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Nonlinear triadic interactions are at the heart of our understanding of turbulence. In
flows where waves are present, modes must not only be in a triad to interact, but
their frequencies must also satisfy an extra condition: the interactions that dominate
the energy transfer are expected to be resonant. We derive equations that allow
direct measurement of the actual degree of resonance of each triad in a turbulent
flow. We then apply the method to the case of rotating turbulence, where eddies
coexist with inertial waves. We show that for a range of wavenumbers, resonant
and near-resonant triads are dominant, the latter allowing a transfer of net energy
towards two-dimensional modes that would be inaccessible otherwise. The results
are in good agreement with approximations often done in theories of rotating
turbulence, and with the mechanism of parametric instability proposed to explain
the development of anisotropy in such flows. We also observe that, at least for the
moderate Rossby numbers studied here, marginally near-resonant and non-resonant
triads play a non-negligible role in the coupling of modes.
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1. Introduction
Understanding the nature of nonlinear interactions is at the core of the problem

of turbulence. It has been known for quite some time that the transfer of energy
between scales in a turbulent flow involves groups of three spatial modes, namely a
triad (k, p, q) such that k = p + q. The concept was first introduced by Kraichnan
(1958), where he showed that triadic interactions are conservative, and later used
this representation to formulate his Direct Interaction Approximation theory. Later,
Lee (1975) analysed triads according to geometric arguments. The subsequent growth
of computing power allowed analysis of triadic interactions in direct numerical
simulations, and Domaradzki & Rogallo (1990) showed that while energy transfer in
the inertial range is mostly local in wavenumber space, non-local triads (i.e. triads
involving modes with disparate wavenumbers) can have large amplitudes (although
they are less numerous, and thus the flux is dominated by the local triads, see Aluie
& Eyink 2009; Eyink & Aluie 2009). An important result was obtained by Waleffe
(1992), who decomposed the velocity field in terms of helical modes, and also
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822 P. Clark di Leoni and P. D. Mininni

analysed locality aspects of the nonlinear interactions. This allowed him to identify
which triads, when isolated, contribute to a direct energy transfer (energy going from
large to small scales), and which to an inverse transfer (energy going from small to
large scales).

The concept of triadic interactions remains relevant to the present. Nonlinear
interactions were analysed by Mininni, Alexakis & Pouquet (2006, 2008), by
studying local and non-local triads, and the shell-to-shell energy transfer functions
in wavenumber space. Recently, Cheung & Zaki (2014) formulated an exact
representation of the nonlinear triads using a combination matrix, and were able
use it along with minimal assumptions to obtain the Kolmogorov spectrum from
the Navier–Stokes equation. The helical decomposition of Waleffe (1992) was also
used recently to build ‘decimated’ versions of the Navier–Stokes equation (Biferale,
Musacchio & Toschi 2013), where the nonlinear terms in the equation are split
into contributions from each kind of triad, and which can then be turned on or
off to see how they affect the energy cascade. In a similar way, Moffatt (2014)
analysed the effect of triad truncation on the velocity and vorticity field of the Euler
equation. Finally, decimation models in which wave–wave–wave interactions and
wave–vortex–wave interactions were differentiated have been used to study rotating
stratified turbulence (Remmel, Sukhatme & Smith 2010; Hernandez-Duenas, Smith &
Stechmann 2014).

In flows with restitutive forces and in which waves can be present (e.g. in rotating
and/or stratified flows, or in magnetohydrodynamics), an important concept arises,
which is that of resonants triads. These are triads (k, p, q) which also satisfy the
resonant condition ω(k)=ω(p)+ω(q), with ω(k) being the dispersion relation of the
waves. If a flow is dominated by rapidly varying waves, non-resonant interactions
should, in principle, die out in front of resonant ones, thus leaving the bulk of the
nonlinear energy transfer to the resonant triads. This has been exploited in theories
of weak turbulence (i.e. in systems in which the flow is completely given by a
superposition of interacting dispersive waves), as done for interfacial waves in fluids
or for waves in plasmas (Zakharov, Lvov & Falkovic 1992; Nazarenko 2011) with
varying degrees of success (Newell & Rumpf 2011). Experimental evidence of such
resonant wave interactions has been found, e.g. in capillary wave turbulence (Aubourg
& Mordant 2015, 2016) and in gravity–capillary waves (Haudin et al. 2016).

The Coriolis force in rotating flows gives rise to inertial waves which in experiments
and in simulations coexist with eddies (Bokhoven et al. 2008; Staplehurst, Davidson
& Dalziel 2008). As a result, although weak turbulence theories can give some insight
into the energy transfer mechanisms (Galtier 2003; Nazarenko & Schekochihin 2011),
more general formulations of wave turbulence in the strong regime are needed
to describe the flow (Cambon & Jacquin 1989; Cambon, Mansour & Godeferd
1997). The first attempts to study resonant triads in these flows were carried out by
Newell (1969), who studied how these triads become the preferred energy transfer
mechanism and its implication for the formation of planetary zonal flows. Extensions
of Rapid Distortion Theory and of the Eddy-Damped Quasi-Normal Markovian
closure to rotating turbulent flows rely heavily on resonant interactions, and can
correctly capture the development of anisotropy in rotating turbulence (Cambon &
Jacquin 1989; Cambon et al. 1997; Bellet et al. 2006). Moreover, this approach is
useful to understand how the flow becomes quasi-two-dimensional, with energy in
three-dimensional modes being transferred preferentially towards modes with smaller
vertical wavenumber through a subset of the resonant triads. Within the framework
of the helical decomposition, Waleffe (1993) also considered the resonant triads,
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Resonant and near-resonant interactions in rotating turbulence 823

and pointed out that a parametric instability may be the mechanism behind the
preferential transfer of energy towards quasi-two-dimensional modes: the resonant
condition ω(k) = ω(p) + ω(q) is more easily satisfied by modes with small vertical
wavenumber, thus being preferred by the nonlinear coupling. This tendency in the
energy transfer towards quasi-two dimensionalisation has been confirmed both in
numerical simulations (Sen et al. 2012; Horne & Mininni 2013) and in laboratory
experiments (Campagne et al. 2015). However, the parametric instability mechanism
of Waleffe (1993) is valid for isolated triads; in a real turbulent flow, in which each
triad is coupled to a myriad of other triads, it is unclear whether this is the actual
mechanism responsible for the quasi-two dimensionalisation.

Moreover, wave turbulence theories are valid when the wave period is much
shorter than the eddy turnover time. As a result, many of these arguments fail when
the Rossby number is moderate, or when the vertical wavenumber approaches zero
(as there are no waves in these modes), and thus they cannot predict whether energy
is transferred into pure two-dimensional modes. Also, wave turbulence theories
are inhomogeneous in scale space, and even for small Rossby numbers there can
exist a sufficiently small scale such that the time scales of the eddies and of the
waves become of the same order, thus violating its hypothesis (Pouquet & Mininni
2010; Mininni, Rosenberg & Pouquet 2012). In recent years, several efforts were
made to detect inertial waves in rotating turbulence, quantify their energy, and
identify their role in the anisotropic transfer of energy. Some relied on the fact that
bounded domains have resonant frequencies which can be spotted in a temporal
spectrum (Bewley et al. 2007; Lamriben et al. 2011; Rieutord et al. 2012). Others
analysed temporal decorrelation functions to determine at which scales wave action
was predominant (Favier, Godeferd & Cambon 2010; Clark di Leoni et al. 2014).
Campagne et al. (2015) identified the presence of inertial waves by analysing the
two-point spatial correlation of the time transformed velocity fields obtained from PIV
measurements. Also, the space- and time-resolved energy spectrum was calculated
both numerically (Clark di Leoni et al. 2014; Clark di Leoni, Cobelli & Mininni
2015) and experimentally (Yarom & Sharon 2014; Campagne et al. 2015). While
all this evidence points to a strong presence of waves in rotating flows, and thus of
resonant interactions, studies of the contribution of resonant and near-resonant triads
in rotating turbulence are scarce.

Recently, experimental evidence of three-wave resonant interactions has been found
in a rotating flow (Bordes et al. 2012). In numerical simulations, Chen et al. (2005)
compared rotating flows computed in grids of 1283 spatial points with simulations
of the Navier–Stokes equation in two dimensions, and concluded that resonant triads
play a more dominant role as rotation is increased, while they also raised concerns
on the validity of wave turbulence arguments for the long-time dynamics of the flow.
Following Waleffe (1992), Smith & Lee (2005) considered numerical simulations of
truncated systems in which only some interactions were preserved, to identify which
triads were responsible for the development of anisotropy. The authors concluded that
near-resonant interactions were needed to reproduce the quasi-two dimensionalisation
of the flow, while non-resonant triads reduce this anisotropic transfer. More recently,
Alexakis (2015) analysed a large numerical dataset of rotating flows and concluded
that the dynamics of the quasi-two-dimensional component of the flow can only be
correctly captured if near-resonant and non-resonant interactions are taken into account.
Also recently, Gallet (2015) showed that two-dimensional flows are preferred solutions
of rotating flows for small enough Rossby number, indicating that a description of
the energy transfer solely in terms of resonant triads has limitations even in the limit
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of very strong rotation. The role of near-resonant interactions is also important to
understand the limit of infinite domains, see Cambon, Rubinstein & Godeferd (2004),
Chen et al. (2005), Bourouiba (2008) for discussions. However, direct measurements
of resonant interactions in turbulent flows are hard to find, owing primarily to
the massive amount of data that needs to be extracted and analysed from either
experiments or numerical simulations.

The aim of this paper is to directly quantify how different triads contribute to the
energy transfer in rotating turbulence. It is worth mentioning that a similar analysis
was performed recently on experimental data of gravity–capillary waves measured
on the surface of a liquid (Aubourg & Mordant 2016), where interactions are also
between three waves. The analysis, based on phenomenological arguments, allowed
direct identification of resonant interactions. Here we develop a theoretical formalism
for three-wave interactions in a rotating flow that allows explicit derivation of
third-order correlation functions between modes. We do this by deriving a contribution
function, a function that measures the contribution of each triad to the total energy
transfer as a function of the wavenumber and frequency, and a normalised contribution
function that measures the characteristic time scale at which an interaction takes place.
Both allow the measurement of how relevant and how well tuned (i.e. how resonant)
a given triad is. We then use these tools to analyse results from direct numerical
simulations of rotating turbulence. The formalism can be extended to other systems
with three or more wave interactions.

We start in § 2 with a brief explanation of the nature of nonlinear interactions in
the Navier–Stokes equations, followed by a description of our numerical simulations.
Then, in § 3 we derive the aforementioned contribution function, which we then use
to analyse the data from numerical simulations of rotating turbulence in § 4. Finally,
in § 5 we present our conclusions.

2. Resonant triads
2.1. Nonlinear interactions in Navier–Stokes

In a rotating frame, the Navier–Stokes equations for an incompressible fluid with
velocity u and under the action of a mechanical forcing F read

∂u
∂t
=−(u · ∇)u− 2Ωz× u−∇P + ν∇2u+F, (2.1)

∇ · u= 0, (2.2)

where P is the total pressure (including the centrifugal force, and normalised by
the uniform fluid mass density), z is parallel to the rotation axis, Ω is the rotation
frequency, and ν is the kinematic viscosity. The Reynolds number, defined as usual
as Re = UL/ν (where U is the r.m.s. velocity and L is the energy injection scale)
quantifies the strength of the nonlinear term against viscous damping.

Using the incompressibility condition given by (2.2), and for F = 0, the Fourier
transform of (2.1) can be written as(

∂

∂t
− νk2 + 2ΩPkz×

)
uk =−iPk

∑
p+q=k

(up · q)uq, (2.3)

where [Pk]ij = δij − kikj/k2 is the projector operator, which projects in the direction
perpendicular to k to enforce incompressibility. All terms on the left-hand side of
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Resonant and near-resonant interactions in rotating turbulence 825

the equation are linear in uk and do not couple modes with different k. So, after
transforming the nonlinear term in (2.1), the resulting convolution on the right-hand
side of this equation tells us that only modes p and q in triads satisfying k= q+ p can
give or receive energy from the mode with wave vector k. Note this is not a unique
property of the Navier–Stokes equation but of any nonlinear equation with quadratic
nonlinearities.

2.2. Rotating flows and relevant time scales
In the presence of rotation (or of other restitutive forces), waves can be excited with
well-defined frequencies for each wave vector, given by the dispersion relation of the
waves ω(k). For a rotating flow, the dispersion relation of inertial waves is

ω(k)=±2Ωkz

k
. (2.4)

We can then define the Rossby number as

Ro= U
2LΩ

, (2.5)

which measures the ratio of the rotation period to the turnover time of the large-scale
eddies. As a result, for small Rossby number we can expect waves to be faster than
eddies, at least for a range of scales. Indeed, in the absence of forcing and viscous
effects, equations (2.1) and (2.2) have waves with dispersion relation (2.4) as exact
solutions.

We can thus define several relevant time scales, as in a turbulent flow one can
identify different characteristic times for each possible interaction. The sweeping of
the small-scale eddies (of size ∼1/k) by the large-scale flow is described by the
sweeping time (Chen & Kraichnan 1989)

τS ∼ 1
Uk
. (2.6)

Note that sweeping does not result in a transfer of energy across scales. Sweeping
corresponds to the advection of the small-scale eddies by a large-scale flow, and can
act even in the absence of a mean flow (i.e. just a random evolution of the modes at
large scales can result in random sweeping). The advection of the small-scale eddies
in real space corresponds to a rotation of the Fourier modes by eiUkt. The interaction
of similar sized eddies, which result in nonlinear transfer of energy, is described by
the nonlinear time scale,

τNL ∼ 1
k
√

kE(k)
, (2.7)

where E(k) is the energy spectrum of the flow. Finally, the time scale for the
interaction of waves modes is expected to be proportional to the wave period, i.e.

τω ∼ 1
|ω(k)| . (2.8)

While in homogeneous and isotropic turbulence the dominant Eulerian time is the
sweeping time (Chen & Kraichnan 1989), when waves are present the dominant
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time scale can be either the sweeping time, the nonlinear time, or the wave period,
depending on which is the fastest at a given scale (Favier et al. 2010; Servidio et al.
2011; Clark di Leoni et al. 2014, 2015). As a result, these time scales imply that,
depending on the shape of the energy spectrum E(k), the approximation that waves
are faster than the eddies for small enough Ro may break down for sufficiently large
wavenumbers, or for a subset of the Fourier modes (e.g. for modes with small vertical
wavenumber). Below we present a more detailed estimation of which is the dominant
time scale for each mode in our numerical simulations.

2.3. Resonant interactions
For modes for which the waves are much faster than the eddies, we can assume wave
dynamics dominate the evolution, while the eddies contribute to a slow modulation
of the amplitude of the waves. Thus, we can write uk = Ukeiωkt. In practice, this
approximation is done after decomposing the modes uk into the helical eigenstates
h±(k) of the linearised (2.1), uk = a+(k)h+(k)+ a−(k)h−(k), where the subindices +
and − correspond to the two possible polarisations of the waves, see e.g. Waleffe
(1993). However, for the purpose of the following discussion it is better to work in
terms of uk, as those modes are more easily accessed in numerical simulations.

Replacing in (2.3) we obtain(
∂

∂t
− νk2 + 2ΩPkz×

)
Uk =−iPk

∑
p+q=k

(Up · q)Uqe−i[ω(k)−ω(p)−ω(q)]t. (2.9)

Integrating over several periods of the waves, the nonlinear term can give a non-
negligible energy transfer only if triads are resonant, i.e. if ω(k) = ω(p) + ω(q). In
practice, near-resonant triads with

γr(k, p, q)= min{|ω(k)±ω(p)±ω(q)|}
2Ω

=O(Ro), (2.10)

are also expected to be relevant (see, e.g. Alexakis 2015). We will call γr the
resonance factor, as it measures how close to resonance a given triad is in the
framework of wave turbulence theory. The minimum and the plus–minus signs added
in the latter equation are due to the fact that our modes uk mix both polarisations of
the inertial waves.

3. Contribution of nonlinear triads to the energy transfer and to the eddy
decorrelation
In the traditional picture of turbulence, energy is transferred towards smaller

scales as the eddy gets sufficiently deformed (and thus, decorrelated in time) by the
interaction with other eddies. As we are interested in understanding the role of the
waves in the energy transfer, we need an expression for the contribution of each triad
to the decorrelation of individual modes (and thus, to the distribution of energy per
wavenumber). To do this we define uk = uk(t) and u′k = uk(t′) with t′ = t − τ , and
multiply (2.3) by u′∗k. After averaging over the time t′ and assuming the system is in
a turbulent steady state, we obtain(

∂

∂t
− νk2

) 〈
u′∗k · uk

〉
t′ + 2Ω

〈
u′∗k · (z× uk)

〉
t′ =−i

∑
p+q=k

〈
u′∗k · (up · q)uq

〉
t′ , (3.1)
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where the projector Pk was dropped as the dot product with u′∗k ensures only
components of the terms perpendicular to k survive (as k · u′∗k = 0 from the
incompressibility condition). In (3.1) we also assume that the complex conjugate
is added (this must be assumed in all the following equations).

The viscous term on the left-hand side of (3.1) is just responsible for damping of
the correlations in a viscous time scale which grows as the Reynolds number. Thus,
for large Reynolds numbers its effect can be neglected in comparison to the wave and
the nonlinear time scales. After assuming the system is in a turbulent steady state, we
can then rewrite this equation in terms of functions that depend only on the time lag
τ as

∂

∂τ
Γk(τ )+ 2Ω∆k(τ )=−i

∑
p+q=k

Θ(k, q, p, τ ) (3.2)

where
Γk(τ )= 〈u∗k(t′) · uk(t′ + τ)〉t′ (3.3)

and

∆k(τ ) = 〈u∗k(t′) ·
[
z× uk(t′ + τ)

]〉t′
= 〈u∗y(k, t′)ux(k, t′ + τ)〉t′ − 〈u∗x(k, t′)uy(k, t′ + τ)〉t′ (3.4)

are time-correlation functions for the mode k (with Γ the usual time-correlation
function used in isotropic and homogeneous turbulence), and the third-order time
correlation is

Θ(k, p, q, τ )= 〈u∗k(t′) ·
[
up(t′ + τ) · q

]
uq(t′ + τ)〉t′ . (3.5)

The function ∆k is zero for τ = 0, and can be removed from these equations for
all time lags if correlation functions are written for the amplitudes of the helical
eigenstates h±(k). Moreover, even in terms of the Fourier modes of the velocity uk,
after adding the complex conjugate and assuming the system is in a turbulent steady
state (i.e. that the statistical properties of the signals are homogeneous in time), this
function can be neglected.

In a turbulent flow, the correlation function Γk is thus expected to decrease to
1/e of its value at τ = 0 on a time scale that may be either τS, τNL, or τω. This
decorrelation results from the interaction with all triads, with the contribution from
each triad measured by the triple correlation Θ(k, q, p, τ ). Thus, computation of this
function should allow identification of the dominant interactions responsible for the
energy cascade discriminated by time scale. Note also that for τ = 0, Θ reduces to
the usual transfer function T(k, p, q) that measures the strength of each individual
triad (Kraichnan 1958; Domaradzki & Rogallo 1990; Waleffe 1992; Mininni 2011).

As the Fourier transform of the correlation function is proportional to the power
spectrum, we have

Γ̂k(τ )= 2E(k, ω), (3.6)

and as from the property of derivatives of Fourier-transformed functions

∂̂

∂τ
Γk(τ )=−2iωE(k, ω), (3.7)

we thus arrive at
2ωE(k, ω)=

∑
p+q=k

Θ̂(k, q, p, ω). (3.8)
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Note that Θ̂ quantifies how much each triad (k, p, q) and each frequency ω contribute
to the space and time (four-dimensional) energy spectrum. Also, how well tuned Θ̂ is
around a given ω(k) can be used to identify how close to resonance a triad actually
is. We will thus call Θ̂ the contribution function.

We can gain further insight into the meaning of Θ̂ by studying the case of a fluid
in which only waves are present. In this particular case, we can write uk = Ukeiωkt,
and we can neglect any slow dependence of Uk in time. Bearing aside normalisation
factors for simplicity, we have

Θ̂(k, q, p, ω) =
∫ ∞
−∞

eiωτ
〈
u∗k(t

′) ·
[
up(t′ + τ) · q

]
uq(t′ + τ)

〉
t′ dτ

=
∫ ∞
−∞

ei(ω+ωp+ωq)τ
〈
U∗k ·

(
Up · q

)
Uq e−i(ωk−ωp−ωq)t′

〉
t′ dτ

= U∗k · (Up · q)Uq δ(ω−ωk). (3.9)

So in this case Θ̂ only contributes to the frequency ω=ω(k), and thus only resonant
triads contribute to E(k, ω). In practice Θ̂ will not always be sharply peaked around
ω(k), as shown below. The width of the peak can therefore be used to quantify how
resonant a triad is.

It is much easier, both conceptually and practically, to work with a symmetrised Θ̂ ,
namely

Θ̂S(k, q, ω)= 1
2

[
Θ̂(k, q, p= k− q, ω)+ Θ̂(k, p= k− q, q, ω)

]
. (3.10)

From here on after every mention of Θ and its Fourier transform will be in this
symmetrised form. The superscript S shall therefore be dropped.

4. Numerical results
4.1. Numerical simulations

The code GHOST (Gómez, Mininni & Dmitruk 2005; Mininni et al. 2011) is used
to solve (2.1) and (2.2) using a parallel pseudospectral method with a second-order
Runge–Kutta scheme for the time evolution. The 2/3-rule is used for dealiasing. As
will be seen below, computation of the contribution function requires high cadence
input/output in time, and a significant amount of storage (note spatial information
needs to be saved with twice the frequency of the fastest waves in the system). As a
result, only simulations with moderate resolution can be performed. Here we present
two simulations using grids of N3 = 5123 points in a three-dimensional periodic box.

Both simulations are identical except for the value of Ω . In one of the simulations
Ω = 4, while in the other Ω = 8. The simulations were started from the fluid at rest,
and energy was injected via a mechanical forcing. We chose a Taylor–Green forcing
of the form

F= F0[sin(kTG,xx) cos(kTG,yy) cos(kTG,xz)x− cos(kTG,xx) sin(kTG,yy) cos(kTG,zz)ŷ],
(4.1)

with F0= 0.277, kTG= (1, 1, 1) (which results in L= 2π/kTG= 2π/
√

3), and ν= 6.5×
10−4 in dimensionless units (for unit velocity and a box of length 2π). While other
forcings will presumably produce similar results, Taylor–Green forcing was chosen
because it has been reported to result in a larger amplitude of wave modes when
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FIGURE 1. (Colour online) Contour levels of the energy spectrum as a function of parallel
and perpendicular wavenumbers, in the simulation of rotating turbulence with Ω = 8. Note
the anisotropy of the spectrum, with most of the energy accumulating near modes with
k‖ ≈ 0. The white region corresponds to modes with τω < τs < τNL (i.e. modes dominated
by the waves), the light grey region to modes with τs<τω<τNL, and the dark grey region
to modes with τs <τNL <τω (see text for details). Grey regions thus correspond to modes
for which sweeping gives the fastest time scale (with dark grey indicating ‘slow’ modes).
The location of four modes relevant for the analysis are marked in the figure: the ‘wave’
modes k = (0, 0, 8) (marked with a blue triangle) and k = (0, 5, 5) (marked with a red
star), a ‘slow’ (two-dimensional) mode in the dark grey region k= (0, 30, 0) (marked with
a cyan circle), and the mode k= (0, 0, 45) in the light grey region (marked with a green
square).

compared with random-in-time isotropic forcing (Clark di Leoni et al. 2014). The
system was let to reach a turbulent steady state with U ≈ 0.9, which translates to a
Reynolds number of approximately 5000, and a Rossby number of 0.03 for Ω= 4 and
of 0.015 for Ω = 8. Once in the turbulent steady state, the simulations were allowed
to run for over 12 large-scale turn over times, the time span over which the following
analysis was carried out.

4.2. Energy spectrum and decorrelation times
Before proceeding to the analysis of the contribution function, we first discuss some
general properties of the simulations. In figure 1 we show contour levels of the
axisymmetric energy spectrum for the simulation with Ω = 8, as a function of the
perpendicular and parallel wavenumbers (with the perpendicular and parallel directions
defined with respect to the axis of rotation). Whilst in isotropic turbulence one would
expect these contours to be circular, the effect of rotation in these flows impose a
clear anisotropy, with a preferred accumulation of energy in modes with k‖ ≈ 0 as
predicted by Cambon & Jacquin (1989), Cambon et al. (1997), and Waleffe (1992).
Moreover, a significant fraction of the energy is in modes with k‖ = 0, for which
resonant interactions cannot account.
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Three different regions are shaded in figure 1. The white region corresponds to
modes with τω < τs < τNL. This is the region of ‘fast’ (or ‘wave’) modes, for which
the period of the waves is the fastest time scale. The light grey region corresponds to
modes with τs < τω < τNL. Although these modes are often considered to be ‘fast’, as
shown in Clark di Leoni et al. (2014) these modes are decorrelated in a time scale
which is of the order of the sweeping time. In other words, in the Eulerian frame, the
dominant time scale for these modes is given by the sweeping, which is the shortest
available time. Finally, in the dark grey region the modes have τs < τNL < τω. This is
the region of ‘slow’ modes for which the eddies are faster than the waves. The three
shaded regions are shown only as a reference. To compute the value of τNL at each
wavenumber using (2.7), an estimation of E(k) is needed. For simplicity, instead of
using the measured spectrum, we use the phenomenological expression for non-helical
rotating turbulence E(k) ∼ ε1/2Ω1/2k−2, where ε is the energy dissipation rate (Zhou
1995; Müller & Thiele 2007; Mininni et al. 2012). In Clark di Leoni et al. (2014)
it was shown, from direct computation of the decorrelation times, that this choice
results in a good estimation of the dominant time scale for modes laying in the inertial
range (i.e. at small and intermediate wavenumbers). At large wavenumbers, where the
spectrum drops exponentially as a result of viscous damping, τNL departs from this
estimation. However, we will not consider modes in the viscous range, for which also
the viscous damping time can be relevant.

The ordering of the time scales described above has implications for the behaviour
of the time-correlation function Γk(τ ). In the white region of figure 1, Γk(τ ) is
expected to decay to 1/e of its value for τ = 0 in one wave period of the mode with
wave vector k (Favier et al. 2010; Clark di Leoni et al. 2014). This time scale is
what we define as the decorrelation time: after this time, the mode k has significantly
decorrelated from its previous state. As already mentioned, in the two grey regions
the function Γk(τ ) decays to 1/e of its value for τ = 0 in a time equal to τs (Clark
di Leoni et al. 2014). We will thus consider modes in these three regions to compute
the third-order correlators Θ(k, p, q, τ ) and Θ̂(k, p, q, ω). In particular, in figure 1
we indicate two fast modes k= (0, 5, 5) and (0, 0, 8), a ‘swept’ mode (0, 0, 45), and
a slow mode (0, 30, 0). These modes will be used in several examples below.

4.3. Analysis of third-order time correlators
Equation (3.2) indicates that the nonlinear interaction with all triads gives rise to the
time decorrelation of the mode at a given k. In other words, the apparently random
contribution of all nonlinear triads results in the deformation of the structure to the
point that the mode decorrelates with itself, and thus transfers its energy to other
modes in the allowed triads. As a result, Γk(τ ) decreases for short increments τ ,
and then fluctuates around zero. −∂Γk(τ )/∂τ should then start from zero for τ = 0,
increase to a maximum, and then fluctuate with the dominant time scale of the mode.
Figure 2 shows a partial reconstruction of −∂Γk/∂τ by computing a partial sum over
q of the Θ(k, q, τ ) function for k = (0, 0, 8) and for k = (0, 30, 0). The partial
reconstruction is done using (3.2) and (3.5), i.e. we sum Θ over the subset of p and
q modes available for the analysis and that satisfy the relation p+ q= k. Due to the
large amount of data required for this computation, we only consider modes in the
(kx = 0, ky, kz) plane, and therefore we only sum over the triads with p · x= q · x= 0,
resulting in the partial reconstruction mentioned above. Nonetheless, this suffices to
get the expected behaviour for the time derivative of the decorrelation functions. For
the mode k= (0, 0, 8), which is a fast mode, the time derivative gets locked to the
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FIGURE 2. (Colour online) Partial reconstruction of −∂Γk/∂τ via the sum over q of the
third-order correlator Θ(k, q, τ ), from (3.2) (computation of the real part by adding the
complex conjugate is implied). The results are for (a) k= (0, 30, 0) and (b) k= (0, 0, 8).
The time lag τ is normalised by the dominant time scale (τs in (a) and τω in (b)); the
different time scales in these units are also shown as a reference by the horizontal bars in
each figure. We recover the expected behaviour for the correlation functions, k= (0, 0, 8)
(which is a fast mode) gets locked to the wave period, while k= (0, 30, 0) (which is slow)
evolves in the sweeping time scale. The integral of these functions gives the correlation
function, which decays rapidly on the dominant time scale.

wave period, while for k= (0, 30, 0), which is a slow mode, the dominant time scale
is the sweeping time. Here and in the following, except when duly noted, all results
shown are for the Ω = 8 simulation.

4.4. Contribution functions
We now present our analysis of the behaviour of the contribution function Θ . Figure 3
shows the value of |Θ̂(k= (0, 0, 8), q, ω)| as a function of ω, for four different values
of q (i.e. for four different triads). All of them peak at ω0=ω(k), which is the wave
frequency of the mode k. This was checked for other values of k as well, and a peak
in the corresponding wave frequency was observed in all cases except for the modes
with k‖≈ 0 (i.e. the slow modes), for which no discernible peak is present. Moreover,
and in spite of the presence of a peak for modes with k‖ > 0, it is worth noting that
the width of the peak depends strongly on the nature of the other modes in the triad.
While interactions with other wave modes have most of the power in the peak and
are well tuned (i.e. the peak is relatively narrow), interactions with slow modes can
have large amplitudes but with a broad spectrum.
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FIGURE 3. (Colour online) |Θ̂(k = (0, 0, 8), q, ω)| as a function of ω, for a fixed fast
mode k, and for different values of q. Interactions with other wave modes (blue and red
curves) show a well tuned spectrum centred around the wave frequency of the mode k,
indicating interactions are close to resonance. On the other hand, interactions with eddy
modes (green and cyan curves) display a wider spectrum. All subsequent analyses of the
contribution function focus on its maximum amplitude and on how well tuned each triad
is (i.e. on the width of the peak around the maximum).

This gives a direct way to identify not only the strength of a given triad, but also to
measure how resonant the triad is, as more resonant triads are expected to result in a
sharper spectrum of Θ̂(k, q, ω) by virtue of (3.9). Therefore, to simplify the analysis,
we can focus on a few modes k, explore all available values of q on a triad with k,
and look only at the maximum value of Θ̂ (for all ω) and on the relative width of
the maximum (i.e. on how well tuned the interaction is around ω0).

In figure 4 we show maxω{|Θ̂(k, q, ω)|} for two modes k= (0, 0, 8) and (0, 5, 5),
as a function of all possible values of q in the (0, qy, qz) plane. The anisotropic
nature of rotating turbulence makes a stellar apparition here, as the distribution of
values is clearly influenced by it. The result indicates that triads which are elongated
along the horizontal direction have larger amplitudes, which is compatible with the
prediction that energy tends to go towards the slow modes (with qz≈ 0) as discussed
in Waleffe (1992). Indeed, the triads with larger amplitudes are located in a horizontal
band within −kz . qz . kz. There are also strong triads that couple the k mode with
modes with larger vertical wavenumber (i.e. triads in the horizontal bands kz . |qz|.
2kz) which are compatible with an anisotropic transfer of a fraction of the energy
towards larger wavenumbers (i.e. smaller scales). Finally, collinear modes (i.e. modes
with q= αk) make no contribution to the triads as a result of the incompressibility of
the fluid.

4.5. Normalised contribution functions
Having said this, it can be argued that the strongest triads correspond to modes
with qz ≈ 0 only as a result of the anisotropic energy spectrum shown in figure 1:
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FIGURE 4. (Colour online) Intensity (as a function of q) of the maximum of the
contribution function, maxω{|Θ̂(k, q, ω)|}. In each panel, k is fixed, and the maximum
of |Θ̂| is plotted for all available triads by varying q. Two k modes are considered, (a)
k = (0, 0, 8) and (b) k = (0, 5, 5), both dominated by waves. The black dots in the
centre indicate the modes q=±k. Two prominent features arise. One is the effect of the
anisotropy of the flow, as triads with larger amplitudes are distributed along horizontal
bands (i.e. coupling the k modes with smaller vertical wavenumbers). The other is the
defect along the line q = αk, as collinear modes do not contribute to the triads in an
incompressible fluid.

the modes with small vertical wavenumber have most of the energy, and as a
result triads involving those modes will have larger amplitudes. Therefore, we
can normalise the triads by the energy of the q mode in the triad, i.e. we can
compute maxω{|Θ̂(k, q, ω)|}/E(q). If this is done, from (3.2) and (3.8) the normalised
contribution function has units of inverse time (i.e. of frequency). This time can thus
be interpreted as the time scale of the energy transfer mechanism, as is often done
in turbulence theories.

We now turn to the analysis of these normalised contribution functions. In figure 5
we show the peak value of the normalised functions for k = (0, 0, 8) and (0, 5, 5).
Two dashed curves indicate the modes for which τω = τNL, i.e. modes with the eddy
turnover time equal to the period of the waves. Modes respectively above and below
the upper and lower curves have τω < τNL, and are dominated by the waves. Modes
between the two dashed curves have τω > τNL, and are slow modes dominated by the
eddies.

Anisotropic effects are still evident in figure 5 after the normalisation, but the role
played in the triads by the waves starts to become more clear. Although wave modes
have less energy, after normalisation it becomes evident that triadic interactions of
the wave modes k = (0, 0, 8) and (0, 5, 5) with other wave modes are relatively
stronger than interactions with slow modes. If the normalised contribution function
is interpreted as an inverse transfer time, it then implies that the transfer between
triads involving waves is faster than triads involving slow modes, and thus should be
preferred for the interaction. This is true even for modes q with τs < τω < τNL, i.e.
for modes with sweeping time faster than the wave period (but with the waves still
dominating over the eddies).
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FIGURE 5. (Colour online) Intensity of the peak values of the normalised contribution
function for each triad, given by maxω{|Θ̂(k, q, ω)|}/E(qy, qz). In each panel, k is fixed
for two modes dominated by waves: (a) k= (0, 0, 8), and (b) k= (0, 5, 5). The dashed
lines represent the modes with τω = τNL. Modes with τω < τNL (those above the upper
dashed line) have higher frequencies (i.e. shorter time scales), and are thus preferred. Note,
however, there is a non-negligible leakage towards slow modes q with τω& τNL (i.e. modes
slightly below the dashed upper curve).

Large amplitudes (or, equivalently, shorter transfer times) can be seen in figure 5 in
the vicinity of q≈ k. Although at first glance it would appear that this is due to local
(in Fourier space) interactions being the most prominent, closer inspection reveals
that it is also due to the effect of resonances. In figure 6 we show a close up of the
normalised contribution functions in figure 5 for small values of |q|. Circles mark the
modes that satisfy the theoretical near-resonant condition up to a value of γr = 0.1. It
is evident that many of the strongest triads correspond to resonant or near-resonant
triads. This is in very good agreement with wave turbulence theories of rotating
turbulence, which predict that resonant triads should dominate the coupling between
modes (Newell 1969). However, this also explains how the system transfers energy
towards slow modes, which are inaccessible in weak-wave-turbulence approximations.
The data in figure 6 indicate that not only resonant triads are relevant, but that
near-resonant triads play an equally important role (at least for the case of a periodic
flow). Indeed, large amplitudes can be seen around the circles in figure 6 in a region
that is even broader than the fan corresponding to the condition γr = 0.1. Close
observation of figure 6(a,b) (as well as the observation of other modes k not shown
here) gives rise to the following picture: for k= (0, 0, 8), resonant and near-resonant
interactions couple this mode with some modes with qz/q < kz/k, thus allowing an
energy exchange between these modes. Energy can thus be transferred towards modes
with smaller vertical wavenumber, in agreement with the arguments in Cambon &
Jacquin (1989) and Waleffe (1993). For k = (0, 5, 5), the process is repeated, but
now some near-resonant interactions allow for a coupling (and thus a transfer) with
slow modes. This is compatible with observations in Smith & Lee (2005), Alexakis
(2015), and Gallet (2015). Moreover, in figure 6(b) a non-negligible coupling with
slow modes can be observed even for non-resonant triads (see the region between the
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FIGURE 6. (Colour online) Close up of the geometric distribution of the peak value of
the normalised contribution function for each triad, given by maxω{|Θ̂(k, q, ω)|}/E(qy, qz).
As in figure 5, in each panel k is fixed to consider two modes dominated by waves: (a)
k= (0, 0, 8), and (b) k= (0, 5, 5). The dashed curves represent the modes with τω = τNL,
and the circles represent the near-resonant modes (according to the theoretical prediction)
with γr< 0.1. In good agreement with wave turbulence theories, normalised resonant triads
have large amplitudes, but some near-resonant triads are also strong. In panel (b), some of
these near-resonant triads have non-negligible coupling with slow modes (see the circles
near qy ≈ 10 and qz ≈ 0) allowing for energy transfer towards these modes.

two dashed curves with qy > 0), indicating that as energy approaches the slow modes
the role of non-resonant interactions may also become more relevant.

4.6. Comparison with small-scale and slow modes

To gain more certainty on the effect of the waves in the triadic interactions, we
compare now the previous results with the normalised contribution function for two
modes: a small-scale mode with k = (0, 0, 45), which is dominated by sweeping
(but with the wave period faster than the eddy turnover time), and a small-scale
slow mode with k = (0, 30, 0), which has zero wave frequency. Here, by small
scale, we refer to modes with wavenumbers significantly larger than the forced
wavenumber. The resulting normalised contribution functions are shown in figure 7.
In both cases, the division given by the curve with τω = τNL is less evident, and
a superposition of the modes expected to be resonant or near-resonant (not shown)
indicates no clear correlation between the strength of the triad and the theoretical
resonant or near-resonant condition. For the mode k = (0, 0, 45), the normalised
contribution function indicates that coupling is stronger for modes with qz ≈ kz, an
effect associated with the anisotropy of the flow, while the coupling with slow modes
is negligible. The slow mode k = (0, 0, 45) shows more interesting features. The
mode seems to be more strongly coupled with other slow modes q in the vicinity of
k, and with modes with large qz (of the order of |k|, compatible with local triadic
interactions, although these interactions are non-resonant).
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FIGURE 7. (Colour online) Peak values of the normalised contribution function for each
triad, given by maxω{|Θ̂(k, q, ω)|}/E(qy, qz). The panels correspond to two fixed values
of k: (a) a small-scale ‘fast’ mode k = (0, 0, 45), and (b) a small-scale ‘slow’ mode
k = (0, 30, 0). The dashed curves represent the modes with τω = τNL. The role played
by resonant and near-resonant interactions in these cases is less clear.

4.7. Effect of the Rossby number
We can also compare the results in the two simulations with different Rossby number,
to quantify the effect of changing the rotation frequency in the intensity of resonant
and near-resonant triads. As an illustration, figure 8 shows the geometric distribution
of the peak values of the normalised contribution function for the mode k= (0, 0, 8)
in the simulation with larger Rossby number. The same result as in figure 5 is
obtained, but the contrast between modes above and below the τω = τNL curve is less
marked. Also, the region of modes dominated by eddies (i.e. of slow modes) increases
as expected, and the boundary between the two regions indicated by the change in
intensity of the triads moves accordingly. This confirms that the changes in intensity
in figure 5 indeed separate triads involving slow and fast modes, and is also consistent
with the behaviour expected in a rotating flow as the Rossby number is varied.

4.8. Direct measurement of the resonance level of each triad
One of the most important implications of the contribution function is that it allows a
direct measurement of how well tuned a triad is, i.e. of how resonant the interaction
between three modes is. This was already discussed in the context of figure 3, where
we showed that some triads display a narrower peak around the wave frequency than
others. But now we can put this observation on firmer grounds.

As it follows from (3.9), for a perfectly resonant triad the contribution function
should be a delta distribution centred around ω0 = ω(k). Near-resonant and
non-resonant interactions broaden the peak. This broadening can be measured using
the quality factor

Q= ω0

1ω
. (4.2)
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FIGURE 8. (Colour online) Peak values of the normalised contribution function for each
triad, maxω{|Θ̂(k= (0, 0, 8), q, ω)|}/E(qy, qz), for the simulation with weaker rotation (i.e.
larger Rossby number). Results are similar to the case with stronger rotation, although the
contrast in intensity between triads involving fast and slow waves is less clear.

In other words, the Q factor is the inverse relative width of the peak of Θ̂(k, q, ω) as
a function of the frequency. We estimate 1ω by calculating the width of the peak in
the spectrum (see figure 3) at half the amplitude of the maximum value. In the theory
of resonators, the Q factor is often interpreted as the ratio of the energy stored to the
energy lost in a system. In our case, the larger the Q factor the more resonant the
triad is, and the less energy of the mode k is lost (i.e. given) to non-resonant modes.

Figure 9 shows this quality factor for each contribution function for fixed
k = (0, 0, 8) and for all possible values of q = (0, qy, qz), for the two simulations
with different Rossby numbers. Superimposed on the quality factor, circles mark the
modes that satisfy the theoretical near-resonant condition up to a value of γr = 0.1.
In particular for the simulation with smaller Rossby number, triads with large quality
factors (i.e. well tuned triads) more or less coincide with triads with small γr,
especially for the branches in the upper-left and lower-right quadrants in figure 9(b).
In other words, the quality factor defined above gives a good measure of how resonant
a triad is. Moreover, three features in figure 9 are worth emphasising. First, the Q
factor has maximum values of approximately 6, which is of the order of, although
a bit smaller than, what is often found in electrical or mechanical resonators. In
other words, even resonant triads display broadband peaks in the frequency spectrum.
Second, the area covered by triads with the largest values of Q is relatively larger
than the area corresponding to the circles with γr < 0.1, confirming the importance of
interactions that are even marginally near-resonant. The scaling of this behaviour with
Rossby number and domain size can be important for theories of rotating turbulence
in infinite domains, in which the behaviour of the resonant and slow manifolds, as
well as the relevance of near resonances, are unclear (Cambon et al. 2004; Chen et al.
2005; Bourouiba 2008). Third, there are some modes with relatively large Q values
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FIGURE 9. (Colour online) Inverse relative bandwidth (quality factor) of the peak in
each contribution function, as a function of q, and for fixed k = (0, 0, 8), (a) for the
simulation with Ro ≈ 0.03, and (b) for the simulation with Ro ≈ 0.015. Larger quality
factors correspond to sharper bandwidths of the triads relative to their central frequency,
and thus to more resonant interactions (i.e. the factor quantifies how well tuned a triad is).
Circles indicate modes which satisfy the theoretical near-resonance condition with γr < 0.1.
A good agreement is observed between the theoretical condition and the quality factor
of the contribution function, especially for the flow with smaller Rossby number. Note,
however, that relatively large quality factors are observed for branches which are wider
than the condition γr < 0.1, indicating again the important role played by near-resonant
interactions.

(compared with the mean amplitude of Q for all modes) that do not correspond to
resonant or near-resonant modes in wave turbulence theory. Most notably, some of
these modes are modes with small |q| and lying in the region of the slow modes.

5. Conclusions
One of the central problems in turbulence theory involves the understanding of

how modes interact nonlinearly, especially in systems with restitutive forces for
which eddies and waves can coexist, and for which resonances can strongly affect
the nonlinear triadic interactions. In these problems, a direct investigation of how
each triad of modes contributes to the overall dynamics is quite cumbersome and
complicated. To tackle this problem we have derived a contribution function that
characterises the spatio-temporal behaviour of each triad and, more importantly, their
contribution to the energy transfer and to the spatio-temporal spectrum of the turbulent
flow.

We used this function to study the case of rotating turbulence, in which eddies
coexist with inertial waves, and where triadic resonant interactions are expected to
be dominant (Newell 1969), transferring their energy preferentially towards modes
with small vertical wavenumbers (Cambon & Jacquin 1989; Waleffe 1993). However,
this picture fails to explain how energy continues to be transferred anisotropically to
‘slow’ two-dimensional modes, as the wave turbulence approximation breaks down in
the vicinity of those modes. Previous results in simulations at low resolution or in
truncated systems (Chen et al. 2005; Smith & Lee 2005) indicate that near-resonant
triads can be responsible for this latter transfer, but it is still unclear whether these
interactions remain relevant as the turbulence level is increased, or as the Rossby
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number is decreased. Some recent results suggest this to be the case (Alexakis 2015;
Gallet 2015).

We computed the contribution function for a large number of triads in two
simulations of rotating turbulence at spatial resolutions of 5123 grid points. As the
contribution function is a third-order time-correlation function for each Fourier triad,
this requires a massive analysis of spatio-temporal data. The main results show or
confirm that: (1) For ‘wave’ modes with τω<τs <τNL (i.e. modes for which the wave
period is faster than the sweeping time and the eddy turnover time), the coupling
between triads is strongly anisotropic. Triads which are elongated along the horizontal
direction have larger amplitudes, a result which is compatible with the prediction that
energy tends to go towards modes with smaller parallel wavenumbers. This result
is also in agreement with the proposed mechanism of parametric instability, which
was obtained for isolated triads (Waleffe 1993), while the data analysis presented
here considers the system with all possible couplings between the triads. (2) After
normalising the triads by the energy in one of modes, it is found that the transfer
between triads involving wave modes is faster than the transfer between triads that
couple the wave mode with a slow mode, and thus the former can be expected
to be the preferred ones for interactions, also in agreement with predictions from
wave turbulence theory. (3) However, near-resonant and non-resonant interactions are
non-negligible, and couple the wave modes to slow modes, thus allowing for energy
transfer into that region of spectral space. (4) The contribution function is peaked
around the frequency of each mode, and thus can be used to define a quality factor
Q that measures how resonant a triad is. While resonant triads are compatible with
relatively larger values of the Q factor, the analysis shows that some marginally
near-resonant and non-resonant triads also display tuning with the wave frequency,
and are such that can couple fast and slow modes. Further studies of this result can
be important for theories of rotating turbulence in infinite domains, in which the
nature and coupling of the modes in the slow and in the resonant manifolds with
the rest of the modes is a matter of debate. (5) For modes for which τω is larger
than τs or τNL, the relevance of resonant and near-resonant triads decreases rapidly.
(6) Finally, varying the Rossby number qualitatively preserves these results, at least
in the short range of values considered here.

These results are in agreement with major theoretical predictions for the behaviour
of nonlinear interactions in rotating turbulence, as mentioned above, and can shed
some light on the recent results concerning the behaviour or two-dimensional modes
for very small Rossby numbers. In this context, an obvious shortcoming of the
present study is the lack of a parametric study of the behaviour of the triads for
even smaller Rossby numbers, or for larger Reynolds numbers. The need to properly
resolve the fastest waves in time and to store the data with high time cadence, to
then perform the spatio-temporal analysis of each triad, for the moment precludes
studies with faster rotation or with higher spatial resolution. However, we believe
that the results presented here can be useful to quantitatively assess the relevance of
resonant, near-resonant, and non-resonant triads at moderate Rossby numbers. Also,
the formalism presented here can be extended to analyse other systems in which
resonant interactions are also believed to play a central role (see, e.g. the recent
studies by Aubourg & Mordant (2015, 2016)).
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