Proceedings of the Royal Society of Edinburgh, 149, 561-592, 2019
DOI:10.1017/prm.2018.39

Stability of the 1D IBVP for a non autonomous
scalar conservation law

Rinaldo M. Colombo and Elena Rossi

INDAM Unit, University of Brescia, Italy (rinaldo.colombo@unibs.it;
elena.rossi@unibs.it;)

(MS received 4 January 2017; accepted 25 February 2017)
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1. Introduction

This paper deals with the Initial Boundary Value Problem (IBVP) for a possibly
non autonomous scalar conservation law on a half-line

Ou+ Oy f(t,u) =0 (t,x)€]0,T] x Ry

u(0,x) = uo(x) reRy (1.1)
u(t,0) = up(t) tel0,T],
or on a segment
Opu+ Oy f(t,u) =0 (t,x)€[0,T] x [0, L]
w(0,2) = uo(x) x€[0,L] (1.2)
u(t,0) = up1(t) te[0,T]
u(t,L) = up2(t) tel0,T)

For these problems, we complete the basic well posedness and stability results. That
is, we detail below the proofs of the existence of solutions and of their stability with
respect to the flow. For the Lipschitz continuous dependence of solutions on initial
and boundary data, we refer to [4, 8].

With a slight abuse of notation, we refer to the non autonomous (time depen-
dent), respectively autonomous (time independent) case as to the case where the

flux f depends explicitly on time ¢ or not. In both cases, boundary data are time
dependent.
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Conservation Laws are typically studied either in the case of one-dimensional
systems or of scalar multi-dimensional equations. In the former case, we refer to
[1,10,12] for the basic existence results and for discussions on the very definition
of a solution to the initial boundary value problem. Differently from these works,
the present paper deals with the stability with respect to the flow and covers also
the case of a time-dependent flow.

In the scalar multi-dimensional case, the key reference is [4], see also [8,9,15-20],
which considers the existence of solutions and their continuous dependence on initial
and boundary data but only on bounded domains. Here, in addition, we deal also
with unbounded domains and ensure the stability with respect to the flow, though
limited to the one-dimensional case. With the present techniques, the extension to
the multi-dimensional case requires first the use of dimensional splitting coupled
with wave front tracking, as in [13, Chapter 4], and then very careful total variation
estimates adapted to the presence of the boundary.

We stress here the key role played from the technical point of view by the
definition of the solution to (1.1), respectively (1.2), as provided in [16, 20]. Indeed,
this definition is stable under L'-convergence, see [15, Chapter 2, remark 7.33] and
its use allows to avoid all issues related to the limit of traces converging to the trace
of the limit. These issues typically arise when relying on the more classical definition
of solution as given in [4, 8]. Nevertheless, thanks to lemmas 4.3, 4.4 and 4.5, the
total variation estimates [3. in proposition 2.5] and [3. in proposition 3.5] ensure
that the solutions constructed below solve (1.1) and (1.2) also in the sense of the
definition of solution given in [4, 8].

Recall that in the case of the autonomous Cauchy problem, the stability of
solutions with respect to the flux is treated in [13, theorem 2.13]. In one space
dimension, [5, theorem 2.6] deals with a convex scalar time independent flux,
while autonomous systems are considered in [5, theorem 2.1]. Here, we extend
these results to the non autonomous case with boundary, albeit in the scalar
one-dimensional case.

A key role in this paper is played by the wave front tracking technique, see [6,
9]. In this framework, Glimm type functionals yield a precise control of the total
variation. As a consequence, we obtain the stability of solutions with respect to the
flux in the autonomous case, thanks to a careful use of [6, theorem 2.9]. All these
estimates then lead to stability in the time-dependent case.

The next section presents the results concerning (1.1) on a half line. Section 3
deals with (1.2) on a segment. In both cases, we present first the autonomous case
and then the non autonomous one. Section 4 is devoted to proofs.

2. The case of the half-line

All statements and proofs below are referred to the time interval [0, 7] for a fixed
T > 0. Where the extension to ¢t € R, is not straightforward, we provide all nec-
essary details. Denote Ry = [0,400] and Ry = [0,400]. Following [16,20], for
a,b € R, we let

Z(a,b) = [min{a, b}, max{a,b}] . (2.1)
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Below, if uy € L (Iy;R) for real intervals I, and for £ =1,...,m, we define
U(ur, ... uym) = | min essinfuy, max esssupuy| . (2.2)
(=1,...m I (=1,....m I,

Equivalently, U (u1, ..., un) is the closed convex hull of (J;~ us(I;). If I, is a real
interval, for u € BV (I,,;R), TV (u) stands for the total variation of u on I,,, see [11,
§ 5.10.1] and, for any interval I C I, we also set TV (u; I) = TV (u;). Moreover, for
u € BV(;R™), we define TV (u) = >~;* | TV (us). Denote by .7, the t—translation
operator:

(Fpu) (1) = u(t+ 7). (2.3)
As usual, u(t,04) = lir(r)lJr u(t, z) stands for the trace at 0 from the right, see [11,
Paragraph 5.3] or [8, Appendix|. Throughout, we set

+ 1 ifu>0, B 0 if u >0,
sgn(u) = . sgn” (u)= .
0 ifu<O, -1 ifu<O, (2.4)

ut  =max{u,0}, wu =  max{—u,0}.

Introduce the semi-Kruzkov entropy—entropy flux pairs, see [16,20]: for any k € R
(2.5)

DEFINITION 2.1 [16, 20]. A weak entropy solution to the IBVP (1.1) on the interval
[0,7] is a map u € L*([0,7] x Ry;R) such that for any k € R and for any test
function ¢ € CL(R x R;R)

T
/0 [ {0 (ult.) Dup(t. ) + 9 (t.u.2)) Disp(t. )} o

+ /R+ i (uo(2)) ¢(0,) do */R i (u(T,2)) ¢(T,x)dz (2.6)

)
T
10l (oo / ni (un(t)) (t,0)dt >0,
and

T
/o s {0, (u(t,z)) dup(t,x) + @ (t,u(t,x)) Opp(t,x)} dodt
+ / i (10(0) (0,2) e~ / e (T, 2) o) (2.7)

T
100l 0.1t / n (1)) @(t,0)dt > 0,

where U = U(u,, up|[o,7)) as in (2.2).
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Relying essentially solely on definition 2.1, one obtains the Lipschitz continuous
dependence of the solution to (1.1) on initial and boundary data.

PROPOSITION 2.2. Let f € CH[0,T] x R;R) be such that {u+ O,f(tu)} €
WLP(R;R) for all te0,T], g, w, € (L' NL®)R,;R) and up, wy, € (L' N

loc

L>)([0,T];R). Assume the problems

O+ 0uf(tu) =0 (t,2)€[0,T] x R,
uw(0,2) = uo(x) reR, and
u(t, 0+) = wp(t) te0,7]

Ow + . f(t,w) =0 (t,2)€[0,T] x Ry
w(0,z) = wo () zeR,

w(t,04) = wy(t) te 0,7

admit solutions u,w € L>([0,T] x Ry;R) in the sense of definition 2.1, such that
uw and w both admit a trace for x — 0+ for a.e. t € [0, T|. Then, for all t €[0,T],

lu(t) = w®) L@, z) < o = wollpi @, vy + 10uf Lo (0,4 x26m) 1v6 = WollLr((o,4:m)
where U = U(up|jo,4), Whi[o,g) 5 as in (2.2).

Remark that proposition 2.2, whose proof is deferred to § 4, also ensures the
uniqueness of the solution to (1.1) in the sense of definition 2.1, as soon as a solution
exists.

2.1. The autonomous case on the half-line

We study first the following autonomous IBVP, which is a particular case of (1.1):

Ou+ 0, f (u) = (t,x)€[0,T] x Ry
u(0,x) = uo(w) rER, (2.8)
u(t,0) = up(t) tel0,T).

Solutions to (2.8) are understood in the sense of definition 2.1. Observe that propo-
sition 2.2 applies to (2.8), under the hypothesis f € C!(R;R). The next proposition
ensures the existence of solutions to (2.8), as well as some of their properties.
PROPOSITION 2.3. Let f € WL (R;R), u, € (L' NBV)(R;R) and uy € (L' N
BV)([0,T);R). Then, problem (2.8) admzts a solution w in the sense of
definition 2.1, with the properties:

(1) If up and wuy are piecewise constant, then for t small, the map t — u(t) coin-
cides with the gluing of Lax solutions to Riemann problems at the points of
jumps of u, and at x = 0.
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(2) Range of u: with the notation in (2.2), u(t,z) € U(ue, up|jo,4) for a.e. (t,x) €
[0,T] x Ry. Hence, for a.e. t € [0,T],

a8 ey < 025 { g ey sy I om0 -
(3) w is Lipschitz continuous in time: for all t1,ts € [0,T1,
[u(t) = u(t2)lpi(r, &) < C1 [tz — tal,

where C1 = || f'|| o i) (TV (o) + TV (ups [0, 21 V E2]) + [up(0+) — uo(0+)])
and U = U(ue, Up|[o,t,vt,]), with the notation (2.2).

(4) Total variation estimate: for all t € [0,T]
TV (u(t)) < TV (uo) + TV (up; [0, ¢]) + |up(0+) — uo(04)] -

The proof is deferred to § 4.1. Various results similar to, but not containing, propo-
sition 2.3 can be found in the current literature. The case of a convex flux is treated
in [3]. A bounded domain is considered in [4] and in [2, 8], see also [9, § 6.9] or [19,
§ 15.1].

Our main result, namely the stability of the solution to (2.8) with respect to
the flux, concludes this Section. The current literature considers the case when no
boundary is present. In the one-dimensional setting, the scalar equation is treated
in [13, theorem 2.13] and [5, theorem 2.6] for a convex scalar flux, while systems
are considered in [5, theorem 2.1]. The multi-dimensional case is covered in [7].

THEOREM 2.4. Let f,g € CHR;R), u, € (L'NBV)(R:;R) and u, € (L1N
BV)([0, T];R). Call uw and v the solutions to the problems

Ou+ 0, f(u) =0 (t,z)€[0,T] x Ry
u(0,z) = uo(w) reRy and
u(t,0) = up(t) tel0,T]
O + 0,g(v) =0 (t,2)€[0,T] x Ry
v(0,z) = uo(ac) TeER, (2.9)
o(t,0) = up(t) te0,T]

constructed in proposition 2.3. Then, with U = U(u,, up|jo,q) as in (2.2), for all
te 0,7,

lt) = 0(8) I sy < 25 {1 1 ey} 10 = 9wy
X (TV (o) + TV (g3 [0, 1)) + [ (0) — o (04))) ¢

The proof is deferred to § 4.1.
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2.2. The non autonomous case on the half-line

The results obtained in § 2.1 are here extended to problem (1.1). We first
generalize proposition 2.3.

PROPOSITION 2.5. Let f be such that

feCY[0,T] x R;R) and {t s . f(t,u)} € WE([0,T];R) forall u € R.
(2.10)

Fiz u, € (L'NBV)(R1;R) and up, € (L' NBV)([0,T);R). Then, problem (1.1)
admits a solution u in the sense of definition 2.1, with the properties:

(1) Range of u: with the notation in (2.2), u(t,x) € U(uo, up|[0,¢) for a.e. (t,x) €
[0,T] x Ry. Hence, for a.e. t € [0,T],
)l ) < 20 { kol o i, s 1ol e 0,18
(2) w is Lipschitz continuous in time: for all t1,ty € [0,T7],
[u(t) = w2l ry m) < C lt2 —ta],

where  C = [|0u [y, (0,6, via) xary (TV (o) + TV (up; [0, 21V t2]) + |up (0+)
—uo(0+)]) and U = U(uo, up|[0,¢,v1,)), with the notation (2.2).

(3) Total variation estimate: for all t € [0,T]
TV (u(t)) < TV (uo) + TV (up; [0, ¢]) + |up(04) — uo(04)] .
The proof is deferred to § 4.2.

THEOREM 2.6. Let f and g both satisfy (2.10). Fiz u, € (L' NBV)(R.;R) and
up € (L NBV)([0,T];R). Call u and v the solutions to the problems
Ou+ 0, f(t,u) =0 (t,z)€[0,T] x Ry

u(0,x) = uo(x) reRy and

u(t,0) = up(t) tel0,7]

O+ Opg(t,v) =0 (t,2)€[0,T] x Ry
v(0,2) = uo(x) reRy
v(t,0) = up(t) tel0,T]

constructed in proposition 2.5. Then, with U = U(u,, up|jo,4) as in (2.2), for all
t€0,7T)

l[u(t) = v()llp (v, r) <max {17 ||aug||L°°([0,t]><u;R)} 10u(f = Dl Loe 0,1 xesm)
X (TV (uo) + TV (up; [0,¢]) + |up(0+) — uo(0+)]) ¢
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3. The case of the segment

We consider here the case (1.2) where x varies in a segment. All statements are
presented in details below, but proofs are omitted since they are entirely analogous
to the ones presented in § 4. The definition of solution to (1.2) is given analogously
to definition 2.1, adding an obvious term related to the boundary = = L.

DEFINITION 3.1. A weak entropy solution to the IBVP (1.2) on the interval [0, T is
amap u € L>([0,T] x [0, L]; R), such that for any & € R and for any test function
¢ € CL(R x R; R, ) satisfies the following entropy inequalities

T L
/0 /O [0 (u(t,2)) Dup(t, z) + B (¢, ult, ) Dup(t, x)} dadt
L L
+/0 me (ue(x)) (0, z) dx—/o My (T 2)) o(T,x) Az + (|00 fllg 00 (o 7720

X </O e (up,1 (1)) (¢, 0) dt+/0 M (up2(t)) o(t, L) dt) 20,
and

T L
/0 /o {17,; (u(t,x)) Opp(t,x) + P (t,u(t,x)) amiﬁ(t,;v)} dxdt
L L
"'/0 M (uo(@)) (0, z) dz —/0 Ny (W(T,z)) (T, z)dx + ||0ufHLoo([o,T]xu;R)

T T
X (/O My, (up,1(1)) ¢(,0) dt+/0 My, (un2(t)) o(t, L) dt) >0,

where U = u(uovul%l\[o,T]’ ub»2|[0,T]> as in (2.2).
Throughout, we denote up = (up,1,up,2) and wp = (Wp,1,Wp 2).

PROPOSITION 3.2. Let f € CY[0,T] x R;R) be such that {uw O f(t.u)} €
WP (R;R) for all t €[0,T), uo,w, € (L' NL®)([0,L];R) and up,wp € (L' N
L) ([0, T];R?). Let u,w € L>([0, L] x [0,T];R) solve the IBVP (1.2), with data
(o, up) and (w,, wsp) respectively, in the sense of definition 3.1, with u and w that
both admit a trace for x — 04+ and for x — L— for a.e. t € [0,T]. Then, for all

te[0,77],
[u®) = w)llLio,r1r) < w0 — wollpi v, 0,117)

2
1100 fll e oy D b = whilla o y-

i=1

where U = U(up|[o,4), Wh|[o,g) 5 as in (2.2).

Along the lines of the preceding sections, we present first the results for a time
independent flux and then those related to the non autonomous case. We provide
all those details where the present results differ from those of §§ 2.1 and 2.2.
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3.1. The autonomous case on the segment

Consider the following autonomous IBVP, which is a particular case of (1.2):

Opu~+ 0z f(u) =0 (t,z)€[0,T] x [0, L]
u(0,) = () ve(0, 1] (3.1)
(u(t,0),u(t, L)) = up(t) te0,7].

Solutions to (3.1) are understood in the sense of definition 3.1. Observe that
proposition 3.3 applies to (3.1), under the hypothesis f € C}(R;R).

The next proposition ensures the existence of solutions to (3.1), as well as some of
their properties, and it is the analogue to proposition 2.3, with minor modifications
in the estimates.

PROPOSITION 3.3. Let f e WLP(R:R), u, € (L' NBV)([0,L];R), up € (L' N

loc

BV)([0,T];R?). Then, problem (3.1) admits a solution u in the sense of
definition 3.1, with the properties:

(1) If u, and up are piecewise constant, then for t small, the map t — u(t) coin-
cides with the gluing of Lax solutions to Riemann problems at the points of
jumps of u,, at x =0 and at x = L.

(2) Range of u: with the notation in (2.2), u(t,z) € U(uy, up|[0,1)) for a.e. (t,x) €
[0,T] x [0, L]. Hence, for all t €[0,T],

||u(t)||Loc([o,L];R) < max {||“0||L°C([0,L];R)v ||Ub,1||Loo([o,t];R)» ||Ub,2HLoo([o’t];R)}-
(3) w is Lipschitz continuous in time: for all ty,ts € [0,T],

[u(ty) — u(t2)||L1([o,L];R) < Cluo, up) Hf/HLoo(u;R) |tz — ta],
Cluo,up) = TV (uo) + TV (up; [0, 11 V 12])
+ |p,1 (04) — o (04)] + up,2(04) — uo(L—)|
where U = U(to, Wp|0,¢,vt,]), With the notation (2.2).
(4) Total variation estimate: for all t € [0,T]
TV (u(t)) < TV (uo) TV (up; [0, 1])
+ 16,1 (0+) — 1o (04)| + [up,2(0+) — uo(L—)] .

We conclude this section stating the stability of the solutions to (3.1) with respect
to the flux, similarly to theorem 2.4.

THEOREM 3.4. Let f,g € CH(R;R), u, € (L'NBV)([0,L];R) and wup € (L' N
BV)([0,T);R?). Call u and v the solutions to the IBVP (3.1), with flux f and g
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respectively, constructed in proposition 3.3. Then, with U:U(uo,ub‘[o’ﬂ) as
n (2.2), for all t € [0,T],

() = vl o3 < mx {119 e ey | 1P = Dl e

X (TV (uo) + TV (ub; [07 t]) + |ub,1(0+) - U0(0+)|
+ [up,2(04) — uo(L—))|)t.

3.2. The non autonomous case on the segment

We now extend the results obtained in § 3.1 to problem (1.2).

PROPOSITION 3.5. Let f satisfy (2.10). Fiz u, € (L* NBV)([0, L];R) and uyp €
(LYNBV)([0,T);R?). Then, problem (1.2) admits a solution u in the sense of
definition 3.1, with:

(1) Range of u: with the notation in (2.2), u(t,z) € U(uo, up|jo,4)) for a.e. (t,x) €
[0,7] x [0, L]. Hence, for all t € [0,T],

Hu(t)HLOO([O,L];R) < maX{HUoHLoo([o,L];R)» [[up,1] L ([0,t];R)’ Hub,zlle([O)ﬂ;R)}.

(2) w is Lipschitz continuous in time: for all t,to € [0,T7,

Ju(t) — u(t2) Lo, 0)ir) < Cto Ub) 10uf Lo (0,4, vea) xeesm) 1t2 — Ll
Cuo,up) = TV (up) + TV (up; [0, 1 V ta])
+ [up,1(04) = uo(0+)] + |up2(0+) — uo(L—)
where U = U(to, Ub|[0,4,v1,)), with the notation (2.2).
(3) Total variation estimate: for allt € [0,T]
TV (u(®) < TV (1) + TV (g [0, ) + 151 (04) = (04|
+ |up2(0+) — uo(L—)].

We conclude this section with the analogue to theorem 2.6, that is, the stability of
the solution to (1.2) with respect to the flux.

THEOREM 3.6. Let f,g satisfy (2.10). Fiz u, € (L'NBV)([0,L];R) and up €
(L'NBV)([0,T];R?). Call u,v the solutions to the IBVP (1.2), with flur f and
g respectively, constructed in proposition 3.5. Then, with U :U(uo,ubuo’t]) as
n (2.2), for allt € [0,T],

[[u(t) — U(t)HLl([o,L];R) < max {17 HaugHLOO([O,t]XLt;R)} 10u(f = g)”LOO([O,t]xL{;]R)
X (TV (UO) + TV (ub; [O,t]) + |ub,1(0+) - UO(0+)|
+ |up,2(0+) — uo(L—)|)t.
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4. Technical proofs

We distinguish between classical entropy—entropy flux pair and boundary entropy—
entropy flur pair. In similar settings, the former notion, in the time independent
case, is given in [9, Paragraph 7.4] or [15, Chapter 2, definition 3.22], while for the
latter, we refer to [17,18], see also [15, Chapter 2, definition 7.1], [16, definition 2]
and [20, definition 2]. We provide below the explicit definitions in the case of interest
here, where f = f(t,u).

DEFINITION 4.1. The pair (1,q) € CY(R;R) x C([0,T] x R;R) is called a classical
entropy—entropy flur pair for the flux f € C([0,T] x R; R) if:

(1) n is convex;
(2) for all t € [0,T] and all u € R, yq(t,u) =n'(u) Oy f(t, u).

DEFINITION 4.2. The pair (H,Q) € C1(R%;R) x C}([0,7] x R%;R) is called a
boundary entropy-entropy flux pair for the flux f € C1([0,T] x R;R) if:

(1) for all w € R, the function v +— H(u,w) is convex;
(2) for all t € [0,T] and all u,w € R, 0,Q(t,u, w) = O, H(u,w) Oy f(t,u);

(3) for all t€[0,7] and all weR, H(w,w)=0, Q,w,w)=0 and
OuH (w,w) = 0.

Consequences of definition 2.1 are collected in the following lemmas, whose proofs
directly follow from [20, lemma 1 and Remark 3], see also [16, lemmas 3, 4 and 16].

LEMMA 4.3. If u € L*([0,T] x Ry;R) is a weak entropy solution to (1.1) in the
sense of definition 2.1, then, for all classical entropy—entropy flux pairs (n,q), for
all p € CLR xR, ;R,),

T
/ {1 u(t, 2)) Brplt, 2) + g (£, u(t, 2)) Doiplt, 2)} dardt
0 R+ (4.1)

+ [ nlunle)) ¢02)do— [ nu(T.0) olT.0)ds >0,
In particular, for all p € CL(R x f&r; R.) and for all k € R,

T
/ {lu(t,z) — K| Bup(t, )
o Jry
sgn (ult ) — B) (f (b ult, ) — F(6R) uplty o)} dadt (4.2)

+/1R+|UO($) — k|(0,2) da — /R+ |u(T, z) — k|o(T, x) dz = 0.

LEMMA 4.4. If u € L*°([0,T] x Ry;R) is a weak entropy solution to (1.1) in the
sense of definition 2.1, then, for all boundary entropy—entropy flux pair (H, Q) and
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for all 3 € LY(R;R) with >0 a.e.,

T
ess lim/0 Q (t,u(t,s),up(t)) B(t)dt <0. (4.3)

s—0t

Moreover, if u admits a trace u(t,0+) at & = 0 for a.e. t € [0,T], (4.3) is equivalent
to

T
/O Q (t,ult, 04), (1)) B(t) dt < 0. (4.4)

We now extend part of [15, Chapter 2, lemma 7.24] to the time dependent case.

LEMMA 4.5. Let up, € L=([0,T];R) and let w € L>=([0,T] x R;R) admit a trace
u(t,04) at . =0 for a.e. t € [0,T]. If (4.4) holds, then for a.e. t € [0,T] and for
all k € Z(u(t,04),up(t)) as in (2.1),

sgo (u(t, 0+) —up(2)) (f (£, u(t, 04)) — f(£,k)) <O. (4.5)
Proof. For all k € R and for n € N\ {0}, define the maps

Af(u,w) = min |u— 2|
z€Z(w,k)
f(t,w) = f(t,u) foru<w<k
0 forw <u<k
- f <k <
Frtuw) = 1B =GR forw<k<u
ft k) — ft,u) foru<k<w
0 for k<u<w (4.6)
f(t,u) — f(t,w) fork<w<u

H (u,w) = ((Ak<u,w>)2 L )”2 !

2
QF (1, u,w) = / B HE (2, w) D, f (¢, 2) dz.

Clearly, for all k € R, the sequence of boundary entropy-entropy flux pairs (HF, QF)
converges uniformly to (AF, F*) as n — +oo. Applying (4.4) with Q replaced by
k in the limit n — 4oo yields that for all k € R and for all 8 € L'(R;R) with

n’

08>0 ae.,

/T F¥ (t,u(t,04), up(t)) B(t)dt <0
0

FE(t,ut,04), up(t)) <0 for ae. t €[0,7]. (4.7

Choose now k € Z(u(t,0+),up(t)) so that, by (4.6), the bound (4.7) ensures (4.5).
]

Proof of Proposition 2.2. This proof closely follows that of [8, theorem 4.3], but
using the doubling of variables method as in [16, lemma 17|, which is consistent
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with the present definition 2.1. Key points are the choice of an appropriate test
function and the use of lemmas 4.4 and 4.5.

Note that here there is no source term, the flux f does not depend on the space
variable and we are dealing with R instead of a bounded domain 2 C R"™. A careful

checking of the proof in [8] shows that the present assumptions on f are sufficient.
O

4.1. Proofs related to the autonomous IBVP on the half-line

Proof of Proposition 2.3. For £ > 0, introduce the set PC(R4;ecZ) of maps u of
the form u = Zivzl Ua X, where N € N, u, € €Z and I, is a real interval for all

a=1,...,N. PLC(R;R) is the set of real-valued piecewise linear and continuous
functions defined on R.

A.1) Construction of € — approzimate solutions Following [6, Chapter 6], for any
positive € introduce the following approximations:

H%HL&(&;R) < ||u0||L°°(R+;R)

u;, € PC(Ry;€Z) such that § TV (ug) < TV (u,)

lim. o [lug — uOHLl(RJr;R) =0

45 lleee o,0:m) < Nl o) V€ 10,T]
TV (uf;[0,t]) < TV (up;[0,¢]) Vte|0,T
ui € PC((0,T};Z) such that { (i 10,4) (12310, 7] 0,7]
lime o [Jug — sl jo,77) = O

| (04) — ug(04)] < |up(04) — uo(0+)]
fe(u) = f(u) for all u € eZ

f¢ € PLC(R;R)  such that Sike,(k41)e[ 18 an affine function for all k € Z

1D oo ey < N Moo @iimy -

(4.8)
We approximate the solution to the original IBVP (2.8) with exact solutions u. to
the e—approximate IBVPs

Opuf + 0, f€(uf) =0 (t,r)€[0,T] x Ry
u#(0,2) = uE(2) reR, (19)
us(t,0) = ug(¢) tel0,T).

At the initial time ¢ = 0, solving (4.9) for > 0 amounts to glue the solutions to
the Riemann problems at the points of jump in ug, see [6, § 6.1]. A local solution
at (0,0) is obtained by restricting the solution to the Riemann problem for f¢ with
left and right state u§(0) and u$(0) respectively, see [1, example C]. Recall from [6,
Chapter 6] that, with the above choice of f¢, the solutions to Riemann problems
with data in €Z still take values in the set €Z.
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We thus have a piecewise constant solution u® to (4.9) defined for ¢ > 0 sufficiently
small. This solution can be prolonged up to the first time of interaction t; > 0 at
which one of the following events takes place:

(i) two or more lines of discontinuity hit each other;
(ii) one wave hits the boundary x = 0;
(iii) the value of the boundary condition uj changes.

In case (i), it is possible to extend the solution beyond t; by solving the new Rie-
mann problems generated by the interactions, as in [6, § 6.1]. In cases (ii) and (iii),
the extension beyond ¢; is achieved by restricting to Ry the solution to the Rie-
mann problem with left state uj(t1+) and right state u®(¢1,04). The solution is
then prolonged up to the next time of interaction to > t1, and so on.

Note that, by construction, waves in u® satisfy both Rankine-Hugoniot condi-
tion [9, Formula (4.3.5)] and Oleinik entropy condition [9, Formula (8.4.3)], in the
sense that, whenever two states u’ and u” in u° are separated by a wave propagating
with speed A, we have

A= LU Iy S0~ 10

uf —ur ur

fe(k) — fo(uf)

SAS k — ut

Vk e I(u,u").
(4.10)

Moreover, the above conditions (4.10) impose that, whenever u¢(¢,04) = u”, we
have that

fe”) — 2 (k)

if u” (t) th
if u” £ ui(t) then 11—

<0 VkeT(us(t),u"). (4.11)

A.2) Wave front tracking solutions are weak entropy solutions By standard
arguments, it is sufficient to verify (2.6) and (2.7) in the following two cases:

1. The support of the (positive) test function ¢ is contained in [t1, t2] X [x1, 2] C
10, T x Ry and here the wave front tracking solution u® attains only the two
values u’ and u”, separated by a wave with speed A\ = ((zo — x1)/(t2 — t1)).

2. The support of the (positive) test function ¢ is contained in [t1,t2] X [21, 2]
with 1 < 0 < 22, the boundary data satisfies uf(t) = u® for t € [t;,t2] and
us(t,x) = u” for (t,z) € [t1,t2] x [0, x2].

The other cases, that of a single wave with negative speed, of interacting waves,
of waves interacting with the boundary and of the boundary datum changing
value can be recovered through manipulations of the test functions and immediate
modifications of 1. and 2.

1. Assume k < uf < u”. Then, direct computations show that (2.6) is equiva-
lent to

ta

[)\(u”—ue)—(fs(u’")—fs(ue))]/ ot + A(E—t))dt >0,  (4.12)

ty
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which holds since the left-hand side vanishes by the Rankine-Hugoniot con-
dition (4.10). It is immediate to check that the left-hand side in (2.7)
vanishes.

If u® < k <", then (2.6) is equivalent to

(W — k) Q-W) /t/zgo@,le(t—tl))d»o,

which holds by Oleinik entropy condition (4.10). On the contrary, (2.7) is
equivalent to

(k — uf) (w—x> /t2<p(t,x1+/\(t—t1))dt>0,

¢
k—u t

which again holds by Oleinik entropy condition (4.10).

If u® <u” <k, then (2.7) is equivalent to (4.12), while the left-hand side
in (2.6) vanishes.

The cases k < u” < uf, u" < k < u’ and u” < u’ < k are entirely analogous.

2. Assume k < u’ < u”. Then, direct computations show that (2.6) is equivalent
to

— (£2(u") = £ (k) + [IDF2 | oo uaemy (u” = k)} /t ’ ©(t,0)dt > 0.

Note that, by the Lipschitz continuity of f¢, we have
— (7 (u") = F(R) + I DFe g gy (u” = k) = f2(u) — f5(u")

and the latter term above is non negative by (4.11). Hence, the left-hand side
in (2.7) vanishes.
Assume u’ < k < u”. Then, (2.6) is equivalent to

to
(o (k) - F7 () / o(£,0)dt > 0,
ty
which holds by Oleinik entropy condition (4.11). Hence, (2.7) reads
ta
HDfEHLOO(u;R) (k —u) / ©(t,0)dt >0
ty

and this inequality clearly holds.
Assume u’ < u” < k. Then, the left-hand side in (2.6) vanishes. Condi-
tion (2.7) becomes

[(fg(ur)—fe(k))+\|Df8HLoo(u;R) (k—uf)}/2<p(t,0)dt>0.

ty

Note that, by the Lipschitz continuity of f¢, we have
(") = f2(R)) + 1D Fe e iy (B — ") = D FF e gy (1 — )

and the latter term above is non negative in the present case.
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A.3) The map t — TV (u®(t)) is uniformly bounded, as long as u® is defined
Introduce for ¢ € [0, 7], the Glimm functional
VE(t) =TV (u(t) + TV (ug; [t, T)) + |ug (t+) — u(¢,0+)]. (4.13)

Clearly, TV (u®(t)) < Ve(t). We claim that ¢ — V() is non increasing. Indeed, at
an interaction time, the proof in [6, § 6.1] applies in case (i) in Step A.1, while minor
modifications yield the proof in the other two cases (ii) and (iii). The inequality
Ve(t) < VE(0) implies

TV (uf(t)) < TV (uf) + TV (uf; [0,1]) + |us (04+) — u(0+)] . (4.14)

A.4) The total number of interactions is finite and u® is defined for all t € [0,T]
When ¢ is not a time of interaction, define the weighted number of discontinuities
in u®(t) as

#(t) = [number of discontinuities in u®(t)]

el e )+ Mol e,y

number of discontinuities in Jzug]
€

1
+— Jui(t) — e (1,0)],

where we used the notation (2.3). If ¢ is an interaction time, set §(¢) = lim, .+ §(7).
The procedure in [6, § 6.1] can be applied, ensuring that at those interaction
times where f increases, V¢ diminishes by at least e.

A.5) Range of u® At any interaction time ¢, the new values attained by u®
lie in the convex hull of the values attained by u® before time t,, proving that
u(t,z) C U(up, upjo,y) for ae. (t,z) € [0,7] x Ry, with the notation (2.2). It is
then immediate to verify that at any time ¢ € [0, 7]

||u6(t)HL°°(R+;R) < max{||u0||Loc(R+;R)y Hub”Loo([O,t];R)} . (415)

A.6) L' -Lipschitz continuity of t — u®(t) Assume that to > ;. Observe first that
u® remains unaltered on the interval [0, to] if uj is substituted by 4j = uj X

uj (ta+) Xity 1)’
small, denoting U = U(u,, up|[o,¢,)) as in (2.2),

_l’_
O,tz]
At any interaction time t,, if t; < t, < to and ¢ — ¢; is sufficiently

[[u (t2) — u®(ta HLl (R4 :R)

< e umy V() It2 =t [by [6, Formula (6.14)] and (4.14)]
< f’HLN(u;R) VE(0) [to — t1] [since t — V() is non increasing]
= [l gy (TV (u5) + TV (a5) + [a5(04) — u5(0+)]) |2 — ta] [by (4.13)]
= [ lgoe gy (TV (u5) + TV (w53 [0, t2]) + ug (0+) — u5(0+)]) [tz — ta] - (4.16)
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A.7) Ezistence of a solution By Helly Theorem [6, theorem 2.4], for any sequence
e, converging to 0, the sequence u®" converges pointwise almost everywhere, up
to a subsequence, to a map u. We now show that this limit function u is a weak
entropy solution to (2.8), in the sense of definition 2.1. Any u°" is a weak entropy
solution to (4.9) by Step A.2; hence, u°" satisfies for any k € R and for any test
function ¢ € CL(R x R;R) the two entropy inequalities

T
0< /O /R {m?(us"(t,x)) Op(t, x) + By, (u (t,x)) 8x<p(t,x)}dxdt (4.17)
[ ) 0.0 e = [ (T (T da @1s)

+

T
1D e g /0 nE (uEn (1)) o(,0)dt (4.19)

where n,zf and @,fn are defined as in (2.5), using the autonomous flux function fe=.

Consider each term separately. Since n,f are Lipschitz continuous function with
Lipschitz constant 1, we can estimate the first term in (4.17) as follows:

T
/ / T]ki (us" (t,x)) Opp(t, ) dx dt
o Jr,
= [ [ ottt gty st
0o Jry
T
+/O /R (mif (u(t,2)) — nif (u(t,x))) Op(t, ) dzdt
g +
< /0 /]R+ n (u(t,x)) Opp(t, ) da dt

T
Jr/o /]R{+ |us(t, 2) — u(t, z)| Opp(t, ) do dt (4.20)

and the second addend in (4.20) goes to 0 as &, goes to 0.
Concerning the second term in (4.17), proceed as follows:

T
/ / (I)in (ufn (t,l’)) am@(t,x) dx dt
o Jry
T
</ / @y (u(t, ) Dap(t, ) da dt
0o Jr,

* /OT /ﬂh (@F, (u(t,2)) = F (u(t,2))) Oucp(t,z) dardt
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’ ~/0T/]R ((I)i" (u (t2)) = @, (“(tvw))) Orp(t, ) da dt
< /OT /ﬂh O (u(t, z)) Opp(t, x) da dt (4.21)

T
[ st R () - 72
0o Jr,
— f(u(t,z)) + f(k)) Opp(t, x) dz dt (4.22)
T
1D ey [ [ W) w0l upltn) et (423)
+
and, as &,, tends to 0, (4.22) goes to 0 since f*" converges uniformly to f, while (4.23)

vanishes in the limit due to the convergence of u*" to u.
The two terms in (4.18) are treated in the same way:

/ 7 (uEr (2) 9(0,2) dz — / i (w5 (T, 7)) (T, z) dz
R

Ry
= [t Gole) O e = [t ra) T @2y
Ry Ry
[0k @)~ Gl 0,7 (4.25)
R
- / (nF (u (T, ) — nE (u(T,2))) (T, ) dz (4.26)

and, since i are Lipschitz continuous with constant 1, (4.25) and (4.26) vanish as
£, goes to 0, due to the assumptions (4.8) on the initial datum and to the fact that
u®" converges to u.

Pass now to (4.19). Thanks to [[Df" ||y, ) < [1f/ e @) Se€ (4.8), we obtain

T
1D e iy / niE (e (1)) o(t,0) dt
T
<1 e i / i (un(t)) o(t,0) (4.27)

+ ||f/||L°°(Z/l;]R)/O (7 (w5 () = i (un(1))) (¢, 0) dt (4.28)

and (4.28) vanishes as ¢, goes to 0, thanks to the Lipschitz continuity of n,f and
the assumptions (4.8) on the boundary datum.

Collecting together the results above, in the limit &,, — 0, we obtain that u is a
weak entropy solution to (2.8).

A.8) Conclusion Point 1. holds by construction. For a.e. (t,z) € [0,T] x Ry,

uf(t,x) € U(uo, up|[o,) and (4.15) imply Point 2. Formula (4.16) and the assump-
tions (4.8) on the e-approximation ensure Point 3. finally, Point 4. follows from the
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inequalities
TV (u(t)) + TV (up; [t,T])
< il_r)r(l) (TV (u®(t)) + TV (ug(t); [¢t,7])) [lower semicontinuity of the TV]
< ;li% VE(t) [see (4.13)]
< lim VE(0)

N

TV (uo) + TV (up) + |up(04) — uo(04)].
The above estimates ensure that v € (L NBV)([0,7] x Ry;R). O

Proof of Theorem 2.4. To exploit the semigroup notation as in [1,5, 6], we assume
without loss of generality that T" = +o0.

As in (4.8), define for any positive ¢ the es-approximate fluxes f€, ¢° €
PLC(R;R), the e-approximate initial datum u% and boundary datum uf. Let
D¢ be the set of pairs p = (uS,us) such that ué € (L' NBV)(Ry;eZ) and u§ €
(L' NBV)(Ry;¢eZ), equipped with the norm ||(ug,us)||p- = max{[|ug|lp1 g+ r)s
||u§||L1(R+_R)}. The algorithm used in the proof of Proposition 2.3 yields the
semigroups

SI° Ry x DF — DF S9°: Ry x D° — Df

t, (ug, up) = (us(t), Fyug) ¢, (ug, up) — (v°(t), Fpuy)
using the notation (2.3). Note that t — u°(t) and t — v°(t) are at the same time
e—approximate wave front tracking solutions to (2.9) and exact solutions to

Opuf + 0 f5(uf) =0 (t,x) eRy x Ry

u®(0,2) = us(x) reRy and
uF(1,0) = w3 (1) teR,

Oy + 0pg°(v°) =0 (t,z) eRy x Ry

v(0,z) = us(x) reRy

ve(t,0) = ug(t) teR, .

Hence, applylng proposition 2.2 and using the above choice of the norm in D¢, we
have that S and Sg are Lipschitz continuous in both arguments, with

Lip (57) < max {1,119 e sy | < max {110 pmuomy }» (4:29)
where, using the notation (2.2),

Us = U(ug, ug0.4) Uy = U(uo, upjo,) and Uy C Uy (4.30)
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Figure 1. Notation used in the proof of Theorem 2.4 with n‘=2andn" =1.

due to (4.8). By [6, theorem 2.9],

[ (t) = v* (O llr (e, m)

ST (ug,uf) = 7 (ug,up)

L1 (R4 R?)

dr. (4.31)
L (R+iR?)

t
€ 1 € = € €
< Lip (s7) / liminf +-|[S¢ 82" (ug,up) — S1SL (u, up)
0 —

To simplify the notation, introduce (w,wy) = SI" (ug,uf). Outside a finite set of
times 7, each Riemann problem for f¢ in w is solved by a single wave with speed
M. Let & be either 0 or a point of jump in w. If z = 0, set w* = w,(0+) = uf(7+),
whereas w’ = w(z—) when > 0. In both cases, let w” = w(z+). In general, the
solution to the Riemann problem for g¢ with data w’ and w” contains n! waves with

speeds A{ < --- <\, < M and n" waves with speeds A/ < /\fﬁfﬂ << )\ian

see figure 1.

Assume that the intermediate states are increasing w’ < w; < -+ < wye <
Wpegq < ... < Wpey,r < w”, the other case being entirely analogous. For a suf-
ficiently small 6 > 0, call I5; =[0,0] if z=0 and Is = [z —d,Z+ 0] if Z> 0. We
compute the integrand in (4.31) on Is through a repeated use of Rankine-Hugoniot

condition:

L1(Is;R2)

]. € £ € €
st sz s, wp) — f I s )

L (I5;R2)

:% HSgE (w, wp) — S}:E (w, wb)‘
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n*—1
= Jwi = w' [ |M g = AF] + [wge — w'[ A =X,
i=1
n"—1
+ |w" — wye] /\fl,z+1 —/\f‘ + Z [w" — wye 4 )\ZZJFHI —/\fl,zﬂ.
i=1
n’—1
=3 (wi —w) (N = M)+ (we —w') (M =A%)
i=1
n"—1
(W = wne) Ay = M)+ ) (" = we) My — ML)
i=1

= (g7 (w") = g"(wne)) = (97 (we) = g (")) + (wye — WA — (" = we)N.
(4.32)

Note that by Oleinik Entropy condition [9, Formula (8.4.3)]

fa(wT)ifE(wnZ) < /\f < fs(wng) 7f€(w£)

[
W' — Wyt Wyt — W

)

so that, using (4.8) and the fact that w’ w,.,w’ € cZ, continuing the esti-
mate (4.32), we obtain:

|57 81 (us,up) - Sf 8L (us, u)

q
h
< (97 = )W) = (g7 = ) (wne)) = ((6° = [)(wne) = (97 = [)(w"))
= (9= Hw") = (g = Hlwpe)) = ((g = Hlwne) = (g = f)(w"))
< D9 = Nlleo (o wrpiry 10" = wnel +11D(g = Pllcoue om0 |wpe —w']

B

L1 (I5;R2)

< [|D(g - f)||CO([w£7wr];R) |wr — wz| .

By (4.30), U: = U(ui,ug‘[o T]) D U(w,wyp). Considering all Riemann problems for
u® at time 7 along R, the integrand in (4.31) becomes

1 N €/ e € N €/ e €
=57 g, wi) - 1S (wguui)

L1 (R ;R2)
< D9 = Nllco ey (TV (w) + [wp(0+) — w(0+)]) .

Exploiting the functional V¢ defined in (4.13) and the fact that Ve(7) < V¢(0), we
obtain

1 £ € € €
st sE weug) - SIS (ugy i)

L' (R4 R?)
<1D(g = £l (TV (uE) + TV (w3 0, 71) + |5 (04) — u(04)]) -
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Hence, (4.31) becomes

[u(8) = v* (Dl L1 m)

< t Lip (57 ) 1D(g = fllco iz my (TV (ug) + TV (u; [0, 2]) + [up (0+) — ug(0+)]) ,
(4.33)
where Lip (5¢°) is estimated as in (4.29).

Let now u and v be the solutions to the problems (2.9). Similarly to above,
let D be the set of pairs p = (u,,up) such that u, € (L' NBV)(Ry;R) and w;, €
(L' NBV)(R;;R). Thanks to proposition 2.3, the following two semigroups are
then defined as the limit of the semigroups S7° and S9° introduced above:

Sf:R, xD—D S9: R, xD —D
t7 (u07 Ub) = (U(t), f%“b) t; (UO, ub) = (U(t)7 ‘%ub) .

Let uf and uj approximate u, and u; as in (4.8). Clearly (uf,u;) € D°. Compute

luat) = o(8) sy ) = || 87 (o) = 9 1t )|

L!(R4;R2)
< || o) = ST )|, (4:34)
st ) — s @)L L @)
st s ) = St o, L 430

Thanks to (4.8) and (4.33), the second addend (4.35) can be estimated as

ST s ) = 877 ()

L1 (R4;R?)
<t Lip (S1) 1D(9 ~ Nllgous ) (TV (u5) + TV (i [0,1]) + w5 (0+) — g (0+)])
<t max {1, g/l i } 1D = Dl [TV ()

+TV (up; [0, 2]) + [us(0+) — uo(0+)]]

where we used (4.29) and (4.30). The terms (4.34) and (4.36) converge to 0 as ¢ — 0,
due to the construction of the e—solutions above. The proof is completed. O

4.2. Proofs related to the non autonomous IBVP on the half-line

Proof of Proposition 2.5. The proof consists of several steps.

N.1) Construction of the approzimate solutions For n €N and i=0,...,2",
define T} = /2" T. For ¢ =0,...,2" — 1, we recursively consider the autonomous
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problems
Opul, + O f(TE,ul) =0 (t,z) € [TE, Tt x Ry
ul (T3, @) = ul Y (T, x) zeR, (4.37)
ul, (t,0) = up(t) te[Ti, Tit,

where we set u; ! = u,. Each of these problems falls within the scope of proposi-
tion 2.3. Therefore, for any € > 0 define as in (4.8) the e-approximate initial and
boundary data u and uj. Moreover, for i = 0,...,2" — 1, define the e-approximate
fluxes u — f(T%,u). Call u’® the wave front tracking e-approximate solution
to (4.37) constructed as in proposition 2.3. Then, the solution u, to (4.37) satisfies
ul = limg_ou%®.
For ¢ =0,...,2" — 1 define
u,(t) = ul (t)  for te [T, T (4.38)
Vit = TV (uy, "5(T)) + TV (uf; [T, T1) + g (Th+) = upy V(1,04 (4.39)
Ui = U(uo, up|joy)) and U =Up with the notation (2.2)
L =14 0ufllpo o, xusm)
K = TV (uy) + TV (up; [0, T]) + |up(04) — uo(0+)] .

The quantity V,>¢ is the functional defined in (4.13) computed at time ¢ = T}.
Hence, by A.3 in the proof of Proposition 2.3, we recursively obtain

VieLVIThE forall i=1,...,2" 1. (4.40)

N.2) uy, is a Cauchy sequence in C°([0,T]; L*(Ry;R)) Here and in what follows,
we use the norm [|ull oo, 7L (=, &) = SUPtefo, 7] [[U(t) |11 (g, gy~ It is sufficient to

obtain
[unt1 = unllgoqo,rymr e my) = O(1) 27" (4.41)
as soon as the constant O(1) is independent of n, which in turn follows from the
bounds
. . 2 . .
622,10 = whoo)] Ly SILEN0Du Sl 0,71 x00m) (%) te[rd, T3+
. . 2 . .
32500 = 0], gy <G+ DEE NG Sl o mpcemy () ¢ T2 T4
(4.42)

Fix n and proceed inductively on j. * j = 0. Assume first that ¢ € [0,7, ], see
figure 2. By (4.37) we immediately have u_ (t) = ul(t) for t € [0,7,,]. Let now
t € [T, T}, see figure 2. Compute

(g (t) — u(T)L(t)HLl(]RJr;R)

< ‘ uhq () = up§y (t) (4.43)

uya(t) = ule (1)

+|
L' (R4 R)
Hupe () = ul (O L1 g, -

L' (R4 R)
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f t
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“3+1
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”:lH_—l
u'ﬂ, ¢ el
“la]r+]
0 o T T 0 e e

F1gure 2. Relations between the time interval [T2 TZ+1] where the approximate solution

is uy,, and the time intervals [ n+1,T3T11] and [Tiﬁil,Tfoﬂz] where the approximate

solutions are Uq21i+1 and uiijll, see (4.37).

Focus on the term in the middle: an application of (4.33), yields
l.e 0,
<L) —ule(t ‘

‘ un+1( ) Uy ( ) L1(R4:R)

<L sug ‘aufE(Tﬁﬂ,u) — 8uf‘5(0,u)|(t — Tﬁﬂ)
ue

% (TV (Wl (T20)) + TV (s [T, ]) + [u5(TE1+) — 605, (T, 04))

(v
(

< L[0:0y f”LOC([OT]xLlR) <2n+1> Vai 1= TV (ugs [t TD)

< L1000 e o1 et (Wl) VIG TV (ufs 7))

T
< 210Dl o1 tt) (W) (TV (1) + TV (u; [0, 1)) + [ (0) — w5 (0+)])

T 2
QAN [— (N) (TV (o) + TV (up; [0,6]) + [y (04) — o (04)])

T 2
S LK |[0:0uf Iy, jo,7)xu:m) <2n+1) ’

where we used (4.40) and (4.8). Inserting the above estimate in (4.43) and letting
e — 0 yield the desired result.

* j = 1. Assume first ¢ € [T}}, T ], see figure 2. In this time interval, the n- and
the (n + 1)-problem have the same flux, since T} = T2 +1 An application of propo-
sition 2.2 to the autonomous problem (4.37) and using the result in the previous
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step j =0,

”ui+1(t) - u}l(t)HLl (R4;R)
< Hu}l-kl(Tﬁ) n(Th) HLl(]RqR

T 2
g L ||6tauf||Loo([0,T]><u;]R) (271—&-1) (TV (uo)

+ TV (up; [0, T2]) + Jup(04) — uo(04)])

T 2
< LK |[0:0u fll 100 (0,77 x045%) (2n+1> ‘

Let now t € [T, ,,T?], see figure 2. Compute

3 1
HunJrl(t) - un(t)|‘L1(R+;R) (449
3 3,e 3.e Le
< ‘ ud o () — n+1(t)‘ vamt ‘ w2 (1) —ul (t)\ Lt (R, R)
1,
+ Huna(t) t)||L1(R+;R)'

Focus on the term in the middle: an application of proposition 2.2 and of (4.33)
yields

<|

3,
5y (1) = g (1)

4.45
L1 (R iR) (4.45)

2, ,
unil(T3+1) - U;E(Tgﬂ)’ Li(R, R)
+>

—|—Lsup|8f n+1,) 3uf€(T )}(t—TS-H)
ueld

(TV ( n+1(T5’+1)) +TV (ub’ [ n+17tD

+ ‘uli(Tr?+l+) - uiﬁl(Ts+170+)’) :
The term in the latter line above is estimated through a recursive use of (4.40):

TV ( n+1(T3+1>) + TV (ug; [T, 1) + ‘Ui(TSH"‘) - uiil<Ts+1v 0+)

= Vo5 = TV (ujs [t T])

< TV (uf) + TV (up) + |ug(04) — w5 (04+)| — TV (ug; [t, T])
< TV (uo) + TV (up, [0, 2]) + [up(04) — uo(0+)]
<K,
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where we exploit (4.8). Hence, we recursively continue the estimate of (4.45):

<

u,

RO uif(t))

Li(RR)
73, T3 ‘
n+1( ) ( +1) L1(R4R)

+LK SuZI/)l |0uf (T3, 1, u) — Ouf (T, u)|(t— T3, ,)
ue

T 2
<2LK ||atauf||L°°([0,T]><u;R) <2n+1) .

Inserting the above estimate in (4.44) and letting £ — 0 yield the desired result.
xj > 1. Assume first that t € [T, TSf{l] An application of proposition 2.2 to (4.37)
and the inductive hypothesis yield

uy(6) = ul () uplo (T) — w7 (T)

Li(RyR) ‘ L1(R4:R)

. T \°
S JLK0:0u f Iy (jo,7)xu4:) (2"+1) :

Let now ¢ € [T274", T3+1]. Compute

2+l j ’
t t 4.46
[zt — o) (4.46)
2j+1 2j+1, 2j+1, /s
S ‘ ey (6) =ty E(t)‘ L' (R R) ‘ () - u%s(t)‘ L' (R R)
+{Jud" () — t)HLl(]RJr;lR)'

An application of proposition 2.2 and of (4.33) to the term in the middle yields

2j+1,e e ‘
t t 4.47
[zt — e, (447)
27, 25+1 e 25+1
< [ @i — ke |
2 1 j 2541
p D0 (T ) = 0u (T w| (¢ = T4

X (TV (uffﬁ (Tsﬂl)) + TV <uba [T t])

2j+1 23, 2 +1
up (T8 ) — w25 (T2 04)]).
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The term in the latter line above can be estimated thanks to (4.40) and (4.8)

TV (25 (T2)) + TV (ug (T2 1) +

25+1 27, 25+1
ule)(Tni-l +) - unj-‘,-el (Tni-l 70+>

= VA =TV (ui; [t, 7))

S

< TV (uf) + TV (uf) + [uf (04) — ug(04)] = TV (ug; [¢, T1)
< TV (uo) + TV (up, [0,2]) + Jup (04) = uo(0+)]

<K.

Hence, we continue the estimate of (4.47):

2541, i
W) — w0

L1(R:R)
27, 2j+1 i, 2541
< |l @ — @]
FLE sup 00T 0) = 0uf*(Thw)| (6 = T

. T 2
<UY+1)LK ||8tauf||L°°([(],T]><M;R) <2n+1) ?

which inserted in (4.46) yields the desired result when passing to the limit e — 0.
This proves (4.42), obtaining (4.41) with O(1) =1/4 LK [[0:0u f [y, (jo,7)x1:m) T2,
so that u, is a Cauchy sequence in C°([0,T]; L}(R4;R)): call u its limit.

N.8) L — estimate Moreover, observe that for any ¢ € [0, T], Point 2. in proposi-

tion 2.3 implies that Hu%(wHLO@(R%R) < max{Huﬁ;l(Tf;)HLOO(R%R), llupllzoo (7s o15m)
fori=0,...,2" — 1, and this recursively yields

etn ()l ey < 05 { ol s s Nl 0,1 (4.48)
which, in the limit n — +o0, gives Point 1.

N.4) u is a Weak entropy solution to (1.1) For any ¢ € CL(R x R;R,) and any
k € R, since each v, is a solution to (4.37) in the sense of definition 2.1,

T
0< / / r],f (up(t,x)) Opp(t, x)dxdt (4.49)
o Jry
2"—1 i+l
+ > / OF (), ul (t,2)) Opp(t,z)dzdt (4.50)
i=0 7 7Tn Ry
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4 / 1 (uo(@)) (0,2) d — / 0E (un(To2)) p(T,e)de  (451)
2™ -1 ‘ T’il+1

+ > 0uF (T )| imy / i (w(1) e(t.0)dt, (4.52)
1=0 n

with 7 and ®F as in (2.5). We compute the limit as n — 400 of the lines above
separately.
Since n,f are Lipschitz continuous functions with Lipschitz constant 1, we obtain

T
@< [ [t it.o) diplt.x) et
" / / O G2 o () gl ) vt
T
< /0 /R+ n,f (u(t,x)) Orp(t,x)dadt

T
+/ / lun(t,2) — u(t, 2)| Dyp(t, ) d dt |
o Jry

and in the limit n — 400, we get

n—-+o0o

T
lim [(4.49)] :/0 /]R nE (ult,x)) dup(t,z) dzdt.

Concerning (4.50), compute
o (T, ul(t,2)) = i (t,u(t,z)) + (@f (T, u(t,z)) — o (t,u(t,z)))
+ (@f (T,i,u;(tw)) — @f (Tfl,u(t,x))) .

To estimate the second term above, introduce the set Uy = U(uo, up|[0,1], k) and
compute

@f (be, u(t, x)) - @f (t,u(t,z))
= Sgni (u(t,x) - k) (f(Té,U(t,l‘)) - f(Trlw k) - f(t’u(ta 33‘)) + f(ta k))
<00 f Lo (0.4 xvamy [0t ) — K| [t = T

) T
< HataufHLOO([O,t]xZ/{k;R) diam (2. on

so that
2"—1 it

Z / /R (<I>,f (T, u(t,z)) — s (t,u(t,z))) |0 0(t, z)| dz dt

i—0 YTy

n

2™ —1 2
. T
<100 e 0.2t dlam(uk)/ sup |9a(t, 7)| da §:< ) ,

on
Ry tER —o

which clearly vanishes in the limit n — +oc.

https://doi.org/10.1017/prm.2018.39 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.39

588 R. M. Colombo and E. Rossi

To estimate the third term, observe that the maps @f are Lipschitz continuous,
see (14, lemma 3], with Lipschitz constant ||0u /1, (0,424, %) S0 that

(I)f (Tivui( )) (I)i (TTZL’ uft, )) < Hauf”Loo([mt]xut;R) |u2(t,x) - u(t,x)| :

Hence, in the limit n — +oo, we have

n—-+o0o

T
lim [(4.50)] :/0 /}R i (t,u(t,z)) Opp(t,z) drdt.
Pass to (4.51):

- / nE (un (T, 2)) (T, ) da

. / i (u(T, ) o(T,z) dz + / (0 (u(T, ) — 1 (un(T,2))) (T} ) da

R
< - /]R+ i (u(T,x)) o(T,x)dx + /R+ \u(T, ) — un (T, z)| (T, x)dz

and the second term vanishes as n — +oc.
Concerning (4.52), we immediately get

T
(452)) < 10 o rpeacy | 71 (walt) o(t.0) .
We thus proved that u solves (1.1) in the sense of definition 2.1.

N.5) Lipschitz continuity in time Consider ti,to € [0,T], with ¢; < t2. Assume
first that there exists i € {0,...,2" — 1} such that t;,ty € [T}, Ti+. Call Uy =

n? n
Uy, = U(to, up|[0,1,))- Exploiting the wave front tracking approximation, compute

H“;(tl) - “;(t2)’|L1(R+;R)

< flunt) = i @)l g,y + i (1) = 0 @) | g, 2y
+ ||ui® (t2) — u t2)|‘L1(R+;R)'

The first and the third term converge to 0 as ¢ — 0. To estimate the term in the
middle, apply Formula (4.16) and exploit (4.40):

H“w t1) — uy" (t HLI(R+ R)

||8 FA(T,) HL°°(M ]R)( —t)
X (TV (i 1»E<Tl>> +TV <uz, T3] + 45T 4) — (05,000
< 0uf Lo ((0,12] x100:R) 1) (V2e =TV (uf; [t2, T)))
<.
S 0ufllLee (0,ta] xtim) (B2 = 1) (TV (ug) + TV (ug; [0, t2]) + g (0+) — ug (0+)])
< Cta—t1)
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where
C = [|0ufllLoe ((0,t2) xtt0:7) (TV (o) + TV (up; [0, 22]) + [up(0+) — uo(0+)]) . (4.53)
Assume now that there exist 4,7 € {0,...,2" — 1}, with ¢ < j, such that ¢; €

[T¢ Ti+1] and ty € [T?, TiH1]. Therefore, exploiting the previous computation, we
have

llun(t1) — un(t2)||L1(1R+;R)

7j—1
< ||u:1(t1) - uzl(TTlLJrl)HLl(]RJr;]R) + Z Hu’fL(T,’f) - uﬁ(TT§+l)|}L1(R+;R)

k=i+1
+ [u, (T) — i (t2 ||L1(]R+ R)
<C(TH =)+ Z C(TH = Th) +C(ta - T))
k=i+1
= C(t2 _tl)a

with C' as in (4.53). Let now n tend to +oo: we obtain ||u(t;) — u(t2)||L1(R+;R) <
C (ta — t1), completing the proof of Point 2.

N.6) Total variation estimate Thanks to the lower semicontinuity of the total
variation and to Point 4. in proposition 2.3, we obtain the proof of of Point 3.:

TV (u(t)) < lm TV (u,(t)) < TV (up) + TV (up; [0,1]) + |up(04) — uo(0+)]. O

n—-+oo

Proof of Theorem 2.6. Let w, and v, be defined as in (4.38), so that for i =
0,...,2" — 1, u}, and v!, solve the autonomous IBVPs

Ol + Op f(TE ui) =0 (t,x) € [T, Ti+Y x Ry

ul (T, z) = ul YT, x) rzeRy
up, (£,0) = up(?) te [Ty, T,

and

Oy, + 0ng(Ty,vy) =0 (t,2) € [T, T x Ry
vi (T, z) = vl (T8, x) reRy
v (£,0) = up(t) te [Ty, T,

As in the proof of Proposition 2.5, for i =0,...,2" — 1 let u%® and v%¢ be the
corresponding wave front tracking solutions. Observe that, for all ¢ € [0, T,

[[u(t) — U(t)||L1(R+;R) = nllffoo l[un(t) — Un(t)|‘L1(R+;R)' (4.54)
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Focus on the right-hand side of (4.54). There exists ¢ € {0,...,2" — 1} such that
t € [T, T, Therefore,

n’ n

[un(t) = vn(Ollpr =, )
= [Jun(t) - v;(t)HLl(RJr;]R)
< ||u;(t) - Uiis(t)||L1(R+;R) + H“zzg(t) - U’fig(t)HLl(]RJr;R) + vaifg(t) - Uriz(t)||L1(R+;1R)

(4.55)

The first and the third term in (4.55) converge to 0 as € — 0, while an application
of proposition 2.2 and of Formula (4.33) allows to estimate the second term:

Hu:{E(t) - U:ie(t) ”Ll(R+;R)

< (T = 07 () sy (4.56)

o+ max {1,100 e o, xesmy § 10uCF = 9l (0,00
x (TV (v 25(T))) 4+ TV (ug; [Ty, t]) + |ug(Th+) — vl V5 (T5, 04)]) (t—T5)
(4.57)

where U = U(u,, up)jo,) as in (2.2), thanks to (4.8) and (4.48). Observe that the
first term in (4.57) can be estimated by (4.40):

TV (v, V(T0)) + TV (ujs [T, 8]) + |ug (Th4) — vy~ (T, 04)]
=V, hF =TV (ug; [t, 7))

N

X

<TV (uo) + TV (up; [0,t]) + |up(0+) — uo(0+)], (4.58)
where in the last step we exploit (4.8). Concerning (4.56), we proceed recursively:

[(4.56)]

< s (@) = ol (T g

+ max{1, HaugHLoo([o,t]xu;R)}Hau(f - g)||L°°([0,t]xu;R)
X [TV (0725, 71) + TV (uj: [T, T,0)
+ up (T 4) — o 29T 00| (T - T37Y)

< jul?5(T ) - v;72’E(T£71)HL1(R+;R)

+ max{1, Ha'u,g”LOO([O,t]xu;R)}Hau(f — g)HLw([o,t]xu;R) (4.59)
X (TV (uo) + TV (up; [0,1]) + [up(0+) — uo(0-+)]) (T = T3 ") .
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Therefore, thanks to (4.58) and (4.59), we obtain the estimate of (4.56)—(4.57):

i (2) = (1) | g ey < AL, 190l 0 gty HIOF — 9) e ot

X (TV (uo) + TV (up; [0,]) + |up(0+) — uo(0+)]) t.
(4.60)

Inserting (4.60) in (4.55) and letting € — 0, together with (4.54), concludes the
proof. O

REMARK 4.6. If T = +00: the above constructions can be completed on any time
interval [0,7]. Thus, for any 7,7’, we obtain two maps ur and wups such that
ugr (t) = ur(t) for ¢ € [0,min{7T,T"}], by proposition 2.2, and the above procedures
can be extended to t € Ry.
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