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This study explores experimentally the flows driven by precession in an oblate spheroid,
in the vicinity of the possible resonance with the tilt-over mode. Two main phenomena are
reported, combining observations and velocity measurements. First, a hysteretic cycle is
quantitatively described between two uniform vorticity solutions, in good agreement with
the historical analytical study of Busse (J. Fluid Mech., vol. 33, 1968, pp. 739–752). We
then address the destabilization of each branch at low enough Ekman number. We confirm
the possible presence of a so-called conical shear instability, recently depicted in the
sphere by Lin et al. (Phys. Fluids, vol. 27, 2015, 046601) and in the spheroid by Horimoto
et al. (Phys. Rev. Fluids, vol. 5, 2020, 063901). However, available measurements in the
accessible parameter range are not sufficient to definitively discard an elliptical or shear
origin of the excited instabilities in the spheroid, as first introduced by Kerswell (Geophys.
Astrophys. Fluid Dyn., vol. 72, 1993, pp. 107–144).
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1. Introduction

Precession corresponds to the continuous rotation of the direction of the spin axis of
any rotating body, e.g. a spinning top. It has been widely studied in fluid mechanics, not
only because of the large range of possible applications in industrial and natural flows
(see e.g. Vanyo 1993), but also because of its appeal from a fundamental point of view:
there is indeed a striking contrast between the apparent simplicity of the precession forcing
and the complexity of the excited flows. Even at weak forcing amplitude, various types of
boundary and bulk instabilities, as well as waves, zonal flows and turbulence, are excited
in all investigated geometries, including the cylinder (e.g. Gans 1970; Meunier et al. 2008;
Herault et al. 2015), the cube (e.g. Goepfert & Tilgner 2016), the sphere (e.g. Kida 2011;
Boisson et al. 2012; Goto et al. 2014; Lin, Marti & Noir 2015), the spherical shell (e.g.
Triana, Zimmerman & Lathrop 2012; Cébron et al. 2019), the spheroid (e.g. Kerswell
1993; Horimoto, Katayama & Goto 2020; Kida 2020) and the ellipsoid (e.g. Cébron, Le
Bars & Meunier 2010; Noir & Cébron 2013). Numerous open questions remain regarding
the flow forced by precession, and in particular we still lack experimental confirmation of
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the various theoretically suggested processes for instability (see e.g. Le Bars, Cébron &
Le Gal 2015).

Here we focus on precession in an oblate spheroid, which has been studied for more than
a century (Hough 1895; Sloudsky 1895) because of its relevance for planetary dynamics,
in particular for the Earth’s core dynamics and, possibly, its magnetic field generation
(e.g. Bullard 1949; Malkus 1968; Vanyo, Wilde & Cardin 1995; Lorenzani & Tilgner
2001; Noir, Jault & Cardin 2001). The analytical solution first given by Sloudsky (1895)
and then by Poincaré (1910) for an inviscid flow is characterized by a uniform vorticity.
The precession, spin and fluid axes are in the same plane, and the inclination of the fluid
rotation axis depends on the geometry and on the Poincaré number, defined as the ratio of
the precession to spin rate. This so-called Poincaré’s solution is, however, not unique due
to the lack of boundary conditions. The classical hypothesis then consists in considering
that the component of the fluid rotation along the spin axis has the same amplitude as the
container rotation. The solution diverges when the Poincaré number reaches a specific
negative value related to the container oblateness and precession angle, a mechanism
explained by the resonance of the Poincaré’s solution with the so-called tilt-over inertial
mode of the rotating fluid (Greenspan 1968). Accounting for the viscosity is necessary
for an accurate, regularized solution: this was first done by Busse (1968), who extended
Poincaré’s work by considering the interaction of the interior solid-body rotation with the
Ekman boundary layer, following Stewartson & Roberts (1963). The three components of
the fluid solid-body rotation are then solutions of a system of three nonlinear coupled
equations, which was also recovered by Noir et al. (2003) using a less mathematical
approach.

Similarly to Poincaré’s solution, Busse’s solution exhibits a specific behaviour in the
vicinity of its resonance with the tilt-over eigenmode of the rotating fluid. Depending on
the value of the Ekman number (i.e. the ratio of viscous to Coriolis forces), three separate
solutions for the fluid vorticity vector might be possible at a given resonant Poincaré
number: (i) a weakly inclined state, which is the relevant solution at small precession
forcing, where the fluid rotation axis is close to the container axis and close to the plane
comprising the container and the precession axes; (ii) a strongly inclined state with three
vorticity components of similar amplitude, which is relevant for more negative Poincaré
numbers; and (iii) an unstable solution in between. Bistability and hysteresis between the
two former states are thus expected, as in the latter studied theoretically in full detail by
Cébron (2015). Hysteresis was indeed observed using torque measurements in the seminal
experiment by Malkus (1968), for a precession angle of 96◦ in his notation, corresponding
here to a precession angle of 84◦ with a retrograde precession. In fact, in the limit of a
large precession angle (i.e. close to 90◦), the Busse (1968) solution also predicts a second
resonance, this time for prograde precession (i.e. a positive Poincaré number): associated
bistability and hysteresis were observed in the recent experiment by Horimoto et al. (2018),
for a precession angle of 90◦. But, to the best of our knowledge, hysteresis around the
retrograde resonance at moderate precession angle has not been experimentally observed
yet, despite careful exploration using ultrasonic Doppler anemometry by Noir et al. (2003),
who otherwise closely recovered Busse’s (1968) predictions.

Beyond the constant-vorticity base flow and its dynamics, the route to turbulence
for precessing flows in spheroids is still an open question, of fundamental importance
for planetary applications (Kerswell 1996). Many instabilities are possible to trigger
turbulence. First, the Ekman boundary layer, which reconnects the inclined rotation of
the fluid with the imposed rotation of the container, is subject to a strong shear: it might
thus become unstable, as described numerically by Lorenzani & Tilgner (2001, 2003).
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Hysteresis and instabilities in a spheroid in precession 909 A17-3

Then, Busse (1968) also showed in his theoretical study that the Ekman layer erupts
at critical latitudes and generates in the bulk a vertical, geostrophic, shear layer: this
localized and intense jet could also destabilize following a classical shear instability,
as suggested in the experimental studies of Malkus (1968) and Vanyo et al. (1995).
Ekman layer eruption also generates an oscillating conical shear layer in the bulk, with
an azimuthal wavenumber m = 1: this periodic forcing can excite a parametric resonance
with two inertial waves of the rotating fluid, as carefully demonstrated in the sphere by
Lin et al. (2015) and in good agreement with the experimental results of Goto, Fujiwara
& Yamato (2011) (but see also Kida 2019). This mechanism, called a conical shear
instability (CSI), has recently been confirmed experimentally in a precessing spheroid by
Horimoto et al. (2020). Finally, matching the inclined Busse’s constant-vorticity solution
with the spheroidal boundary of the container induces two corrections to the otherwise
circular streamlines (Kerswell 1993): an elliptical distortion with azimuthal wavenumber
m = 2, and a shear due to their misaligned centres with azimuthal wavenumber m = 1. As
described analytically by Kerswell (1993) and later extended by Wu & Roberts (2011), both
corrections are also capable of sustaining a parametric instability, which has nevertheless
never been convincingly observed in a spheroid, except in numerical simulations with ad
hoc boundary conditions to prevent other types of instability (Lorenzani & Tilgner 2003;
Wu & Roberts 2009).

The goal of this paper is to provide a better understanding of the base flow and
instabilities excited inside an oblate spheroid in precession near the resonance with the
tilt-over mode, using laboratory experiments. The material and methods are described
in § 2. Then § 3 provides an experimental validation of the hysteretic cycle between two
(Busse 1968) solutions, as theoretically described by Cébron (2015). In § 4, we investigate
the bulk destabilization of those two solutions, trying to decipher between the various
theoretical models for the origin of the involved instability (Kerswell 1993; Lin et al.
2015). Finally, § 5 gives a short overview of our results as well as some possible targets for
future experimental investigations.

2. Material and methods

2.1. Experimental set-up
In this paper, we study the flow of an incompressible fluid inside an ellipsoid of revolution
(or spheroid) in precession. The experimental set-up is described in figure 1. A spheroid
of equatorial semi-major axis A = 8.5 cm and axial semi-minor axis B = 7.2 cm rotates
at the angular velocity Ω0 around its axis and is mounted on a platform which rotates at
the angular velocity Ω1. The oblateness of the spheroid η, defined by η = 1 − B/A, is
equal to 0.15. The oblateness is constant in our whole study. The spheroid is filled with
water with a kinematic viscosity ν known within 2 % from its temperature measurement.
The spheroid is carved inside a cylinder in order to minimize the optical deformations
when viewing along the cylinder’s axis. The angular velocities of the spheroid and of the
rotating platform can be varied independently. The angular velocity Ω0 can vary between
0.25 and 48 rad s−1 and is measured with an accuracy of 0.1 %. The angular velocity of
the platform Ω1 can be varied from 0.01 to 6 rad s−1 with increments of 0.01 rad s−1 and
is measured with an accuracy of 0.2 %. The cylinder axis is tilted relative to the axis of
the platform with an angle θ , which can be increased up to 30◦ and which is determined
with an absolute accuracy of ±0.5◦. The inclination angle θ can be modified while the
platform is rotating thanks to a small motor mounted on the platform and controlled
externally. It should be noted that the spheroid is off-centred with respect to the axis of
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(b)(a) Camera or PIV laser

PIV camera

Motor 1 A

kp

x̂ ẑ

B

Rotating table

Ellipsoid inside
the cylinder

θ

Ω0

Ω1

FIGURE 1. Sketch of the experimental set-up. A spheroid of equatorial radius A and minor axis
B is filled with water and put inside a cylinder which rotates at the angular velocity Ω0 around
its axis ẑ. The spheroid is laying on a turntable and is tilted with an angle θ with respect to
the axis kp of the platform. The turntable rotates at an angular velocity Ω1 along kp, which is
vertical here. A laser and cameras also lay on the turntable for PIV measurement or mica particle
observations.

the platform, which does not influence the flow in the absence of free surface and density
variations. Indeed, it simply adds a centrifugal force, which is automatically compensated
by a pressure gradient.

Two types of measurements are performed. The first one is qualitative and consists of
seeding the flow with flat reflective particles, which are known to preferentially align with
the local shear. Mica particles of average diameter of 50 μm covered with a titanium
dioxide layer to improve reflections are used. A laser diode is used to illuminate a meridian
plane of the spheroid and a camera is used to record images at 25 frames per second. The
second type of measurement is particle image velocimetry (PIV), which is performed by
seeding the flow with passive particles of diameter 40 μm and density 0.996. The particles
are illuminated with a thin light sheet created by two 170 mJ yttrium aluminium garnet
pulsed lasers. A cylindrical lens is used to provide this laser sheet. Two small mirrors are
also added to redirect the rays in the shadows of the luminous cross-section (due to the
refraction of the rays on the cylinder). The laser sheet is fixed relative to the rotating table
frame (i.e. the precessing frame) and perpendicular to the axis of the spheroid. The height
H between the laser sheet and the equatorial plane of the spheroid can be adjusted. The
experiments were performed at several fixed heights measured from the equatorial plane
between H = 0.2 and H = 3 cm. A video camera mounted on the rotating platform and
aligned with the axis of the spheroid is used to record the PIV images.

To obtain the velocity field, two successive images are first rotated around the centre
of the spheroid to remove the mean solid-body rotation of the flow: this increases
the accuracy of the measurements. The images are then treated by a cross-correlation
algorithm detailed in Meunier & Leweke (2003). The solid-body rotation is finally added,
leading to the transverse velocity field and the axial vorticity. It should be noted that the
mean solid-body rotation of the flow is in general smaller than the angular velocity Ω0 of
the spheroid. It is unknown before the PIV measurement and it was thus adjusted by trial
and error for each experiment. There is a radial cutoff on the images at 0.95R (where R
is the radius of the boundary on the images) beyond which the images are reconstructed
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Hysteresis and instabilities in a spheroid in precession 909 A17-5

by mirror symmetry using I(0.95R + ε) = I(0.95R − ε). This prevents strong spurious
vectors due to the presence of the boundary. The camera and the pulsed lasers are set up
so the time dt between the two pulses can be adjusted between 1 and 60 μs. The value of
dt = 0.08/Ω0 was the optimal choice, since it allowed for a maximal displacement by the
flow perturbations, while preventing a too large displacement by the solid-body rotation.
The experiments were performed at two different frequencies of acquisition: 24 Hz (i.e.
maximal frequency of the camera) and 23 Hz to quantify any stroboscopic effect for the
fast modes. For example, let us assume that a peak is measured in the 23 Hz spectrum at
the frequency f23 and at the frequency f24 in the 24 Hz spectrum. If f23 = f24, it means that
there is no stroboscopic effect. But if the two frequencies f23 and f24 are different, it means
that the true frequency f of the peak satisfies f = f23 + 23n = f24 + 24n′, with n and n′

integers.

2.2. Theoretical formulation and dimensionless parameters
The flow inside the spheroid is considered incompressible and the kinematic viscosity ν
of the fluid is assumed constant. The equations of motion are written in the precessing
frame, i.e. rotating at Ω1. However, the axes are tilted so that the ẑ axis corresponds to the
(steady) axis of the spheroid. The Navier–Stokes equations are then

∂U
∂t

+ U · ∇U + 2Ω1 × U = −∇Π + ν∇2U, (2.1a)

∇ · U = 0, (2.1b)

where kp corresponds to the steady unit vector aligned with the platform’s axis (see
figure 1b). Both PIV measurements and particle visualizations are made in this frame of
reference. The centrifugal force is included in a reduced pressure term Π = p/ρ + |Ω1 ×
r|2/2, where p is the pressure, ρ is the constant fluid density and r is the vector position.
The boundary conditions are no-slip so that the velocity at the boundaries of the spheroid
matches that of the spheroid. By taking the semi-major axis A as the reference length scale
and Ω−1

0 as the reference time scale, the non-dimensionalized equations are

∂u
∂t

+ u · ∇u + 2Pokp × u = −∇Π + E∇2u, (2.2a)

∇ · u = 0, (2.2b)

where we have introduced the Ekman number E = ν/(Ω0A2) and the Poincaré number
Po = Ω1/Ω0.

Following Busse (1968), the global torque balance for steady solutions is given by

2Po

∫
V

r × (kp × u)dV = −
∫

S
Πr × n dS + E

∫
V

r × ∇2u dV, (2.3)

where r is the vector position, V is the volume, S is the spheroidal surface and n is the
surface normal pointing outwards. The precessional torque is balanced by the pressure and
viscous torques. In the spherical case, the pressure torque vanishes, which is not true in
our spheroidal case. Looking for a uniform vorticity solution to (2.3) of the form ΩF × r,
Busse (1968) derived an implicit equation for the fluid rotation vector ΩF (Busse 1968;
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Noir et al. 2003):

ΩF = XΩ2
FPo

X2 + Y2
sin θ x̂ + YΩ2

FPo

X2 + Y2
sin θ ŷ + Ω2

F ẑ, (2.4a)

with

X = 0.259
(

E
ΩF

)1/2

+ ηΩ2
F + Po cos θ, (2.4b)

Y = 2.62(EΩF)1/2, (2.4c)

where ΩF = |ΩF|. Note that this solution is only valid in the limit of small Ekman
numbers and small oblateness η.

3. Hysteretic cycle of Busse’s solution

For high enough precession angle and oblateness, and small enough Ekman number, the
steady flow given by Busse (1968) splits into three different solutions, which have been
studied theoretically by Cébron (2015). The main objective of this section is to address
the stability of those solutions, including the bistability and associated hysteretic cycle
theoretically described by Cébron (2015).

The precession angle is fixed at θ = 15◦ while the Poincaré and Ekman numbers are
systematically varied. We start by qualitatively observing the mean solid-body rotation
with the mica particles method as shown in figure 2 and previously done by Noir
et al. (2003). As shown in figure 2(a) for E = 2.3 × 10−5 and Po = −8.7 × 10−2, the
axis of rotation of the fluid is tilted towards the direction opposite to the axis x̂ (see
also supplementary movie VisuS1.avi available at https://doi.org/10.1017/jfm.2020.938).
When Po is shifted to a value of Po = −9.1 × 10−2, as shown in figure 2(b) (and in
supplementary movie VisuS1toS2.avi), the flow looks qualitatively different and it is
possible to discern an axis of rotation tilted towards +x̂. Additionally, unsteady small-scale
fluctuations are also evidenced by the rapid motion of the mica particles, as shown in the
supplementary movies associated with these two figures. When Po is increased back to
its initial value, the axis of rotation of the fluid remains tilted towards the +x̂ direction,
until we reach the value Po = −6.1 × 10−2 for which the axis of rotation shifts back to an
inclination towards −x̂ (see supplementary movie VisuS2toS1.avi). A transition from two
different flows is observed, and for this particular angle of precession of 15◦, the bistability
between the two flows is very clear.

To quantify the bistability better, we now rely on PIV measurements in a narrow region
of parameters. As in previous studies (Poincaré 1910; Busse 1968; Noir et al. 2003; Cébron
2015), we assume that the flow essentially consists of a solid-body rotation around an axis
ΩF = (Ωx ,Ωy,Ωz), whose components we would like to measure experimentally. The
PIV measurements are made in a plane located at a dimensionless distance h = H/A =
0.28 above the equatorial plane of the spheroid. An example of such measurement is
shown in figure 3(a) where one can observe the velocity vector field in the PIV plane. The
azimuthal velocity along a diameter (passing through the centre of the solid-body rotation)
is also plotted in figure 3(b). Despite some weak variations, the measured velocity profile
is very close to linear, confirming the solid-body nature of the rotation in the first regime.

Figure 3(c) shows the azimuthal velocity in the second regime. It remains very close
to a linear profile, with fluctuations smaller than 10 % of the velocity of the spheroid.
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Hysteresis and instabilities in a spheroid in precession 909 A17-7

(b)z
Ωf

x

(a) PIV

FIGURE 2. Visualizations of the flow with mica particles in a vertical plane lit with a laser
sheet for E = 2.3 × 10−5 and θ = 15◦: (a) Po = −8.7 × 10−2 (see also supplementary movie
VisuS1.avi) and (b) Po = −9.1 × 10−2 (see also supplementary movie VisuS1toS2.avi for the
transition between the two regimes). The position of the PIV plane along the z axis is shown by
the dashed line. The qualitative direction ΩF around which the fluid rotates is shown by the red
arrow.
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FIGURE 3. (a) Velocity field obtained by PIV in the plane z = h = H/A = 0.28 for the first
regime, at E = 2.3 × 10−5, Po = −8.7 × 10−2 and θ = 15◦. Only a quarter of the total number
of vectors are plotted for clarity. (b) Symbols show the azimuthal velocity along the red segment
plotted in panel (a), with r the coordinate along the red axis oriented towards increasing
x and with r = 0 corresponding to the spheroid axis. (c) Azimuthal velocity profile for the
second regime at E = 2.3 × 10−5, Po = −8.9 × 10−2 and θ = 15◦. In panels (b,c), the solid
line corresponds to the theoretical velocity profile for a solid-body rotation fitted from the
experimental velocities.

It indicates that the flow is again very close to a solid-body rotation despite the presence
of small-scale structures in the flake visualizations of figure 2(b) and the associated
supplementary movie. Note that the centre of rotation is not at the centre of the
cross-section because ΩF is tilted with respect to the ẑ axis and the measurements are
made above the equator. It is possible to fit the experimental two-dimensional velocity
field with a three-dimensional solid-body rotation ΩF × r, where r is the position vector,
using a standard least-squares approach. In the plane of measurement z = h, this leads to

[
ux

uy

]
=

[−yΩz + hΩy

xΩz − hΩx

]
. (3.1)
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A very good agreement is obtained between the experimental and the fitted azimuthal
velocities, as shown in figure 3(b), with an error of the order of a few per cent.

Now that we can accurately measure the average orientation of the fluid rotation, we
systematically vary the Poincaré number for a fixed Ekman number E = 2.3 × 10−5. The
results are shown in figure 4. We first discuss the transition as Po is decreased, shown by
the circles in figure 4. The Poincaré number is gradually modified while the experiment is
running by adjusting the rate of precession Ω1. We ensure that each solution has reached
a steady state by waiting for at least 600 rotation periods between each modification
of the Poincaré number. As Po is decreased to a critical value of Po = −9.1 × 10−2,
the solid-body rotation suddenly shifts to another solution. The first solution (S1 in the
following) is the closest to a solid-body rotation aligned with the spheroid: Ωz is between
0.9 and 1 while Ωx and Ωy are much smaller. When the second solution (S2 in the
following) is reached, all three components of the rotation vector change significantly.
When Po is increased back to its initial value (cross symbols in figure 4), the solid-body
rotation remains on S2 past the critical value Po = −9.1 × 10−2 and finally shifts back to
S1 for Po = −6.3 × 10−2. A hysteresis cycle is formed. The transition between S1 and S2
is subcritical.

The observed bistability is correctly described by the viscous Busse’s solution,
implicitly given by (2.4). This equation is solved numerically and results are plotted in
figure 4 along with the experimental measurements. Busse’s theory plotted in figure 4 in
solid lines predicts the hysteretic cycle and is qualitatively consistent with the experimental
results. The solution S1 is in red, the solution S2 in blue, while a third solution, not
observed experimentally, is shown in green. The comparison with the experiments shows a
good agreement in the amplitude of the solution S1. For the amplitude of S2, the agreement
is not as clear, in particular for Ωy . The critical Po is in good agreement for the S1 → S2
transition but the S2 → S1 transition occurs earlier in the experiments.

A first possible explanation for the departure from Busse’s theory is that the boundary
layer is turbulent for S2 at this Reynolds number Re = |ẑ − ΩF|/√E ∼ 150. Indeed, Sous,
Sommeria & Boyer (2013) observed that the boundary layer becomes turbulent at Re =
150, which leads to a higher torque on the bulk flow. Following Cébron et al. (2019), one
can estimate the torque created by a turbulent boundary layer as

Y = λt|ẑ − ΩF|2 = 45π

32
1 + η5

1 − η5
u0

2

√
1 − C2

2u2
0

k2|ẑ − ΩF|2 , (3.2)

where u0 is the solution of

u2
0

|ẑ − ΩF|2 = k2

[log(u2
0/(0.22E)) − C1]2 + C2

(3.3)

with k = 0.4 the Kolmogorov constant and (C1, C2) = (3.3, 3) empirical constants given
by Sous et al. (2013) for a plane boundary layer. In our case, for E = 2.3 × 10−5, |ẑ − ΩF|
is always close to 0.75 for the second Busse’s solution such that the torque created by a
turbulent boundary layer is always close to 0.0162. Replacing the laminar viscous torque
Y = −2.62

√
Ωf E ∼ 0.0109 by this turbulent torque in Busse’s equation (2.4) leads to a

new prediction for the solution S2, which is plotted as a blue dashed line in figure 4. This
turbulent torque actually corresponds to a turbulent viscosity 2.2 times larger than the
molecular value. The experimental results are located between the two theories, which
suggests that the boundary layer is not completely turbulent at this Reynolds number
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FIGURE 4. Components of the rotation rate ΩF as a function of the Poincaré number for E =
2.3 × 10−5, θ = 15◦ and h = H/A = 0.33. These experiments correspond to a gradual decrease
(symbols ◦) and to an incremental increase (symbols +) of the Poincaré number. The continuous
lines correspond to the three Busse’s solutions obtained numerically. The dashed lines show the
Busse’s solutions for S2 when accounting for a turbulent boundary layer with a torque given by
(3.2) rather than (2.4c). The arrows indicate the transitions between solutions.

Re ∼ 150, which corresponds to the transition from a laminar to a turbulent boundary
layer (Sous et al. 2013). In our experiment, the boundary layer has not been analysed, such
that it is hard to tell whether it is turbulent or laminar.

Other explanations for this discrepancy could be invoked. First, (3.58) of Zhang, Chan
& Liao (2014) suggests that the numerical coefficient 2.62 for Y in (2.4c) might decrease
by 20 % for our spheroid compared with a sphere. Second, (3.57) of Zhang et al. (2014)
suggests that the numerical coefficient 0.259 for X in (2.4b) might be three times smaller
for our spheroid compared with a sphere. However, the induced modifications on X and
Y are too small to explain the discrepancy between the laminar Busse’s solution and
the experiment. Third, as shown by Kida (2018), the critical latitude moves when the
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FIGURE 5. Stability diagram of all the experiments as a function of E and Po. Crosses
correspond to S1 while circles correspond to S2. The hysteresis region corresponds to black
and green symbols. This region is compared with Busse’s theory solved numerically using
the molecular viscosity, and shown by solid lines. For S1, red and black crosses correspond
to steady flows, whereas green crosses correspond to unsteady flows. For S2, blue and black
circles correspond to unsteady flows, whereas cyan circles correspond to steady flows.

precession rate increases. For precession rates much larger than the rotation rate, the
eruption of the boundary layer takes place in a ring at the equator of the precession
axis. This might modify the structure of the instabilities. However, these singularities
have always been neglected in the calculation of the torque from the boundary to the
bulk flow. This modification may not play an important role for the base flow. Finally,
the visualizations of figure 2(b) and the corresponding supplementary movie indicate
that the bulk flow seems to be more complex than a simple solid-body rotation, with
small-scale unsteady structures. We will show in the next section that these are inertial
modes which may generate an axisymmetric flow by nonlinear streaming, as is well known
for a precessing cylinder (Lagrange et al. 2011). This can modify the mean solid-body
rotation and explain the weak discrepancy between Busse’s solution and the experimental
results.

Finally, we have systematically varied the Ekman number: both mica particle
experiments and PIV measurements are gathered in figure 5. The domain where S1 and S2
can be observed corresponds to the region with black and green symbols. The hysteresis
cycle is only observed for Ekman numbers smaller than 2 × 10−4. The bistable region
increases in size when E decreases, as predicted theoretically. However, it is a bit smaller
than the theoretical region predicted by Busse: as already seen before, for all explored
values of Ekman number, the transition from S2 to S1 occurs for smaller values of the
Poincaré number in the experiments, since the solution S2 is unsteady.

In conclusion, we have measured the base flow driven by precession in a spheroidal
cavity, which can be reasonably approximated by a solid-body rotation as assumed by
Busse (1968) in the explored parameter range. A hysteresis cycle is observed for a certain
range of Poincaré numbers. This bistable regime, obtained here for a tilt angle of 15◦,
is similar to what has been obtained for a larger tilt angle of 90◦ by Malkus (1968) and
Horimoto et al. (2018). A good agreement with Busse’s theory is obtained when the flow is
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stationary, which is the case for solution S1 over almost all the parameter space explored.
However, the second solution S2 is slightly different from the prediction by Busse, mainly
because this solution does not appear to be stationary in the range accessible to our set-up
due to the presence of instabilities. It is therefore natural to study now the hydrodynamic
stability of these two solutions, which is the main objective of the following section.

4. Instabilities of the base flow

When the Ekman number is sufficiently low, both Busse’s solutions can destabilize via
hydrodynamic instability, leading to a turbulent flow far from the threshold. Two different
instabilities have been observed depending on the Poincaré and Ekman numbers. They are
described in the following close to their threshold.

4.1. Instability of the first Busse’s solution
The first Busse’s solution S1 can destabilize when the Ekman number is smaller than
about 10−5 and when the Poincaré number decreases beyond about −0.07. It corresponds
to the green crosses in the stability diagram of figure 5. In this regime, the mean flow
remains close to the first Busse’s solution and does not switch to the second Busse’s
solution. However, a perturbation arises with a well-defined frequency fI , as shown in
the temporal spectrum of figure 6(a). This spectrum is computed from the spectral density
of the vorticity, which is averaged over the entire PIV section:

Ef = 1
π

∫∫
r<1

|ω̃(r, f )|2 dr, (4.1)

where the temporal Fourier transform of the vorticity is defined as

ω̃(r, f ) = 1
tf − ti

∫ tf

ti

ω(r, t) exp(i2πft) dt. (4.2)

It was found that this quantity reveals the instability better than the spectral density of
the velocity. This is probably because Busse’s solution contains a uniform vorticity which
is insensitive to small displacements and because the instability contains small structures
which have a large vorticity even for small velocities.

In figure 6(a), the Fourier transform is computed over the total duration of the PIV
measurement, i.e. about 350 rotation periods. It leads to an accurate determination of
the frequency of the instability 2πfI = 7.99. However, it is also possible to measure the
Fourier transform over smaller time intervals in order to plot the spectral density as a
function of time. For example, figure 6(b) shows the temporal variation of EfI at the
frequency fI of the instability. In this experiment, the Poincaré number has been decreased
at t = 0 by 1.5 % in order to switch from a stable to an unstable regime. The spectral
density of vorticity EfI remains constant during about 300 rotation periods, because the
signal is smaller than the noise in the measurement. It then grows by two orders of
magnitude until 600 rotation periods where it seems to saturate. This is a clear indication
that the flow has become unstable when the Poincaré number has decreased from −0.0826
to −0.0838. The growth rate σ can be estimated by fitting the spectral density with an
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FIGURE 6. (a) Temporal spectrum and (b) temporal evolution of the spectral density of vorticity
defined by (4.1) and measured by PIV at h = 0.065. The Poincaré number is decreased at t = 0
from −0.0826 to −0.0838. In panel (b), the spectral density is measured at the frequency of
the instability fI (in red) and at the frequency of the harmonic fH (in blue); and the duration of
the sliding window tf − ti is equal to 14.3 rotation periods in order to be small compared with
the growth time of the instability and large compared with the period of the instability (equal to
0.125 rotation period).

exponential function e2σ t between t/2π = 430 and 550, leading to

σ = 1.3 × 10−3 ± 30 %. (4.3)

It can be noted that the spectrum of figure 6(a) exhibits a small peak at the frequency
2πfH = 0.77. It has been checked experimentally (by doing the same experiment using
two different acquisition frequencies facqu) that this frequency is shifted by 2πfacqu = 16.67
because the acquisition frequency of the camera is too low. The real frequency of this peak
is in fact equal to 2πfH = −15.9, which corresponds to the harmonic of the instability. The
spectral density at this frequency fH is plotted in figure 6(b) as a function of time. It starts
to increase above the noise level after 500 rotation periods and then grows slightly faster
than the primary mode, with a growth rate of the order of σ = 1.7 × 10−3 ± 30 %.

Figure 7 shows the spatial structure of the vorticity filtered at the frequency fI of the
instability. The snapshot is taken towards the end of the exponentially growing regime of
the instability in order to get the best signal-to-noise ratio. The real part of the vorticity ω̃

exhibits two concentric rings of vortices. The inner ring contains 18 well-defined vortices
of alternate sign. The second ring, located close to the boundary, is less organized despite
its larger amplitude. This is probably due to the interference with the boundaries, which
decreases the accuracy of the PIV.

The azimuthal spectrum of the vorticity can be obtained using an azimuthal Fourier
transform:

ˆ̃ωm(r, fI) =
∫ θ=2π

θ=0
ω̃(r, θ, fI) eimθ dθ. (4.4)

It is plotted in figure 7(b) for r varying from 0.2 to 0.8. The two rings of vortices create
two lobes around r = 0.4 and r = 0.7 with an azimuthal wavenumber close to m = 9. By
integrating this azimuthal spectrum over r, it is possible to get the total azimuthal spectrum
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FIGURE 7. (a) Real part of the vorticity filtered at the frequency of the instability fI as defined
by (4.2). The Fourier transform is calculated over 81.6 rotation periods around t/2π = 510
(corresponding to the dashed line of figure 6b). (b) Azimuthal spectrum of the vorticity as a
function of the radius at t/2π = 510. (c) Azimuthal spectrum integrated over r, as defined by
(4.5) after 306 rotations (purple), after 387 rotations (cyan), after 469 rotations (red), after 551
rotations (green) and after 632 rotations (blue). Lines between the symbols are only here to
improve the visibility of the curves. Here, Po = −0.0838, E = 1.3 × 10−5 and h = 0.065.

of the vorticity:

EfI ,m =
∫ r=1

r=0
| ˆ̃ωm(r, fI)|2r dr. (4.5)

This spectrum is plotted in figure 7(c) at different times. All the spectra present a
maximum spectral density of vorticity at the azimuthal wavenumber m = 9. They also
exhibit a moderate vorticity (about 50 % of the maximum) at the azimuthal wavenumber
m = 8 and a weak peak (about 20 % of the maximum) at m = 6. This multi-modal
signature clearly points towards a parametric instability involving a given forcing and two
inertial modes of our rotating fluid.

In fact, this structure with large azimuthal wavenumbers is very similar to the structure
that has been observed in a precessing sphere. Lin et al. (2015) argued that it was induced
by a parametric resonance between the conical shear layer generated at the critical latitude
with an azimuthal wavenumber m = 1, and two free inertial modes of the sphere with
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azimuthal wavenumbers m = 17 and m = 18. It is thus tempting to relate the instability
observed here with m = 9 and m = 8 to such a CSI. However, the presence of a weak
peak at m = 6 indicates that a weak elliptic coupling m = 2 might also be present, which
could transfer some energy from m = 8 to m = 6. This coupling could be due to an
elliptic instability as described by Kerswell (1993). Furthermore, the presence of the
two azimuthal wavenumbers m = 8 and m = 9 could also be due to a shear instability
described by Kerswell (1993), where two free inertial modes are coupled by the mean
shear of the flow with m = 1. Note that the latter two instabilities cannot be found in a
sphere because they rely on the oblateness of the container.

To try to disentangle the various possible origins of the observed instability, it is useful
to determine its inviscid growth rate, which we do by measuring the variation of the
viscous growth rate with respect to the Poincaré number. We thus measure the growth
rate accurately (within 20 %) by fitting the growth of the amplitude of modes m = 8 and
m = 9 (rather than the growth of the total spectral density of vorticity) for two different
Poincaré numbers. The growth rate increases from 1.5 × 10−3 to 7.3 × 10−3 when the
Poincaré number decreases from −0.0838 to −0.0861, which leads to

∂σinv

∂Po
= −2.5 ± 30 %. (4.6)

The measured variation corresponds to the variation of the inviscid growth rate because the
viscous damping of the instability is independent of the Poincaré number: it only depends
on the Ekman number.

Experimentally, it is also found that the tilt angle θf of the solid-body rotation defined
by

tan θf =
√

Ω2
x + Ω2

y

Ωz
(4.7)

varies as
∂θf

∂Po
= −17 ± 20 % (4.8)

for these Poincaré and Ekman numbers. Assuming that the inviscid growth rate is
proportional to the tilt angle θf (which is a fair assumption since the inviscid growth
rate is proportional to the differential rotation for small tilt angles) gives an empirical
formula for the inviscid growth rate σinv = 0.15θf ± 50 %. This equation can also be
written σinv = 1.4E1/5θf ± 50 % if we assume that the inviscid growth rate scales as E1/5

as in the CSI (Lin et al. 2015). Finally, assuming that the viscous damping effect scales
as

√
E leads to an empirical formula for the total growth rate if it was due to the CSI (by

imposing σ = 0 at the threshold where θf = 0.32):

σ = 1.4(E1/5θf − 9.3
√

E). (4.9)

For a sphere, it was found experimentally (Goto et al. 2011) and numerically (Lin et al.
2015) that the CSI is unstable if |Po sin α| − 25.1E4/5 is positive. It is thus logical to
assume that the growth rate of the CSI is proportional to this term, which can be written
as

σCSI = C(E1/2θf /0.3797 − 25.1E4/5), (4.10)

since, for a sphere, the tilt angle θf is given from Busse’s solution (see (4.25) and (4.26)
in Kida (2013)) by θf

√
E = 0.3797Po sin α. Multiplying this formula by 0.3797E−3/10
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leads to
σCSI = C′(E1/5 θf − 9.53

√
E), (4.11)

with C′ = 0.3797CE−3/10. This prediction deduced from the sphere is in excellent
agreement with the empirical, experimental formula (4.9) found in this paper for a
spheroid. Note that the second term of those equations corresponds to the viscous
damping: the value 1.4 × 9.3 � 13 is reasonable compared with other viscous damping
prefactors determined for similar resonant instabilities, where it ranges from 2.62 for the
spin-over mode to 20 for more complex modes (Grannan et al. 2014; Lemasquerier et al.
2017). The CSI is thus an excellent candidate to explain the observed instability.

In order to compare the experimental growth rate to the predictions of the elliptic
instability and the shear instability, it is necessary to calculate the ellipticity and the shear
of the base flow. Following Kerswell (1993), the velocity is written using new coordinates
(x ′, y′, z′) where the z′ axis is aligned with the axis of rotation of the bulk flow:

u = Ωz′[(−y′, x ′, 0) + β( y′, x ′, 0) + ε(0, z′, 0)]. (4.12)

For the normal flow to vanish on the spheroidal surface, the shear must be equal to

ε = 2ηK tan(θf )

2 + ηK + 2 tan2(θf )
(4.13)

and the ellipticity must be equal to

β = 2ηK tan2(θf )

(2 + η2
K) + (4 + 2ηK) tan2(θf )

, (4.14)

where ηK = η(2 − η)/(1 − η)2 is equal to 0.3841 in our experiments.
The variation of the shear can be calculated from (4.13) as ∂ε/∂θf = −0.27 at threshold

(where θf = 0.32). Using (4.6) and (4.8), it leads to the value ∂σinv/∂ε = 0.54 ± 50 %.
Finally, assuming that the growth rate is proportional to the shear ε and adding a viscous
damping as

√
E (with a coefficient adjusted such that the growth rate vanishes at θf = 0.32,

i.e. at ε = 0.11) gives an empirical formula for the growth rate if it is due to the shear
instability:

σ = 0.54ε − 14.6
√

E. (4.15)

This formula is in fair agreement with the prediction for the shear instability coming
from the linear theory of Kerswell (1993), valid in the limit of small oblateness: the first
coefficient is expected to be below 0.6 and the second coefficient is expected to vary from
2.6 for the spin-over mode to 20 for complex modes (Grannan et al. 2014; Lemasquerier
et al. 2017).

Finally, the variation of the ellipticity can be calculated from (4.14) as ∂β/∂θf = −0.17
at the threshold (where θf = 0.32). Using (4.6) and (4.8), it leads to the value ∂σinv/∂β =
0.87 ± 50 %. Finally, assuming that the growth rate is proportional to the ellipticity β and
adding a viscous damping as

√
E (with a coefficient adjusted such that the growth rate

vanishes at θf = 0.32, i.e. at β = 0.032) gives an empirical formula for the growth rate if
it is due to the elliptic instability:

σ = 0.87β − 7.7
√

E. (4.16)

This formula is again in fair agreement with the linear prediction for the elliptic instability
derived in the limit of small oblateness: the first coefficient is expected to be below 1,
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depending on the relative rotation of the fluid and of the elliptic distortion (Le Bars et al.
2010), and the second coefficient is expected to vary from 2.6 to 20 (Grannan et al. 2014).

To conclude, it thus seems that the instability observed experimentally on mode S1 can
be explained theoretically by the three instabilities: shear instability, elliptic instability
and CSI. It is actually possible that the three instabilities coexist. It can explain not only
the high azimuthal wavenumbers of the unstable modes, but also the presence of three
azimuthal wavenumbers (m = 9, 8 and 6) separated by Δm = 1 (characteristic of the CSI
and the shear instability) and Δm = 2 (characteristic of the elliptic instability).

4.2. Instability of the second Busse’s solution
The second Busse’s solution S2 was found to be unstable in most cases. It corresponds
to the blue symbols in the stability diagram of figure 5, which cover a large region of
the domain for the solution S2. The only experiments that were found stable for the
second Busse’s solution correspond to the cyan symbols, which are limited to large Ekman
numbers (larger than about 10−4).

At threshold, the instability is characterized by a temporal growth of the spectral density
of vorticity at a frequency equal to 2πfI = 2.8. However, the total spectral density of
vorticity only increases by a factor 3 between the initial state and the saturated state. This
is due to the strong initial noise in the measurement probably related to the strong tilt of
the second Busse’s solution, and to the early viscous saturation due to the large Ekman
number. This does not allow us to measure a growth rate accurately, which will rather be
measured on the amplitude of the azimuthal wavenumbers of the instability. It should be
noted that a weaker peak of spectral density of vorticity is also measured at 2πfH = 5.6,
which corresponds to the harmonic of the instability’s frequency.

Figure 8 shows the spatial structure of the vorticity filtered at the frequency fI of the
instability at the end of the exponentially growing regime. The real part of the vorticity
ω̃, plotted in figure 8(a), exhibits a complex spiralling structure containing about four
positive and four negative vortices. The azimuthal spectrum, defined by (4.4), is plotted in
figure 8(b). It indeed confirms the predominance of the azimuthal wavenumber m = 4
with the presence of two patches extending from r = 0.2 to 0.4 and from r = 0.5 to
0.6. Integrating the azimuthal spectrum over r leads to the azimuthal spectrum of total
spectral density of vorticity, as plotted in figure 8(c). It indicates that the vorticity is
significantly larger for azimuthal wavenumbers m = 3 and m = 4 than for the other
azimuthal wavenumbers. The presence of two azimuthal wavenumbers separated by Δm =
1 is characteristic of the CSI and the shear instability rather than the elliptic instability.
However, note that PIV measurements in a plane located above the equator (at z = 0.18)
indicate that there is also a peak for m = 6, which is about 50 % of the peak for m = 4.

By fitting the temporal evolution of the amplitude of modes m = 3 and m = 4, it is
possible to accurately measure the growth rate σ of the instability. It was found to be equal
to 0.0062 for Po = −0.157 and to 0.02 for Po = −0.147 with uncertainties of the order of
5 %. As before, assuming that the viscous damping is independent of the Poincaré number,
the variation of the inviscid growth rate can be deduced as

∂σinv

∂Po
= 1.4 ± 10 %. (4.17)

As in the previous section, using the fact that ∂θf /∂Po = 3.4 ± 20 % at the threshold
where θf = 0.72 and E = 1.2 × 10−4 leads to an empirical formula for the growth rate:

σ = 2.5(E1/5θf − 7
√

E). (4.18)
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FIGURE 8. (a) Real part of the vorticity filtered at the frequency of the instability 2πfI = 2.8 as
defined by (4.2). The Fourier transform is calculated over 16 rotation periods around t/2π = 100,
corresponding to the end of the exponentially growing stage. (b) Azimuthal spectrum of the
vorticity as a function of the radius at t/2π = 100. (c) Azimuthal spectrum integrated over r, as
defined by (4.5) after eight rotations (purple), after 24 rotations (cyan), after 40 rotations (red),
after 56 rotations (green), after 72 rotations (blue), after 87 rotations (black), after 103 rotations
(yellow), after 119 rotations (purple), after 135 rotations (cyan) and after 151 rotations (red).
Here, Po = −0.157, E = 1.2 × 10−4 and h = 0.065.

with a 30 % error on the numerical value 2.5. Here, the viscous damping has been added
in order to satisfy σ = 0 at threshold. This viscous damping (equal to −17.5

√
E) seems to

be a bit large. Indeed, it is expected to be smaller than in the previous section (where
it was equal to 13) since the azimuthal wavenumbers are lower. However, the Ekman
number is larger here, such that the volumetric viscous damping may not be negligible.
The term −17.5

√
E could thus be rather equal to 10

√
E + 680E, for example, using ad

hoc coefficients (see e.g. a detailed discussion in the closely related case of libration in
Lemasquerier et al. (2017)). It is also possible that the boundary layer is turbulent in
this regime, leading to a larger Ekman pumping and thus a larger damping rate of the
inertial modes. This empirical formula is in good agreement with the prediction for the
CSI, given by (4.11), where the second coefficient is equal to 9.5 rather than 7.
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To compare with the theory of the shear instability, the variation of the shear is
calculated at θf = 0.72 using (4.13), leading to ∂ε/∂θf = −0.07 ± 20 %. It gives an
empirical formula for the growth rate if it is due to the shear instability:

σ = 5.8ε − 90
√

E, (4.19)

with a 30 % error on the numerical value 5.8. It means that the shear instability is probably
not unstable for these parameters. Indeed, the theory predicts that the inviscid growth rate
is equal to 0.6ε rather than 5.8ε (Kerswell 1993), and the viscous damping coefficient
seems unreasonably large.

Finally, the variation of the ellipticity is calculated at θf = 0.72 using (4.14), leading to
∂β/∂θf = −0.15 ± 20 %. It gives an empirical formula for the growth rate if it is due to
the elliptic instability:

σ = 2.7β − 25
√

E, (4.20)

with a 30 % error on the numerical value 2.7. It means that the elliptic instability is
probably not unstable for these parameters. Indeed, the theory predicts an upper bound
for the inviscid growth rate equal to β rather than 2.7β (Le Bars et al. 2010).

To conclude, the instability on this branch is probably due to the CSI. The elliptic and
the shear instabilities seem to be stable for the second Busse’s solution at this tilt angle.

5. Conclusions

In conclusion, our study confirms the presence of hysteresis between two uniform
vorticity solutions around the resonance with the tilt-over mode, in good agreement with
the analytical, viscous solution of Busse (1968) and the theoretical description of Cébron
(2015). To the best of our knowledge, this is the first experimental validation of hysteresis
for a moderate precession angle: our study thus expands the historical work of Malkus
(1968) and the more recent one by Horimoto et al. (2018), considering precession close to
90◦. Note that hysteresis has also been observed at this 90◦ angle in a cylindrical geometry
with aspect ratio 1 by Herault et al. (2015). In the first solution S1, the fluid rotation axis
is only slightly inclined compared with the container rotation axis and the flow remains
laminar in most of the explored range of parameters: its amplitude is then quantitatively
similar to the Busse (1968) solution. For the second solution S2, the fluid rotation axis
is more inclined and small-scale perturbations are almost systematically observed in
addition to the global, large-scale, solid-body rotation: a turbulent viscosity has then to be
introduced for quantitative agreement with Busse (1968) solution. This turbulent viscosity
is satisfyingly predicted by accounting for turbulent dissipation in the Ekman boundary
layer, as described by Sous et al. (2013).

For each solution, we observe at low enough Ekman number an instability with a
well-defined spectral signature in space and time, suggesting a parametric resonance
mechanism involving a forcing and two inertial waves of the rotating fluid. Using PIV
measurements around the instability threshold, we have tried to decipher between the
three possible origins for the forcing described in the literature: the elliptical distortion
of the circular streamlines of the inclined Busse’s solution in the spheroid, as introduced
by Kerswell (1993); the associated shearing of their centres, as also described by
Kerswell (1993); and the conical shear strain generated from critical latitudes by Ekman
layer eruption, as recently depicted in the spherical geometry by Lin et al. (2015) and
in the spheroidal geometry by Horimoto et al. (2020). While the latter mechanism
seems appropriate for both Busse’s solutions, we are not in the position to completely
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discard the first two suggestions, especially for the first solution S1. In the range of
experimentally accessible parameters, all mechanisms have indeed close growth rates and
might superimpose: only a systematic and large-range exploration in terms of Ekman
number will allow a clear conclusion to be reached, since only the inviscid growth rate
of the CSI explicitly depends on the Ekman number. This is, however, experimentally
challenging.

To finish, trends for future experimental studies include the exploration of other
ranges of Poincaré number, to look for possible parametric instabilities away from the
resonance with the tilt-over mode. It will also be very interesting to describe better the
nonlinear saturation of the excited instabilities and the shape of the excited turbulence,
i.e. geostrophic versus wave turbulence, as recently done in closely related configurations
using libration forcing (Le Reun, Favier & Le Bars 2019) and direct forcing (Brunet, Gallet
& Cortet 2020). This fundamental question will indeed have a strong influence on, for
example, energy dissipation and magnetic field generation, both questions of great interest
for planetary applications.
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