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The instability nature of the Vogel–Escudier flow
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The instability of the steady axisymmetric flow in a sealed elongated cylinder, driven
by a rotating end disk, is studied with the help of numerical simulations. It is argued
that this instability is of the shear-layer type, being caused by the presence of an
inflection point in the radial distribution of axial velocity of the base circulatory flow.
The disturbance kinetic energy is localized in both the radial and axial directions,
reaching its peak near the rotating disk, where the magnitude of base-flow axial
velocity is close to its maximum. The critical Reynolds number, Recr, is found to be
nearly h-independent for h > 5; h is the cylinder length-to-radius ratio. It is shown
that the sidewall co-rotation suppresses the instability. As the co-rotation increases,
the centrifugal instability becomes the most dangerous, i.e. determines Recr. Physical
explanations are given for the stabilizing effect of the co-rotation, which is stronger
(weaker) for the shear-layer (centrifugal) instability.
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1. Introduction
The close relation between vortex breakdown (VB) and hydrodynamic stability was

recognized from early VB studies. The visualization of the flow above a delta wing by
Lambourne & Brayer (1961) demonstrated two VB patterns: helical and bubble-like.
The transformation of an axisymmetric vortex core into a helix or multi-helix structure
can occur only due to the three-dimensional (3D) instability. The nature of bubble-
like VB was not so obvious and different conjectures were proposed to explain it: (a)
inertial wave roll-up (Benjamin 1962), (b) collapse of the near-axis boundary layer
(Hall 1972), (c) flow separation (Leibovich 1984), (d) fold catastrophe (Trigub 1985),
and (e) transition from convective to absolute instability (Olendraru et al. 1996). More
detailed discussions of VB interpretations can be found in Escudier’s (1988) review
and in Shtern (2012).

A breakthrough in the understanding of the nature of VB was achieved due to the
fundamental studies of swirling flows in a sealed cylindrical container. The advantages
of exploring VB in a confined flow are that (i) the role of control parameters can be
easily recognized in the absence of ambient disturbances and (ii) the flow geometry
and the boundary conditions are simple and well defined, allowing meaningful
comparisons of experimental and numerical results.

† Email address for correspondence: herrada@us.es

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

34
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:herrada@us.es
https://doi.org/10.1017/jfm.2015.34


The instability nature of the Vogel–Escudier flow 591

The VB flow driven by one rotating end disk was first experimentally studied
by Vogel (1968). The comprehensive experiments by Escudier (1984) discovered a
variety of VB patterns depending on the aspect ratio, h = H/R, and the Reynolds
number, Re = ΩR2/ν, where H and R are the cylinder length and radius, Ω is the
angular velocity of the rotating disk, and ν is the kinematic viscosity of the fluid.
Numerical simulations, starting from the pioneering paper of Lopez (1990), agreed
with the experimental results and helped to better understand the VB nature.

The stability investigations by Gelfgat, Bar-Yoseph & Solan (1996, 2001) clearly
demonstrated that the appearance of a VB bubble is a manifestation of local flow
reversal, which can occur in steady axisymmetric flow with no instability, while the
instability does not necessarily result in the appearance of a VB bubble.

It was recently argued that the swirl-decay mechanism (SDM) causes counterflows
in swirling motions and, in particular, the emergence of VB bubbles. In a few words,
the SDM is the following. In a rapidly rotating flow, the centrifugal force induces a
radial gradient of pressure p, according to the cyclostrophic balance, ∂p/∂r = ρv2/r,
where ρ is the fluid density, v is the swirl velocity, and r is the distance from the
rotation axis. The reduction of pressure near the axis, compared with its peripheral
value, is larger (smaller) in the vicinity (downstream) of a swirl source because the
swirl decays, e.g. due to friction at the sidewall. Therefore, the near-axis pressure
is smaller (larger) in the vicinity of (away from) the swirl source. This pressure
difference drives the backflow near the axis. If a swirling flow converges to the axis,
the near-axis pressure reduces, decelerating and reversing the downstream flow, i.e. a
VB bubble develops.

The SDM theory initially aimed to explain the elongated counterflows occurring
in hydrocyclones and vortex tubes (Shtern & Borissov 2010a,b). Then SMD helped
explain the development of double counterflows in a vortex combustor and in a
vortex trap (Shtern, Torregrosa & Herrada 2011a,b). Next, it was found that SMD
helps to understand the chain-like process of the emergence of VB bubbles in
the Vogel–Escudier flow (Shtern, Torregrosa & Herrada 2012). The analysis of
experimental results by Mununga et al. (2014) revealed that SMD helps explain the
opposite VB-control effects caused by (a) a small disk, embedded in the still endwall,
whose co-rotation enhances VB, and (b) a central rod, whose co-rotation suppresses
VB (Husain, Shtern & Hussain 2003). Thus, SDM has been shown to be relevant for
understanding VB physics and different control strategies.

The experimental and numerical studies by Escudier (1984), Sorensen, Naumov &
Mikkelsen (2006), Sorensen et al. (2009), and Sorensen, Naumov & Okulov (2011)
documented that, as Re increases, the steady axisymmetric VB bubble first develops
for h < 3.2. For larger h, the flow first becomes unstable with respect to 3D time-
oscillatory disturbances with m = 3 for 3.2 < h < 4.3, m = 2 for 4.3 < h < 5.2, and
m= 4 for 5.2< h< 5.5, with m being the azimuthal wavenumber. The fact that the
flow becomes 3D and time-dependent for Re exceeding its critical value Recr, does
not prevent the emergence of a VB bubble (which is 3D and time-dependent here) as
Re further increases (Kulikov et al. 2014).

Thus, the prior studies revealed a number of interesting and important stability
features. However, the shear-layer character of the Vogel–Escudier-flow instability has
not been described. The goal of this paper is to explore and highlight the nature
of this instability. To this end, we consider elongated cylindrical containers (h� 1)
where three flow regions can be clearly distinguished at Re = Recr: the Kármán
boundary layer near the rotating disk, the creeping motion near the stationary disk,
and the circulation region (CR) in between. It is found that the instability emerges
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FIGURE 1. Schematic of the problem.

in the CR central part and the critical characteristics, namely Recr ≈ 3100, m= 4 and
ω= 0.4, are nearly h-invariant for h> 5, where ω is the disturbance frequency.

In the CR, (a) the flow dependence on the axial coordinate z is weak compared
with that near the end disks and (b) the radial velocity is significantly smaller than the
axial and swirl velocities. Features (a) and (b) allow an analysis of the circulatory flow
stability in the framework of known instability mechanisms working in parallel flows.
In particular, we also consider the stability of a z-independent swirling counterflow
and compare the results with those for the Vogel–Escudier flow. Based on this analysis,
we argue that the Vogel–Escudier-flow instability is of the shear-layer type.

Finally, we explore effects of additional co-rotation of the sidewall on the base-flow
pattern and stability. It is known that the co-rotation suppresses VBs (Shtern et al.
2012). Here we show that the co-rotation suppresses instability as well. As the co-
rotation intensifies, the centrifugal instability first develops as Re increases.

In this paper, we formulate the problem (§ 2), describe the numerical technique (§ 3),
explore the base-flow features (§ 4) and its stability (§ 5), and the stability of a related
one-dimensional flow (§ 6), describe the effects of additional rotation of the sidewall
(§ 7), and summarize the results (§ 8).

2. Problem formulation
2.1. Flow geometry

Figure 1 is a schematic drawing of the problem geometry. We consider the flow of a
viscous incompressible fluid in a cylindrical container of length H and radius R driven
by the end disk at z= 0, which rotates with angular velocity Ω . The two main control
parameters are the aspect ratio h = H/R and the Reynolds number, Re = ΩR2/ν,
characterizing the swirl strength, where ν is the fluid kinematic viscosity. We also
consider the flow with additional co-rotation of the sidewall (§ 7). The co-rotation
parameter, Ωs, is the sidewall-to-disk angular velocity ratio.

2.2. Governing equations

Using R, 1/Ω, ΩR, and ρΩ2R2 as scales for length, time, velocity, and pressure,
respectively, renders all variables dimensionless. The flow is governed by the Navier–
Stokes equations for a viscous incompressible fluid, whose dimensionless form is:

1
r
∂(ru)
∂r
+ 1

r
∂v

∂φ
+ ∂w
∂z
= 0, (2.1)

∂u
∂t
+ u

∂u
∂r
+ v

r
∂u
∂φ
+w

∂u
∂z
− r−1v2 =−∂p

∂r
+ 1

Re

(
∇2u− r−2u− 2r−2 ∂v

∂φ

)
, (2.2)
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∂v

∂t
+ u

∂v

∂r
+ v

r
∂v

∂φ
+w

∂v

∂z
+ r−1uv =−r−1 ∂p

∂φ
+ 1

Re

(
∇2v − r−2v + 2r−2 ∂u

∂φ

)
, (2.3)

∂w
∂t
+ u

∂w
∂r
+ v

r
∂w
∂φ
+w

∂w
∂z
=−∂p

∂z
+ 1

Re
∇2w, (2.4)

where ∇2 ≡ (1/r)(∂/∂r)(r(∂/∂r))+ (1/r2)(∂2/∂φ2)+ (∂2/∂z2) is the Laplace operator
for a scalar field, (u, v, w) are the velocity components in cylindrical coordinates
(r, φ, z), t is time, and p is pressure. We denote the list (u, v, w, p) as V , and look
for a solution of the system (2.1)–(2.4) in the form

V = V b(r, z)+ εV d(r, z) exp(imφ − iωt)+ c.c., (2.5)

where subscripts ‘b’ and ‘d’ denote the base flow and a disturbance, respectively;
c.c. denotes the complex conjugate of the preceding term; ε � 1 is an amplitude;
integer m is an azimuthal wavenumber; and ω=ωr + iωi is a complex number to be
found, with frequency ωr and growth rate of disturbance ωi. For a decaying (growing)
disturbance, ωi is negative (positive). The equations governing the base flow result
from substituting (2.5) in system (2.1)–(2.4) and setting ε = 0. The terms of order
O(ε) constitute equations governing infinitesimal disturbances.

2.3. Boundary conditions
The conditions for the base flow are the following.

(i) No-slip at the walls:
ub = vb =wb = 0 at z= h and 0< r< 1 (still disk),
ub = vb =wb = 0 at r= 1 and 0< z< h (sidewall),
ub =wb = 0, vb = r at z= 0 and 0< r< 1 (rotating disk).

(ii) Regularity at the axis: ub = vb = 0, ∂wb/∂r= 0 at r= 0 and 0< z< h.

For the problem where the sidewall also rotates, the conditions at the sidewall are
modified to ub =wb = 0 and vb =Ωs at r= 1 and 0< z< h.

The conditions for disturbances are the following.

(i) No-slip at all walls: ud = vd =wd = 0.
(ii) Regularity at the axis:

ud = vd = ∂wd/∂r= 0 at m= 0;
wd = 0, ∂ud/∂r= 0, and ud +mvd = 0 at |m| = 1;
ud = vd =wd = 0 for |m|> 1.

Since the equations and boundary conditions are uniform for disturbances, there is a
trivial (zero) solution. Non-zero solutions exist at eigenvalues of ω. A disturbance with
ωi = 0 is neutral. Neutral disturbances corresponding to the minimal Re at prescribed
m are marginal. The marginal disturbance corresponding to the minimal Re among all
m values is critical. Corresponding parameters ωr and m are also named as marginal
and critical (Sorensen et al. 2009).

3. Numeric technique
Equations for both the basic flow and disturbances are discretized using the same

spatial mesh with nr and nz Chebyshev collocation points along the r and z axes,
respectively. We mostly use nr = 41 and nz= 66. For prescribed Re, h, and Ωs, the
resulting set of 4(nr × nz) discrete nonlinear equations for the basic flow are solved
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iteratively using a Newton–Raphson procedure. Once the base flow is computed, and
given an azimuthal wavenumber m, we use MATLAB subroutine EIGS to calculate
the eigenvalues of the system of 4(nr× nz) discrete linear equations.

At a prescribed m, fixing h (or Ωs) and changing Ωs (or h) to compute the marginal
Recr, the function f (Re)= ω∗i , where ω∗i is the largest imaginary part of eigenvalues
for a given m, is driven to zero, f (Re) = 0, by using a Newton–Raphson method.
This method fails when the marginal curve has folding points. In the folding case, a
different approach is used. Both the basic and the perturbation problems are solved in
the (h,Re) or (Ωs,Re) plane in the region of interest to compute the surface ω∗i (h,Re)
(or ω∗i (Ωs,Re)). Cubic interpolation is then used to draw the contour ω∗i (h,Re) which
provide the marginal curve.

The numerical technique was verified by using independent codes and by comparing
our results with the numerical and experimental results obtained by Sorensen et al.
(2009), presented in figure 12, and PIV measurements by Kulikov et al. (2014) related
to Recr and ωr. To draw streamlines of base flow, we use the Stokes stream function,
Ψ , ub =−r−1∂Ψ/∂z, wb = r−1∂Ψ/∂r.

4. Features of the Vogel–Escudier flow in elongated cylinders

To understand the instability nature of the Vogel–Escudier flow, it is helpful to
consider an elongated container. In this section, we discuss some important features
of the base flow in cylinders with h� 1.

4.1. Formation of global counterflow
It is known that a swirling flow in a long cylindrical container with one rotating end
disk is multicellular for Re�1 (Hills 2001). We show here how this multicellular flow
transforms into a global counterflow as Re increases. Figure 2 represents streamlines,
i.e. contours of Ψ = const., of the meridional motion driven by the rotating disk
located at z= 0 in a cylinder with h= 10.

Figure 2(a) depicts the six flow cells existing at Re= 1. Our simulations show that
the magnitude of Ψ rapidly decays as z increases. This agrees with the known feature
that Ψ decays at least as exp(−λrz) and oscillates as sin(λiz) for small Re; λr= 4.466
and λi = 1.468 (Shankar 1998). In order to better observe the slow motion near the
stationary disk, located at z= 10, Ψ is multiplied by exp(λrz) in figure 2(a).

As Re increases, the cell adjacent to the rotating disk (left-hand cell in figure 2a–d)
extends while the other cells move toward the stationary disk, shrink, and disappear.
There are three cells at Re= 2000 (figure 2b), one large and two small cells for Re=
4000 (figure 2c). The second cell shown in figure 2(b) separates from the axis and
shrinks near the sidewall as Re further increases, as figure 2(c) illustrates for Re =
4000. The near-sidewall cell disappears, the large and small cells merge, and the flow
becomes one-cellular at Re= 5000 (figure 2d).

The solid curve in figure 3 depicts the dependence on Re of maximal axial extent
L of the cell adjacent to the rotating disk. Here, L is the distance from the rotating
disk to the point where the velocity at the axis changes its sign the first time (see
figure 2a). The dependence L(Re) can be approximated by the linear relation, L =
4+ 0.00134 Re, depicted by the dots in figure 3. In the range 2000< Re< 4480, the
curve and dots merge within the accuracy displayed in figure 3.

Below we discuss an important feature for the instability development: the
appearance of a local maximum of the swirl vorticity as Re increases.
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FIGURE 2. Development of global counterflow as Re increases at h = 10; Re = 1 (a),
2000 (b), 4000 (c), and 5000 (d).
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FIGURE 3. Dependence of L (see figure 2a) on the Reynolds number. The dotted discrete
points represent the linear approximation of the numerical data (solid curve).

4.2. Formation of a local maximum of swirl vorticity
At the axis, the swirl vorticity is ωz = 2Ωa, where Ωa is the angular velocity at
r = 0, which is prescribed at the rotating disk (z = 0) as Ωa = 1. Figure 4 presents
the distribution of Ωa along the axis in the vicinity of z= 0 for the Re values shown
near the curves. Curve Re = 1 in figure 4 depicts the distribution mostly governed
by viscous diffusion of ωz from the rotating disk; the role of meridional circulation
(figure 2) is negligible for Re 6 1. As Re increases, the circulation contribution
becomes remarkable. The backflow near the axis transports ωz toward the disk thus
diminishing the diffusion of ωz away from the disk. Comparison of curves Re = 1
and Re = 100 in figure 4 illustrates this effect: Ωa is significantly reduced near the
disk at Re= 100 compared with that at Re= 1.

For larger Re, the boundary layer develops near the rotating disk (von Kármán
1921). The dashed curve in figure 4 depicts the distribution of Ωa, corresponding to
Kármán’s solution at Re= 500. This curve and those for Re= 1 and 100 illustrate the
formation of the boundary layer as Re increases.
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FIGURE 4. Development of a local maximum of angular velocity Ωa on the axis as Re
(shown near the curves) increases; the dashed curve corresponds to the Kármán boundary
layer.
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FIGURE 5. Velocity on the axis near the rotating disk at Re = 500; the dashed curve
corresponds to the Kármán boundary layer.

The distribution of Ωa, depicted by solid curve Re= 500 in figure 4, qualitatively
differs from those shown by the other curves: there is a local maximum of Ωa
near z= 0.8. The maximum appears due to the intensified meridional circulation, as
discussed below.

The circulatory flow (left-hand cell in figure 2a–d) transports the angular
momentum, rv, from the disk periphery along the sidewall and then toward the
axis, thus increasing the swirl vorticity there. As figure 5 illustrates, the backflow
velocity magnitude, −wa, at the axis, r = 0, is maximal in the vicinity of the local
maximum of Ωa (figure 4). The dashed curve in figure 5 depicts Kármán’s solution
for −wa, which saturates to 0.885/Re1/2 outside the boundary layer as z increases.

The difference between the solid and dashed curves in figures 4 and 5 is provided
by the meridional circulation which develops due to the presence of the sidewall. This
flow transformation causes an important change in the pressure pattern discussed next.

4.3. Alteration of local minimum of pressure
The local maximum of swirl vorticity results in a local minimum of pressure. The
cyclostrophic balance, ∂p/∂r = v2/r, and the solid-body swirl distribution, v = Ωar,
occurring near the axis, yield that ∂p/∂r =Ω2

a r, i.e. the pressure is minimal on the
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FIGURE 6. (Colour online) Pressure contours near the rotating disk for Re=1 (a) and 500
(b). The pressure minimum location on the axis, r= 0, shifts for larger z as Re increases.
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FIGURE 7. (Colour online) Azimuthal vorticity (a) and stream function (b) contours at
Re= 3100 and h= 8. The dark contours are positive and the light contours negative.

axis at the z value where Ωa is maximal. Figure 6 illustrates that the location of the
pressure minimum at the axis, r= 0, shifts away from the rotating disk, z= 0, as Re
increases. This shift occurs because the pressure drop across the Kármán boundary
layer, 1pK = 0.3825/Re, decreases while the pressure drop due to the meridional
circulation, 1pc, increases, as Re grows. For example, 1pK = 0.000765 and 1pc =
0.005 at Re = 500. The pmin location at Re = 500 (figure 6b) is close to the Ωamax
location (figure 4). As Re further increases, the pressure minimum location moves
away from the rotating disk.

4.4. Base-flow features at Re= 3100 and h= 8
Figure 7(a) depicts contours of azimuthal vorticity ωφ = ∂u/∂z − ∂w/∂r, which is
positive (dark contours) near the rotating disk and the sidewall, and negative (light
contours) near the axis. It is important to remark for the following stability study that
the negative vorticity has a local minimum at r= 0.46 and z= 2.95 (bold black point
in figure 7a).

Figure 7(b) depicts streamlines, Ψ = const., at these Re and h. The rotating disk
(z = 0) pushes the fluid to the periphery near the disk and develops the clockwise
circulation. The streamlines are packed in the Kármán boundary layer near the rotating
disk, form the annular jet near the sidewall (r = 1), turn around, and constitute the
backflow near the axis (r = 0). Here, Ψ reaches its maximal magnitude at r = 0.68
and z= 1.58 (bold black point in figure 7b).
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FIGURE 8. Distribution of velocity wa, angular velocity Ωa, and pressure p, as labelled,
at the axis for Re= 3100.

Figure 8 depicts the z-dependence at the axis, r= 0, of wa, Ωa, and p. Pressure p
is multiplied by 15 for convenient observation. Functions Ωa(z) and wa(z) have large-
magnitude derivatives near z=0, related to the Kármán boundary layer (see the dashed
curves in figures 4 and 5). In this layer, Ωa drops from 1 at z= 0 down to its local
minimum 0.033 at z= zK = 0.17= 9.2/Re1/2.

Pressure p and axial velocity wa reach their minimal values at z = 2.5 and 2.7
respectively, while Ωa reaches its local maximum at z= 2.7. Therefore, near these z
values, the circulation flow is strong. All quantities presented in figure 8 are negligibly
small for z> zc≈ 7 where Ωa< 1/Re, i.e. the flow is creeping in the region, zc< z< h.

4.5. Three sub-regions of base flow
Summarizing the above results, we can distinguish the following flow regions for
h� 1:

(i) a Kármán boundary layer in the range 0< z< zK = 9.2/Re1/2;
(ii) circulation flow in the range zK < z< zc;

(iii) creeping flow in the range zc < z< h.

The strength of the circulation flow (ii) can be characterized by the maximal
magnitude of velocity at the axis, |wa|max, or by Rea = |wa|maxRe. For example, we
have |wa|max = 0.0734 and Rea = 227 at Re = 3100. As shown below, the instability
emerges in the middle of the circulation region (ii).

5. Instability nature
5.1. Critical parameters for h> 3

Figure 9 depicts numerical data for the dependence of (a) critical Reynolds number,
Recr, and (b) critical disturbance frequency, ω, on cylinder aspect ratio h. The filled
square symbols represent our results, which are also denoted by letter ‘M’. The other
symbols, denoted by letter ‘S’, correspond to the results of Sorensen et al. (2009).
Numbers next to ‘M’ and ‘S’ in figure 9 indicate the values of m for the critical
disturbances. Our results agree with results of Sorensen et al. (2009) for h 6 5.5 and
reveal that Recr, ωcr, and mcr are nearlly h-independent for h> 5.5, as can be checked
with the numerical values shown in table 1.
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FIGURE 9. Critical values of (a) Reynolds number (Recr) and (b) disturbance frequency
(ω) for cylinder aspect ratio 3.2< h< 8. Letters mark our (M) and Sorensen et al.’s (S)
results, respectively. Numbers next to ‘M’ and ‘S’ indicate helix value m.

h Recr ωcr mcr

5.5 3077 0.4023 4
6.0 3077 0.4048 4
6.5 3082 0.4050 4
7.0 3085 0.4079 4
7.5 3087 0.4048 4
8.0 3071 0.4056 4

TABLE 1. Dependence of critical stability characteristics on aspect ratio h.

5.2. Spatial distribution of disturbance energy
To help understand why the critical parameters, presented in figure 9 and table 1, are
nearly h-independent, figure 10 depicts contours Ed = const. on the r–z plane for h
varying from 5.5 to 8 at Re= 3100; Ed is the time-averaged kinetic energy of critical
disturbance normalized by its maximal value, Edm. The outermost contours in figure 10
correspond to Ed = 0.1Edm and show that Ed is localized in the middle of circulation
flow region (ii). The maximum Ed is located at r= rE = 0.52 and z= zE = 2.3. These
values and the Ed contours are nearly the same for all h in figure 10.

Figure 11 depicts the z-dependence of Ed and the base-flow velocity at the axis,
−wa. Both Ed and −wa are normalized by their maximal values. Here, Ed is shown
at the radial coordinate of the Ed peak, i.e. r = 0.52 (figure 10). Figure 11 confirms
that the disturbance energy is localized in the middle of circulatory flow region (ii)
and shows that Ed vanishes both in the Kármán boundary layer region (i) and in the
region (iii) near z= h where the flow is creeping. This feature helps understand why
the critical parameters are invariant for 5.5< h< 8 (figure 9), and indicates that the
invariance can be expected for larger h as well.

Figure 12 depicts the r-dependence of base-flow velocities u, v,w, and disturbance
energy Ed at z = 2.3, which is the axial coordinate of the Ed peak, for h = 8 and
Re= Recr (table 1). The velocities are normalized by |w(0)| and Ed is normalized by
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FIGURE 10. (Colour online) Contours of constant kinetic energy Ed of critical disturbance
for h= 5.5 (a), 6 (b), 6.5 (c), 7 (d), 7.5 (e), and 8 (f ) at Re= 3100.
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FIGURE 11. z-dependence of base flow velocity, wa, at axis r= 0, and kinetic energy of
critical disturbance, Ed, at r= 0.52; for h= 8 and Re= Recr.

its maximal value. Figure 12 reveals that the radial velocity u of the base flow is very
small compared to the axial w and swirl v velocities, while maximal magnitudes of w
and v are comparable. Figure 12 also shows that Ed is localized in the radial direction
as well.
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FIGURE 12. r-dependence of base-flow velocities u, v, w, and kinetic energy of critical
disturbance Ed at z= 2.3, for h= 8 and Re= Recr.

The peak location of Ed (figure 10) is close to the location of minimum base-flow
azimuthal vorticity (see the bold black point in figure 7a). This feature implies that
the instability could be of the shear-layer type, caused by the presence of an inflection
point in the radial profile of axial velocity (see curve for w in figure 12).

Since Ed is localized in 1< z< 4 (figure 11), we guess that the instability is a result
of the strong counterflow developing in the central part of circulatory region (ii). The
central part of the flow also remains nearly invariant as h increases from 5.5 to 8.
A suitable characteristic of the strong counterflow is Rea = |wa|max Re, whose critical
value is 239 at h= 8.

6. Instability of a z-independent flow model
To test the above conjecture, we consider the z-independent flow, u= 0, v = V(r),

w = W(r), in an unbounded pipe, where V(r) and W(r) are the swirl and axial
velocities depicted by curves v and w in figure 12. To study the instability of this
flow, we use the representation

V = V b(r)+ εV d(r) exp(imφ + ikz− iωt)+ c.c., (6.1)

which is similar to (2.5), but modified for the z-independent base flow. Substituting
(6.1) in system (2.1)–(2.4) yields (to O(ε)) ordinary differential equations describing
the stability of the z-independent flow to infinitesimal disturbances. The uniform
boundary conditions for the disturbances are no-slip at the pipe wall, r = 1, and
regularity at the axis, r= 0.

To numerically solve this stability problem, we use a technique similar to that
described by Herrada, Pérez-Saborid & Barrero (2004). The equations and boundary
conditions are discretized by expanding the fields in terms of a truncated Chebyshev
series in the r direction. The resulting problem is solved using MATLAB subroutine
EIGS, which provides the entire spectrum of both eigenvalues and eigenfunctions.
Spurious eigenvalues are ruled out by comparing the results for different numbers,
nr, of collocation points in the r direction. After some calibration, nr= 40 is used.

The minimal (critical) marginal Rea, corresponding to m= 1, is rather small. This
feature is typical of the shear-layer instability. At m = 0, the marginal Rea is large
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FIGURE 13. Neutral curves of z-independent base flow for the m values shown near
the curves.

compared with those for m 6=0, i.e. three-dimensional disturbances are more dangerous
than the axisymmetric disturbances as table 2 illustrates.

Figure 13 depicts the neutral curves for m= 1, 2, 3 and 4 (shown near the curves).
Since in the 2D problem, the strong counterflow and the disturbance energy have
limited axial extent, for a reasonable comparison we focus on neutral disturbances
of small wavelength, i.e. large k, in the one-dimensional problem. To this end,
we compare the upper branches of the neutral curves for different m presented in
figure 13. The larger the m, the larger the range of k for growing disturbances will
be. For example, at m= 4, the k-range of growing disturbances saturates to 0< k< 5
as Rea → ∞. This wide range, indicating the instability inviscid character, is also
typical for the shear-layer instability.

It is reasonable that the critical Rea for the z-independent flow is smaller than that
for the Vogel–Escudier flow (see Rea in the Ωs = 0 row in table 3) because the
latter flow weakens for z < zw and z > zw (see zw value in table 3, discussed in the
next section). Based on the above results, we conclude that the shear-layer nature of
instability is common for the Vogel–Escudier and z-independent flows.

7. Stabilizing effect of additional co-rotation of sidewall
It is known that an additional co-rotation of the sidewall is an efficient means

to suppress VBs in the Vogel–Escudier flow (Shtern et al. 2012). Here we explore
whether the sidewall co-rotation can suppress the flow instability.

7.1. Shear-layer instability
Table 3 shows how the critical parameters depend on sidewall-to-disk angular velocity
ratio Ωs at h = 8. There zw (zE) is the axial coordinate where the magnitude of
base-flow axial velocity w (disturbance energy Ed) reaches its maximal value. Table 3
reveals that even a weak co-rotation causes a significant increase in Recr. In contrast
to Recr, the critical Rea is nearly invariant and even slightly decreases as Ωs grows.

Note that the z-location of the Ed peak (zE) is smaller than that for the maximum
of −wa (zw) for all Ωs values in table 3. Therefore, the instability develops where the
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m Rea k ωr

0 212 8.42 2.79
1 37.8 0.761 1.12
2 48.9 1.37 2.41
3 68.6 2.21 3.77
4 95.4 2.30 5.19
5 127 3.480 6.60

TABLE 2. Marginal and critical (bold) stability parameters for z-independent flow.

Ωs Re Rea zw zE ω M

0 3082 239 2.71 2.30 0.405 4
0.01 3272 233 3 2.58 0.406 4
0.02 3650 216 3.71 2.96 0.401 4
0.025 7361 201 7.93 5.06 0.364 4

TABLE 3. Dependence of marginal and critical (bold) parameters on sidewall co-rotation
Ωs for shear-layer instability at h= 8.

base flow decelerates near the axis. This feature agrees with the destabilizing effect
of base-flow deceleration typical of swirling and swirl-free jets (Shtern 2012).

Figure 14 depicts the z-dependence of (a) velocity wa, (b) angular velocity Ωa, and
(c) pressure p along the axis, r = 0, of the base flow for the parameter values listed
in table 3. Figure 14 reveals the following effects of the sidewall co-rotation.

(a) The co-rotation kills creeping flow in the region (iii) and induces a tornado-like
motion near the stationary disk. The swirling flow converges to the axis near
the disk and forms a strong near-axis jet directed away from the disk. The
motion mechanism is similar to that driving the Bödewadt flow. According to
the Bödewadt (1940) solution, the flow characteristics are ‘wavy’ at the axis.
The dotted lines in figure 14(b,c) are also ‘wavy’, having local minima and
maxima, near the stationary disk located at z= h= 8.

(b) The w maximal magnitude decreases as the co-rotation increases. This feature
follows from the swirl decay mechanism, SDM, which drives the meridional
circulation (§ 1). The co-rotation increases angular velocity Ωa near the stationary
disk (figure 14b) and thus reduces the swirl decay and the magnitude of pressure
variations in the z direction (figure 14c). This weakens circulation flow in the
region (ii).

(c) The location of the w maximal magnitude shifts toward the stationary disk as
Ωs increases. A local maximum of wa emerges near the rotating disk (dotted
and dashed curves in figure 14a). This is a precursor of a VB developing as Ωs

further increases (dash-dotted curve in figure 14a).

It is known that as Re increases in elongated (h> 2.7) cylinders with one rotating
disk and the other walls being stationary, a VB first develop near the rotating disk
(Iwatsu 2005). Even for the unsteady 3D flow in the h = 4.5 cylinder, a VB first
develops near the rotating disk at ReVB1 = 3200 and then near the stationary disk
at ReVB2 = 3800 (Kulikov et al. 2014). It is interesting that these numbers are only
slightly smaller than those for the steady axisymmetric flow.
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FIGURE 14. Effect of sidewall co-rotation on z-dependence of (a) base-flow velocity wa,
(b) angular velocity Ωa, and (c) pressure p on axis r= 0; for Ωs= 0, 0.01, 0.02 and 0.025
at critical parameters listed in table 3.

The physical reason for VB development as Ωs increases is also the SDM. The solid
curve in figure 14(b) shows that Ωa sharply drops from its maximal value Ωa = 1 at
z= 0, as z increases within the Kármán boundary layer. Figure 14(b) also shows that
Ωa drops from its local maximum at the centre of the circulation flow region (ii) (at
z= 2.7 in figure 14b) as z decreases. For larger Re, these Ωa maxima become more
separated and the in-between minimal Ωa decreases. Accordingly, pressure has two
local minima separated by the local maximum. The fluid moves against the increasing
pressure as z decreases from 3.52 down to 0.4 (see dotted line in figure 14c) which
decelerates the backflow (weakened by effect b) and causes its reversal as Re further
increases.

This emergence of a VB does not contradict the result of Shtern et al. (2012) that
the sidewall co-rotation suppresses VBs, because as Ωs increases in that work Re is
fixed, while here Re significantly grows. This growth occurs because increasing Ωs
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FIGURE 15. Dependence on sidewall angular velocity Ωs of marginal and critical
Reynolds numbers for the shear-layer (K) and centrifugal (T) instabilities at h = 8.
Azimuthal wavenumbers m of marginal disturbances are shown next to T and K.
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FIGURE 16. (Colour online) Energy contours for marginal disturbance at Ωs = 0.03,
Re= 4633, and m= 4.

weakens circulation flow (ii) and thus suppresses the shear-layer instability. For this
instability, Re= 7361 is marginal at Ωs= 0.025 (table 3), but the flow is centrifugally
unstable at these Re and Ωs as discussed below.

7.2. Centrifugal instability
The square symbols and curve K4 in figure 15 represent the marginal and critical
Reynolds numbers of the shear-layer instability listed in table 3. The other symbols
and curves in figure 15 represent the marginal and critical Reynolds numbers
related to a different kind of instability. They are marked by letter ‘T’ followed
by the corresponding value of m. The letters denote the Kelvin (K) and Taylor (T)
instabilities. The critical and marginal Re values, related to the new (T) instability,
are smaller than those related to the shear-layer (K) instability for Ωs > 0.0212.

To clarify the nature of T-instability, it is helpful to explore the spatial distribution
of time-averaged kinetic energy Ed for marginal disturbances. As an example,
figure 16 depicts the Ed contours of the disturbance at Ωs = 0.03, m = 4 and
Re = 4633. This Re is the smallest among those corresponding to the diamond
symbols in figure 15.

The energy distribution, depicted in figure 16, indicates that this disturbance is
localized near the sidewall. The maximum of disturbance energy Ed is located at
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FIGURE 17. r-dependence of base-flow velocities u, v and w at z = 1.85 for h = 8,
Ωs = 0.03, and Re= 4633.
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FIGURE 18. r-dependence of base-flow squared angular momentum (rv)2 and energy Ed
of marginal disturbance at z= 1.85 for Ωs = 0.03, Re= 4633, m= 4, and h= 8.

r = rE = 0.91 and z = zE = 1.85 (compare with rE = 0.52 and zE = 2.3 for the
shear-layer instability in figure 10). Therefore, it is instructive to analyse r-profiles of
base-flow velocity components at z= zE = 1.85, depicted in figure 17.

It is clear from figure 17 that the instability is not due to radial velocity u, since u
is negligibly small compared with v and w. The maximal swirl velocity, vm = 0.109,
is about three times the maximal axial velocity, wm = 0.0367. The fact that vm is
significantly larger than swirl velocity v = 0.03 of the sidewall, r = 1, indicates that
the angular momentum at z= 1.85 is mostly provided by the flow transport from the
rotating disk.

The dominance of v over u and w points out that the swirl velocity distribution
might be responsible for the instability. The instability can be centrifugal, similar to
that occurring in the Taylor–Couette flow (Chandrasekhar 1961). To check this guess,
figure 18 depicts the r-profiles of the base-flow squared angular momentum (rv)2 and
marginal-disturbance energy Ed at z= zE= 1.85. Both (rv)2 and Ed are normalized by
their maximal values in figure 18.
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Ωs Re ωr m

0 4510 0.18 3
0.035 4560 −0.137 3
0.055 4748 −0.0925 3

0 4706 −0.182 4
0.08 4982 0.056 4
0.12 5703 0.185 4

TABLE 4. Dependence of marginal and critical (bold) parameters on sidewall co-rotation
Ωs for centrifugal instability at h= 8.

According to the Rayleigh criterion, no centrifugal instability can develop if (rv)2
grows with r (Chandrasekhar 1961). The necessary condition for the centrifugal
instability is the decaying of (rv)2 as r increases (as occurs in the Taylor–Couette
flow where the inner (outer) cylinder is rotating (stationary)). The pattern in figure 18
exactly matches the Rayleigh criterion: Ed peaks in the middle of the region where
(rv)2 reduces as r increases; and Ed becomes negligibly small in the region where
(rv)2 grows with r.

In addition, the centrifugal instability induces Taylor cells in the circular Couette
flow (Chandrasekhar 1961). Similarly, figure 16 shows two peaks of Ed, indicative of
two cells of disturbance motion. The Taylor cells are steady, but become unsteady if
the base flow includes an axial stream. The frequency of time oscillations increases
with the base-flow axial velocity. This feature agrees with that found here: the
above discussed marginal disturbance has low frequency, ωi = −0.096, compared to
ωi= 0.405 for the shear-layer mode. It is reasonable that the frequency is low because
the axial flow is weak in relation to the swirl (compare figures 12 and 17).

Based on the above analysis, we conclude that the low-frequency instability is
centrifugal. The centrifugal instability also develops in the Vogel–Escudier flow,
i.e. at Ωs = 0 (see curves T3 and T4 in figure 15 and data in table 4 at Ωs = 0),
but for larger Re than Recr = 3100 at which the shear-layer instability emerges. As
Ωs increases, the azimuthal wavenumber m of critical disturbances also increases, as
figure 15 and table 4 show.

The critical Re values correspond to the shear-layer disturbance modes with m= 4
for 0<Ωs< 0.0212, and to the centrifugal disturbance modes with m= 3 for 0.0212<
Ωs < 0.0505, m= 4 for 0.0505<Ωs < 0.085, m= 5 for 0.085<Ωs < 0.1 (and so on).

Figure 19 depicts the energy distribution of critical disturbance at Re = 5192,
Ωs = 0.1, and m = 5. The pattern of Ed contours in figure 19, being similar to that
in figure 16, indicates that the instability remains centrifugal as Ωs and m increase
(figure 15). There are three Ed peaks in figure 19, while figure 16 depicts only two
Ed peaks, i.e. the number of critical-disturbance cells grows as Ωs and m increase.

The sidewall co-rotation suppresses the centrifugal instability as well: critical Re
grows with Ωs (as figure 15 and table 4 show). The stabilizing effect is stronger
(weaker) for the shear-layer (centrifugal) instability. The difference is due to the
sidewall co-rotation more strongly (weakly) suppressing the meridional motion near
the axis (wall) as Ωs increases.

Comparison of w profiles in figures 12 and 17, shows that the velocity at the axis,
r= 0, is drastically reduced at Ωs = 0.03 compared to that at Ωs = 0. The significant
shear-layer characteristic, wmax − wmin, is also reduced, being 0.067 (0.11) at Ωs =
0.03 (0). These reductions, occurring despite Re= 4633 (3100) being larger (smaller)
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FIGURE 19. (Colour online) Energy contours for critical disturbance at Re = 5192,
Ωs = 0.1, and m= 5.

at Ωs = 0.03 (0), explain the strong suppression of the shear-layer instability by the
sidewall co-rotation.

In contrast, wmax = 0.0329 (0.0367) at Ωs = 0 (0.03) increases, i.e. the near-wall
flow, transporting the angular momentum from the rotation disk along the sidewall,
remains rather strong as Ωs grows. This explains the relatively weak suppression of
the centrifugal instability by the sidewall co-rotation.

8. Conclusions

This paper explores the instability nature of the Vogel–Escudier flow. To this
end, elongated cylinders are considered. Our numerical simulations first describe
(in §§ 4.1–4.3) the development of the global circulation, where the instability occurs
(§ 5), as the Reynolds number Re increases. In §§ 4.4 and 4.5, we show that at the
critical Re = Recr = 3100, the flow consists of three parts: (i) the Kármán boundary
layer near the rotating disk, (ii) the bulk circulation, and (iii) the creeping motion
near the stationary disk. We focus on flow features in region (ii) where the instability
is localized (§ 5).

The instability does not depend on the creeping flow pattern (iii) near the still disk
resulting in Recr being h-independent and close to 3100 for h > 5.5 (table 1 and
figure 9). As figures 10 and 11 show, the instability occurs near the centre of the
circulatory flow region (ii). Based on the stability analysis of the Vogel–Escudier flow
(§ 5) and of the related z-independent flow (§ 6), we argue that the instability is of
the shear-layer type, being caused by the presence of an inflection point in the radial
distribution of axial velocity of the base counterflow.

It is found in § 7 that there are indeed two competing types of instabilities: shear-
layer (K) and centrifugal (T), which both exist (and the K-instability dominates) in
the Vogel–Escudier flow. The results of § 7 provide two important additions to those
in § 5: (a) they show the range of the K-instability (figure 15) and (b) they indicate
the efficient control means – the sidewall co-rotation – to suppress both K- and T-
instabilities.

Recr significantly increases with sidewall-to-disk angular velocity ratio Ωs (tables 3
and 4). For Ωs > 0.0212, the centrifugal instability first develops as Re increases, and
the azimuthal wavenumber, m, of critical disturbances grows with Ωs (figure 15). The
physical reason is provided for why the stabilizing effect of the co-rotation is stronger
(weaker) for the shear-layer (centrifugal) instability (§ 7.2).

Thus the obtained results explain the instability nature of the Vogel–Escudier flow
and indicate efficient means to suppress this instability.
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