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Numerical analysis of flow-induced rotation of
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Flow-induced rotation of an S-shaped rotor is investigated using an adaptive numerical
scheme based on a vortex particle method. The boundary integral equation with
respect to Bernoulli’s function is solved using a panel method for obtaining the
pressure distribution on the rotor surface which applies the torque to the rotor. The
present work first addresses the validation of the scheme against the previous studies
of a rotating circular cylinder. Then, we compute the automatic rotation start of an
S-shaped rotor from a quiescent state for various values of the moment of inertia. The
computed flow patterns where the rotor supplies (or is supplied with) the torque to (or
from) the fluid are shown during one cycle of rotation. The vortex shedding from the
tip of the advancing bucket is found to play a key role in generating positive torque
on the rotor. A remarkable finding is the fact that, after the rotor reaches a stable
rotation, the trajectory of the limit cycle in the present autonomous system accounts
for the stable rotating movement of the rotor. Furthermore, the hydrodynamic scenario
of the rotor automatically starting up from a quiescent state and entering the limit
cycle is elucidated for various values of the moment of inertia and the initial angle
of the rotor.

Key words: flow–structure interactions, vortex shedding, wakes

1. Introduction
An unconstrained obstacle in a uniformly accelerated flow experiences an

unbalanced hydrodynamic force on its surface which results in a continuous rotation
of the obstacle. This phenomenon is sometimes called autorotation. As reviewed by
Lugt (1983), autorotation can be observed in the following situations: (i) autorotation
perpendicular to the flow (e.g. rotating flat plate), (ii) autorotation parallel to the flow
(e.g. lanchester propeller), (iii) autorotation due to shear flow and (iv) autorotation at
arbitrary angle to the flow (e.g. spinning and rolling aircraft). Within these autorotation
classifications, the present study numerically considers the flow-induced rotation of an
S-shaped rotor, which consists of two half-circles assembled with zero overlap length,
from a quiescent state. This situation relates to the above-mentioned autorotation case
(i) and leads to a problem of a single degree of freedom (SDOF) with respect to the
rotation angle.
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Such an autorotation can be seen in, for example, vertical-axis wind turbines
(VAWTs) having a rotor of the Savonius type. Jaohindy et al. (2013, 2014) have
studied computationally the autorotation of a Savonius wind turbine, adopting
the built-in finite volume method with the commercially available computational
fluid dynamics software package Star CCM+TM. Their computations were carried
out without a load, i.e. their computation does not include a brake such as a
dynamo-electric generator and the torsional stress of a rotor shaft. They investigated
the transient force on a Savonius rotor with respect to the aspect ratio. In contrast,
much of the computational work for a Savonius rotor rotating with a predetermined
constant angular velocity (i.e. non-autorotation) is available in, for example, Fujisawa
(1996) and Afungchui, Kamoun & Helali (2014) using a classical discrete vortex
method, and Nasef et al. (2013), Zhou & Rempfer (2013), Shaheen, El-Sayed &
Abdallah (2015) and Tian et al. (2015) using the computational fluid dynamics
software package of either Ansys FLUENTTM or Star CCM+TM as reviewed by Roy
& Saha (2013). Likewise, a few experimental studies on flow visualization around a
Savonius rotor can be found in Fujisawa (1992) using a wind tunnel and Nakajima,
Iio & Ikeda (2008) using a water tunnel for a rotating rotor with a predetermined
constant angular velocity, although many experimental studies have been restricted
to the aerodynamic characteristics such as the torque and the power coefficients (see
e.g. Ushiyama, Nagai & Shinoda 1986). As mentioned, the flow-induced rotation of a
rotor has been scarcely investigated. Therefore, this study selects an S-shaped rotor as
a model system to study flow-induced rotation, and considers the mechanism of the
S-shaped rotor automatically starting up from a quiescent state. Unlike all foregoing
investigations of the flow-induced rotation, this paper sheds light on the scenario
from the quiescent start to entering the limit cycle and the autonomous system in the
present limit cycle which can account for the autorotation. Of course, for an actual
VAWT, the influence of an external spring and damping plays an important role in
the performance. However, the present study, as a preliminary step, neglects such an
external influence and sheds light on the unsteadiness of the separated vortical flow
from the tips of the rotor.

Among possible numerical approaches, one can use the finite element method,
the boundary element method and the vortex method. The latter procedure was
successfully implemented by Koumoutsakos & Leonard (1995) to compute the flow
past an impulsively started circular cylinder and nicely verified against the asymptotic
solution by Bar-Lev & Yang (1975). The present work basically follows the remeshed
vortex particle method of Ploumhans & Winckelmans (2000) for the flow-induced
rotation of an S-shaped rotor. This vortex particle method was nicely verified by
Ueda, Kida & Iguchi (2013) for a creeping flow about a two-cylinder cluster. The
present vortex method does not require a boundary-fitted grid on a rigid obstacle
and it is therefore suited for computing such a flow-induced rotation of a rotor, as
mentioned above.

As shown in Nozu & Tamura (1997) for the flow past a square prism at larger
than Re= 1000, vortex shedding from a two-dimensional obstacle produces fine-scale
three-dimensional vortices. Three-dimensionality in a wake behind a circular cylinder
is known to be observed at larger than Re ≈ 200 (see Williamson 1996), and the
transverse enstrophy computationally appears to saturate at about t = 150 after the
impulsive movement at Re= 300 (see Cottet & Poncet 2003). The present benchmark
flow at Re=500 is thus found to almost behave like a two-dimensional shedding mode
and it is compared with previous two-dimensional computational results. Furthermore,
Tian et al. (2015) showed that two-dimensional computation can give acceptable
results for a Savonius rotor.
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Flow-induced rotation of an S-shaped rotor 79

The paper is organized as follows. Section 2 states the problem addressed and the
numerical methodology. The pressure distribution on the rotor surface which causes
the torque on the rotor can be calculated by solving the boundary integral equation
with respect to Bernoulli’s function, and it is nicely verified for a circular cylinder
without and with rotating motion against previous computational and analytical results
in § 3.1. The flow-induced rotation of the S-shaped rotor is then computed in § 3.3. In
this computation, the S-shaped rotors having various values of the moment of inertia
(MOI) start to rotate automatically from a quiescent state. In § 3.2, the scenario of
the S-shaped rotor automatically starting up from a quiescent state and entering the
limit cycle is elucidated. In § 3.3.1, results for the hydrodynamic characteristics and
the flow patterns around the rotor are given. In § 3.3.2, after the rotor reaches a stable
rotation, the flow-induced rotation of the rotor is explained from the viewpoint of an
autonomous system, i.e. the limit cycle that is the trajectory of the rotor stably rotating
is discussed within the framework of the Poincaré–Bendixon theorem mentioned in
appendix C. Finally, we summarize the results obtained in the paper.

2. Numerical procedure

This section addresses the employed remeshed vortex particle method together with
the boundary integral equation with respect to Bernoulli’s function to calculate the
pressure on the rotor surface. It also benchmarks this numerical procedure against
earlier numerical and analytical results for a circular cylinder abruptly made to rotate
and translate in § 3.1.

2.1. Problem statement and governing equations
We consider the unsteady incompressible viscous flow about a body, Cb (see figure 1).
The body has centre O, boundary ∂Cb and diameter D. At t→+0, a constant flow
Vex with V > 0 impulsively approaches the body. At the same time, the body rotates
with angular velocity Ω(t)ez in the counterclockwise direction. The time t0 is non-
dimensionalized based on D as t := 2Vt0/D. The fluid has kinematic viscosity ν. The
resulting flow with typical Reynolds number Re = VD/ν has velocity and vorticity
fields u(x, t) and ω(x, t)ez such that u(x, 0)= 0 and, for t> 0,

∂ω

∂t
+ u · ∇ω= ν∇2ω in D, (2.1)

∇ · u= 0 and ω= (∇ ∧ u) · ez in D, (2.2a,b)

with the no-slip boundary condition

u(x, t)=VB on ∂Cb (2.3)

and far-field conditions

u(x, t)→H(t)Vex and
∮
Cr

u · d`→ 0 as |x|→∞, (2.4a,b)

where D denotes the dimensionless fluid domain, VB is the unsteady velocity due
to the rotation of the body Cb, H denotes the usual Heaviside step pseudo-function
(H(t)= 1 for t> 0 and H(t)= 0 otherwise) and Cr = {x | |x| = r}.
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FIGURE 1. A rotating obstacle Cb with angular velocity Ω(t)ez immersed in a constant
flow Vex with ez = ex ∧ ey.

2.2. Advocated vortex particle method
Using the Lagrangian formulation, the vorticity transport equation (2.1) is split into
the Euler equation and the viscous diffusion equation:

dx
dt
= u(x, t),

dω
dt
= ν∇2ω. (2.5a,b)

The convective and diffusion steps are separately handled by a panel method and the
particle strength exchange (PSE) method (see Degond & Mas-Gallic 1989).

The vortex method is based on the spatial discretization of the vorticity field which
consists of Lagrangian particles. The discretized vorticity field can be written in the
numerical quadrature, which is represented by vortex particles as

ω(x, t)=
N∑

i=1

Γi(t)ζε(x− xi(t)), (2.6)

where Γi is the circulation of particle i, and ζε with core size (cutoff radius) ε is a
vorticity distribution function called the cutoff function. The location of the scattered
vortex particles with a finite core size is regularized by a vorticity distribution function
called the cutoff function. In this computation, the Gaussian distribution function is
employed:

ζε(ρ)=
1

2πε2
exp

(
−
ρ2

2

)
, ρ =

|x− xi|

ε
. (2.7a,b)

The velocity field u at x is calculated by the Biot–Savart law which spends O(N2)

computational cost:

u(x)=−
1

2π

∫
D

(x− x′)∧ω(x′)ez

|x− x′|2
dx′ +∇Φ, (2.8)

in which the scalar potential Φ satisfies ∇2Φ = 0. The fast multipole method of
Greengard & Rokhlin (1987) decreases the iterations to O(N).

We used the PSE approach to simulate the viscous diffusion. As formulated by
Degond & Mas-Gallic (1989), the Laplacian operator is approximated by an integral
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operator as follows:

∇
2ω(x)≈

2
ε2

∫
D
ζε(x− y)[ω(y)−ω(x)] dy. (2.9)

The PSE is stable under the condition ν1t/ε2 < c1, where c1 = 0.595 for the
Euler explicit scheme and c1 = 0.297 for the second-order Adams–Bashforth scheme
(Ploumhans & Winckelmans 2000).

After the vortex particles travel, there is a non-zero slip velocity 1Uslip on the
surface of the body which is induced by all vortex particles and the uniform velocity
Vex. The no-slip boundary condition is then enforced by using a vortex sheet on ∂Cb

whose strength 1γ obeys the boundary integral equation (see Cottet & Koumoutsakos
2000)

1γ (s)−
1
π

∮
∂Cb

∂

∂n
[Log|x(s)− x(s′)|]1γ (s′) ds′ =−21Uslip(s). (2.10)

In doubly connected domains, the following integral constraint is exactly enforced to
maintain the uniqueness of circulation:∮

∂Cb

1γ (s) ds=−2Ab[Ω(t+1t)−Ω(t)], (2.11)

where Ab is the surface area of the body and Ω(t) is the angular velocity. This
constructs a well-conditioned system; i.e. for M discretized panels on the cylinder Cb,
there are M + 1 equations with M unknowns (see Koumoutsakos, Leonard & Pépin
1994; Ploumhans & Winckelmans 2000). A panel method is used to solve (2.10) and
(2.11) with a linear approximation of 1γ on each panel.

The vortex sheet 1γi created is diffused into the vortex particle in the fluid (Cottet
& Koumoutsakos 2000) as

ν(∂ω/∂n)=−(∂/∂t)(u · s) on ∂Cb × [0, t]. (2.12)

The convergence of the vortex method with a finite core radius is obtained under the
condition of particle overlapping at any time (see Beale & Majda 1985). Furthermore,
the accuracy of the vortex method relies on the evaluation of the volume (or area
for two dimensions) of the scattered vortex particles (see Koumoutsakos 2005). As
discussed by Cottet & Koumoutsakos (2000), this truncation error is straightforwardly
removed by remeshing after a few time steps. In practice, each particle is, at every
few time steps, redistributed onto the grids, and the strength of several new particles
is calculated by the interpolation kernel Λ′2 (for particles which lie near ∂Cb) or Λ3

introduced in Cottet & Koumoutsakos (2000) and Ploumhans & Winckelmans (2000).
To successfully deal with a thin body such as the present blade, one can use a two-
domain grid consisting of a Cartesian grid Σc near the body Cb and a far-field grid
Σf outside Σc (see figure 5). Here, the far-field grid Σf has centre O and (M + 1)2

nodal points Xij such that OXij = exp (2πi/M){cos [(2π/M)j]ex + sin [(2π/M)j]ey} for
integers i and j being less than or equal to M (see Ploumhans & Winckelmans 2000).
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2.3. Analysis of pressure on a body surface and the hydrodynamic coefficients
In the vortex method, there are various procedures to calculate hydrodynamic force
on a body Cb (see Uhlman 1992; Noca, Shiels & Jeon 1997, 1999; Kida, Sakate
& Nakajima 1997). To obtain pressure distribution on ∂Cb, we use the following
Poisson equation with respect to Bernoulli’s function, H, which is derived by taking
the divergence of the incompressible Navier–Stokes equation with the continuity
equation:

∇
2H = 2∇ · (u∧ω) where H := 2(p/ρ)+ |u|2 − V2. (2.13)

Applying Green’s theorem, we can obtain at any point x = (x1, x2) in D the well-
known integral representation:

H =
1

2π

∮
∂Cb

H
∂

∂n
ln |x− x′| ds′ +

1
π

∫
D
ω

u1(x′2 − x2)− u2(x′1 − x1)

|x− x′|2
dx′1 dx′2

+
ν

π

∮
∂Cb

ω

|x− x′|
∂

∂s
|x− x′| ds′ −

1
π

∮
∂Cb

(u̇ · n) log |x− x′| ds′, (2.14)

where u̇ = ∂u/∂t, and ds′ and n = (n1, n2) respectively denote the differential arc
length and the unit normal on ∂Cb which is outward with respect to the fluid domain
D. The contribution of the unsteady rotation of the rigid obstacle Cb is involved in
the last term on the right-hand side of (2.14), which is added to the formulations of
Uhlman (1992) and Kida et al. (1997). When the observation point x locates on the
body surface ∂Cb, equation (2.14) reduces to the boundary integral equation, which
can numerically determine the values of H on ∂Cb (i.e. surface pressure) using the
panel method.

Accordingly, one can readily obtain the torque Tr acting on the body Cb, caused by
the surface pressure p on ∂Cb, by integrating dTr = (−pen) · (|x− O|et) ds along the
body surface ∂Cb. Here, en is the outward unit vector on ∂Cb and et is also the unit
vector in the counterclockwise direction perpendicular to x−O.

The pressure coefficient Cp is defined by

Cp =
p− p∞
(1/2)ρV2

, (2.15)

where p∞ is the pressure at infinity. Also, the drag, lift and torque coefficients due to
the pressure are respectively defined by

CDp =CX =
Dp

(1/2)ρV2D
, CLp =CY =

Lp

(1/2)ρV2D
, CTp =

Tp

(1/4)ρV2D2
. (2.16a−c)

Note that Dp and Lp are the components of the hydrodynamic force in the streamwise
(i.e. x-component) and perpendicular (i.e. y-component) directions to the uniform
stream Vex, respectively. In addition, Tp is taken as positive in the counterclockwise
direction (see figure 4).

3. Numerical results and discussion
3.1. Numerical benchmark for a circular cylinder without and with rotation

We first compute the transient flow past a circular cylinder without and with rotation
at Re= 550 and 500, respectively. The present numerical method of §§ 2.1 and 2.2 has
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t

FIGURE 2. Comparison of drag coefficient of an impulsively started circular cylinder
without rotation at Re = 550 between the present results using (2.14) (curve) and those
of Koumoutsakos & Leonard (1995) using (3.1) (symbols).

been verified already in Koumoutsakos & Leonard (1995), Ploumhans & Winckelmans
(2000) and Ueda et al. (2013) for the drag coefficient and the velocity field of the
flow. Therefore, we here test the accuracy of the employed procedure of § 2.3 for
calculating the surface pressure against the previous results of Badr & Dennis (1985)
and Koumoutsakos & Leonard (1995).

The parameters of the simulations are 1t = 0.02 and εc/D= 8.53× 10−3 with the
cylinder diameter D. The surface of the cylinder is constructed by 632 panels. The
hybrid two-domain grid, consisting of grid Σc near the cylinder and far-field grid Σf
outside Σc, is employed.

Specializing to a circular cylinder, the following surface integral explicitly provides
the drag coefficient on the cylinder:

CD =
2

Re

∫
∂Cb

(
∂ω

∂n
−ω

)
sin θ dθ, (3.1)

where the net force F on the cylinder Cb is F = (1/2)ρV2D(−CDex + CLey) and
x−O= |x−O|(cos θex+ sin θey). The pressure and friction contributions are involved
in the quantities ∂ω/∂n and ω, respectively.

Figure 2 shows a comparison of the pressure, friction and total drag coefficients
of a circular cylinder without rotation at Re= 550 against the previous computational
results of Koumoutsakos & Leonard (1995) using (3.1). The present results are
calculated from (2.14). As observed, the boundary integral equation (2.14) provides an
excellent result for the pressure drag in comparison with the previous computational
results.

Next, we consider the transient flow around an impulsively started circular cylinder
with translating and rotating motions. The rotating motion of the cylinder yields the
lift force as well as the drag force. The computational parameters employed are the
same as in the above simulation. In addition to the above, the rotation-to-translation
ratio λc=DΩ/(2V) is set at 0.5 to compare it with the asymptotic results of Badr &
Dennis (1985).

Figure 3 shows two kinds of the present computational results of the pressure
distribution on the cylinder surface at t= 0.7: (i) the result using a single body-fitted
grid and (ii) the hybrid two-domain grid mentioned in § 2.2 (see, e.g. figure 5).
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1

0
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-2

-3
0 90 180 270

Cp

360
œ (deg.)

FIGURE 3. Pressure distributions CP(t) on the surface of a rotating and translating circular
cylinder (λc =DΩ/(2V)= 0.5) at t= 0.7. The angle θ is taken starting from the trailing
point to the counterclockwise direction. Solid curve: asymptotic solution of Badr & Dennis
(1985). Dashed curve: values using a single body-fitted grid of Σf . Dotted curve: values
using the hybrid grid of Σc and Σf .

Furthermore, the asymptotic solution of Badr & Dennis (1985) is plotted in this
figure. Note here that the analytical results of Badr & Dennis (1985) are solely valid
at small time values. As seen in this figure, the pressure distributions are nicely
obtained using (2.14) and agree well with the asymptotic solution of Badr & Dennis
(1985).

3.2. Flow-induced rotation of an S-shaped rotor during start-up
We consider the transient viscous flow about the S-shaped rotor consisting of arcs of
two semicircles assembled with zero overlap length (i.e. consisting of two buckets),
as shown in figure 4. Then, we call the bucket in y > 0 the advancing bucket and
the other bucket in y< 0 the returning bucket. At t→+0, the stationary rotor Cb is
impulsively immersed in the uniform velocity Vex with V > 0 and automatically starts
to rotate, due to the hydrodynamic force, from the initial rotor angle θ(0)=90◦ around
the origin due to the pressure distribution on the rotor surface (see figure 4). Such a
phenomenon is sometimes called autorotation of the SDOF. A similar situation can
be seen in drag-type VAWTs having Savonius rotors. In such a drag-type VAWT, the
start-up characteristic plays an important role in a practical operation and, therefore,
the number of revolutions of the rotor during start-up has been measured per minute
in a wind tunnel experiment by Ushiyama et al. (1986).

To simulate this problem, the parameters of the simulation employed are 1t= 0.02
and εc/D= 6.32× 10−3 with the rotor diameter D. The computed Reynolds number is
selected as Re= VD/ν = 500. The computation is carried out up to t= 2Vt0/D= 176
for all computational conditions. At the end of the computations, the rotor rotates at
more than 12 periods stably. Initially, 19 038 particles are located around the rotor. The
surface of the S-shaped rotor is constructed by a total of 632 panels, and the tips of
the rotor are both rounded with 16 panels each to avoid a spurious numerical error
(see figures 4 and 5). The hybrid redistribution domain consists of the Cartesian grid
Σc around the rotor Cb and the far-field grid Σf outside Σc (see figure 5). Because
in the present problem the pressure is dominant on the hydrodynamic moment, the
notation of CTp in (2.16), that is the contribution from the pressure, is simply described
as CT for the sake of brevity.
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Advancing bucket

Returning bucket

Advancing side

Returning side a2

a2œ

O2

O1

a1

a1

x

2a3

y

Vex

Øez

Øez

FIGURE 4. Notation for an S-shaped rotor consisting of arcs of two semicircles with ez=

ex ∧ ey. In the present computation, we set a1 = 0.5, a2 = 0.35 and the rotor thickness at
2a3 = 0.15.

Far-field grid ∑f

Cartesian grid ∑c

Rotor

FIGURE 5. Magnified view of the hybrid two-domain grid consisting of the Cartesian grid
Σc and the far-field grid Σf . The vortex particles are distributed at the centre of each cell.

The rotation of the rotor having MOI Ib is successively updated every time step by
solving the equation of motion of the rotating rotor:

Ib
dΩ(t)

dt
= Tr(t). (3.2)

Here, the torque Tr(t) due to the pressure on the rotor surface can be obtained
in the advocated manner mentioned in § 2.3. The equation of motion (3.2) is then
numerically solved in time by the second-order Adams–Bashforth scheme with the
use of the calculated values of Tr(t). The present computation determines the value
of an unsteady angular velocity of the rotor Ω(t) using (3.2), i.e. it describes a
load-free rotor. Indeed, as the numerical results will show later, the computed values
of the time-averaged CT after the rotor reached a stable rotation (see figure 16) are
successfully confirmed to agree well with the value at λ= 0.5 in figure 25 that is the
computational result for the rotor with the predetermined constant rotational velocities
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ρb/ρ Ib θ(0) Ω̄ f ∗Ω f ∗CT
AΩ

6.505 0.5 90◦ 0.60 0.159 0.159 0.613
13.01 1.0 90◦ 0.54 0.148 0.142 0.487
26.02 2.0 90◦ 0.52 0.148 0.148 0.304
39.03 3.0 90◦ 0.50 0.153 0.153 0.208
65.05 5.0 90◦ 0.48 0.153 0.153 0.120
91.07 7.0 90◦ 0.48 0.148 0.153 0.084
130.0 10.0 90◦ 0.47 0.148 0.153 0.056
195.2 15.0 90◦ 0.45 0.153 0.153 0.028
260.2 20.0 90◦ 0.45 0.153 0.153 0.024

65.05 5.0 30◦ (= θC+T
) 0.48 0.153 0.153 0.119

65.05 5.0 105◦ (= θC−T
) 0.48 0.153 0.153 0.120

65.05 5.0 180◦ (= θΩmin ) 0.48 0.153 0.153 0.121

TABLE 1. Selected values of the density ratio ρb/ρ between the rotor and the fluid, and
the initial rotor angle θ(0) defined by figure 4, together with some computed results after
reaching a stable rotation. Ib: MOI of the rotor; Ω̄: time-averaged value of Ω(t); f ∗Ω : lowest
frequency of Ω; f ∗CT

: lowest frequency of CT ; AΩ : amplitude of Ω(t) (see, e.g. figure 16).

in appendix A. In the computations shown in appendix A, we have C̄T ≈ 0 (within
less than 10−2) at λ≈ 0.5 for all values of Ib.

The MOI of the rotor, Ib, remarkably affects the time response of the start-up of
the rotor and the amplitude of the angular velocity Ω(t) for a stable rotation (see
the left-hand side of figure 16). As already sketched in figure 4, the rotor geometry
consists of the arcs of two semicircles, centred at ±(a2 + a3), of a1 = 0.5, a2 = 0.35,
and the thickness of the rotor of 2a3= 0.15. The MOI of the rotor Cb having uniform
surface density, ρb, is then readily calculated as

Ib=

∫∫
Cb

ρbr2 dS= 8πρba3

(
a1 + a2

2

){[(
a1 + a2

2

)2

− a1a2

]
+

1
2
(a2 + a3)

2

}
. (3.3)

For example, Ib = 1.0 gives ρb = 13.0 and Ib = 20.0 gives ρb = 260.2, noting that the
fluid density is set at ρ = 1.0 in the dimensionless procedures of § 2.

The surface pressure on the rotor, p, which generates the torque, Tr, is non-
dimensionalized with the density of the fluid, ρ, whereas the MOI of the rotor, Ib,
can be non-dimensionalized with the surface density of the rotor, ρb. The density
ratio, ρb/ρ, is hence found to play a key role in accounting for the time response of
the flow-induced rotation of the rotor. The density ratios adopted are listed in table 1,
together with some computed results.

Figure 6 shows the computed start-up behaviour of the rotor having Ib = 5.0 until
the end of the first full cycle of rotation from the initial rotor angle θ(0) = 90◦.
In this figure, significant quantities for the start-up, the angular velocity Ω(t), the
torque coefficient CT(t) and the rotor angle θ are plotted with respect to time t. As
will be discussed in § 3.3, the rotor reaches a stable rotation (i.e. it enters the limit
cycle mentioned in § 3.3.2) via the initial stage of the start-up and the intermediate
stage where the rotor can rotate but is not stable (for details, see the discussion
concerning figures 7 and 8 in § 3.2.1). In this paper, the situation after the rotor has
entered the limit cycle discussed in § 3.3.2 is precisely called a stable rotation. This
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FIGURE 6. Start-up behaviour of the rotor with Ib= 5.0. Solid curve: CT(t). Dotted curve:
angular velocity Ω(t). Dashed curve: rotor angle θ(t). The notation s0, s1, . . . , s4 is used
in § 3.2.
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FIGURE 7. Start-up trajectories of (CT, Ω) until limit-cycle entry for Ib = 1.0, 5.0 and
20.0. The limit cycles of figure 22 are depicted as dashed curves. Several typical stages,
where the values of ∂θCT become zero, are depicted as s0, s1, . . . , s9. The trajectories start
from the positions described as t= 0 (i.e. θ(0)= 90◦).

subsection describes investigation of the still-vague mechanism of the S-shaped rotor
automatically starting up from the initial stage to the intermediate stage (i.e. we target
the intermediate stage).

As seen on the left-hand side of figure 16, the stationary rotor starts to rotate at
t= 0 and ends up reaching the stable rotation successfully within a few cycles of the
rotation for all values of Ib. In figure 6, we can see the temporal start-up behaviours
of Ω(t) and CT(t) from the initial rotor angle of θ(0)= 90◦.

3.2.1. Influence of MOI
Figure 7 shows the start-up trajectories of CT(t) with respect to Ω(t) for Ib = 1.0,

5.0 and 20.0 until entering the limit cycle, which will be shown in figure 22. The
initial rotor angle is set as θ(0)= 90◦. The values of exp (CT) and exp (Ω) shown in
figure 7 are also plotted in figure 8 in the polar coordinate system. The positions of
the stages s1, s2, . . . , s9, where ∂ΩCT =0 is satisfied, are plotted in both figures 7 and 8
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FIGURE 8. Start-up behaviours of exp (CT) (solid curve) and exp (Ω) (dotted curve) in
the polar coordinate system for Ib= 1.0, 5.0 and 20.0. See figure 7 for s0, s1, . . . , s9. The
rotor starts to rotate from the position of the solid symbol (i.e. θ(0) = 90◦). The stable
results of exp (CT) given in figure 18 are also drawn as thick dashed curves.

(for reference, these stages are also plotted in figure 6 for Ib = 5.0). Precisely, each
stage is respectively defined as follows: (i) at stage s0, there is no vortex shedding
from the rotor; (ii) at stages s1, s2, s4, s6 and s8, CT exhibits the local maximum values
after stage s0; and (iii) at stages s3, s5, s7 and s9, CT exhibits the local minimum values
after stage s0. As observed in figures 7 and 8, the value of |CT | rapidly increases in the
clockwise direction from t = 0 up to stage s0 (i.e. the rotor rotates in the clockwise
direction with Ω < 0 at the extremely early stage of rotation) and then this value
begins to decrease from stage s0. At the extremely early stage of rotation, vorticity
forms near the rotor surface and, therefore, the inviscid and pseudo-steady discussion
can account for the behaviours of Ω and CT within the first few iterative steps. As
will be seen at stage s0 in figures 9–11, the vorticity is formed symmetrically between
the tips of the upper and lower blades. Due to this vorticity, the negative pressure
exerted on the inside surfaces of the rotor creates negative torque on the rotor so that
it can rotate in the clockwise direction at the early stage. The extremely early stage
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(∂œCT < 0 after stage s1)

Stage s2 at t = 7.74
(∂œCT < 0 after stage s2)

Stage s3 at t = 9.96
(∂œCT > 0 after stage s3)

FIGURE 9. Selected iso-vorticity lines during start-up at Ib = 1.0. The snapshots are
selected at s0, s1, . . . , s4 of figures 7 and 8.

Stage s0 at t = 0.04
(rotation start)

Stage s1 at t = 1.3
(∂œCT < 0 after stage s1)

Stage s2 at t = 9.18
(∂œCT < 0 after stage s2)

Stage s3 at t = 11.42
(∂œCT > 0 after stage s3)

Stage s4 at t = 15.28
(∂œCT < 0 after stage s4)

Starting vortex
(twin vortex)

Positive
vortex

Not stagnant flow

Vortex shedding Reattachment

FIGURE 10. Selected iso-vorticity lines during start-up at Ib = 5.0. The snapshots are
selected at s0, s1, . . . , s4 of figures 7 and 8.

of the rotation is discussed in detail in § 3.4. After stage s1, the trajectories approach
each limit cycle, repeating between CT > 0 and CT < 0 (see figure 8). As observed
in figures 7 and 8, the trajectories can be found to enter the limit cycle (i.e. stable
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(rotation start)

Stage s1 at t = 9.32
(∂œCT < 0 after stage s1)

Stage s2 at t = 12.72
(∂œCT < 0 after stage s2)

Stage s3 at t = 14.92
(∂œCT > 0 after stage s3)

Stage s4 at t = 28.92
(∂œCT < 0 after stage s4)

Stage s5 at t = 32.08
(∂œCT > 0 after stage s5)
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(∂œCT < 0 after stage s6)
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Stage s7 at t = 35.66
(∂œCT > 0 after stage s7)

Stage s8 at t = 39.06
(∂œCT < 0 after stage s8)

FIGURE 11. Selected iso-vorticity lines during start-up at Ib = 20.0. The snapshots are
selected at s0, s1, . . . , s8 of figures 7 and 8.

rotation) within, at most, the first (for Ib=1.0 and 5.0) or second (for Ib=20.0) cycles
of the rotation.

Here, we set the start-up time as ts when the rotation reaches a limit cycle. Then,
from the definitions of Ω̄ and C̄T (see (3.9)), we have, during one cycle of rotation,

Ω̄ = (1/T)
∫ ts+T

ts

Ω dt= (1/T)[θ(ts + T)− θ(ts)], (3.4)

C̄T = (1/T)
∫ ts+T

ts

CT dt= (Ib/T)[Ω(ts + T)−Ω(ts)]. (3.5)

Differentiating equations (3.4) and (3.5) with respect to ts, we have the equation of
motion based on the time-averaged variables:

dΩ̄/dts = C̄T(ts)/Ib. (3.6)

After the rotation reaches the limit cycle, the rotor rotates with a constant angular
velocity as dΩ̄/dts = 0, and then we have dC̄T/dts = 0 from (3.5). Therefore,
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equation (3.6) gives the start-up time as

ts = Ib

∫ Ω̄limit-cycle

Ω̄(0)
(1/C̄T) dΩ̄, (3.7)

where Ω̄limit-cycle indicates the average value after entering the limit cycle, and this
value is estimated as approximately 0.5 from table 1 and figure 16 for all values of
Ib. If the behaviour of C̄T were independent of Ib during start-up, the start-up time ts
would increase with increasing Ib, i.e. the rotor having a large value of Ib is found to
take a long time to reach stable rotation.

At stages s0, s1, . . . , s8, shown in figures 7 and 8, the iso-vorticity lines are presented
for Ib = 1.0, 5.0 and 20.0 in figures 9, 10 and 11, respectively. At the beginning of
rotation, the rotor marginally rotates in the clockwise direction from θ(0)= 90◦ (see
figure 8) due to negative torque, which is caused by the initial vortices formed around
the tips of the rotor (see stage s0 in figures 9–11 and the above discussion).

With the growth of the vortex shedding from both tips of the two buckets (between
stages s0 and s1), the torque on the rotor rapidly decreases although the rotor
continues to rotate in the clockwise direction. At around stage s1, the rotor turns in
the counterclockwise direction. Between stages s1 and s2, the twin vortex (i.e. starting
vortex) behind the rotor grows. During these stages, the torque on the rotor is still
not very large because exp (CT)≈ 1.0, as shown in figure 8. At stage s2, the positive
vorticity generated from the surface of the returning bucket is observed, and it flows
inside the advancing bucket because the rotor is almost stationary, although the
vortex shedding from the tip of the advancing bucket begins to form (but its strength
is weak). Therefore, the flow inside the advancing bucket is not stagnant, and the
resultant negative pressure on the concave surface of this bucket can decrease the
torque of the rotor, unlike the result of figure 20(i) during stable rotation. Then, the
rotors having Ib= 1.0 and 5.0 repeatedly experience ∂θCT > 0 and ∂θCT < 0 and enter
each limit cycle after stage s3 for Ib = 1.0 or stage s4 for Ib = 5.0. In particular, the
first vortex shedding from the advancing bucket, which is seen at stage s3, is found to
play an important role in increasing the torque on the rotor. After stage s4 (Ib = 5.0),
the iso-vorticity line of figure 10 seems to be similar to that for the stable rotation
shown in figure 20, although the trajectory has not completely entered the limit cycle
yet at stage s4 (see figure 7). In contrast, the rotor having Ib = 20.0 starts to rotate
slowly at the beginning and arrives at the limit cycle after stage s9 (see figures 7
and 8). Because of the very slow rotation, the strong positive vortex shedding from
the tip of the returning bucket can be observed at stages s6 and s7, and this vortex
shedding is found to delay limit-cycle entry (see figure 8).

3.2.2. Influence of initial rotor angle
To investigate the influence of the initial rotor angle θ(0) on the start-up, we

selected three typical values of θ(0) = θΩmin , θC+T
and θC−T

, shown in table 1 and
figure 20, together with θ(0)= 90◦ for which results are obtained in § 3.2.1. In this
computation, the MOI is fixed at Ib = 5.0.

Figure 12 shows the temporal development of the angular velocity Ω(t) from start-
up at t = 0. Also, figure 13 shows the start-up trajectories into the limit cycle (see
also figure 7 for θ(0)= 90◦). As observed on the left-hand side of figure 18, the rotor
experiences negative torque at both θ = θC−T

and θ = 90◦, so that the rotor can rotate in
the clockwise direction at the beginning of the start-up from θ(0)= θC−T

and 90◦. As
seen in figure 13 together with figure 7, it is intriguing that the start-up trajectories for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

14
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.144


92 Y. Ueda

0.8

0.6

0.4

0.2

0

-0.2
0 10 20

œ(0) = œcT+

œ(0) = 90°

œ(0) = œcT-

œ(0) = œØmin

30 40
t

Ø
(t

)

FIGURE 12. Comparison of temporal growth of Ω(t) from rotor start-up with various
initial rotor angles θ(0).
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FIGURE 13. Start-up trajectories of (CT,Ω) until limit-cycle entry for the rotor with Ib=

5.0 starting from θ(0)= θΩmin , θC+T
and θC−T

. The limit cycle of figure 22 is depicted as a
dashed curve. Several typical stages where the values of ∂θCT become zero are depicted
as s0, s1, . . . , s6. The rotor starts to rotate from the position described as t= 0.

four values of Ip arrive at the same limit cycle regardless of the different trajectories at
start-up. Of course, the start-up time until entering the limit cycle from t= 0 depends
on the value of θ(0) (see table 2 and figure 13).

Figure 14 shows the start-up behaviours of exp (CT) and exp (Ω) in the polar
coordinate system for three values of θ(0) = θΩmin , θC+T

and θC−T
(see figure 8 for

θ(0) = 90◦). Several typical stages where the values of ∂ΩCT become zero are
depicted in both figures 13 and 14 as s0, s1, . . . , s6. The times at which these stages
are observed are listed in table 2. The flow patterns observed at these stages,
s0, s1, . . . , s6, are confirmed to be similar to those of figures 9–11 for θ(0) = 90◦.
In figure 14, the additional stages s′0 and s′1 are observed at around θ = 75◦ and 90◦

for θ(0)= θC+T
and θC−T

. After stage s2, the previously mentioned start-up scenario for
θ(0) = 90◦ (see e.g. figure 10 for Ib = 5.0) can essentially account for the start-up
from θ(0) = θΩmin , θC+T

and θC−T
, as well. Therefore, the iso-vorticity lines appearing

only at stages s′0 and s′1, which cannot be observed in the result of θ(0) = 90◦, are
selected in figure 15 for θ(0) = θC+T

and θC−T
. As described in table 1, the values of

θC+T
and θC−T

are 30◦ and 105◦, respectively.
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FIGURE 14. Start-up behaviours of exp (CT) (solid curve) and exp (Ω) (dotted curve) in
the polar coordinate system for the rotor with Ib= 5.0 starting from θ(0)= θΩmin , θC+T

and
θC−T

. The rotor starts to rotate from the position of the solid symbol. The starting positions
of exp (CT) for θ(0) = θC+T

and θΩmin are omitted due to overlarge scales. See figure 13
for s1, s′1, . . . , s6. The stable results of exp (CT) given in figure 18 are also depicted as
thick dashed curves.

θ(0) s1 s′1 s2 s3 s4 s5 s6

θΩmin N/A N/A N/A N/A N/A 3.8 8.0
θC+T

N/A 2.8 N/A N/A 7.4 9.32 13.4
θC−T

5.18 7.0 9.04 10.6 13.4 15.42 19.12
90◦ 1.3 N/A 9.18 11.42 15.28 17.46 21.48

TABLE 2. List of computed times t when stages s1, s′1, . . . , s6, depicted in figures 13
and 14, are observed for four conditions of the initial rotor angle θ(0). N/A denotes ‘not
applicable’.
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FIGURE 15. Iso-vorticity lines around the rotor with Ib = 5.0 starting from θ(0) = θC+T
(left) and θ(0)= θC−T

(centre and right) at stages s′0 and s′1 (see figures 13 and 14).

On the rotor starting from θ(0) = θC+T
= 30◦, the negative starting vortex shedding

from the tip of the advancing bucket is sufficiently separated from the rotor at stage
s′1 (where θ ≈ 90◦) (see the left-hand side of figure 15) so that the flow inside
the advancing bucket can be stagnant (it results in ∂θCT > 0). Indeed, the initial
iso-vorticity line at stage s′1, shown on the left-hand side of figure 15, seems to
be already similar to that for the stable regime at θ = θC−T

shown in figure 20(i).
Therefore, the angular velocity Ω , starting from θ(0)= θC+T

, monotonically increases
at the beginning of start-up (see figure 12).

As for the rotor starting from θ(0)= θC−T
=105◦, at the beginning, the rotor rotates in

the clockwise direction until θ ≈75◦ due to the initial negative torque, which is caused
by the positive vorticity inside the advancing bucket (see figure 14 and the centre of
figure 15). The rotor stops its rotation at θ =75◦, and immediately the angular velocity
begins to increase in the counterclockwise direction, due to the stagnant flow inside
the advancing bucket, from θ = 75◦ via stage s′1 (see the right-hand side of figure 15).
In these additional two stages, the initial positive vorticity inside the advancing bucket
is found to affect the sign of ∂θCT .

3.3. Flow-induced rotation of an S-shaped rotor after reaching stable rotation
In § 3.2, we considered the start-up mechanism where a stationary S-shaped rotor
starts to rotate automatically due to a uniform flow. This subsection discusses the
situation after the rotor has reached a stable rotation (i.e. entered a limit cycle, which
will be mentioned in § 3.3.2), and investigates the torque supply mechanism for the
rotor to sustain a stable rotation. In this subsection, the initial rotor angle θ(0) is fixed
at 90◦.

3.3.1. Hydrodynamic characteristics
Figure 16 shows the temporal angular velocity of the rotor Ω(t) and the torque

coefficient CT(t), together with the rotor angle θ(t) between 0◦ and 360◦. The values
of the MOI are selected as Ib= 1.0, 5.0 and 20.0 (numerical data are listed in table 1
for all MOI values). In figure 16, the temporal Ω(t) and CT(t) are found to vary with
two periods during one cycle of rotation because the rotor consists of two buckets.
The rotor is supplied with torque from the fluid when CT > 0 (i.e. the rotor acts a
turbine), whereas the rotor supplies torque to the fluid when CT < 0 (i.e. the rotor acts
a pump). In particular, the behaviour of CT(t) after reaching stable rotation seems to
be similar to the results of the predetermined constant rotation at λ=0.5 (see figure 26
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FIGURE 16. Time variations of Ω(t) (a,c,e) and CT(t) (b,d, f ) together with the rotor angle
θ(t) for three values of Ib: (a,b) Ib= 1.0, (c,d) Ib= 5.0, (e, f ) Ib= 20.0. Solid curve: Ω(t)
and CT(t). Dotted curve: θ(t).

in appendix A). Besides, the angular velocity Ω(t) varies temporally as well in the
case of autorotation. As observed on the left-hand side of figure 16, the temporal Ω(t)
oscillates during one cycle of rotation, and the rotor with Ib= 1.0 experiences a rapid
acceleration and deceleration (i.e. sensitive response). As the value of Ib increases, the
oscillation amplitude of Ω(t) decreases and the rotor achieves very smooth rotation at
Ib = 20.0 (see the value of AΩ , that is the amplitude of Ω(t), in table 1), whereas it
takes a long time to reach stable rotation (this start-up has been already discussed in
§ 3.2).

Equation (3.2) determines the angular velocity of the rotor and it can be rewritten
in a dimensionless form, i.e.

IbΩ̇ =CT, θ̇ =Ω. (3.8a,b)
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FIGURE 17. Fast Fourier transform of Ω(t) and CT(t) for three values of Ib.

Here, we define Ω and CT averaged in time, during one cycle of rotation after
reaching a stable state (i.e. limit cycle) at t= ts, as

Ω̄ =
1
T

∫ ts+T

ts

Ω dt, C̄T =
1
T

∫ ts+T

ts

CT dt, (3.9a,b)

where T is the period of rotation. Then, after reaching a stable rotation, taking into
account

TΩ̄ =
∫ ts+T

ts

Ω dt=
∫ ts+T

ts

θ̇ dt= θ(ts + T)− θ(ts)= 2π, (3.10)

we readily have T = 2π/Ω̄ , i.e. the period of rotation T can be found to be
independent of Ib if Ω̄ is independent of Ib. Furthermore, the value of Ω̄ is
approximately 0.5 on the left-hand side of figure 16 and therefore we have T = 4π,
whose value is found to be in agreement with the computed value of T on the
left-hand side of figure 16. This can be confirmed in the computed results plotted
by the dashed curve in figure 16, which shows the temporal rotor angle. Also, the
definition of C̄T gives

TC̄T =

∫ ts+T

ts

CT dt= Ib

∫ ts+T

ts

Ω̇ dt= Ib[Ω(ts + T)−Ω(ts)]. (3.11)

We can therefore find C̄T = 0 if the value of Ω becomes the same in every period of
rotation, i.e. Ω(ts)=Ω(ts + T). Also, using (3.11) with T = 2π/Ω̄ and Ω(ts + T)+
Ω(ts)≈ 2Ω̄ (see the left-hand side of figure 16), we have

Ω(ts)= Ω̄ −
C̄T

Ib

T
2
, Ω(ts + T)= Ω̄ +

C̄T

Ib

T
2
. (3.12a,b)

Therefore, the angular velocity Ω is found to vary in two periods during one cycle of
rotation, i.e. 1/fΩ = T/2 (see the computed results of f ∗Ω in table 1 and the right-hand
side of figure 17). Furthermore, the value of AΩ , that is the amplitude of Ω , can be
found to decrease with an increase of Ib if C̄T is independent of Ib (see the computed
results of AΩ in table 1 and the left-hand side of figure 16).
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FIGURE 18. Comparison of the angle-averaged torque, exp (CT), and the angular velocity,
Ω , in the polar coordinate system. Circles: Ib= 1.0. Triangles: Ib= 5.0. Squares: Ib= 20.0.

The results of the fast Fourier transform spectrum of Ω(t) and CT(t), which
is shown in figure 16 after stable rotation is reached, are shown in figure 17 for
three values of Ib = 1.0, 5.0 and 20.0 (see table 1 for others). After reaching stable
rotation, the rotor is found to sustain its own rotation mainly at the lowest frequency
of CT(t) so that it can smoothly rotate with the lowest Ω(t). Solely at Ib = 1.0, two
distinct frequencies in Ω(t) can be observed in addition to the lowest one, although
other strengths are relatively small compared with the lowest frequency. These high
frequencies in Ω(t) are caused by abrupt acceleration and deceleration of the rotor
rotation. The values of the tip-speed ratio, λ = (2a1 − a3)Ω̄(t)/V , are calculated as
approximately 0.46 for all values of Ib using the values of the lowest frequency f ∗Ω
(see the values of f ∗Ω in table 1). This value of λ≈ 0.46 is also found to be in good
agreement with the value of λ≈ 0.5 shown in figure 25 for the computational results
of the predetermined constant Ω in appendix A. Integrating (3.8) from time t1 to
t1 + T , we have Ib

∫ t1+T
t1

Ω̇dt =
∫ t1+T

t1
CTdt = TC̄T , i.e. Ib[Ω(t1 + T) − Ω(t1)] = TC̄T .

Therefore, we can find C̄T ≈ 0 in the limit cycle, which is confirmed in figures 16
and 18.

In figure 18, the values of exp (CT) and Ω , which are averaged with respect to the
rotor angle θ over more than 10 cycles of rotation after reaching stable rotation, are
plotted in the polar coordinate system for three values of Ib= 1.0, 5.0 and 20.0. Here,
exp (CT)> 1 means CT > 0, and exp (CT) < 1 means CT < 0. As observed, the rotor is
supplied with the maximum torque from the fluid at around θ := θC+T

= 30◦ (and 210◦),
which then accelerates the rotation. The rotor rotates with the maximum Ω at around
θ := θΩmax = 70◦ (and 250◦), and then decelerates in Ω . The two buckets of the rotor
yield two peaks in CT and Ω . In contrast, at around θ := θC−T

= 105◦ (and 285◦), the
rotor is observed to supply the maximum torque to the fluid because the values of
exp (CT) are less than unity. Due to the negative CT at θ := θC−T

, the angular velocity
Ω exhibits the minimum value at around θ := θΩmin = 170◦ (and 350◦). During stable
rotation in the range between θ = 0 and θ = 2π, because IbΩ(dΩ/dθ)=CT , equation
(3.8) can be written as ∫ 2π

0
CT dθ =

Ib

2
[Ω2(2π)−Ω2(0)] = 0. (3.13)
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FIGURE 19. Angle-averaged values of 0.015 exp (CX) (circles), 6.0× 10−5 exp (CY)
(triangles) and exp (CT) (squares) in the polar coordinate system for Ib = 5.0.

The rotor is therefore found to rotate load-free in stable rotation (also see the left-hand
side of figure 18). Indeed, the characteristics of exp (CT) for Ib = 5.0 and 20.0 seem
to be similar to the result of λ= 0.5, which exhibits C̄T ≈ 0, as shown in figure 27
(see appendix A).

Figure 19 shows the angle-averaged exp (CX) and exp (CY) for Ib = 5.0 in the
polar coordinate system, together with exp (CT) from figure 18. Note that the small
appropriate coefficients are multiplied to the values of exp (CX) and exp (CY) to adjust
their scale to match this figure (see the caption of figure 19). As observed, the strong
CY at θ := θCY ≈ 165◦ (and 345◦), instead of CX exhibiting the maximum value at
θ := θCX ≈ 105◦ (and 285◦), affects the subsequent positive torque at θ = θC+T

≈ 210◦

(and 30◦). We here describe the components of the resultant force on the rotor in the
x- and y-directions as X and Y and the point of application of the force as (xf , yf ).
The torque on the rotor, which is described as T = xf Y − yf X, decreases to T ≈ xf Y
because of Y � X. Taking into account the sign of CY and CT with respect to θ in
figure 19, we have xf < 0, and therefore the point of application of force is found to
locate on the downside of the rotor constantly, although xf ≈ 0 needs to be satisfied
at θ ≈ θCY ≈ 165◦.

Figure 20 shows the computed pressure distributions Cp on the rotor surface, the
iso-vorticity lines and the streamlines at four selected values of rotor angle θ such
that (i) θ = θC−T

≈ θCX , (ii) θ = θΩmin ≈ θCY , (iii) θ = θC+T
and (iv) θ = θΩmax . In figure 20,

the value of Ib is selected solely at 5.0 and the flow patterns are of course confirmed
to be similar to those of this figure among all values of computed Ib (see table 1).
The magnitude of the pressure, Cp, is appropriately adjusted for legibility, although
the definition of Cp is given in (2.15). The patterns of the computed pressure
distributions at θ = θΩmin and θ = θΩmax seem to be in good agreement with the
experimental results of Fujisawa (1992). Previous experimental studies of a Savonius
rotor with a predetermined constant rotational velocity were carried out by Nakajima
et al. (2008) and Fujisawa (1992), and they partly observed the flow pattern shown
in the present streamline.

According to Saffman (1992), torque on a fluid domain D due to external force F
(which is caused by rotor rotation in the present study) is given, in a two-dimensional
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FIGURE 20. Pressure distributions Cp on the rotor surface, iso-vorticity lines and
streamlines at four selected stages for Ib = 5.0.

absolute coordinate system, as∫
D

x∧FdS=−
1
2

d
dt

∫
D
|x|2ω dS. (3.14)

Therefore, the time variation of the vortex shedding from the rotor surface can be
found to play a key role in torque generation on the rotor. At θ = θC−T

the approaching
stream Vex attaches to the convex surface of the advancing bucket and separates from
the tip (see figure 20(i)). This vortex shedding from the tip of the advancing bucket
affects the negative pressure distribution on the convex surface of the returning
bucket as well as the concave surface of the advancing bucket (note that ∂θCT > 0
from θ = θC−T

). As the rotor rotates from θ = θC−T
in the counterclockwise direction,

this vortex shedding is observed to reattach to the convex surface of the subsequent
advancing bucket at θ = θC+T

(see figure 20(iii); note that ∂θCT < 0 from θ = θC+T
).

Between θ = θC−T
and θC+T

, due to the vortex shedding, the rotor surface on the side
of the vortex shedding experiences a negative pressure (see figure 20(i) to (iii)),
and this negative pressure on the convex surface can generate a positive torque on
the rotor. After θ = θC+T

, the vortex shedding vanishes due to its reattachment, and
therefore the convex surface of the advancing bucket experiences partly (weakly) the
positive pressure at θ = θΩmax (see figure 20(iv)). After θ = θΩmax , the vortex shedding
is repeatedly produced from the tip of the advancing bucket, as seen in figure 20(iv)
to (i). Accordingly, the scenario can be summarized as follows. The vortex shedding
from the tip of the advancing bucket, which is generated from θ = θC−T

to θC+T
(see

figure 20(i) to (iii)), can affect the increase of the torque of the rotor. Due to the
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reattachment of this vortex shedding on the subsequent advancing bucket at θ = θC+T
,

the torque can decrease until θ = θC−T
of the subsequent rotation (see figure 20(iii)

and (iv)). Owing to the present unsteady computation, the vortex shedding from the
tip of the advancing bucket and its reattachment to the subsequent bucket can be
found to play a key role in the increase and decrease of the torque on the rotor.

3.3.2. Limit cycle of an autonomous ordinary differential equation
Let us recall the equation of motion (3.2) for the SDOF problem of a rotor rotating

automatically. When the torque Tr depends solely on the angular velocity Ω and rotor
angle θ , equation (3.2) constructs the so-called autonomous system in a dimensionless
form of

θ̇ =Ω, (3.15)
Ω̇ = (1/Ib)CT(θ, Ω), (3.16)

where the dimensionless quantity of the MOI, Ib, is based on (1/16)ρD4. We then set
the perturbations 1θ and 1Ω , from an equilibrium solution (θ,Ω)= (θ∗,Ω∗) at t= t∗,
as 1θ = θ − θ∗ and 1Ω =Ω −Ω∗. The function CT is assumed to be a differentiable
function at (θ, Ω) = (θ∗, Ω∗). Expanding CT(θ, Ω) at (θ∗, Ω∗) with the use of the
Taylor series, we then arrive, for the perturbations (1θ, 1Ω), at the following initial
value problem for the autonomous system:

Θ̇ =AΘ +C0 for t> 0 and t 6= t∗; (3.17)
Θ̇ = 0 at t= t∗, (3.18)

where the matrix A and vectors Θ and C0 respectively stand for

A=
[

0 1
(1/Ib)∂θCT |θ=θ∗,Ω=Ω∗ (1/Ib)∂ΩCT |θ=θ∗,Ω=Ω∗

]
, (3.19)

Θ =

[
1θ
1Ω

]
, C0 =

[
Ω∗

(1/Ib)CT(θ
∗, Ω∗)

]
. (3.20a,b)

The solution to (3.17)–(3.20) is given in appendix B. The roots of the characteristic
polynomial of A give the eigenvalues λ= λ1 and λ2 with λ1 > λ2:

det(A− λE)= λ2
− aλ− b= 0 i.e. λ1, λ2 = a/2±

√
D, (3.21a)

where a= (1/Ib)∂ΩCT |θ=θ∗,Ω=Ω∗, b= (1/Ib)∂θCT |θ=θ∗,Ω=Ω∗,D= b+ a2/4.
(3.21b)

The autonomous system is known to be asymptotically stable if the real parts of both
eigenvalues λ1 and λ2 are negative. As can be seen in the results of figure 16, there
is no equilibrium solution (θ∗,Ω∗) where the angular velocity of the rotor Ω tends to
zero as t→∞. In the following discussion, we thus seek a stable limit cycle in the
phase-space structure. Furthermore, in § 3.4, the conditions of the rotor automatically
starting up from a quiescent state and stopping from a stable rotation will be discussed
based on the general solution to (3.17)–(3.21b).

The Poincaré–Bendixon theorem. The Poincaré–Bendixon theorem states the long-time
behaviour of trajectories of continuous dynamical systems on a plane, i.e. if, in a
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single-valued domain D0, two continuous functions f (x, y) and g(x, y) are satisfied
with

∂xf (x, y)+ ∂yg(x, y) 6= 0, (3.22)

then a set of ordinary differential equations

ẋ= f (x, y), ẏ= g(x, y) (3.23a,b)

does not have a closed trajectory in the domain D0 (see appendix C).
Comparison of (3.23) with (3.15) and (3.16) shows that the functions f (x, y) and

g(x, y) are found to be replaced by Ω and (1/Ib)CT(θ, Ω), respectively. In contrast,
in the Poincaré–Bendixon theorem the variables x and y (which relate to θ and r
of (3.15)–(3.16)) are involved in the semi-infinite domain [0,∞) of D0. To switch
the range of x (i.e. θ ) from [0,∞) to [0, 2π], we introduce the polar coordinates of
(x, y)= (r cos θ, r sin θ) with r= exp [Ω(t)] and θ = [0, 2π] and, then,

ẋ(= f (x, y))= ṙ cos θ − rθ̇ sin θ = (CT/Ib)x− (y/2) log (x2
+ y2), (3.24)

ẏ(= g(x, y))= ṙ sin θ + rθ̇ cos θ = (CT/Ib)y+ (x/2) log (x2
+ y2), (3.25)

where
ṙ= Ω̇(t) exp [Ω(t)] = (1/Ib)rCT(log r, θ), θ̇ = log r. (3.26)

As mentioned in appendix C, ∂xf + ∂yg = 0 is, in general, the necessary condition
for the existence of a limit cycle in a single-valued problem. If a trajectory were to
intersect a plane (i.e. the trajectory consists of a multi-cycle path), the condition of
ẋ= ẏ=0 would be fulfilled at the point of intersection (see appendix C). In the present
problem, the condition for the existence of the intersection is described as θ̇ = Ω̇ = 0.
Then, the sum of (3.24) multiplied by x and (3.25) multiplied by y gives (CT/Ib)r2

=0.
Therefore, when the trajectory consists of a multi-cycle path, the condition of either
r = 0 or CT = 0 needs to be satisfied. The first condition of r = 0 gives x = y = 0
and this case makes no sense in the present problem. The second one of CT = 0 also
gives r= 1 from (3.24) or (3.25) and we can obtain θ̇ =Ω = 0 from (3.26). Therefore,
it can be concluded that a trajectory consists of a single-cycle path (i.e. there is no
intersection) if a limit cycle exists.

Using (3.24)–(3.25), we can calculate the left-hand side of (3.22) as

∂xf + ∂yg= (1/Ib)(2CT + x∂xCT + y∂yCT)= (1/Ib)(2CT + r∂rCT). (3.27)

According to the Poincaré–Bendixon theorem, there is no limit cycle in the domain
D0 if the right-hand side of (3.27) has a non-zero value. In the following discussion,
we attempt to seek a limit cycle from this necessary condition for the existence of the
limit cycle (i.e. ∂xf + ∂yg= 0) in the present problem.

As explained in appendix C, equation (3.27) relates to the source m(r, θ) =
(1/Ib)(2CT + r∂rCT) in the domain D0. Furthermore, the Poincaré–Bendixon theorem
can be explained as follows. There exists a trajectory of a limit cycle if there
exists a closed streamline Γ which fulfils, in a single-valued domain D0 ⊃ Γ ,
Q :=

∫ ∫
D0

m(x, y) dx dy = 0, where a normal velocity becomes zero on the closed
streamline Γ . Then, the trajectory of a limit cycle is identical to that of the closed
streamline Γ .
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A total amount of the flow volume Q induced by the source m(r, θ) of (3.27) inside
the domain D0 = {r= r0(θ), 0 6 θ 6 2π} is calculated as

Q=
∫ 2π

0

∫ r0

0
m(r, θ)r drdθ = (1/Ib)

∫ 2π

0
dθ
∫ r0

0
∂r(r2CT) dr= (1/Ib)

∫ 2π

0
r2

0CT(r0, θ) dθ.

(3.28)
As mentioned above, there exists the trajectory of a limit cycle such that, if Q= 0,

then the trajectory would be identical to the closed streamline r = r0(θ). Since the
trajectory of a limit cycle r= r0(θ) can be described in the form r0(θ)= exp [Ω(θ)],
equation (3.28) can be rewritten as, noting that CT = Ib(dΩ(t)/dt)= IbΩ(dΩ(θ)/dθ)
from (3.16),

Q= (1/Ib)

∫ Ω(2π)

Ω(0)
Ωe2Ω dΩ = [1/(2Ib)][{Ω(2π)− 1/2}e2Ω(2π)

− {Ω(0)− 1/2}e2Ω(0)
].

(3.29)
The necessary condition, Q= 0, for the existence of a limit cycle gives Ω(0)=Ω(2π),
and therefore the angular velocity Ω is found to be a periodic function with a period
of 2π. Then, we can set the angular velocity Ω in the form of (see also figure 17)

Ω = Ω̄ +

∞∑
n=1

AΩn sin (2πnf ∗Ω t+ αn), (3.30)

where AΩn and αn are indeterminate coefficients which are independent of t. When
|AΩn−1| � |AΩn| can be assumed (this assumption is confirmed to be satisfied in the
computational results of figure 17 in § 3.3.1), we can find θ ∼ Ω̄t as t→∞. Therefore,
in a limit cycle, equation (3.30) can be rewritten as

Ω ∼ Ω̄ +

∞∑
n=1

AΩn sin (2πn( f ∗Ω/Ω̄)θ + αn). (3.31)

For instance, the term ( f ∗Ω/Ω̄) fulfils, when Ω is a periodic function with period of
Tl with respect to θ ,

f ∗Ω/Ω̄ = 1/(nTl), where n= 1, 2, 3, . . . (3.32)

In addition, by substituting (3.31) into CT = Ib(dΩ(t)/dt)= IbΩ(dΩ(θ)/dθ) of (3.16),
the torque coefficient CT can be also expressed as, in a limit cycle,

CT ∼ 2πIb( f ∗Ω/Ω̄)Ω
∞∑

n=1

nAΩn cos (2πn( f ∗Ω/Ω̄)θ + αn), (3.33)

in which Ω is also given by (3.31). Noting that |AΩ1| � |AΩ2| � · · · , the leading
terms of Ω and CT in (3.31) and (3.33) respectively reduce to

Ω − Ω̄ ∼ AΩ1 sin (2π( f ∗Ω/Ω̄)θ + α1), (3.34)

CT ∼ 2πIb( f ∗Ω/Ω̄)Ω̄AΩ1 cos (2π( f ∗Ω/Ω̄)θ + α1). (3.35)

Therefore, equations (3.34) and (3.35) asymptotically give the trajectory of the limit
cycle as

[(Ω − Ω̄)/AΩ1]
2
+ {CT/[2πIb( f ∗Ω/Ω̄)Ω̄AΩ1]}

2
= 1. (3.36)
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FIGURE 21. Comparison of CT with respect to θ between (3.35) (solid curve) and the
computational results of § 3.3.1 after reaching the limit cycle (dotted curve).
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FIGURE 22. Torque coefficient CT versus angular velocity Ω after reaching a
stable rotation (i.e. trajectories of the limit cycle). Solid curve: (3.36). Dotted curve:
computational results of § 3.3.1.

Let us verify the trajectory of (3.36) against the present computational results of
§ 3.3.1, where the rotation has reached a stable rotation. As mentioned above, the
value of AΩ1 can be approximately estimated by AΩ given in table 1, because of
|AΩn−1|� |AΩn| from figure 17. According to the values listed in table 1, the function
CT of (3.35) is approximately written as CT ∼ 0.61 cos (1.85θ + α1) for Ib = 1.0,
CT ∼ 0.58 cos (2.00θ + α1) for Ib = 5.0 and CT ∼ 0.46 cos (2.00θ + α1) for Ib = 20.0.
In figure 21, these functions of CT are compared with the computational results of
§ 3.3.1. The functions of CT are also observed to have a period π with respect to θ
because of the rotor consisting of two buckets. In figure 22, the trajectory of the limit
cycle given by (3.36) is also compared with the computational results of § 3.3.1. For
Ib= 5.0 and 20.0, the computational results agree well with the trajectory of the limit
cycle of (3.36). In contrast, for Ib = 1.0, the trajectory of (3.36) seems to be larger
than that from the computational result. At Ib = 1.0, the angular velocity Ω rapidly
accelerates and decelerates during one cycle of the rotation (see figure 16(a,b)), so
that the values of AΩ2 and AΩ3 cannot be assumed to be sufficiently smaller than the
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value of AΩ1 (see figure 17). Therefore, the approximation of |AΩ1| � |AΩ2| � · · ·

adopted in (3.34) and (3.35) is invalid.

3.4. Investigation based on the general solution to the autonomous system
Let us investigate (i) the start-up behaviour of the S-shaped rotor from a quiescent
state at t= 0 and (ii) the condition of the rotor automatically stopping from a stable
rotation, based on the general solution to the autonomous system in (3.17)–(3.20)
and the eigenvalues of (3.21a) and (3.21b). The general solution to (3.17)–(3.20) is
given in (B 4) with the coefficients of (B 5) and (B 6) in appendix B. In addition, we
have supplementary relations of λ1λ2=−b and λ1− λ2= 2

√
D from (3.21a), together

with a= (1/Ib)∂ΩCT |θ=θ∗,Ω=Ω∗ , b= (1/Ib)∂θCT |θ=θ∗,Ω=Ω∗ and D= b+ a2/4 of (3.21b).
Note here that the relations of (3.21a) and (3.21b) are invalid for the extremely early
stage of the start-up because of the function CT not being smooth. The start-up at the
extremely early stage will be discussed in (3.41)–(3.42).

(1) On start-up behaviour of 1Ω . One sets t∗ = 0 and Ω∗ = 0 in (B 4), and then
one gets

1Ω = [CT/(Ib

√
D)] sinh (

√
Dt) exp [(a/2)t]. (3.37)

For the start-up of the stationary rotor, the value of 1Ω needs to be amplified over
time. Then, one can classify (3.37) with respect to the sign of D exhibiting either
positive or negative value.

(i) For D> 0, equation (3.37) holds:

1Ω = [CT/(Ib

√
D)] sinh (

√
Dt) exp [(a/2)t]. (3.38)

The angular velocity of the rotor is found to increase monotonically in the same
direction as the torque.

(ii) For D< 0, equation (3.37) reduces to

1Ω = [CT/(Ib

√
−D)] sin (

√
−Dt) exp [(a/2)t]. (3.39)

The angular velocity of the rotor oscillates and its amplitude increases with
time. According to the present computational results, the initial values of D
are negative for all the selected values of θ(0). At the beginning of start-up,
1Ω is therefore found to increase in the same direction of CT because of
sin (
√
−Dt)≈

√
−Dt> 0 for t� 1.

In both conditions of (3.38) and (3.39), 1Ω can be found to behave like, at the
beginning of start-up, taking into account sinh (

√
Dt) ≈

√
Dt for t � 1/

√
D and

exp (at/2)≈ 1 for t� 2/a,
1Ω ≈ (CT/Ib)t. (3.40)

Equation (3.40) can be valid immediately after the rotor starts to rotate in the
counterclockwise direction, although the rotor starts to rotate in the clockwise
direction at the extremely early stage of start-up. As observed in figures 8 and 16,
the rotor starts to rotate in the clockwise direction at the extremely early stage. As
discussed in (3.41), the function of CL is not continuous with respect to Ω at this
early stage of the start-up. We therefore remove this situation from the consideration
of (3.40). During the early stage for t� 1, as seen in figure 23, the torque coefficient
CT decreases with time as

CT ≈ c0t−α, (3.41)
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FIGURE 23. Comparison of initial behaviours of |CT(t)| for four values of the initial rotor
angle θ(0) together with the fitting equations of (3.41).

where the values of the coefficient c0 and the exponent −α can be determined by
fitting with the computed results in figure 23. Note that the coefficient c0 takes either
positive values for θ(0) = θC+T

and θΩmin or negative values for θ(0) = 90◦ and θC−T
,

i.e. c0≈ 1.5 and α≈ 0.15 for θ(0)= θC+T
and θΩmin ; c0≈−0.5 and α≈ 0.4 for θ(0)=

θC−T
; and c0≈−0.3 and α≈ 0.4 for θ(0)= 90◦. At the beginning of start-up, the value

of 1Ω can be found to develop with time by substituting (3.41) into (3.40) as

1Ω ≈ (c0/Ib)t1−α. (3.42)

(2) On the condition of automatically stopping. One sets t = t∗ and Ω∗ = 0 in
(B 4), and then one replaces t by t − t∗ in (3.37). For the automatic stopping of a
stably rotating rotor at t = t∗, the condition of a< 0 and b< 0 needs to be satisfied
(i.e. Re[λ1]< 0 and Re[λ2]< 0 for a stable condition), and this leads to the following
behaviours of 1Ω at t= t∗.

(iii) In the condition of a< 0 and b< 0 (with D> 0), (3.37) holds:

1Ω = [CT/(Ib

√
D)] sinh (

√
D(t− t∗)) exp [(a/2)(t− t∗)]. (3.43)

The angular velocity monotonically decreases in the same direction as the torque
from a stably rotating regime.

(iv) In the condition of a< 0 and b< 0 (with D< 0), (3.37) reduces to

1Ω = [CT/(Ib

√
−D)] sin (

√
−D(t− t∗)) exp [(a/2)(t− t∗)]. (3.44)

The angular velocity decreases with time from a stably rotating regime with the
oscillation.

Figure 24 plots the values of exp (a) and exp (b) in the polar coordinate system for
stable rotation at Ib = 5.0. These values are calculated from the results of figure 18
in which the present autonomous system has entered the limit cycle of figure 22.
Note that in this computation the value of D = b + a2/4 is positive for all values
of θ . As seen in figure 24, this system behaves stably when both of the coefficients a
and b are negative (coloured in grey), whereas the non-shaded region does not fulfil
the stable condition. Therefore, this autonomous system is found to maintain its limit
cycle repeatedly between the stable and non-stable states during one cycle of rotation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

14
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.144


106 Y. Ueda

270
300

330

0

30

60
90

120

150

180

240

210

1

0.5

1.5

Stable
region

Stable
region

FIGURE 24. Values of exp (a) (circle) and exp (b) (triangle) in the polar coordinate system
for the stably rotating rotor with Ib= 5.0, as calculated from the values of figure 18. The
scales for exp (a) values are enlarged.

4. Conclusions
The present work has investigated an unsteady flow over an S-shaped rotor

automatically rotating from a quiescent state using a remeshed vortex particle method.
Such a flow-induced rotation of the rotor which is impulsively immersed in a constant
flow is still an unclear phenomenon. This work has shed light on the limit cycle in
the present autonomous system and successfully elucidated the mechanism of the
autorotation of the rotor.

This work first verified the adopted vortex particle method. In particular, the
computational procedure of the pressure on the surface of a body was successfully
verified about an abruptly started circular cylinder with and without rotation against
the previous analytical and numerical results.

Sections 3.2, 3.3 and 3.4 investigated the problem whereby the S-shaped rotor
automatically starts to rotate from a quiescent state. The rotor is assumed to be a
load-free rotor. Section 3.2 focused on the situation during start-up. During rotor
start-up, which was discussed in § 3.2, the trajectories until entering the limit cycle
were given for Ib = 1.0, 5.0 and 20.0, starting from θ(0) = 90◦. The initial rotor
angle θ(0) was also varied using three values where CT exhibits the positive and
negative maximum values and Ω exhibits the minimum value. The S-shaped rotor
was confirmed to approach the same limit cycle with increasing time for all selected
values of Ib and θ(0), although the values of Ib and θ(0) affect the distance of
the trajectory to the limit cycle (i.e. the start-up time). Owing to the computed
iso-vorticity line at the beginning of start-up, the first vortex shedding from the
advancing bucket plays an important role in increasing the torque on the rotor, after
which the trajectory enters the limit cycle.

Section 3.3 focused on the situation after the rotor reached stable rotation. As
described in this subsection, rotors having various MOI Ib were initially set at
θ(0) = 90◦. The torque coefficient CT and the angular velocity Ω were plotted in
the polar coordinate system during one cycle of the rotation, and then the pressure
distributions on the rotor surface, the iso-vorticity lines and the streamlines were
given at specific rotor angles. Owing to the present unsteady computation, the vortex
shedding from the tip of the advancing bucket and its reattachment to the subsequent
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bucket were found to play a key role in increasing and decreasing the torque on the
rotor.

In § 3.3.2, a remarkable finding is the fact that the autonomous system can account
for the flow-induced rotation of the rotor. Indeed, the trajectory of a limit cycle based
on the Poincaré–Bendixon theorem was derived theoretically and compared with the
present computational results after the rotor reached stable rotation. Furthermore, at
Ib= 1.0, the acceleration and deceleration of Ω during one cycle of the rotation were
found to affect the trajectory of the limit cycle.

According to § 3.4, to successfully start up and sustain the rotation of a rotor, the
initial torque caused by the first vortex shedding from the advancing bucket was
found to be important and it initially behaves like CT ∼−t−0.4 for θ(0)= 90◦ and θC−T
and CT ∼ t−0.15 for θ(0) = θC+T

and θΩmin . After entering the limit cycle, the present
autonomous system was found to maintain the rotation repeatedly between the stable
and non-stable states during one rotation cycle.

In the present study, additional structures such as springs and dampers were not
considered. For an actual VAWT, the influence of the damper, which relates to a
dynamo-electric generator, has a key role in the performance. Therefore, it is intended
to investigate the influence of damping in future work.

Appendix A. Impulsively started rotating S-shaped rotor with predetermined
constant angular velocity

At t → +0, the rotor Cb is impulsively immersed in uniform velocity Vex with
V > 0 and rotates with the predetermined constant angular velocity Ωez in the
counterclockwise direction from the initial rotor angle of θ(0) = 90◦ (see figure 4).
To simulate this problem, we select the same computational parameters as in § 3.3.
The computation is carried out up to t= 2Vt0/D= 176 when the stable oscillation of
CT(t) exceeds 40 periods.

This computation selects five kinds of tip-speed ratios: λ = 2a1Ω/V = 0.0, 0.25,
0.5, 0.75 and 1.0. Figure 25 shows the time-averaged torque characteristic of the
rotor with constant angular velocities, that is calculated by C̄T = [1/(t(Ns + N) −
t(Ns))]

∫ t(Ns+N)
t(Ns)

CT(t) dt. Here, Ns(= 2) indicates the number of rotations when it
saturates the transient flow caused by the impulsive rotation from t = 0, and the
values of CT are averaged over N(= 5) rotations. The computation of λ = 0.0 is
carried out for the stationary rotor with a rotor angle of θ = 90◦. As observed in this
figure, the torque varies from positive to negative at λ≈ 0.5; i.e. the rotor is supplied
with torque from the fluid when λ/ 0.5.

Figure 26 shows the temporal variations of the torque coefficient CT(t) and the
rotor angle θ(t) for λ= 0.25, 0.5 and 0.75. In figure 26, the value of CT is observed
to vary with two periods during one cycle of rotation because the rotor consists of
two buckets (note that at λ = 0.25 another frequency appears in the value of CT ;
see also the right-hand side of figure 27). Furthermore, as observed in figure 26, the
time-averaged torque C̄T for λ= 0.75 exhibits negative values, and therefore this rotor
supplies torque to the fluid (this rotor acts a pump). In contrast with λ = 0.75, the
rotor with λ= 0.25 experiences only positive torque and is found to act as a turbine.
Figure 27 shows the values of exp (CT) in the polar coordinate system for λ = 0.5,
0.75 and 0.25. For λ= 0.5, the rotor is supplied with torque from the fluid between
θ ≈ 0◦ and 70◦, whereas the rotor supplies torque to the fluid between θ ≈ 70◦ and
180◦. In particular, the torque coefficient CT exhibits the maximum value at around
θ = 40◦ and 220◦, which is in good agreement with the experimental results of
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FIGURE 25. Time-averaged torque coefficient C̄T versus tip-speed ratio λ for
predetermined constant angular velocities Ω .
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FIGURE 26. Comparison of temporal variations of the torque on the rotor among λ=0.25,
0.5 and 0.75. Solid curve: CT(t). Dotted curve: rotor angle θ(t).

Ushiyama et al. (1986) for the static torque coefficient measured with a wind tunnel.
In contrast with λ = 0.5, almost all values of λ = 0.75 seem to be plotted inside
the unit circle because CT / 0 for all values of θ . Unlike λ = 0.5 and 0.75, the
rotor with λ = 0.25 gives two peaks in the value of CT (see the right-hand side of
figure 27 and also figure 26) and supplies no more torque to the fluid in all rotor
angles (i.e. exp (CT) ' 1 for all values of θ ). Figures 28 and 29 show the pressure
distributions on the rotor Cp, the iso-vorticity lines and the streamlines at two values
of the rotor angle: θ = θC−T

and θ = θC+T
, where CT exhibits a maximum negative value

at θ = θC−T
(∂θCT > 0 for θ > θC−T

) and a maximum positive value at θ = θC+T
(∂θCT < 0
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FIGURE 27. Comparison of angle-averaged torque, exp (CT), on the rotor rotating with a
constant Ω in the polar coordinate system among λ = 0.5 (circles), λ = 0.75 (triangles)
and λ= 0.25 (circles).

for θ > θC+T
) (see also figure 27). As observed in the streamlines of figure 28, at

θ = θC−T
, the approaching uniform stream Vex attaches to the convex surface of the

advancing bucket and separates from the tip. The value of CT seems to begin to
increase (i.e. ∂θCT > 0 for θ > θC−T

) due to the negative pressure distribution on the
convex surface of the returning bucket when the vortex shedding from the tip of the
advancing bucket appears. In contrast, at θ = θC+T

(see figure 29), the vortex shedding
seems to reattach to the convex surface of the subsequent advancing bucket (i.e. the
flow inside the returning bucket might be stagnant), and therefore the rotor surface
on the side of the vortex shedding experiences a negative pressure, which causes the
positive torque of the rotor.

The detailed phenomenon related to figures 28 and 29 was also discussed in § 3.3.1.

Appendix B. Solution to autonomous system, equations (3.17)–(3.20)
Let us derive the general solution to (3.17)–(3.20). We rewrite (3.17) as the set of

∂t(1θ)=Ω
∗
+1Ω, (B 1)

∂t(1Ω)= (1/Ib)[∂θCT(θ
∗, Ω∗)1θ + ∂ΩCT(θ

∗, Ω∗)1Ω +CT(θ
∗, Ω∗)]. (B 2)

Differentiating (B 2) with respect to t and substituting it into (B 1), we have

Ib∂
2
t (1Ω)= ∂ΩCT(θ

∗, Ω∗)∂t(1Ω)+ ∂θCT(θ
∗, Ω∗)(Ω∗ +1Ω). (B 3)

The general solution to (B 3) reads, with indeterminate coefficients A1 and A2,

1Ω = A1 exp (λ1t)+ A2 exp (λ2t)−Ω∗. (B 4)

The indeterminate coefficients can be successfully determined, using the initial
condition (3.18) and the characteristic polynomial (3.21a), as

A1 =

[
λ1

λ1 − λ2
Ω∗ +

λ1λ2

λ1 − λ2

(∂ΩCT/∂θCT)Ω
∗
−CT

∂θCT

]
exp (−λ1t∗), (B 5)

A2 =−

[
λ2

λ1 − λ2
Ω∗ +

λ1λ2

λ1 − λ2

(∂ΩCT/∂θCT)Ω
∗
−CT

∂θCT

]
exp (−λ2t∗). (B 6)
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FIGURE 28. (a–c) Pressure distributions Cp on the rotor surface, (d–f ) iso-vorticity lines
and (g–i) streamlines at the rotor angle of θ = θC−T

(∂θCT > 0 for θ > θC−T
).

Appendix C. Discussion of the Poincaré–Bendixon theorem

The Poincaré–Bendixon theorem is expressed in (3.22)–(3.23). Using Green’s
theorem and Gauss’ divergence theorem in a single-valued domain D0, one can write∫∫

D0

(∂xf + ∂yg) dx dy=
∫
∂D0

( f dy− g dx). (C 1)

If there exists a limit cycle Γ in domain D0, one selects D0 which satisfies Γ = ∂D0,
and then one can calculate the right-hand side of (C 1) as∫

∂D0

( f dy− g dx)=
∫
Γ

( f ẏ− gẋ) dt=
∫
Γ

( fg− gf ) dt= 0. (C 2)

The assumption of (3.22) in the Poincaré–Bendixon theorem prohibits the left-hand
side of (C 2) from being zero. Therefore, there exists no limit cycle if (3.22) were
fulfilled. In other words, fulfilling ∂xf + ∂yg = 0 is the necessary condition for the
existence of a limit cycle.

If a limit cycle exists and its trajectory is written by (x(s), y(s)) with the position
s∈ [so, se), one can write x(so)= x(se), y(so)= y(se) and, on the trajectory of the limit
cycle,

dx/dt= (dx/ds)(ds/dt)= f (x(s), y(s))= f (s), (C 3)
dy/dt= (dy/ds)(ds/dt)= g(x(s), y(s))= g(s). (C 4)
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¬ = 0.25 ¬ = 0.5 ¬ = 0.75

|Cp| = 5.0

Negative
pressure

Reattachment

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

FIGURE 29. (a–c) Pressure distributions Cp on the rotor surface, (d–f ) iso-vorticity lines
and (g–i) streamlines at the rotor angle of θ = θC+T

(∂θCT < 0 for θ > θC+T
).

By combining (C 3) and (C 4), one can obtain

g
dx
ds
− f

dy
ds
=

(
dy
ds

dx
ds
−

dx
ds

dy
ds

)
ds
dt
= 0. (C 5)

Note that the Poincaré–Bendixon theorem is applicable to a single-valued problem. For
a multi-valued problem that the trajectory intersects, one needs to cut the plane to
separate it into single-valued planes. The multi-valued problem appears when ds/dt=0
is satisfied in (C 5) and, at the intersection, it fulfils ẋ= ẏ= 0.

One can replace f and g by the velocities u and v in (3.23). Then, the left-hand
side of (3.22) can be found to represent a pathline:

∂xu+ ∂yv :=m(x, y), (C 6)

in which m(x, y) is a source term in the domain D0, as will be discussed below. Note
that in an autonomous system, the velocities (u, v) are time-invariant and the pathline
is therefore identical to the streamline (i.e. the trajectory of (3.17)–(3.20) represents
the streamline). Using (C 6), one can rewrite (3.22) and link it to the flow volume Q
inside the single-valued domain D0:

Q :=
∫∫

D0

m(x, y) dx dy 6= 0. (C 7)

To satisfy (C 7), there exists no closed trajectory in domain D0 (see the Poincaré–
Bendixon theorem), i.e. if the flow volume Q were to have a non-zero value, a closed
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curve inside D0 would not be a streamline. Therefore, a closed streamline, which
fulfils Q= 0, can account for the trajectory of a limit cycle as follows. There exists
a trajectory of a limit cycle which is identical to a streamline if there exists a closed
streamline Γ which fulfils, in a single-valued domain D0 ⊃ Γ ,

Q=
∫∫

D0

(
∂f
∂x
+
∂g
∂y

)
dx dy=

∫
∂D0=Γ

(
f

dy
ds
− g

dx
ds

)
ds= 0, (C 8)

where the normal velocity becomes zero on the closed streamline Γ surrounding the
source m(x, y)= ∂xf + ∂yg.

In summary, one can find the following:

(i) ∂xf + ∂yg = 0, i.e. Q = 0 is the necessary condition for the existence of a limit
cycle.

(ii) The trajectory having a multi-cycle path gives ds/dt = 0, i.e. ẋ = ẏ = 0 at the
intersection.

Here we consider a simple example for the limit cycle which is obtained from the
following system (this example is cited from Takahashi 1996):

ẋ= u= y+ x(1− x2
− y2), ẏ= v =−x+ y(1− x2

− y2). (C 9a,b)

From (C 6), the strength of the source is calculated as m= 1− 3(x2
+ y2)= 1− 3r2,

and therefore one can consider a closed domain inside a circle having a radius of
r0. Similar to (C 8), one calculates the total amount of the flow volume Q inside the
domain of r= r0, i.e.

Q=
∫ 2π

0
dθ
∫ r0

0
m(r)r dr= 2π(r0 − r3

0)= 0. (C 10)

Equation (C 10) gives the closed streamline of the unit circle (r0= 1). This unit circle
can be found to be the trajectory of the limit cycle of (C 9).
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