
in (B 4a–e). Therefore, the asymptotic formulae (3.50a–k) are expected to provide a
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FIGURE 4. The dependence of the transport coefficients on the magnitude of the external
magnetic field E . (a–d) The corrections to self-diffusion Dtt

‖B2, Dtt
⊥B2 with maximum at

E ≈ 5.88, Drr
‖B2 with maximum at E ≈ 8.14 and Drr

⊥B2. (e–h) The corrections to collective
diffusion Ktt

‖B2, Ktt
⊥B2 with minimum at E ≈ 1.61, Krr

‖B2 and Krr
⊥B2. (i–k) The corrections

to effective viscosity G‖B2, G6 B2 with maximum at E ≈ 2.36 and G⊥B2 with minimum at
E ≈ 10.90.

reasonable approximation for the actual values of the transport coefficients in a similar
range of values of ε. It can be seen from figure 4, and the above formulae (3.50a–k),
that at ε = 1 the relative change in all the analysed short-time transport coefficients
except for Ktt

‖B and Ktt
⊥B

is rather small – approximately 0.1–2.5 h. However, as
argued above, we can also provide a rough estimate of the transport coefficients at
ε = 10, when their relative change is between a few % and approximately 23 %,
achieved for G‖B . Note that from figure 4 it is evident that for higher values of E
the relative change would be stronger. Similar to the previous section in the case of
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the translational collective diffusion coefficients Ktt
‖B and Ktt

⊥B
, the relative influence

of the magnetic field and magnetic interactions should be much more significant and
the asymptotic formulae (3.50e) and (3.50f ) are expected to provide a reasonable
approximation only for very small values of ε.

Furthermore, figure 4 clearly demonstrates non-monotonic behaviour of a number
of short-time transport coefficients. In the case of the long-time effective viscosity,
the mechanism described in a number of papers (e.g. the review by Odenbach 2004),
based on the balance between the magnetic torque on a particle and mechanic torque
exerted by a shearing flow, clearly leads to an increase of the effective long-time
viscosity. However, at short times, or alternatively if the external field is alternating
at high frequency, it is no longer obvious whether the effect of the magnetic field
is to increase or decrease the viscosity, since the times are not long enough for
the magnetic moments of the particles to align with the external field, and thus the
orientations of the particles’ magnetic moments are random. The final stresses and
torques on the particles depend not only on their interactions with the external field
but also strongly on the long-range and nonlinear hydrodynamic interactions, and it
is those effects that contribute together to the observed non-monotonic behaviour.

Note that, in the limit of vanishing magnetic field,

f (E )= E coth E − 1
E 2

E→0−→ 1
3
, (3.51)

and the analytic expressions (3.32)–(3.48), and likewise the final numerical formulae
(3.50a–k), reduce to the Taylor expansions for ε�1 of the coefficients obtained in § 3,
Dqq
‖B =Dqq

⊥B
=Dqq, Kqq

‖B =Kqq
⊥B
=Kqq and G‖B = G 6 B

= G⊥B = G, which are provided in
appendix B. On the other hand, in the limit of vanishing magnetic interactions, ε→ 0,
we recover the purely non-magnetic values Dqq

‖B = Dqq
⊥B
= Dqq

0 , Kqq
‖B = Kqq

⊥B
= Kqq

0 and
G‖B = G6 B

= G⊥B = G0 (cf. Cichocki et al. 1999, 2002, 2003).

4. Conclusions
By using basic principles of statistical mechanics, explicit formulae have been

derived for the virial corrections to the short-time self-diffusion and collective
diffusion coefficients and effective viscosity for magnetic suspensions under the
influence of magnetic interactions between particles and their interactions with the
external magnetic field. In the virial expansion, the interactions between pairs of
particles have been included and higher-order terms connected with multiparticle
interactions have been neglected. The magnetic interactions between the particles and
interactions of particles with the external magnetic field, with energies of interactions
denoted by E and EB respectively, are included via the introduction of the probabilistic
factors exp(E/kBT) and exp(EB/kBT). The first-order virial corrections to the self-
and collective diffusion coefficients and second-order virial correction to the effective
viscosity have been numerically evaluated for the case when no external magnetic field
is present, and their dependence on the magnetic energy of interparticle interactions,
ε, has been established; it was shown that all the diffusion coefficients and the
viscosity are monotonic in ε, and their rate of variation increases with ε.

When the external magnetic field is switched on, the diffusion coefficients and the
effective viscosity become anisotropic. Under the assumption of weak interparticle
interactions, ε � 1, all the components of the short-time translational and rotational
self-diffusion Dtt

‖B , Dtt
⊥B

, Drr
‖B , Drr

⊥B
, the translational and rotational collective diffusion

Ktt
‖B , Ktt

⊥B
, Krr
‖B , Krr

⊥B
and effective viscosity G‖B , G 6 B

, G⊥B were calculated up to O(ε4).
Their dependence on the energy of particle interaction with the external magnetic field
E has been explicitly obtained and is provided in (3.50a–k).
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Appendix A. The fourth-order axial tensors
The tensors t0(r̂), t1(r̂) and t2(r̂) after Kim & Karrila (1991) can be expressed in

the following form

t0αβγ δ(r̂)= 3
2(r̂α r̂β − 1

3δαβ)(r̂γ r̂δ − 1
3δγ δ), (A 1)

t1αβγ δ(r̂)= 1
2(δβδ r̂α r̂γ + δαδ r̂β r̂γ + δβγ r̂α r̂δ + δαγ r̂β r̂δ − 4r̂α r̂β r̂γ r̂δ), (A 2)

t2αβγ δ(r̂) = 1
2 (δαγ δβδ + δβγ δαδ − δαβδγ δ + δγ δ r̂α r̂β + δαβ r̂γ r̂δ,
− δβδ r̂α r̂γ − δαδ r̂β r̂γ − δβγ r̂α r̂δ − δαγ r̂β r̂δ + r̂α r̂β r̂γ r̂δ). (A 3)

For any vectorial argument, denoted here by r̂, they satisfy the following identities

t0αββα(r̂)= 1, t1αββα(r̂)= 2, t2αββα(r̂)= 2, (A 4a−c)

t0αβγ δ(r̂)t0γ δζη(r̂)= t0αβζη(r̂), t1αβγ δ(r̂)t1γ δζη(r̂)= t1αβζη(r̂), t2αβγ δ(r̂)t2γ δζη(r̂)= t2αβζη(r̂),
(A 4d−f )

t0αβγ δ(r̂)t1γ δζη(r̂)= 0, t0αβγ δ(r̂)t2γ δζη(r̂)= 0, t1αβγ δ(r̂)t2γ δζη(r̂)= 0. (A 4g−i)

Appendix B. The virial corrections to diffusion and viscosity coefficients in the
absence of an external magnetic field under weak interparticle interactions

The virial corrections to the diffusion and viscosity coefficients in the absence of
an external magnetic field (E → 0) and in the limit ε� 1 take the form

Dqq =
∞∑

n=1

[
1

2n−3(n− 3)
+ ε

2

3
1

2n+3(n+ 3)

]
(aqq
‖n + 2aqq

⊥n)+O(ε4), (B 1)

Kqq =
∞∑

n=4

[
1

2n−3(n− 3)
+ ε

2

3
1

2n+3(n+ 3)

]
[aqq
‖n + bqq

‖n + 2(aqq
⊥n + bqq

⊥n)] +O(ε4), (B 2)

G = 3
2

∞∑
n=6

[
1

2n−3(n− 3)
+ ε

2

3
1

2n+3(n+ 3)

]
×[cdd

11 0n + cdd
12 0n + 2(cdd

11 1n + cdd
12 1n)+ 2(cdd

11 2n + cdd
12 2n)] +O(ε4), (B 3)

and thus their numerical values can be easily obtained as

Dtt =−1.8315− ε21.4788× 10−3 +O(ε4), (B 4a)

Drr =−0.6305− ε21.5075× 10−3 +O(ε4), (B 4b)

Ktt =−1.5464+ ε21.4773× 10−2 +O(ε4), (B 4c)

Krr =−0.5131− ε21.1368× 10−3 +O(ε4), (B 4d)

G = 2.5021+ ε24.6946× 10−3 +O(ε4). (B 4e)
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