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For d � 2, let Hd(n, p) denote a random d-uniform hypergraph with n vertices in which

each of the
(
n
d

)
possible edges is present with probability p = p(n) independently, and

let Hd(n, m) denote a uniformly distributed d-uniform hypergraph with n vertices and m

edges. Let either H = Hd(n, m) or H = Hd(n, p), where m/n and
(
n−1
d−1

)
p need to be bounded

away from (d − 1)−1 and 0 respectively. We determine the asymptotic probability that H

is connected. This yields the asymptotic number of connected d-uniform hypergraphs with

given numbers of vertices and edges. We also derive a local limit theorem for the number

of edges in Hd(n, p), conditioned on Hd(n, p) being connected.

2010 Mathematics subject classification: Primary 05C80

Secondary 05C65

1. Introduction and main results

1.1. Phase transition and connectivity

A d-uniform hypergraph H = (V , E) is a pair of a set V = V (H) of vertices and a set

E = E(H) of edges e ⊂ V (H) with |e| = d. The order of H is the number of vertices of H ,

and the size of H is the number of edges. A 2-uniform hypergraph is just a graph. We say
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that a vertex v ∈ V (H) is reachable from w ∈ V (H) if there exist edges e1, . . . , ek ∈ E(H)

such that v ∈ e1, w ∈ ek and ei ∩ ei+1 �= ∅ for all 1 � i < k. Reachability is an equivalence

relation, and the equivalence classes are called the components of H . If H has only a

single component, then H is connected. We let N (H) signify the maximum order (i.e., the

number of vertices) of a component of H . For all hypergraphs H that we deal with, the

vertex set V (H) will consist of integers. Therefore, the subsets of V (H) can be ordered

lexicographically, and we call the lexicographically first component of H that has order

N (H) the largest component of H . In addition, we denote by M(H) the size (i.e., the

number of edges) of the largest component.

In this paper we consider two models of random d-uniform hypergraphs for d � 2. The

random hypergraph Hd(n, p) has the vertex set V = {1, . . . , n}, and each of the
(
n
d

)
possible

edges is present with probability p independently. Moreover, Hd(n, m) is a uniformly

distributed d-uniform hypergraph with vertex set V = {1, . . . , n} and with exactly m edges.

Finally, we say that the random hypergraph Hd(n, p) satisfies a certain property P with

high probability (‘w.h.p.’) if the probability that P holds in Hd(n, p) tends to 1 as n → ∞;

a similar terminology is used for Hd(n, m).

Since the pioneering work of Erdős and Rényi [9, 10] (see also [7, 12]), the component

structure of random discrete objects (e.g., graphs, hypergraphs, digraphs) has been among

the main subjects of probabilistic combinatorics. Erdős and Rényi [10] studied (among

other things) the component structure of sparse random graphs with O(n) edges. The main

result is that the order N (H2(n, m)) of the largest component undergoes a phase transition

as 2m/n ∼ 1. Let us state a more general version from Schmidt-Pruzan and Shamir [17]

for d � 2. Let either H = Hd(n, m) and c = dm/n, or H = Hd(n, p) and c =
(
n−1
d−1

)
p; we refer

to c as the average degree of H . Then the result is the following.

(i) If c < (d − 1)−1 − ε for an arbitrarily small but fixed ε > 0, then N (H) = O(ln n) w.h.p.

(ii) By contrast, if c > (d − 1)−1 + ε, then H contains a unique component of order Ω(n)

w.h.p., which is called the giant component. More precisely, N (H) = (1 − ρ)n + o(n)

w.h.p., where ρ is the unique solution to the transcendental equation

ρ = exp(c(ρd−1 − 1)) (1.1)

that lies strictly between 0 and 1. Furthermore, the second largest component has

order O(ln n) w.h.p.

Using probabilistic techniques, we derived in [3] a local limit theorem for N (Hd(n, p)) and

in [4] local limit theorems for the joint distribution of N (H) and M(H) for H = Hd(n, m),

or H = Hd(n, p) in the regime (d − 1)
(
n−1
d−1

)
p > 1 + ε, resp. d(d − 1)m/n > 1 + ε, where ε > 0

is arbitrarily small but fixed as n → ∞. Using these results, we determine in this paper

the asymptotic probability that H is connected and derive a local limit theorem for the

number of edges in Hd(n, p), conditioned on Hd(n, p) being connected.

These problems have been studied by a few authors. For d = 2, the asymptotic

probability that H2(n, p) is connected was first computed by Stepanov [18]. Bender,

Canfield and McKay [5] were the first to compute the asymptotic probability that a

random graph H2(n, m) is connected for any ratio m/n. In addition, using their formula

for the probability of H2(n, m) being connected, Bender, Canfield and McKay [6] inferred
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the probability that H2(n, p) is connected as well as a central limit theorem for the number

of edges of H2(n, p) given that H2(n, p) is connected. Using enumerative arguments, Pittel

and Wormald [16] derived an improved version of the main result of [5] and obtained a

local limit theorem that, in addition to N (H) and M(H), also includes the order and size

of the 2-core. O’Connell [15] employed the theory of large deviations in order to estimate

the probability that H2(n, p) is connected up to a factor exp(o(n)). Whereas this result is

significantly less precise than Stepanov’s, O’Connell’s proof is simpler. In addition, van

der Hofstad and Spencer [11] used a novel perspective on the branching process argument

to rederive the formula of Bender, Canfield and McKay [5] for the number of connected

graphs.

In contrast to the case of graphs (d = 2), little is known about the connectivity

probability of random d-uniform hypergraphs with d > 2. Karoński and �Luczak [13]

derived an asymptotic formula for the number of connected d-uniform hypergraphs

of order n and size m = n
d−1

+ o(ln n/ ln ln n) via combinatorial techniques. Since the

minimum number of edges necessary for connectedness is n−1
d−1

, this formula addresses

sparsely connected hypergraphs. Furthermore, Andriamampianina and Ravelomanana [1]

extended the result from [13] to the regime m = n
d−1

+ o(n1/3) via enumerative techniques.

By contrast, the results of this paper concern connected hypergraphs with m = n
d−1

+ Ω(n)

edges. Thus, our results and those from [1, 13] are complementary.

1.2. Main results

1.2.1. The probability of connectedness. The threshold for Hd(n, m) being connected is

m ∼ n
d

ln n. Hence, for m = O(n) the probability that Hd(n, m) is connected is o(1). In fact,

this probability is exponentially small in n. The following theorem gives an asymptotic

expression for this exponentially rare event.

Theorem 1.1. Let d � 2 be a fixed integer. For any compact set J ⊂ (d(d − 1)−1,∞) and

for any δ > 0 there exists n0 > 0 such that the following holds. Let m = m(n) be a sequence

of integers such that ζ = ζ(n) = dm/n ∈ J for all n. There exists a unique number 0 < r =

r(n) < 1 such that

r = exp

(
−ζ · (1 − r)(1 − rd−1)

1 − rd

)
. (1.2)

Let Φd(r, ζ) = r
r

1−r (1 − r)1−ζ(1 − rd)
ζ
d for d � 2. Furthermore, define, for d > 2,

Rd(n, m) =
1 − rd − (1 − r)(d − 1)ζrd−1√(

1 − rd + ζ(d − 1)(r − rd−1)
)
(1 − rd) − dζr(1 − rd−1)2

· exp

(
(d − 1)ζ(r − r2 + rd−1 − 2rd + rd+2)

2(1 − rd)

)
· Φd(r, ζ)n,

and for d = 2,

R2(n, m) =
1 + r − ζr√(
1 + r

)2 − 2ζr

· exp

(
ζr(2 − r − r2 + ζ)

2(1 + r)

)
· Φ2(r, ζ)n.
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Finally, let cd(n, m) denote the probability that Hd(n, m) is connected. Then for all n > n0

we have

(1 − δ)Rd(n, m) < cd(n, m) < (1 + δ)Rd(n, m).

Observe that Theorem 1.1 yields an asymptotic formula for the number Cd(n, m) of

connected d-uniform hypergraphs of given order n and size m, because

Cd(n, m) =

((
n
d

)
m

)
cd(n, m).

To prove Theorem 1.1 we shall consider a ‘larger’ hypergraph Hd(ν, p) such that the

expected order and size of the largest component of Hd(ν, p) are n and m. Then, we will

infer the probability that Hd(n, m) is connected from the local limit theorem for N (Hd(ν, p))

and M(Hd(ν, p)), which was proved by the authors in [4] (see Lemma 2.2 below).

We also derive the following theorem on the asymptotic probability that Hd(n, p) is

connected, using results from [3, 8] (see Lemmas 2.2 and 3.1 below).

Theorem 1.2. Let d � 2 be a fixed integer. For any compact set J ⊂ (0,∞), and for any

δ > 0 there exists n0 > 0 such that the following holds. Let p = p(n) be a sequence such

that ζ = ζ(n) =
(
n−1
d−1

)
p ∈ J for all n. There exists a unique 0 < � = �(n) < 1 such that

� = exp

(
ζ · �d−1 − 1

(1 − �)d−1

)
. (1.3)

Let

Ψd(�, ζ) = (1 − �)�
�

1−� exp

(
ζ

d
· 1 − �d − (1 − �)d

(1 − �)d

)
, for d � 2.

Define, for d > 2,

Sd(n, p) =
1 − ζ(d − 1)( �

1−�
)d−1√

1 + ζ(d − 1) �−�d−1

(1−�)d

· exp

(
ζ(d − 1)�(1 − �d − (1 − �)d)

2(1 − �)d

)

· exp

(
ζ(d − 1)�

2

((
�

1 − �

)d−2

+ 1

))
· Ψd(�, ζ)n,

and for d = 2,

S2(n, p) =

(
1 − ζ

eζ − 1

)
· exp

(
ζ(2 + ζ)

2(eζ − 1)

)
· (1 − e−ζ)n.

Finally, let cd(n, p) denote the probability that Hd(n, p) is connected. Then, for all n > n0 we

have

(1 − δ)Sd(n, p) < cd(n, p) < (1 + δ)Sd(n, p).

Remark. The formulas for Rd(n, m) and Sd(n, p) for d � 2 given in an extended abstract

version [2] of this work were incorrect.
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1.2.2. The distribution of the number of edges in Hd(n, p) given connectedness. Interest-

ingly, if we choose p = p(n) and m = m(n) in such a way that
(
n
d

)
p = m for each n and

set ζ =
(
n−1
d−1

)
p = dm/n, then the function Ψd(�, ζ) from Theorem 1.2 is strictly bigger than

Φd(r, ζ) from Theorem 1.1. Consequently, the probability that Hd(n, p) is connected exceeds

the probability that Hd(n, m) is connected by an exponential factor.

The reason for this is as follows. We can think of generating Hd(n, p) as first choosing

a random number m0 of edges from the binomial distribution Bin(
(
n
d

)
, p), and then

generating a random hypergraph Hd(n, m0). The probability that Hd(n, m0) is connected

increases rapidly as a function of m0. Hence, Hd(n, p) could ‘boost’ its probability of

being connected by including a number of edges that exceeds the expectation
(
n
d

)
p of the

binomial distribution considerably. Hence, once we condition on Hd(n, p) being connected,

the total number of edges in Hd(n, p) will be significantly bigger than
(
n
d

)
p. The following

local limit theorem quantifies this phenomenon.

Theorem 1.3. Let d � 2 be a fixed integer. For any two compact sets I ⊂ R, J ⊂ (0,∞),

and for any δ > 0, there exists n0 > 0 such that the following holds. Suppose that 0 < p =

p(n) < 1 is a sequence such that ζ = ζ(n) =
(
n−1
d−1

)
p ∈ J for all n. Let 0 < � = �(n) < 1 be

the unique solution to (1.3), and set

μ̂ =

⌈
ζ(1 − �d)

d(1 − �)d
· n

⌉
, σ̂2 =

ζ

d(1 − �)d

(
1 − �d − ζd�(1 − �d−1)2

(1 − �)d + ζ(d − 1)(� − �d−1)

)
· n.

Finally, let |E(Hd(n, p))| denote the number of edges in Hd(n, p). Then, for all n � n0 and all

integers y such that n−1/2y ∈ I , we have

1 − δ√
2πσ̂

exp

(
− y2

2σ̂2

)
� P

[
|E(Hd(n, p))| = μ̂ + y | Hd(n, p) is connected

]
� 1 + δ√

2πσ̂
exp

(
− y2

2σ̂2

)
.

In the case d = 2 the solution to (1.3) is � = exp(−ζ), whence the formulas from

Theorem 1.3 simplify to

μ̂ =

⌈
ζ

2
coth(ζ/2) · n

⌉
and σ̂2 =

ζ

2
· 1 − 2ζ exp(−ζ) − exp(−2ζ)

(1 − exp(−ζ))2
· n.

1.3. Techniques and outline

In Section 2 we derive Theorem 1.1 from Lemma 2.2. The basic reason why this is

possible is that given that the largest component of Hd(ν, p) has order n and size m

(for suitably chosen ν > n), the largest component is a uniformly distributed connected

hypergraph with these parameters. This observation was also exploited by �Luczak [14] to

estimate the number of connected graphs up to a polynomial factor, and in [8], where an

explicit relation between the numbers cd(n, m) and P[N (Hd(ν, p)) = n, M(Hd(ν, p)) = m]

was derived (see Lemma 2.1 below). Combining this relation with Lemma 2.2, we

obtain Theorem 1.1. Finally, in Sections 3 and 4 we use similar arguments to establish

Theorems 1.2 and 1.3.
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1.4. Notation

We use the ‘O-notation’ to express asymptotic estimates as n → ∞. Occasionally we

will apply this notation to expressions that depend not only on n but also on further

parameters. Suppose that f(x1, . . . , xk, n), g(x1, . . . , xk, n) are functions of n and further

parameters xi are from domains Di ⊂ R (1 � i � k), and that g � 0. Then we say that the

estimate f(x1, . . . , xk, n) = O(g(x1, . . . , xk, n)) holds uniformly in x1, . . . , xk if the following is

true: there exist numbers C and n0 such that

|f(x1, . . . , xk, n)| � Cg(x1, . . . , xk, n) for all n � n0 and (x1, . . . , xk) ∈
k∏

j=1

Dj .

Similarly, we say that f(x1, . . . , xk, n) ∼ g(x1, . . . , xk, n) holds uniformly in x1, . . . , xk if for

any ε > 0 there exists n0 > 0 such that, for all n > n0,

sup
(x1 ,...,xk)∈D1×···×Dk

∣∣∣∣f(x1, . . . , xk, n)

g(x1, . . . , xk, n)
− 1

∣∣∣∣ < ε.

We define uniformity analogously for the other Landau symbols Ω, Θ, etc.

2. The probability that Hd(n, m) is connected: proof of Theorem 1.1

We will derive the probability that Hd(n, m) is connected (Theorem 1.1) from the local

limit theorem for the joint distribution of the order and size of the largest component

in Hd(ν, p), for suitably chosen ν > n. The latter was proved by us in [3] and is restated

below in Lemma 2.2.

Let J ⊂ (d(d − 1)−1,∞) be a compact interval, and let m(n) be a sequence of integers

such that ζ = ζ(n) = dm/n ∈ J for all n. The basic idea is to choose ν and p in such a

way that |n − E(N (Hd(ν, p)))| and |m − E(M(Hd(ν, p)))| are ‘small’, that is, n and m will be

‘probable’ outcomes of N (Hd(ν, p)) and M(Hd(ν, p)). Since, given that N (Hd(ν, p)) = n and

M(Hd(ν, p)) = m, the largest component of Hd(ν, p) is a uniformly distributed connected

graph of order n and size m, we can then express the probability that Hd(n, m) is connected

in terms of the probability

χ = P
[
N (Hd(ν, p)) = n, M(Hd(ν, p)) = m

]
.

The (somewhat technical) details of this approach were carried out in [8], where the

following lemma was established.

Lemma 2.1. Suppose that n > n0 for some large enough number n0 = n0(J ). Then there

exist an integer ν = ν(n) = Θ(n) and a number 0 < p = p(n) < 1 such that the following is

true.

(i) Let c =
(
ν−1
d−1

)
p. Then (d − 1)−1 < c = O(1), and letting 0 < ρ = ρ(c) < 1 signify the

solution to (1.1), we have

n = (1 − ρ)ν,

∣∣∣∣m − (1 − ρd)

(
ν

d

)
p

∣∣∣∣ = O(1).
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(ii) The solution r to (1.2) satisfies |r − ρ| = o(1) and∣∣∣∣c − 1 − r

1 − rd
ζ

∣∣∣∣ = o(1).

(iii) Furthermore,

cd(n, m) ∼ ν · χ · uvw · Φd(r, ζ)n (2.1)

uniformly for ζ ∈ J , where

Φd(r, ζ) = (1 − r)1−ζ rr/(1−r)
(
1 − rd

)ζ/d
, (2.2)

u = 2π

√
r(1 − r)(1 − rd)c/d, (2.3)

v = exp

(
(d − 1)rc

2

(
1 − rd + (1 − r)rd−2

))
, and (2.4)

w =

{
1 if d > 2,

exp
(
c2r(1+r)

2

)
if d = 2.

(2.5)

Formulas (2.1)–(2.5) are reformulated from the corresponding ones in [8] by translating

the notation as follows. We exchange the roles of ν and n and those of μ and m respectively;

r and ρ play the same role as 1 − a1 and 1 − a5 respectively. The formula (2.2) follows

from the term

(a5(1 − a5)(1−a5)/a5 )ν(a−d
5 b5)μ = (a1−ζ

5 (1 − a5)(1−a5)/a5 (1 − (1 − a5)d)ζ/d)ν

in (15) of [8]. Letting

Φd(x, ζ) := (1 − x)1−ζx
x

1−x (1 − xd)
ζ
d ,

we have from Lemma 12 of [8] that Φd(1 − a5, ζ)ν ∼ Φd(1 − a1, ζ)ν , so we have in the

current setting that Φd(ρ, ζ)n ∼ Φd(r, ζ)n. Furthermore, (2.3) follows from the term

2π

n

√
a5(1 − a5)b5nm ∼ u

in (15) of [8], (2.4) from the term

exp

[
1

2
(d − 1)(1 − a5)c(b5 + a5(1 − a5)d−2)

]
∼ v,

and (2.5) from the term

exp

[
b5mp(1 − ad5 − (1 − a5)d)

2ad5

]
∼ w.

Thus, once we know the explicit expression for

χ = P
[
N (Hd(ν, p)) = n, M(Hd(ν, p)) = m

]
,

we can derive the exact asymptotic expression for cd(n, m) from (2.1). We can in fact

compute χ explicitly using the following local limit theorem for the joint distribution of

N (Hd(ν, p)) and M(Hd(ν, p)) from [4].
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Lemma 2.2. Let d � 2 be a fixed integer. For any compact sets I ⊂ R
2, J ⊂ ((d − 1)−1,∞),

and for any δ > 0, there exists ν0 > 0 such that the following holds. Let p = p(ν) be a

sequence such that c = c(ν) =
(
ν−1
d−1

)
p ∈ J for all ν and let 0 < ρ = ρ(ν) < 1 be the unique

solution to (1.1). Further, let

σ2
N =

ρ
(
1 − ρ + c(d − 1)(ρ − ρd−1)

)
(1 − c(d − 1)ρd−1)2

· ν, (2.6)

σ2
M = c2ρd · 2 + c(d − 1)(ρ2d−2 − 2ρd−1 + ρd) − ρd−1 − ρd

(1 − c(d − 1)ρd−1)2
· ν + (1 − ρd)

c

d
· ν, (2.7)

σNM = cρ · 1 − ρd − c(d − 1)ρd−1(1 − ρ)

(1 − c(d − 1)ρd−1)2
· ν. (2.8)

Suppose that ν � ν0 and that n, m are integers such that

x = n − (1 − ρ)ν and y = m − (1 − ρd)

(
ν

d

)
p (2.9)

satisfy ν−1/2(x, y) ∈ I . Define

P (x, y) =
1

2π
√
σ2
Nσ2

M − σ2
NM

· exp

(
− σ2

Nσ2
M

2(σ2
Nσ2

M − σ2
NM)

(
x2

σ2
N

− 2σNMxy

σ2
Nσ2

M
+

y2

σ2
M

))
.

(2.10)

Then we have

(1 − δ)P (x, y) � P
[
N (Hd(ν, p)) = n, M(Hd(ν, p)) = m

]
� (1 + δ)P (x, y). (2.11)

Note that from (2.6)–(2.8) we have

σ2
Nσ2

M − σ2
NM =

cρ
d

(
1 − ρ + c(d − 1)(ρ − ρd−1)

)
(1 − ρd) − c2ρ2(1 − ρd−1)2

(1 − c(d − 1)ρd−1)2
· ν2. (2.12)

From Lemma 2.1(i) and (2.9), x = 0, y = O(1), and from (2.7), σM = Θ(ν). Thus (2.10)–

(2.12) yield

χ = P
[
N (Hd(ν, p)) = n, M(Hd(ν, p)) = m

]
∼ 1

2π
√
σ2
Nσ2

M − σ2
NM

=
1 − c(d − 1)ρd−1

2πν
√

cρ
d

(
1 − ρ + c(d − 1)(ρ − ρd−1)

)
(1 − ρd) − c2ρ2(1 − ρd−1)2

. (2.13)

Since r ∼ ρ and c ∼ 1−r
1−rd

ζ by Lemma 2.1(ii), we can express ν · χ, u, v, w in (2.13) and

(2.3)–(2.5) solely in terms of r and ζ:

ν · χ ∼
1 − 1−r

1−rd
ζ(d − 1)rd−1

2π

√
1−r
1−rd

ζ r
d

(
1 − r + 1−r

1−rd
ζ(d − 1)(r − rd−1)

)
(1 − rd) −

(
1−r
1−rd

ζ
)2
r2(1 − rd−1)2

=
1 − 1−r

1−rd
ζ(d − 1)rd−1

2π

√
(1−r)2

1−rd
ζr
d

(
1 − rd + ζ(d − 1)(r − rd−1)

)
−

(
1−r
1−rd

)2
ζ2r2(1 − rd−1)2
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=
1 − 1−r

1−rd
ζ(d − 1)rd−1

2π

√
ζr
d

(
1−r
1−rd

)2((
1 − rd + ζ(d − 1)(r − rd−1)

)
(1 − rd) − dζr(1 − rd−1)2

)
=

1 − rd − (1 − r)ζ(d − 1)rd−1

2π
√

ζr
d

(1 − r)2
((

1 − rd + ζ(d − 1)(r − rd−1)
)
(1 − rd) − dζr(1 − rd−1)2

) ,

u ∼ 2π

√
r(1 − r)(1 − rd)

1 − r

1 − rd
ζ

1

d
= 2π

√
ζr

d
· (1 − r),

v ∼ exp

(
(d − 1)r

2

1 − r

1 − rd
ζ
(
1 − rd + (1 − r)rd−2

))

= exp

(
ζ(d − 1)(r − r2 + rd−1 − 2rd + rd+2)

2(1 − rd)

)
, and

w ∼
{

1 if d > 2,

exp
(

(1−r)2ζ2r(1+r)
2(1−r2)2

)
= exp

(
ζ2r

2(1+r)

)
if d = 2.

Putting these together, we obtain for d > 2,

ν · χ · uvw ∼ 1 − rd − (1 − r)ζ(d − 1)rd−1√(
1 − rd + ζ(d − 1)(r − rd−1)

)
(1 − rd) − dζr(1 − rd−1)2

· exp

(
ζ(d − 1)(r − r2 + rd−1 − 2rd + rd+2)

2(1 − rd)

)
, (2.14)

and for d = 2,

ν · χ · uvw ∼ 1 + r − ζr√(
1 + r

)2 − 2ζr

· exp

(
ζr(2 − r − r2 + ζ)

2(1 + r)

)
. (2.15)

Thus, (2.1), (2.14) and (2.15) imply the desired result.

Remark. Whereas Lemma 2.1 was established in Coja-Oghlan, Moore and Sanwalani [8],

the exact joint limiting distribution of N (Hd(ν, p)) and M(Hd(ν, p)) (i.e., Lemma 2.2) was

not known at that point. Therefore, Coja-Oghlan, Moore and Sanwalani could only

compute the cd(n, m) up to a constant factor. By contrast, combining Lemma 2.2 with

Lemma 2.1, here we have obtained tight asymptotics for cd(n, m).

3. The probability that Hd(ν, p) is connected: proof of Theorem 1.2

Let J ⊂ (0,∞) be a compact set, and let 0 < p = p(n) < 1 be a sequence such that

ζ = ζ(n) =
(
n−1
d−1

)
p ∈ J for all n. All asymptotics in this section are uniform in ζ.

To compute the probability cd(n, p) that a random hypergraph Hd(n, p) is connected, we

will establish that

P
[
N (Hd(ν, p)) = n

]
∼

(
ν

n

)
cd(n, p)(1 − p)(

ν
d)−(ν−n

d )−(nd) (3.1)

for a suitably chosen integer ν > n. Then we employ the local limit theorem for N (Hd(ν, p)),

which is implied by Lemma 2.2 and also by our previous result [3] on the local limit
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theorem for N (Hd(n, p)), to compute the left-hand side of (3.1). Thus we can just solve (3.1)

for cd(n, p).

In order to carry this out, we use the following lemma on the component structure

of Hd(ν, p), which is a slight variant of Theorem 5 of [8]. To obtain it, we can easily

adapt the arguments of the proof of Theorem 5 of [8]. We may skip the details, as the

computations become quite technical and tedious without providing useful new insights.

Lemma 3.1. Let c = c(ν) be a sequence of non-negative reals and let p = c
(
ν−1
d−1

)−1
and

m =
(
ν
d

)
p = cν/d. Then, for both H = Hd(ν, p) and H = Hd(ν, μ) the following holds.

(i) For any c0 < (d − 1)−1 there is a number ν0 such that, for all ν > ν0 for which c =

c(ν) � c0, we have

P
[
N (H) � 300(d − 1)2(1 − (d − 1)c0)−2 ln ν

]
� 1 − ν−100.

(ii) For any c0 > (d − 1)−1 there are numbers ν0 > 0, 0 < c′
0 < (d − 1)−1 such that, for all

ν > ν0 for which c0 � c = c(ν) < ln ν/ ln ln ν, the following holds. The transcendental

equation (1.1) has a unique solution 0 < ρ = ρ(ν) < 1, which satisfies

ρd−1c < c′
0.

Furthermore, with probability � 1 − ν−100 there exists precisely one component of order

(1 − ρ)ν + o(ν) in H , while all other components have order � ln2 ν. In addition,

E
[
N (H)

]
= (1 − ρ)ν + o(

√
ν).

We pick ν as follows. By Lemma 3.1, for each integer k such that

c(k) =

(
k − 1

d − 1

)
p > (d − 1)−1,

the transcendental equation ρ(k) = exp(c(k)(ρ(k)d−1 − 1)) has a unique solution ρ(k) that

lies strictly between 0 and 1. We let

ν = max{k ∈ N : (1 − ρ(k))k < n}.

Moreover, set ρ = ρ(ν) and c = c(ν) =
(
ν−1
d−1

)
p, and let 0 < s < 1 be such that (1 − s)ν = n.

We claim

|n − (1 − ρ)ν| < O(1). (3.2)

To see this, we observe that

(1 − ρ(ν))ν < n = (1 − s)ν � (1 − ρ(ν + 1))(ν + 1).

In order to establish (3.2), it suffices to show that |ρ(ν + 1) − ρ(ν)| = O(1/ν), because

n − (1 − ρ(ν))ν < (1 − ρ(ν + 1))(ν + 1) − (1 − ρ(ν))ν < 1 + ν(ρ(ν) − ρ(ν + 1)).
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To prove this, we note that since ζ =
(
n−1
d−1

)
p =

(
(1−s)ν−1

d−1

)
p,

c(ν + 1) − c(ν) =

(
ν

d − 1

)
p −

(
ν − 1

d − 1

)
p = p

(
ν − 1

d − 1

)
d − 1

ν − d + 1

=
ζ
(
ν−1
d−1

)
(

(1−s)ν−1
d−1

) · (d − 1)

ν − d + 1
= O(1/ν).

This, together with Taylor series expansion, implies that |ρ(ν + 1) − ρ(ν)| = O(1/ν),

because ρ(k) = exp(c(k)(ρ(k)d−1 − 1)) and ρ(k) is differentiable due to the implicit function

theorem.

To establish (3.1), note that the right-hand side is just the expected number of

components of order n in Hd(ν, p). For there are
(
ν
n

)
ways to choose the vertex set C

of such a component, and the probability that C spans a connected hypergraph is cd(n, p).

Moreover, if C is a component, then Hd(ν, p) features no edge that connects C with

V \ C, and there are
(
ν
d

)
−

(
ν−n
d

)
−

(
n
d

)
possible edges of this type, each being present with

probability p independently. Hence, we conclude that

P
[
N (Hd(ν, p)) = n

]
�

(
ν

n

)
cd(n, p)(1 − p)(

ν
d)−(ν−n

d )−(nd). (3.3)

On the other hand,

P
[
N (Hd(ν, p)) = n

]
�

(
ν

n

)
cd(n, p)(1 − p)(

ν
d)−(ν−n

d )−(nd)P
[
N (Hd(ν − n, p)) < n

]
, (3.4)

because the right-hand side equals the probability that Hd(ν, p) has exactly one component

of order n. Furthermore, as |n − (1 − ρ)ν| < O(1) by (3.2), Lemma 3.1 entails that

P
[
N (Hd(ν − n, p)) < n

]
∼ 1.

Hence, combining (3.3) and (3.4), we obtain (3.1).

To derive an explicit formula for cd(n, p) from (3.1), we need the following lemma.

Lemma 3.2.

(i) We have

c = ζ(1 − s)1−d

(
1 +

(
d

2

)
s

(1 − s)ν
+ O(ν−2)

)
.

(ii) The transcendental equation (1.3) has a unique solution 0 < � < 1, which satisfies |s −
�| = O(ν−1).

(iii) Letting

Ψ(x) = Ψd(x, ζ) := (1 − x)x
x

1−x exp

(
ζ

d
· 1 − xd − (1 − x)d

(1 − x)d

)
,

we have Ψ(�)n ∼ Ψ(s)n.
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Proof of Lemma 3.2. Regarding assertion (i), we note that

(1 − s)d−1
(
ν−1
d−1

)
(

(1−s)ν−1
d−1

) =

d−1∏
j=1

(
1 +

sj

(1 − s)ν − j

)
= 1 +

(
d

2

)
s

(1 − s)ν
+ O(ν−2). (3.5)

Since

c =

(
ν − 1

d − 1

)
p = ζ

(
ν−1
d−1

)
(
n−1
d−1

)
and n = (1 − s)ν, (3.5) implies assertion (i).

In order to show assertion (ii), we set

ϕz : (0, 1) → R, t �→ exp

(
z
td−1 − 1

(1 − t)d−1

)
for z > 0.

Then limt↘0 ϕz(t) = exp(−z) > 0, while limt↗1 ϕz(t) = 0. In addition, ϕz is convex for any

z > 0. Therefore, for each z > 0 there is a unique 0 < tz < 1 such that tz = ϕz(tz), whence

(1.3) in Theorem 1.2 has the unique solution 0 < � = tζ < 1. Moreover, if ζ ′ = (1 − ρ)d−1c

then ρ = tζ′ . Thus, since t �→ tz is differentiable, by the implicit function theorem, and

|ζ − ζ ′| = O(ν−1) by assertion (i), we conclude that |� − ρ| = O(ν−1). Further, |s − ρ| =

O(ν−1) by (3.2). Hence, |s − �| = O(ν−1), as desired.

To establish assertion (iii), we compute

∂

∂x
Ψ(x) = (1 − x)−d−1x

2x−1
1−x exp

(
ζ

d

1 − xd − (1 − x)d

(1 − x)d

)
·
(
ζ(1 − x)(x − xd) + (1 − x)dx ln x

)
. (3.6)

Since

� = exp

(
ζ
�d−1 − 1

(1 − �)d−1

)
,

(3.6) entails that ∂
∂x

Ψ(�) = 0. Therefore, Taylor’s formula yields that

Ψ(s) − Ψ(�) = O(s − �)2 = O(ν−2),

because s − � = O(ν−1) by assertion (ii). Consequently, we obtain(
Ψ(s)

Ψ(�)

)ν

=

(
1 +

Ψ(s) − Ψ(�)

Ψ(�)

)ν

∼ exp

(
ν · Ψ(s) − Ψ(�)

Ψ(�)

)
= exp(O(ν−1)) ∼ 1,

thereby completing the proof of assertion (iii).

Let us continue with the proof of Theorem 1.2. Note that Lemma 2.2 implies

P
[
N (Hd(ν, p)) = n

]
∼ 1√

2πσN
exp

(
− (n − (1 − ρ)ν)2

2σ2
N

)
. (3.7)
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It follows also from our previous result [3] on the local limit theorem for N (Hd(n, p)).

Since |s − ρ| = O(ν−1) by (3.2), we can express σ2
N (in (2.6)) in terms of s:

σ2
N =

ρ
(
1 − ρ + c(d − 1)(ρ − ρd−1)

)
(1 − c(d − 1)ρd−1)2

· ν

∼
s
(
1 − s + c(d − 1)(s − sd−1)

)
(1 − c(d − 1)sd−1)2

· ν. (3.8)

Further, since |n − (1 − ρ)ν| < O(1) by (3.2), we have from (3.7) and (3.8)

P
[
N (Hd(ν, p)) = n

]
∼ (2π)−1/2

(
s
(
1 − s + c(d − 1)(s − sd−1)

)
(1 − c(d − 1)sd−1)2

· ν
)−1/2

. (3.9)

Via Stirling’s formula and n = (1 − s)ν, we can estimate the binomial coefficient(
ν

n

)
∼

(
ssν(1 − s)(1−s)ν

√
2πs(1 − s)ν

)−1
. (3.10)

Plugging (3.9) and (3.10) into (3.1), we obtain

cd(n, p) ∼
(
ν

n

)−1

· P
[
N (Hd(ν, p)) = n

]
· (1 − p)(

ν−n
d )+(nd)−(νd)

∼ ssν(1 − s)(1−s)ν · η · (1 − p)(
ν−n
d )+(nd)−(νd), (3.11)

where

η =

(
(1 − s)(1 − c(d − 1)sd−1)2

1 − s + c(d − 1)(s − sd−1)

)1/2

. (3.12)

Let us consider the cases d = 2 and d > 2 separately, because
(
ν
d

)
p2 = o(1) for d > 2,

while
(
ν
2

)
p2 = Θ(1) and therefore the asymptotics for (1 − p)(

ν−n
d )+(nd)−(νd) behave quite

differently.

Case 1: d = 2. Note first that
(
ν−n

2

)
+

(
n
2

)
−

(
ν
2

)
= s(s − 1)ν2, because n = (1 − s)ν. Using

p = c
ν−1

, we get

(1 − p)(
ν−n

2 )+(n2)−(ν2) = (1 − p)s(s−1)ν2

∼ exp

(
−

(
p +

p2

2

)
s(s − 1)ν2

)

∼ exp

(
− c

ν − 1
s(s − 1)

(
(ν − 1)(ν + 1) + 1

)
− 1

2

(
c

ν − 1

)2

s(s − 1)ν2

)

∼ exp

(
cs(1 − s)(ν + 1) +

c2

2
s(1 − s)

)
. (3.13)

Moreover, (3.12) simplifies to η = 1 − cs. Hence, recalling that ν = (1 − s)−1n and using

parts (i)–(iii) of Lemma 3.2, that is,

c =
ζ

1 − s

(
1 +

s

(1 − s)ν
+ O(ν−2)

)
, |s − �| = O(ν−1) and(

(1 − s)s
s

1−s exp

(
ζs

1 − s

))n

∼
(

(1 − �)�
�

1−� exp

(
ζ�

1 − �

))n

,
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we can estimate (3.11) as

c2(n, p) ∼ ssν(1 − s)(1−s)ν · (1 − cs) exp

(
cs(1 − s)ν + cs(1 − s) +

c2

2
s(1 − s)

)

∼ s
sn

1−s (1 − s)n
(

1 − ζs

1 − s

)
exp

(
ζsn

1 − s
+

ζs2

1 − s
+ ζs +

ζ2s

2(1 − s)

)

=

(
s

s
1−s (1 − s) exp

(
ζs

1 − s

))n(
1 − ζs

1 − s

)
exp

(
ζs2

1 − s
+ ζs +

ζ2s

2(1 − s)

)

∼
(
�

�
1−� (1 − �) exp

(
ζ�

1 − �

))n(
1 − ζ�

1 − �

)
exp

(
ζ�2

1 − �
+ ζ� +

ζ2�

2(1 − �)

)

=
(
� exp(ζ)

) �n
1−� (1 − �)n

(
1 − ζ�

1 − �

)
exp

(
ζ(2 + ζ)�

2(1 − �)

)
. (3.14)

Finally, for d = 2 the unique solution to (1.3) is just � = exp(−ζ), so we have

�

1 − �
=

1

eζ − 1
.

Plugging these into (3.14), we obtain

c2(n, p) ∼ (1 − e−ζ)n
(

1 − ζ

eζ − 1

)
exp

(
ζ(2 + ζ)

2(eζ − 1)

)
, (3.15)

as desired.

Case 2: d > 2. For 0 < α < 1, using

αd
(
αν

d

)−1(
ν

d

)
=

d−1∏
i=0

α(ν − i)

αν − i
=

d−1∏
i=0

(
1 +

(1 − α)i

αν − i

)
= 1 +

1 − α

αν

(
d

2

)
+ O(ν−2),

and n = (1 − s)ν, we estimate(
n

d

)(
ν

d

)−1

+

(
ν − n

d

)(
ν

d

)−1

=

(
(1 − s)ν

d

)(
ν

d

)−1

+

(
sν

d

)(
ν

d

)−1

= (1 − s)d
(

1 − s

(1 − s)ν

(
d

2

)
+ O(ν−2)

)
+ sd

(
1 − 1 − s

sν

(
d

2

)
+ O(ν−2)

)

= (1 − s)d + sd − 1

ν

(
d

2

)(
s(1 − s)d−1 + (1 − s)sd−1

)
+ O(ν−2)

and thus we have(
n

d

)
+

(
ν − n

d

)
−

(
ν

d

)
(3.16)

=

(
ν

d

)(
(1 − s)d + sd − 1

)
−

(
ν

d

)
1

ν

(
d

2

)(
s(1 − s)d−1 + (1 − s)sd−1

)
+ O(νd−2).
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Because
(
ν−1
d−1

)
p = c = Θ(1), we have

(
ν
d

)
p2 = o(1) for d > 2, and hence

(1 − p)(
ν
d)
(

(1−s)d+sd−1
)

∼ exp

(
−p

(
ν

d

)(
(1 − s)d + sd − 1

))

= exp

(
cν

d

(
1 − sd − (1 − s)d

))
(3.17)

and

(1 − p)−(νd)
1
ν (

d
2)
(
s(1−s)d−1+(1−s)sd−1

)
∼ exp

(
p

(
ν

d

)
1

ν

(
d

2

)(
s(1 − s)d−1 + (1 − s)sd−1

))

= exp

(
p

(
ν − 1

d − 1

)
d − 1

2

(
s(1 − s)d−1 + (1 − s)sd−1

))

∼ exp

(
c(d − 1)

2

(
s(1 − s)d−1 + (1 − s)sd−1

))
. (3.18)

Putting (3.16)–(3.18) together, we get

(1 − p)(
n
d)+(ν−n

d )−(νd)

∼ exp

(
cν

d
(1 − sd − (1 − s)d) +

c(d − 1)

2
((1 − s)sd−1 + s(1 − s)d−1)

)
. (3.19)

Before proceeding with further computations toward the asymptotic estimation of cd(n, p),

we note that taking d = 2 in the estimate (3.19) yields

(1 − p)(
n
2)+(ν−n

2 )−(ν2) ∼ exp
(
cs(1 − s)(ν + 1)

)
,

which differs by a factor of

exp

(
c2

2
s(1 − s)

)

from the estimate (3.13), the reason being that
(
ν
d

)
p2 = o(1) for d > 2, while

(
ν
2

)
p2 = Θ(1).

This in turn results in an extra factor of

exp

(
c2

2
�(1 − �)

)

in the estimate (3.14) of c2(n, p), in comparison to the estimate of cd(n, p) when taking

d = 2 in (3.24).

We now return to the computation of (3.19). Using

c = ζ(1 − s)1−d

(
1 +

(
d

2

)
s

(1 − s)ν
+ O(ν−2)

)

by Lemma 3.2(i) and recalling that ν = (1 − s)−1n,

cν

d
=

ζn

d(1 − s)d
+

ζ(d − 1)s

2(1 − s)d
+ O(n−1),
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and thus

cν

d
(1 − sd − (1 − s)d) +

c(d − 1)

2
((1 − s)sd−1 + s(1 − s)d−1)

=
ζn

d(1 − s)d
(1 − sd − (1 − s)d) +

ζ(d − 1)s

2(1 − s)d
(1 − sd − (1 − s)d)

+
ζ(1 − s)1−d(d − 1)

2
((1 − s)sd−1 + s(1 − s)d−1) + O(n−1)

=
ζn

d(1 − s)d
(1 − sd − (1 − s)d) +

ζ(d − 1)s

2(1 − s)d
(1 − sd − (1 − s)d)

+
ζ(d − 1)s

2

((
s

1 − s

)d−2

+ 1

)
+ O(n−1). (3.20)

Using this, we can restate (3.19) as

(1 − p)(
n
d)+(ν−n

d )−(νd)

∼ exp

(
ζ
(
1 − sd − (1 − s)d

)
n

d(1 − s)d
+

ζ(d − 1)s(1 − sd − (1 − s)d)

2(1 − s)d

)

· exp

(
ζ(d − 1)s

2

((
s

1 − s

)d−2

+ 1

))
. (3.21)

For the same reasons, we estimate (3.12) as

η =

(
(1 − s)(1 − c(d − 1)sd−1)2

1 − s + c(d − 1)(s − sd−1)

)1/2

= (1 − c(d − 1)sd−1)
(
1 + c(d − 1)(1 − s)−1(s − sd−1)

)−1/2

=

(
1 − ζ(d − 1)

(
s

1 − s

)d−1

+ O(n−1)

)(
1 +

ζ(d − 1)(s − sd−1)

(1 − s)d
+ O(n−1)

)−1/2

=

(
1 − ζ(d − 1)

(
s

1 − s

)d−1)(
1 +

ζ(d − 1)(s − sd−1)

(1 − s)d

)−1/2

+ O(n−1). (3.22)

Plugging (3.21) and (3.22) into (3.11) and recalling that ν = (1 − s)−1n, we obtain

cd(n, p) ∼ ssν(1 − s)(1−s)ν(1 − p)(
ν−n
d )+(nd)−(νd) · η

∼ s
sn

1−s (1 − s)n exp

(
ζ
(
1 − sd − (1 − s)d

)
n

d(1 − s)d

)

· exp

[
ζ(d − 1)s(1 − sd − (1 − s)d)

2(1 − s)d
+

ζ(d − 1)s

2

((
s

1 − s

)d−2

+ 1

)]

·
(

1 − ζ(d − 1)

(
s

1 − s

)d−1)(
1 +

ζ(d − 1)(s − sd−1)

(1 − s)d

)−1/2

. (3.23)
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Finally, using Lemma 3.2(ii)–(iii), that is, |s − �| = O(ν−1) and(
s

s
1−s (1 − s) exp

(
ζ
(
1 − sd − (1 − s)d

)
d(1 − s)d

))n

∼
(
�

�
1−� (1 − �) exp

(
ζ
(
1 − �d − (1 − �)d

)
d(1 − �)d

))n

,

we estimate (3.23) as

cd(n, p) ∼
(

(1 − �)�
�

1−� exp

(
ζ(1 − �d − (1 − �)d)

d(1 − �)d

))n

· exp

(
ζ(d − 1)�(1 − �d − (1 − �)d)

2(1 − �)d
+

ζ(d − 1)�

2

((
�

1 − �

)d−2

+ 1

))

·
(

1 − ζ(d − 1)

(
�

1 − �

)d−1)(
1 +

ζ(d − 1)(� − �d−1)

(1 − �)d

)−1/2

, (3.24)

which is exactly the formula stated in Theorem 1.2.

4. The conditional edge distribution: proof of Theorem 1.3

Let J ⊂ (0,∞) and I ⊂ R be compact sets, and let 0 < p = p(n) < 1 be a sequence such

that ζ = ζ(n) =
(
n−1
d−1

)
p ∈ J for all n. All asymptotics in this section are uniform in ζ.

To compute the limiting distribution of the number of edges of Hd(n, p) given that

this random hypergraph is connected, we choose ν > n as in Section 3. Thus, letting

c =
(
ν−1
d−1

)
p, we know from Section 3 that c > (d − 1)−1, and that the solution 0 < ρ < 1 to

(1.1) satisfies (1 − ρ)ν � n < (1 − ρ)ν + O(1). Now, we investigate the random hypergraph

Hd(ν, p) given that N (Hd(ν, p)) = n. Then the largest component of Hd(ν, p) is a random

hypergraph Hd(n, p) given that Hd(n, p) is connected. Therefore,

P
[
|E(Hd(n, p))| = m | Hd(n, p) is connected

]
(4.1)

= P
[
M(Hd(ν, p)) = m | N (Hd(ν, p)) = n

]
=

P
[
M(Hd(ν, p)) = m, N (Hd(ν, p)) = n

]
P
[
N (Hd(ν, p)) = n

] .

Furthermore, as |n − (1 − ρ)ν| < O(1) by (3.2), we can apply Lemma 2.2 to get an explicit

expression for the right-hand side of (4.1). Namely, using (2.10) with x = O(1), for any

integer m such that ν−1/2y ∈ I and y = m − (1 − ρd)
(
ν
d

)
p satisfying ν−1/2y ∈ I , we obtain

P
[
|E(Hd(n, p))| = m | Hd(n, p) is connected

]
∼ 1√

2π
·
(

σ2
N

(σ2
Nσ2

M − σ2
NM)

)1/2

exp

(
− σ2

N
2(σ2

Nσ2
M − σ2

NM)
· y2

)
. (4.2)

From (2.6) and (2.12), we have

σ2
N =

ρ
(
1 − ρ + c(d − 1)(ρ − ρd−1)

)
(1 − c(d − 1)ρd−1)2

· ν,

σ2
Nσ2

M − σ2
NM =

cρ
((

1 − ρ + c(d − 1)(ρ − ρd−1)
)
(1 − ρd) − dcρ(1 − ρd−1)2

)
d
(
1 − c(d − 1)ρd−1

)2
· ν2.
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Thus we have

σ2
N

σ2
Nσ2

M − σ2
NM

=
d
(
1 − ρ + c(d − 1)(ρ − ρd−1)

)
c
((

1 − ρ + c(d − 1)(ρ − ρd−1)
)
(1 − ρd) − dcρ(1 − ρd−1)2

) · 1

ν

=
d

c ν

(
1 − ρd − dcρ(1 − ρd−1)2

1 − ρ + c(d − 1)(ρ − ρd−1)

)−1

. (4.3)

In order to reformulate (4.3) in terms of n, ζ, and the solution � to (1.3), we just

observe that |c − ζ(1 − ρ)1−d| = O(ν−1) and |ρ − �| = O(ν−1) by Lemma 3.2, and that

|ν − (1 − ρ)−1n| = O(ν−1). Using these we obtain(
σ2
N

σ2
Nσ2

M − σ2
NM

)−1

=
cν

d

(
1 − ρd − dcρ(1 − ρd−1)2

1 − ρ + c(d − 1)(ρ − ρd−1)

)

∼ ζn

d(1 − ρ)d

(
1 − ρd − dζ(1 − ρ)1−dρ(1 − ρd−1)2

1 − ρ + ζ(1 − ρ)1−d(d − 1)(ρ − ρd−1)

)−1

=
ζ

d(1 − ρ)d

(
1 − ρd − dζρ(1 − ρd−1)2

(1 − ρ)d + ζ(d − 1)(ρ − ρd−1)

)
· n

∼ ζ

d(1 − �)d

(
1 − �d − dζ�(1 − �d−1)2

(1 − �)d + (d − 1)ζ(� − �d−1)

)
· n

= σ̂2, (4.4)

and

(1 − ρd)

(
ν

d

)
p = (1 − ρd)

ν

d
c ∼ (1 − ρd)

n

d(1 − ρ)
ζ(1 − ρ)1−d =

ζ(1 − �d)

d(1 − �)d
· n.

Plugging (4.4) into (4.2) we have

P
[
|E(Hd(n, p))| = m | Hd(n, p) is connected

]
∼ 1√

2πσ̂
exp

(
− y2

2σ̂2

)
,

as desired.
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[13] Karoński, M. and �Luczak, T. (1997) The number of connected sparsely edged uniform

hypergraphs. Discrete Math. 171 153–168.

[14] �Luczak, T. (1990) On the number of sparse connected graphs. Random Struct. Alg. 1 171–173.

[15] O’Connell, N. (1998) Some large deviation results for sparse random graphs. Probab. Theory

Rel. Fields 110 277–285.

[16] Pittel, B. and Wormald, N. C. (2005) Counting connected graphs inside out. J. Combin. Theory

Ser. B 93 127–172.

[17] Schmidt-Pruzan, J. and Shamir, E. (1985) Component structure in the evolution of random

hypergraphs. Combinatorica 5 81–94.

[18] Stepanov, V. E. (1970) On the probability of connectedness of a random graph gm(t). Theory

Probab. Appl. 15 55–67.

https://doi.org/10.1017/S0963548314000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000029

