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SEMILATTICES AND THE RAMSEY PROPERTY

MIODRAG SOKIĆ

Abstract. We consider S, the class of finite semilattices; T , the class of finite treeable semilattices; and
Tm , the subclass of T which contains trees with branching bounded by m. We prove that ES, the class of
finite lattices with linear extensions, is a Ramsey class. We calculate Ramsey degrees for structures in S, T ,
and Tm . In addition to this we give a topological interpretation of our results and we apply our result to
canonization of linear orderings on finite semilattices. In particular, we give an example of a Fraı̈ssé class
K which is not a Hrushovski class, and for which the automorphism group of the Fraı̈ssé limit ofK is not
extremely amenable (with the infinite universal minimal flow) but is uniquely ergodic.

§1. Introduction. Asemilattice canbe considered as a relational or as a functional
structure. As a relational structure, a semilattice is a poset with the property that
every two elements have an infimum.As a functional structure, a semilattice contains
only one binary operation which defines a partial ordering such that the infimum
of any two elements is given by the binary operation. In this paper, we consider
semilattices as a functional structures and we examine finite semilattices in two
steps. In the first step, we consider semilattices with respect to the Ramsey property.
In the second step, we examine semilattices from the point of view of topological
dynamics. We denote by S the class of finite semilattices, by T the class of finite
trees and by Tm the class of finite trees with branching bounded by m.
Which classes of finite structures have the Ramsey property is one the central
questions of the Ramsey theory. When a given class does not have the Ramsey
property we ask for the Ramsey degrees of its objects, see Section 2 for definitions.
We recall that a class is a Ramsey class iff all of its objects have Ramsey degree
equal to 1. In this paper, we prove that S, T , and Tm are not Ramsey classes by
calculating the Ramsey degrees for their objects. We recall that there are only two
known Ramsey classes of functional structures: the class of finite Boolean algebras,
see [6], and the class of finite vector spaces over a given finite field, see [8]. In addition
to these two classes we know the Ramsey degrees for all objects in a given functional
class only for the class of finite unary functions, see [22].
A connection between structural Ramsey theory and topological dynamics is
given by the work of Kechris–Pestov–Todorčević in [11] and its generalization
in [16]. This connection is based on Fraı̈ssé theory, see [9]. Fraı̈ssé classes S, T ,
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SEMILATTICES AND THE RAMSEY PROPERTY 1237

and Tm generates Fraı̈ssé structures S, T, and Tm respectively. Some characteristics
of model theoretic structures are obtained by examining their groups of automor-
phisms. In particular we consider groups Aut(S), Aut(T), and Aut(Tm) with the
pointwise convergence topology. LetG be a topological group. A continuous action
of G on a compact Hausdorff space X is called a G-flow. A G-flow X is minimal
if for every x ∈ X we have X = {gx : g ∈ G}. It is a classical result in topologi-
cal dynamics that every topological group G admits a unique, up to isomorphism,
minimal G-flow, called the universal minimal G-flow, such that all other minimal
G-flows are factors of it. If the universal minimal flow is a point then we say that
the group is extremely amenable. In topological dynamics we ask for a concrete
description of the universal minimal flows. In this paper, we give concrete descrip-
tions of the universal minimal flows for Aut(S), Aut(T) and Aut(Tm). Moreover,
these universal minimal flows are metrizable. We should contrast this with the fact
that a universal minimal flow of a countable discrete group is never metrizable, see
page 121 in [11]. A topological group G is amenable if every G-flow admits an
invariant Borel probability measure. A G-flow is uniquely ergodic if it has a unique
invariant probability measure.We say that a topological groupG is uniquely ergodic
if every minimal G-flow is uniquely ergodic. In this paper, we prove that Aut(T)
and Aut(Tm) are uniquely ergodic groups. Also we explain why Aut(S) is a nona-
menable group.Moreover, T and Tm are the first known examples of Fraı̈ssé classes
which are not Hrushovski classes such that the groups of automorphisms of their
corresponding Fraı̈ssé structures have nonisomorphic universal minimal flow and
they are uniquely ergodic.
In Section 2 we give formal definitions and present the main results. In Section 5
we introduce more ordered classes of semilattices which are natural to consider
and we recall basic concepts from Fraı̈ssé theory. This is important so we can give
a topological interpretation of our results in Section 7. In particular, we examine
amenability, extreme amenability, and unique ergodicity of automorphism groups
of certain countable structures. We give the first example of a Fraı̈ssé class K
with corresponding automorphism group of its Fraı̈ssé limit such that K is not a
Hrushovski class and the automorphism group has a nontrivial minimal flow and
is uniquely ergodic, see Theorem 7.9. In Section 8 we consider natural orderings on
semilattices.

§2. Background. A meet semilattice is a poset with the property that every two
elements have an infimum, and a join semilattice is a poset with the property that
every two elements have a supremum. A poset which is a meet semilattice or a
join semilattice is called a semilattice. Each meet (join) semilattice (A,≤) defines
a binary meet (join) operation ◦ with a ◦ b = inf{a, b} (sup{a, b}) for a, b ∈ A.
Moreover for all a, b, c ∈ A we have

a ◦ (b ◦ c) = (a ◦ b) ◦ c, a ◦ b = b ◦ a, a ◦ a = a. (2.1)

Also if ◦ is a binary operation on a set A which satisfies 2.1 for all a, b, c ∈ A then
on the set A we may define a partial ordering ≤ such that (A,≤) is:
(i): either a meet semilattice with a ≤ b ⇔ a ◦ b = a and inf{a, b} = a ◦ b,
(ii): or a join semilattice with a ≤ b ⇔ a ◦ b = b and sup{a, b} = a ◦ b.
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It follows from this connection that there is a duality between meet and join
semilattices, so in the rest of this paper we will consider only join semilattices and
we will call them only semilattices instead of meet semilattices. Also we consider a
semilattice as a pair (A, ◦A), where ◦A is a binary operation on A which satisfies 2.1
for all a, b, c ∈ A. We denote by ≤A a partial ordering on the set A such that
a ≤A b ⇔ a ◦A b = a for all a, b ∈ A, and we also write (A, ◦A,≤A) instead
of (A, ◦A). In the rest of this paper we consider a semilattice as a structure with a
binary function, denoted by ◦, and we define in the semilattice a partial ordering,
denoted by ≤, using function ◦. We refer the reader for more details on lattices and
semilattices to [18]. We denote by S the class of finite semilattices. Beside the class
S, we also consider few subclasses of the class S.
We say that (A, ◦A) ∈ S is a treeable semilattice if the induced poset (A,≤A) is
a tree, i.e., it has a minimum called the root and for each a ∈ A the set {b ∈ A :
b ≤A a} is linearly ordered with ≤A. We denote by T the class of finite treeable
semilattices and we say that structures in T are trees. For a tree A = (A,≤A) and
a, b ∈ A we say that b is an immediate successor of a if for all c ∈ A we have
a ≤A c ≤A b ⇒ c = a or c = b. We denote the set of immediate successors of a
in a tree A by imA(a). We say that a ∈ A is terminal if imA(a) = ∅ and the height
of a is htA(a) = |{b ∈ A : b < a}|. Tree A has a constant branching k if for every
nonterminal a ∈ A we have k = |imA(a)|. We say that the tree A is (h, k)-balanced
if it has constant branching k and all terminal elements have the height h. We say
that a given tree is balanced if it is (h, k)-balanced for some h and k. For a ∈ A we
denote by A(a) = {b ∈ A : a ≤ b} the substructure of A.
For a natural number m ≥ 1 we denote by Tm the subclass of T that contains
structures A = (A,≤A) from T with the property that |imA(a)| ≤ m for a ∈ A.
In particular, T1 is the class of finite linearly ordered sets.
The analysis in [11] leads to consideration of the classes of finite semilattices
and also the classes of finite ordered semilattices. Before we introduce classes of
finite ordered semilattices we fix notation. The collection of all linear orderings
on a nonempty set A we denote by lo(A). A linear ordering ≤ on a A is a linear
extension of a partial ordering 	 on A if for all a, b ∈ A we have a 	 b ⇒ a 
 b.
We denote by le(	) the collection of all linear extensions of a partial ordering 	.
We say that partial orderings≤ and
 onA are opposite,
 = op(≤) or≤ = op(
),
if a ≤ b ⇔ b 
 a for all a, b ∈ A. We denote the strict part of partial orderings
≤,
, or	 by<,≺ or�. For a partial ordering≤ on a set A and subsets B, C ⊂ A
withB∩C = ∅, wewriteB < C if b ≤ c for all b ∈ B and all c ∈ C . The cardinality
of a given set A we denote by |A| or card (A). If a and b are incomparable with
respect to the partial ordering ≤ then we write nc(≤, a, b).
By adding linear extensions to structures from S we obtain the class

ES = {(A, ◦A,
A) : (A, ◦A) ∈ S,
A∈ le(≤A)}.

Let (A, ◦A,
A) be in ES such that (A, ◦A) ∈ T and let A = (A,≤A). Then we say
that
A is a convex ordering with respect to≤A if for all a, b, c ∈ A with a ◦A b = c,
a �= c, b �= c we have

a 
A b ⇔ a′ 
A b′,
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where a′, b′ ∈ imA(c), a′ ≤A a, b′ ≤A b. We denote the set of all convex ordering
with respect to ≤A by co(≤A), and we consider the class

CT = {(A, ◦A,
A) : (A, ◦A) ∈ T ,
A∈ co(≤A)}.

In order to simplify exposition we introduce additional notation. Let A and B be
two structures in a given signature L. If there is an embedding from A into B then
we write A ↪→ B, otherwise we write A �↪→ B. If A is a substructure of B then we
write A ≤ B, and if A is isomorphic to B then we write A ∼= B. We denote by

(
B

A

)
the collection of all substructures of Bwhich are isomorphic toA. For a structureK
we denote the class of all finite substructures that are isomorphic to a substructure
of K by Age(K). We denote by |A| the size of the underlying set of the structure A.
For a function f : X → Y and A ⊆ X , we write f(A) = {f(a) : a ∈ A}.
LetK be a class of finite structures in a signatureL. If for natural numbers r and t,
and structures A, B, C ∈ K we have that for every coloring c :

(
C

A

)
→ {1, . . . , r}

there is B′ ∈
(
C

B

)
such that |c(

(
B
′

A

)
)| ≤ t then we write

C → (B)Ar,t .

In particular, for t = 1 we write C → (B)Ar . We say that A ∈ K has Ramsey degree
t0 in K, denoted by tK(A), if t0 is the smallest natural number with the property
that for any natural number r and any B ∈ K there is C ∈ K such that C → (B)Ar,t0 .
A structure A ∈ K is a Ramsey object in K if tK(A) = 1. We say that the class K is a
Ramsey class or that K satisfies the Ramsey property (RP) if for all A in K we have
tK(A) = 1.
It was proved that every one element lattice is a Ramsey object in the class of
finite lattices, see [15] and [10]. Proposition 2.1 in [10] implies that every one element
semilattice is a Ramsey object in S, and T , but it does not give any information
about Ramsey objects in ES and CT . In Section 3 we prove the following
Theorem 2.1. ES is a Ramsey class.
Deuber in [4] considers trees as semilattices, i.e., structureswith a binary function.
For a given natural number m > 1 , the class of (k,m)-balanced trees in Tm is a
Ramsey class, see [4]. Moreover, the result in [4] implies that (k,m)-balanced trees
are Ramsey objects in Tm, but it does not tell us if there are some other Ramsey
objects in Tm. Note that the result in [4] does not imply immediately that balanced
trees are Ramsey objects in T . Using the concept of strong subtrees, see [13], we
may obtain the same conclusion. If we make the restriction to the class of (k,m)-
balanced trees in Tm but considering only embeddings that map terminal elements
to terminal elements then we have a Ramsey class, see [23]. This result does not
give any information about Ramsey objects in T , Tm or CT . In [24] it is proved
that objects in T have finite Ramsey degree, but they are not calculated explicitly.
Note that the results in [4] and [13] also imply that objects in T and Tm have finite
Ramsey degree. We give a proof of Theorem 2.2 in the Appendix by modifying the
approach in [4]. We point out that Theorem 2.2 was stated, in a slightly different
form, in [7] on page 276 and it is credited to Leeb. We give a proof of Theorem 2.2 in
the Appendix by modifying the approach in [4], but it can be also proved by using
the approach from [23]. We decide to add this proof in the Appendix because we
were unable to find a proof in the literature.
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Theorem 2.2. CT is a Ramsey class.
We also calculate Ramsey degrees for structures in S and T , see Section 4.
Theorem 2.3.
(i) For A = (A, ◦A,≤A) in S we have tS(A) = |{�A:�A∈le(≤A)}|

|Aut(A)| .

(ii) For A = (A, ◦A,≤A) in T we have tT (A) = |{�A:�A∈co(≤A)}|
|Aut(A)| .

Note that the chains are Ramsey objects in S, but not the only Ramsey objects.
Similarly for the class T , we see that balanced trees are Ramsey objects, but not the
only Ramsey objects.
For a natural number m ≥ 1 we define a function tm : Tm → N inductively on
the size of the structures. Let A = (A, ◦A,≤A) be a structure in Tm. For |A| = 1 we
take tm(A) = 1. Suppose that |A| > 1 and that tm(A′) is defined for all A′ ∈ Tm
with |A′| < |A|. Let a be the root of the tree (A,≤A) and let imA(a) = {a1, . . . , an}.
Without loss of generality we may assume that the structures A(a1), . . . ,A(ak)
are mutually nonisomorphic and that for every j > k there is a i ≤ k such that
A(ai) ∼= A(aj). For i ≤ k we consider ni = |{1 ≤ j ≤ n : A(ai) ∼= A(aj)}| and we
define

tm(A) =
(
m

n

)
n!

n1! · · · nk !
∏n

i=1
tm(A(ai)).

In Section 6 we prove the following.
Theorem 2.4. For a natural number m ≥ 1 and A ∈ Tm we have tTm (A) = tm(A).
For A ∈ Tm we have that tTm (A) = tm(A) = 1 implies m = n, k = 1 and
tm(A(a1)) = 1. Using an induction on the height of the Ramsey objects in Tm
we obtain that the Ramsey objects in Tm are exactly the (k,m)-balanced trees.
We also give an alternative way to calculate the Ramsey degree for structures in T2
in Section 5.

§3. Proof of Theorem 2.1. Before we start with the proof we need to recall some
basic facts about Boolean lattices. We consider a Boolean lattice as a structure with
two binary operations ◦ and •. Each Boolean lattice (B, ◦B , •B ) comes with the
induced partial ordering ≤A defined such that for all a, b ∈ B we have

a ≤A b ⇔ a ◦A b = a ⇔ a •A b = b.
Note that ◦A gives infimum while •A gives supremum for two elements with respect
to≤A.We write (B, ◦B , •B ,≤B) instead of (B, ◦B , •B) andwe denote by BL the class
of finite Boolean lattices. Let B = (B, ◦B , •B,≤B ) be a finite Boolean lattice. Then
we denote by 0B and 1B the maximum and minimum in B with respect to ≤B . An
element b ∈ B with the property that b �= 0B, b �= 1B and that for all a ∈ B we have
a ≤B b ⇒ a = b or a = 0B is called an atom. The set of all atoms in B is denoted by
atom(B). Let atom(B) = {a1, . . . , ak}. Then every a ∈ B has a unique representa-
tion of the form a = ε1a1 •B · · · •B εkak , where εi ∈ {0, 1}, and εiai =

{
ai ; εi = 1,
0B; εi = 0.

Suppose that b ∈ B has the unique representation b = �1a1 •B · · · •B �kak with
�i ∈ {0, 1} and let 	B be a linear ordering of the atoms atom(B). Then we say that
a linear ordering 
B is an antilexicographical ordering on B if for a, b ∈ B we have

a ≺B b ⇔ εj < �j ,
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where aj is the maximal element in {ai : εi �= �i} with respect to 	B . We denote by
lex(≤B) or lex(B) the set of all antilexicographical orderings on B. We denote
by LBL the class of finite structures (B, ◦B , •B,≤B,
B ) with the property that
(B, ◦B , •B) ∈ BL and
B∈ lex(≤B). Note that for every Boolean lattice (B, ◦B , •B ),
the structure (B, ◦B ) is a semilattice. Since lex(≤B) ⊆ le(≤B), we have that
(B, ◦B , •B,≤B ,
B) ∈ LBL implies (B, ◦B ,≤B,
B ) ∈ ES .
Let A = (A, ◦A,≤A,
A) be a structure from ES such that |A| = k and A =

{a1 ≺A a2 ≺A · · · ≺A ak}. Let B = (B, ◦B , •B ,≤B,
B) be a structure from LBL
such that atom((B, ◦B , •B)) = {b1 ≺B b2 ≺B · · · ≺B bk}. Then we consider a map
ϕ : A→ B given by

ϕ(ai ) = •B{bj : aj ≤A ai}.
We denote by ϕ(A,B) the substructure of B induced by the set ϕ(A). Let 1 ≤
i, j, l ≤ k. Then we have the following:
Fact 0 : ϕ(A) is closed under the operation ◦B , i.e., ϕ(ai) ◦B ϕ(aj ) ∈ ϕ(A).
Fact 1 : ϕ preserves the linear ordering, i.e., ai ≺A aj ⇔ ϕ(ai ) ≺B ϕ(aj).
Fact 2 : ϕ preserves the partial ordering, i.e., ai <A aj ⇔ ϕ(ai ) <B ϕ(aj).
Fact 3 : ϕ preserves the binary operation, i.e., ai ◦Aaj = al ⇔ ϕ(ai )◦Aϕ(aj) =

ϕ(al ).

Note that the map ϕ is good for defining some kind of canonical image of A into
any Boolean lattice B with |atom(B)| = |A|. Therefore, we will be able to use the
dual Ramsey theorem.

Proof of Theorem 2.1. Let r be a natural number. Let A = (A, ◦A,≤A,
A) and
B = (B, ◦B ,≤B,
A) be structures from ES such that

(
B

A

)
�= ∅, |A| = k and |B| = m.

Then we consider structures A0,B0 ∈ BL with k, and m atoms respectively. Using
the Ramsey property for BL, see [6], there is C = (C, ◦C , •C ,≤C ) in BL such that

C0 → (B0)A0r .

Now we consider a linear ordering 
C on C such that (C0,
C ) = (C, ◦C , •C ,≤C ,

C ) ∈ LBL. Then we have that C = (C, ◦C ,≤C ,
C ) ∈ ES and we claim

C → (B)Ar .

To check this we consider a coloring c :
(
C

A

)
→ {1, . . . , r} and an induced coloring

c0 :
(
C0

A0

)
→ {1, . . . , r},

c0(A′
0) = c(ϕ(A, (A

′
0,
C ))),

where (A′
0,
C ) is the substructure of (C0,
C ) given by A′

0. By the choice of the
structure C0 there is B′

0 ∈
(
C0
B0

)
such that

c0 �
(
B′
0

A0

)
= const.

It is enough to show that for B′ = ϕ(B, (B′
0,
C )) we have

c �
(
B′

A

)
= const.
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Suppose that atoms of B′
0 are linearly ordered according to 
C as follows b1 ≺C

· · · ≺C bm, and let A′ ∈
(
B
′

A

)
have elements a′1 ≺C a′2 ≺C · · · ≺C a′k . Then for each

1 ≤ i ≤ k, we consider elements a′′1 , . . . , a′′k in B′
0 given by

a′′i = •C{bl : bl ≤C a′i & (∀t)[a′t <C a′i ⇒�(bl ≤C a′t)]}

for 1 ≤ i ≤ k. Now we have that a′′1 , . . . , a′′k are atoms of the Boolean lattice
A′
0 which is also sublattice of B

′
0. Moreover we have A

′ = ϕ(A, (A′
0,
C )), so our

Ramsey property is verified. �

§4. Ordering property. Let L be a signature and let 
 be a binary relational
symbol such that 
 /∈ L. If A′ is a structure in L ∪ {
} and A is a structure in
L obtained by dropping the interpretation of the symbol
 inA′ thenwe say thatA is
a reduct ofA′ or thatA′ is an expansion ofA andwewriteA = A

′|L. LetK′ be a class
of structures in L′ and let K be a class of the structures in L. IfK = {A|L : A ∈ K′}
then we say that K is a reduct of K′ in L or that K′ is an expansion of K in L′ and
we write K = K′|L. If 
 is interpreted as a linear ordering in each structure from
K′ and K = K′|L then we say that K′ is an ordered expansion of K. If K′ is an
ordered expansion of K and for all A, B ∈ K, every embedding Φ : A → B, and
every A′ ∈ K′ with A = A′|L there is B′ ∈ K′ such that B = B′|L and Φ is also an
embedding Φ : A′ → B′ then we say thatK′ is a reasonable expansion ofK. Suppose
thatK′ is an ordered expansion ofK. Then we say that the class K′ has the ordering
property (OP) with respect to K if for every A ∈ K there is B ∈ K such that for
every A′ ∈ K′ and B′ ∈ K′ with the property that A′|L = A and B′|L = B we have
A′↪→ B′. In this case we say that B verifies OP for A. If for A′ ∈ K′ there is B ∈ K
such that for every B′ ∈ K′ with B′|L = B we have A′↪→ B

′, then we say that B
verifies OP for A′.
We point out that the verification that we have a reasonable expansion of a given
class is straightforward and we will avoid such verifications. Also we point out that
this property is important for the topological interpretation of our results.
For the purpose of examination of theOP for the class ES with respect to the class

S we need to consider structures, see Figure 1, P = (P, ◦P,
P), R = (R.◦R,
R),
P1 = (P1, ◦P1 ,
P1 ) and P2 = (P2, ◦P2 ,
P2 ) from ES given by:
• P = {p, p0, p1}, p0 ◦P p1 = p, p ≺P p0 ≺P p1.
• R = {r0, r1, r2, r3, r4, r5}, r0 <R r1 <R r3 <R r5, r0 <R r2 <R r5, nc(≤R, r2, r1),
nc(≤R, r2, r3), nc(≤R, r4, r3), nc(≤R, r4, r5), r1 <R r4, r2 <R r4, r0 ≺R r1 ≺R
r2 ≺R r3 ≺R r4 ≺R r5.

• P1 ≤ R, P1 = {r1, r3, r4}.
• P2 ≤ R, P2 = {r2, r4, r5}.

Lemma 4.1. ES satisfies OP with respect to S.
Proof. It is enough to show that for a given A = (A, ◦A,≤A,
A) in ES there is

B = (B, ◦B ,≤B) in S such that for every 
B with (B,
B ) we have A ↪→ (B,
B ).
There is a structureA0 ∈ ES such thatA ↪→ A0 andR ↪→ A0. By Theorem 2.1 there
is C = (C, ◦C ,≤C ,
C ) in ES such that

C → (A0)P2 . (4.1)
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Figure 1. Structures P and R: curved lines are linear orderings.

We claim that (C, ◦C ,≤C ) verifies OP for A. Suppose that 	C is a linear ordering
on C such that (C,	C ) ∈ ES . Then we have a coloring

c :
(
C

P

)
→ {0, 1},

c(U) = 1⇔ (	C � U 2 = 
C � U 2),

whereU is the underlying set of the structureU. From 4.1 we obtainA′
0 ∈

(
C

A0

)
such

that c �
(
A

′
0
P

)
= ci for some ci ∈ {0, 1}. Since R ↪→ A0, we may suppose without

loss of generality that R ≤ A′
0. Note that we have P1 ∼= P2 ∼= P and r3 ≺C r4 ≺C r5.

If ci = 0 then r4 �C r3 and r5 �C r4, and consequently r5 �C r3. But this is a
contradiction since r3 <C r5. Therefore, we must have ci = 1 which shows that 	C
and
C agree on the underlying set ofA′

0, so there is an embedding A ↪→(C,	C ). �
Lemma 4.2. CT satisfies OP with respect to T .
Proof. Let A = (A, ◦A,≤A,
A) be a structure in CT and let A0 = (A, ◦A,≤A).
Let h0 = max{htA0(a) : a ∈ A} and let k0 = max{|imA0 (a)| : a ∈ A0}. Let B0 be
an (h0, k0)-balanced tree in T . Then it is easy to see that for every linear ordering

B with the property (B0,
B ) ∈ CT we have A ↪→(B0,
B), so B0 verifies OP for
A. Consequently, we have that CT satisfies OP with respect to T . �
Proof of Theorem 2.3. This follows from Proposition 10.5 in [11] applied to
Theorem 2.1 and Lemma 4.1 in the first case and Theorem 2.2 and Lemma 4.2 in
the second case. We point out that our symbol tK(A) for Ramsey degrees has a
different meaning in [11], Ramsey degrees are denoted by t(A,K) in [11]. �

§5. More ordered classes. We assume that every class of structures in this paper
is closed under taking isomorphic images. We say that a given class K of structures
is countable if it contains, up to isomorphism, countably many nonisomorphic
structures.
Let K be a class of finite structures in a signature L. We say that K satisfies the:
• Hereditary property (HP) if for all A ↪→ B and B ∈ K then A ∈ K.
• Joint embedding property (JEP) if for all A ∈ K and B ∈ K there is C ∈ K such
that A ↪→ C and B ↪→ C.
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• Amalgamation property (AP) if for allA,B,C ∈ K and all embeddingsf : A →
B and g : A → C there are D ∈ K and embeddings f̄ : B → D and ḡ : C → D

such that f̄ ◦ f = ḡ ◦ g.
• Strong amalgamation property (SAP) if for all A,B,C ∈ K with the underlying
sets A,B,C respectively and all embeddings f : A → B and g : A → C there
are D ∈ K and embeddings f̄ : B → D and ḡ : C → D such that f̄ ◦f = ḡ ◦ g
and f̄(B) ∩ ḡ(C ) = f̄ ◦ f(A) = ḡ ◦ g(A).
A class K of finite structures in a countable signature L which is countable,
contains structures of arbitrary large finite cardinality, and satisfies HP, JEP, and
AP is called a Fraı̈ssé class.
A structure A is ultrahomogeneous if for all isomorphisms φ : B → C between
its finite substructures there is an automorphism Φ : A → A such that Φ � B = φ.
A structure A is locally finite if all its finitely generated substructures are finite.
A structureA is called a Fraı̈ssé structure if it is infinite, countable, locally finite, and
ultrahomogeneous. The following Theorem provides a connection between Fraı̈ssé
classes and Fraı̈ssé structures.

Theorem 5.1 ([9]). The connection between Fraı̈ssé structures and classes is given
in the following:

(i): If A is a Fraı̈ssé structure then Age(A) is a Fraı̈ssé class.
(ii): If A is a Fraı̈ssé class then there is a unique, up to isomorphism, Fraı̈ssé

structure A such that Age(A) = A.
The structure A given by the second part of the previous Theorem is called a
Fraı̈ssé limit of the class A, A = F lim(A). There is a bijection between Fraı̈ssé
classes and Fraı̈ssé structures given by:

A �→F lim(A),A �→ Age(A).

It can be proved by an easy but tedious argument, which we skip, that S, T ,
ES , and CT are Fraı̈ssé classes whose Fraı̈ssé limits we denote by S, T, ES and
CT respectively. Since S and T satisfy SAP and JEP then by Proposition 5.3 and
Proposition 5.4 in [11] we have Fraı̈ssé classes

OS = {(A, ◦A,
A) : (A, ◦A) ∈ S,
A∈ lo(A)},
OT = {(A, ◦A,
A) : (A, ◦A) ∈ T ,
A∈ lo(A)},

with limits OS and OT respectively. At this point it is natural to consider the
Fraı̈ssé class

ET = {(A, ◦A,
A) : (A, ◦A) ∈ T ,
A∈ le(≤A)}.
It is straightforward to see that OS does not satisfy OP with respect to S, and
thatOT and ET do not satisfy OP with respect to T .
Lemma 5.2. OS , OT and ET are not Ramsey classes.

Proof. We prove the claim for OS and OT by presenting a counterexample
to the Ramsey property. This can be done by using the same counterexample
for both classes. For this we use Lemma 4 in [20] which shows that the class of
finite ordered posets is not a Ramsey class. We consider A = (A, ◦A,≤A,
A) and
B = (B, ◦B ,≤B ,
B) from OT ⊂ OS given by:
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• A = {a, a0, a1}, B = {b, b0, b1, b00, b11},
• a = a0 ◦A a1,
• b = b0 ◦B b1 = b00 ◦B b11, b0 = b0 ◦B b00, b1 = b1 ◦B b11,
• a ≺A a0 ≺A a1,
• b ≺B b00 ≺B b1 ≺B b0 ≺B b11.
Suppose there is C = (C, ◦C ,≤C ,
C ) in OT or OS such that C → (B)A2 .
Let 
0∈ le(≤C ). We consider the coloring

� :
(
C

A

)
→ {0, 1},

�(L) = 1⇔ 
C � L2 = 
0 � L2,

where L is the underlying set of the structure L. Without loss of generality we may
assume that B ≤ C. Considering each 
′ ∈ le(≤B) we obtain � �

(
B

A

)
�= const.

This is in contradiction with C → (B)A2 , so OT and OS are not Ramsey classes.
To show that ET is not a Ramsey class we consider again the structure A, which
is in ET , and U0 = (U0, ◦U0 ,≤U0 ,
U0 ) in ET . U0 is a binary tree such that:
• U0 = {u, u0, u1, u00, u01, u10, u11},
• u is the root,
• us ≤U0 us′ ⇔ s ′ is an end extension of s ,
• u ≺U0 u0 ≺U0 u1 ≺U0 u00 ≺U0 u10 ≺U0 u01 ≺U0 u11.
Suppose there isV0 = (V0, ◦V0 ,≤V0 ,
V0 ) in ET such thatV0→ (U0)

A

2 . Then there
is 	V0∈ lo(V0) such that (V0, ◦V0 ,≤V0 ,	V0 ) ∈ CT and there is a coloring

c :
(
V0

A

)
→ {0, 1},

c(L) = 1⇔ 
V0 � L2 = 	V0 � L2,

where L is the underlying set of the structure L. We claim that there is no U ∈
(
V0
U0

)
such that c �

(
U

A

)
= const. Without loss of generality we may assume that U = U0.

Now we have two options, either u0 �U0 u1 or u1 �U0 u0. In the case that u0 �U0 u1
then we have u00 �U0 u11 and u01 �U0 u10, and also u00 ≺U0 u11 and u10 ≺U0 u01.
If A0 and A1 are substructures of U given by the underlying sets {u, u00, u11} and
{u, u01, u10} then we have c(A0) = 1 and c(A1) = 0, so we have contradiction with
the starting assumption. In the case u1 �U0 u0 we obtain a contradiction in the
similar way. �

Remark 5.3. Let L be the class of finite lattices. Let OL be the class of finite
structures of the form (A,≤A), where A ∈ L and ≤A∈ lo(A). Using the same
approach as in the proof of Lemma 5.2 wemay show thatOL is not a Ramsey class.

For a natural numberm ≥ 1 we have that Tm is a Fraı̈ssé class which satisfies SAP
and has the limit Tm. In this case we may consider classes:

OT m = {(A, ◦A,
A) : (A, ◦A) ∈ Tm,
A∈ lo(A)},
ET m = {(A, ◦A,
A) ∈ ET : (A, ◦A) ∈ Tm},
CT m = {(A, ◦A,
A) ∈ CT : (A, ◦A) ∈ Tm}.
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Since Tm satisfies SAP we have thatOT m and ET m are Fraı̈ssé classes which satisfy
SAP. We denote the limits of these classes by OTm and ETm. On the other hand
CT m does not satisfy AP for m > 1. For m = 2 we consider also the class BT 2
which contains structures A = (A, ◦A,
A) ∈ OT 2 with the property that for every
a ∈ A with imA(a) = {a1, a2} we have:
• A1 = {a ∈ A : a1 ≤A a} and A2 = {a ∈ A : a2 ≤A a} are intervals with
respect to 
A.

• Either A1 ≺A a ≺A A2 or A2 ≺A a ≺A A1.
By an easy but tedious argument we may see that BT 2 is a Fraı̈ssé class with
limit BT2.
For m = 1, ET 1 = CT 1, so we can view ET 1 as the class of finite ordered sets,
which satisfies RP by the classical Ramsey theorem, see [19]. For m = 1, OT 1
can be seen as the class of finite sets with two linear orderings, which satisfies RP,
see Proposition 1 in [20].

Lemma 5.4.

(i) For m > 1, the classes OT m, ET m and CT m do not satisfy RP.
(ii) BT 2 satisfies RP.
Proof.

(i) This is proved by using the same counterexamples as in the proof of
Lemma 5.2.

(ii) This is done in the same way as the proof of Theorem 2.2 except the base of
the induction. The reason for this follows from the fact that T2 is not closed
under taking products. In this case for the base of induction we use the fact
that strong subtrees form a Ramsey class, see [13] and [24], and the fact that
strong subtrees are also substructures in the sense of treeable semilattices.
We leave details of the proof for the reader, see also Section 6. �

It is easy to see that form = 1, ET 1 = CT 1 satisfies OP with respect to T1, while
OT 1 does not satisfy OP with respect to T1. We leave the following lemma as an
easy exercise.

Lemma 5.5.

(i) For m > 1, the classes OT m and ET m do not satisfy OP with respect to Tm,
while CT m satisfies OP with respect to Tm.

(ii) BT 2 satisfies OP with respect to T2.
Note that we may use Lemma 5.5 (ii), Theorem 5.4, and Proposition 10.5 in [11]
to calculateRamsey degrees for objects in T2. Instead of doing this wewill present an
approach in the following section which gives a calculation of the Ramsey degrees in
Tm for allm ≥ 1. The following Lemma shows that we cannot use order expansions
of classes Tm in order to calculate Ramsey degrees.
Lemma 5.6. For m > 3, there is no order expansion of the class Tm which satis-
fies RP.

Proof. Suppose there is an ordered Ramsey expansion K of the class Tm. First
we need to consider structures A1 = (A1, ◦A1 ,≤A1 ,
A1 ), A2 = (A2, ◦A2 ,≤A2 ,
A2 ),
B1 = (B1, ◦B1 ,≤B1 ,
B1 ) and B2 = (B2, ◦B2 ,≤B2 ,
B2 ), see Figure 2, given by:
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Figure 2. Structures A1, A2, B1, B2: curved lines are linear orderings.

• 
A1∈ lo(A1), 
A2∈ lo(A2), 
B1∈ lo(B1), 
B2∈ lo(B2),
• (A1, ◦A1 ,≤A1 ), (A2, ◦A2 ,≤A2) ∈ Tm, (B1, ◦B1 ,≤B1 ), (B2, ◦B2 ,≤B2 ) ∈ Tm,
• A1 = {a10, a11, a12}, A2 = {a20, a21, a22}, B1 = {b10, b11}, B2 = {b20, b21},
• a10 = a11 ◦A1 a12, a20 = a21 ◦A2 a22, b10 <B1 b11, b20 <B2 b21,
• a10 ≺A1 a11 ≺A1 a12, a21 ≺A2 a22 ≺A2 a20, b10 ≺B1 b11, b21 ≺B2 b20.
Now we consider the structure B = (B, ◦B ,≤B) in Tm which is a tree such that all
its terminal elements haveheight 1 and it has exactlym terminal elements.Wedenote
its root by b and its terminal elements by b1, . . . , bm. Let 
B∈ lo(B) be such that
(B,
B) ∈ K. Without loss of generality we may assume that b1 ≺B b2 ≺B · · · ≺B
bm. Then we have three cases: (1) b ≺B b1, (2) bm ≺B b, (3) bi ≺B b ≺B bi+1 for
some 1 ≤ i < m. Considering these three cases we have two options A1 ∈ K or
A2 ∈ K. Then we have thatA1 ∈ K ⇒ B1 ∈ K and A2 ∈ K ⇒ B2 ∈ K. At this point
we emphasize that this assumption is not valid for m = 2. We discuss the option
A1 ∈ K, (the other one is similar) by giving a counterexample to the Ramsey
property. Let C ∈ K be such that

(
C

A1

)
�= ∅. We construct a coloring c :

(
C

B1

)
→

{1, . . . , m} by describing c(P). Letϕ : B1 → P be the unique isomorphism. For each
c ∈ C we fix a listing of the set imC(c) = {c1, . . . , ck}, k ≤ m. If ϕ(b10) = c and
ϕ(b11) ∈ C(ci) then we take c(P) = i . Now it is easy to see that c �

(
R

B1

)
�=

const for any R ∈
(
C

A1

)
. We obtain a similar conclusion by considering the case

A2 ∈ K. Therefore,K does not satisfy RP which is in contradiction with the starting
assumption. �

§6. Bounded branching. For a natural number m ≥ 1, we consider a sequence
(Rm,i )mi=1 of binary relational symbols. In order to calculate Ramsey degrees for
structures in Tm we consider the class DT m. This class contains structures of the
form (A, ◦A,≤A, (RAm,i )mi=1) such that:
• (A, ◦A,≤A) ∈ Tm,
• RAm,i(a, b)⇒ a <A b,
• RAm,i(a, b), b ≤A c ⇒ RAm,i (a, c),
• RAm,i(a, b), b ◦A c = a ⇒ ¬RAm,i(a, c),
• a <A b ⇒ (∃i)[RAm,i(a, b)].
We explain how to visualize structures in DT m by considering (Rm,i )mi=1 as a
collection of unary predicates assigned to each vertex of a given tree. Let A be a
structure in Tm. For every vertex a in A we add unary predicates on immediate
successors of a such that: each successor is indicated by at least one predicate and
different successors are indicated by different predicates.
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It is easy to see that DT m is a Fraı̈ssé class with SAP and limit DTm. Note that
for m = 1 we may identify DT 1 with T1 which is a Ramsey class. For m = 2
we may see that DT 2 is bidefinable with the class BT 2 for which we have already
proved RP. Therefore, the main point of Theorem 6.1 is in considering the case
m > 2. We need to recall a definition of strong subtrees. Let A = (A,≤A) and
B = (B,≤B ) be trees. For a natural number k ≥ 0 we denote the k-level of the tree
A by A[k] = {a ∈ A : htA(a) = k}. We write A[T ] =

⋃
{A[k] : k ∈ T} for T ⊆ N.

We say that A is a strong subtree of B if there is S ⊆ N such that:

• A ⊆ B[S] and A ∩ B[s] �= ∅ for all s ∈ S,
• if s1 < s2 are two successive elements in S and a1 ∈ A ∩ B[s1] then every
b ∈ imB(a) has exactly one extension in A ∩ B[s2].

We point out that a strong subtree is also a substructure in the sense of treeable
semilattices.

Theorem 6.1. For a natural number m ≥ 1, the class DT m satisfies RP.
Proof. Note that a given structure in DT m can be embedded in a structure from

DT m which is a balanced tree with branching m. Therefore, in order to prove that
DT m is a Ramsey class it is enough to show that for every natural number r > 1,
every A ∈ DT m and every B ∈ DT m which is a balanced tree with the constant
branching m and property that

(
B

A

)
�= ∅, there is a C ∈ DT m which is a balanced

tree with the constant branching m and satisfies C → (B)Ar . We prove this by an
induction on |A| for A ∈ DT m.
Base of induction |A| = 1: This follows from the Ramsey property for strong
subtrees, see [13] and Corollary 6.6 in [24].
Inductive step k − 1 �→ k, k > 1: We assume that the statement is correct for
all A ∈ DT m whenever |A| < k. Let r > 1 be a natural number and let A =
(A, ◦A,≤A, (RAm,i )mi=1) and B = (B, ◦B ,≤B, (RBm,i )mi=1) be structures fromDT m such
that

(
B

A

)
�= ∅ and B is a balanced tree with the constant branchingm. By the base of

the induction we chooseD, which is also (h,m)-balanced tree for some h, such that:

D → (B)�r , (6.1)

where � denotes the one element structure from DT m. We recursively construct a
sequence (Bi)hi=0 of structures from DT m such that for all 0 ≤ i < h we have:
• Bh = D.
• Bi+1 ≤ Bi .
• Each Bi is a balanced tree with the constant branching m.
• Trees Bi and Bi−1 have the same elements of the height 0, 1, . . . , i − 1.
We consider elements in A, a1, . . . , al with height 1. Without loss of generality we
may assume that RAm,q(a, aj) ⇔ q = j, where a is the root of A. We suppose that
we have constructed the structure Bi+1 and we proceed with the construction of the
structure Bi . Let b be an element in the tree Bi+1 with the height i and let b1, . . . , bl
be the immediate successors of b with the property that RBi+1m,q (b, bj) ⇔ q = j.
By the product Ramsey theorem for classes, see Theorem 2 in [21], and the inductive
assumption there is a structureBi+1,0 ∈ DT m, which is a balanced tree with constant
branching m, such that:

Bi+1,0 → (B(b1), . . . ,B(bl ))(A(a1),...,A(al ))r . (6.2)
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Note that this is possible by the inductive assumption since |A(ai)| < |A|. Now we
take Bi to be such that:

• Bi and Bi+1 agree on the first i levels.
• For each b in Bi with the height i we have Bi(b) ∼= Bi+1,0.

This completes the construction of the sequence (Bi)hi=0, and we claim that
B0 → (B)Ar . So, we need to consider a given coloring

c :
(
B0

A

)
→ {1, . . . , r}.

For an element b in B0, we denote by
(
B0
A

)
b
the collection of all elements in

(
B0
A

)
with

the minimal element equal to b. Then we have an induced coloring

cb = c �
(
B0

A

)
b

.

Our choice of the sequence (Bi)hi=0 gives us a sequence (B
′
i)
h
i=0 of structures from

DT m such that for each 0 ≤ i < h we have:
• B′

0 = B0.
• B′

i
∼= Bi .

• B′
i ≥ B′

i+1.

• For all b ∈ B′
i with the height i and all A

′,A′′ ∈
(
B
′
i
A

)
with the same root equal

to b we have c(A′) = c(A′′).

Now we explain how to obtain the sequence (B′
i )
m
i=0. Suppose that we have

obtained B′
i−1. For each b in B

′
i−1 with height i , from 6.2 we obtain B

′
i,b ≤ B′

i(b),
a balanced tree with constant branching m, such that all copies of A in B′

i,b are
monochromatic and they have color comb . Moreover, we have B′

i,b
∼= Bi,0. Now we

take B′
i to agree with B

′
i−1 on the first i many levels and for b with the height i we

take B′
i (b) = B′

i,b .
In the end structure B′

h has the property that every two copies of A in B
′
h with the

same root have the same color. Therefore, we have an induced coloring

c′ :
(
B′
h

�

)
→ {1, . . . , r},

c′(b) = comb.

From 6.1 there is B′ ∈
(
B
′
h
B

)
such that c′ �

(
B
′

�

)
= const. Moreover this implies that

c �
(
B
′

A

)
= const, so DT m satisfies RP. �

Lemma 6.2. Letm ≥ 1 be a natural number, and letA = (A, ◦A,≤A) be a structure
from Tm. Then there is a structure B = (B, ◦B ,≤B ) in Tm such that for every sequence
of binary relations (RAm,i)

m
i=1 and (R

B
m,i )

m
i=1 onA andB respectively with (A, (R

A
m,i )

m
i=1)

∈ DT m and (B, (RBm,i )mi=1) ∈ DT m we have (A, (RAm,i )mi=1) ↪→ (B, (RBm,i )mi=1).
Proof. If h = max{htA(a) : a ∈ A} then it is enough to take B to be a (h,m)-
balanced tree. �
Proof of Theorem 2.4. For a structure A ∈ Tm we denote by #(A) the number
of mutually nonisomorphic structures (A, (RAm,i )

m
i=1) ∈ DT m. From Theorem 6.1,
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Lemma 6.2, and results in [16], which are generalization of the results in [11], we
have for A = (A, ◦A,≤A) in Tm the following

tTm (A) =
#(A)

|Aut(A)| . (6.3)

We show that tTm (A) = tm(A) by induction on |A|. Clearly for |A| = 1, the claim
is satisfied. So suppose we have tTm (A

′) = tm(A′) for all A′ ∈ Tm with |A′| < |A|.
Let a be the root of the tree (A,≤A) and let imA(a) = {a1, . . . , an}. Then we have

#(A) =
(
m

n

)
n!
∏n

i=1
#(A(ai )). (6.4)

Without loss of generality wemay assume that the structures (A(ai))ki=1 aremutually
nonisomorphic and that for every j > k there is i ≤ k such that A(ai) ∼= A(aj).
Let (ni)ki=1 be a sequence of natural numbers such that ni = |{j ≤ n : A(ai) ∼=
A(aj)}|. Then we have

|Aut(A)| = n1! · · · nk !
∏n

i=1
|Aut(A(ai ))|. (6.5)

Now from 6.3, 6.4, 6.5, and the inductive assumption we obtain

tTm (A) =

(
m
n

)
n!
∏n

i=1
#(A(ai ))

n1! · · · nk !
∏n

i=1
|Aut(A(ai))|

=

(
m
n

)
n!

n1! · · · nk !
∏n

i=1

#(A(ai))
|Aut(A(ai))|

=

(
m
n

)
n!

n1! · · · nk !
∏n

i=1
tTm (A(ai)) =

(
m
n

)
n!

n1! · · · nk !
∏n

i=1
tm(A(ai)) = tm(A).

�

§7. Dynamics. A continuous action G ×X → X of a topological group G on a
compact Hausdorff space X is called a G-flow. A G-flow X is minimal if for every
x ∈ X we have {gx : g ∈ G} = X . A G-flow Y is a subflow of G-flow X if Y is a
G-invariant subset ofX . Zorn’s lemma implies that everyG-flow contains aminimal
subflow.AmongminimalG-flows there is amaximal onewhich is called the universal
minimal G-flowwhich is unique up to isomorphism, see [2]. If the universal minimal
G-flow contains only one point then we say that G is an extremely amenable group.
We assume that groups of automorphisms of a countable structures are equipped
with pointwise convergence topology, see [3] for more details. Moreover, all such
groups are closed subgroups of S∞, the group of permutations of natural numbers
with pointwise convergence topology. More details on closed subgroups of S∞ can
be found in [3].
By Theorem 6.1 in [11] and Theorem 2.1, Theorem 2.2, and Lemma 5.2 we have
the following.

Corollary 7.1. Aut(OS) and Aut(CT) are extremely amenable groups, while
Aut(ES), Aut(ET), and Aut(OT) are not extremely amenable groups.

LetK be a Fraı̈ssé class in a given signatureL, let
 be a binary relational symbol
such that 
 /∈ L and let K′ be a Fraı̈ssé class in L ∪ {
}. Let K = F lim(K)
and K′ = F lim(K′) be the corresponding Fraı̈ssé limits, and let G = Aut(K).
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If K′ is a reasonable expansion of K then we may assume without loss of generality
thatK and K′ have the same underlying set, the set of natural numbers N, and that
K = K′|L. We denote by 
0 the interpretation of the symbol 
 in K′. We consider
LO the set of linear orderings on N as the compact subset of 2N

2
, where 2 = {0, 1}.

Also we consider logic action of the group G on the set LO and define

XK′ = G · 
0.
In particular, XK′ is a G-flow. We use Theorem 7.4 and Theorem 7.5 in [11] with
Theorem 2.1, Theorem 2.2, Lemma 5.2, Lemma 4.1, and Lemma 4.2 to obtain the
following.

Corollary 7.2.
(i) XES is the universal minimal Aut(S) flow.
(ii) XCT is the universal minimal Aut(T) flow.
(iii) XOS is not a minimal Aut(S) flow.
(iv) XET and XOT are not minimal Aut(T) flows.
In the case of the classes Tm and DT m we have Fraı̈ssé limits Tm and DTm
respectively. We may consider these two structures as structures with underlying
set N and we write DTm = (Tm, (Ri )mi=1), where each Ri is a binary relation on N,
which can be seen as a subset of 2N

2
. Moreover we have logic action of the group

G = Aut(Tm) on the space
∏m
i=1 2

N
2
and we consider the space

YDT m = G · (R1, . . . , Rm).
Then from the results in [16], Theorem 6.1, and Lemma 6.2 we obtain the following.

Corollary 7.3.
(i) Aut(DTm) is an extremely amenable group.
(ii) YDT m is the universal minimal Aut(Tm) flow.
Let G be a given topological group. We recall that G is amenable if every G-flow
has an invariant Borel probability measure. We say that a given G-flow is uniquely
ergodic if it has a unique invariantmeasure.We say thatG is uniquely ergodic if every
minimal G-flow is uniquely ergodic. Recently it was shown that the automorphism
group of the universal countable lattice is not amenable, see [12], and also in [25].
We point out that the completely same argument proves the following.
Corollary 7.4. Aut(S) is a nonamenable group.
For a given structure B = (B, ◦B ) in T we denote by ∇(B) the cardinality of the
set {
 ∈ lo(B) : (B,
) ∈ CT }. It is easy to see that

∇(B) =
∏
{|imB(b)|! : b ∈ B},

where we assume that 0! = 1. For A and B, structures in T , and a linear ordering 

with the property that A ≤ B and (A,
) ∈ CT we write

N(A,
,B) = {	: (B,	) ∈ CT &	� A2 = 
}.
For B = (B, ◦B ) in Tm, we denote by ∇m(B) the cardinality of the set {(RBm,i)mi=1 :
(B, (RBm,i )

m
i=1) ∈ DT m }. It is easy to see that

∇m(B) =
∏
{
(

m

|imB(b)|

)
|imB(b)|! : b ∈ B}.
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Letm ≥ 1 be a given natural number. ForA andB, structures in Tm, and a sequence
of binary relations (RAm,i)

m
i=1 with the property thatA ≤ B and (A, (RAm,i )

m
i=1) ∈ DT m

we write

Nm(A, (RAm,i )
m
i=1,B) = {(RBm,i)mi=1 : (B, (RBm,i )mi=1) ∈ DT m & (∀i)[RBm,i �A2=RAm,i ]}.

Lemma 7.5. Letm ≥ 1 be a natural number and letK ∈ {T ,Tm}. LetA = (A, ◦A)
and B = (B, ◦B ) be structures in K such that A ≤ B. Then we have:

(i) If K = T and 
 is a linear ordering such that (A,
) ∈ CT then

|N(A,
,B)| = ∇(B)
∇(A) .

(ii) If K = Tm and (RAm,i )mi=1 is a sequence of binary relations such that
(A, (RAm,i )

m
i=1) ∈ DT m then

Nm(A, (RAm,i )
m
i=1,B) =

∇m(B)
∇m(A)

.

Proof. We prove the statement by an induction on |A|.
(i) Base of the induction |A| = 1: This follows from the fact that N(A,
,B) =

{
 ∈ lo(B) : (B,
) ∈ CT } and∇(A) = 1.
Inductive step k − 1 �→ k, k > 1: We assume that the statement is correct
for all A ∈ T with |A| < k. Let a be the root of the tree A, and let imA(a) =
{a1, . . . , al} be linearly ordered by 
 as a1 ≺ · · · ≺ al . Let bi ∈ imB(a) be
such that bi ≤B ai for 1 ≤ i ≤ l . Let 
i be the restriction of the linear
ordering 
 to subtree A(ai). Then we have

|N(A,
,B)| =
(
∏
{|imB(b)|! : b ∈ B & b /∈ B(ai )})×(
|imB(a)|
l

)
× (|imB(a)| − l)!× (

∏l
i=1|N(A(ai ),
i ,B(bi )|)

= (
∏
{|imB(b)|! : b ∈ B & b /∈ B(ai)})×

|imB(a)|!
l !

× (
∏l
i=1|N(A(ai ),
i ,B(bi)|)

= (
∏
{|imB(b)|! : b ∈ B & b /∈ B(ai)})×

|imB(a)|!
l !

×
(∏l

i=1
∇(B(bi))
∇(A(ai))

)

= (
∏
{|imB(b)|! : b ∈ B & b /∈ B(ai)})×

|imB(a)|!×(
∏l
i=1∇(B(bi )))×(l !× (

∏l
i=1∇(A(ai))))−1=∇(B)×(∇(A))−1.

where the third equality follows from the inductive assumption since
|A(ai)| < |A| for 1 ≤ i ≤ l .

(ii) Base of the induction |A| = 1: This follows from the fact that Nm(A,
((RAm,i )

m
i=1)

m
i=1,B) = {(RBm,i)mi=1 : (B, (RBm,i )mi=1) ∈ DT m} and ∇m(A) = 1

because each RAm,i must be an empty relation for 1 ≤ i ≤ m.
Inductive step k − 1 �→ k, k > 1: We assume that the statement is correct
for all A ∈ Tm with |A| < k. Let a be the root of the tree A, and let
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imA(a) = {a1, . . . , al} such that RAm,i(a, aj) ⇔ i = j. Let bi ∈ imB(a) be
such that bi ≤B ai for 1 ≤ i ≤ l . Let RA,jm,i be the restriction of the relation
RAm,i to subtree A(aj). Then we have

|Nm(A, (RAm,i )mi=1,B)| =

(
∏
{
(

m

|imB(b)|

)
|imB(b)|! : b ∈ B & (∀j)[b /∈ B(aj)]})×

(
m − l

|imB(a)| − l

)
× (|imB(a)| − l)!× (

∏l
j=1|Nm(A(aj), (R

A,j
m,i )

m
i=1,B(bj)|)

= (
∏
{
(

m

|imB(b)|

)
|imB(b)|! : b ∈ B & (∀j)[b /∈ B(aj)]})×

(m − l)!
(m − |imB(a)|)!

× (
∏l
j=1|Nm(A(aj), (R

A,j
m,i )

m
i=1,B(bj)|)

= (
∏
{
(

m

|imB(b)|

)
|imB(b)|! : b ∈ B & (∀j)[b /∈ B(aj)]})×

(
m

|imB(a)|
)
|imB(a)|!(
m
l

)
l !

×
(∏l

j=1
∇m(B(bj))
∇m(A(aj))

)

= (
∏
{
(

m

|imB(b)|

)
|imB(b)|! : b ∈ B & (∀j)[b /∈ B(aj)]})×

(
m

|imB(a)|

)
|imB(a)|! × (

∏l
j=1∇m(B(bj)))×

((
m

l

)
l !× (

∏l
j=1∇m(A(aj)))

)−1
= ∇m(B)× (∇m(A))

−1
.

where the third equality follows from the inductive assumption andproperties
of binomial coefficients. �

From Proposition 8.1 in [1], Corollary 7.2, and Corollary 7.3 we may show that
Proposition 7.6. Aut(T) andAut(Tm) are amenable and uniquely ergodic groups.
Proof. We prove that the group Aut(T) is amenable and uniquely ergodic, and
a similar argument proves the statement for the group Aut(Tm). We consider

	 : CT → [0, 1], 	((A,
)) = 1
∇(A) .

Lemma 7.5 (i) implies:

	 is “probability”: For a givenA ∈ T wehave
∑

{	((A,
)) : (A,
) ∈ CT } = 1.
	 is invariant: (A1,
1) ∼= (A2,
2) ⇒ A1 ∼= A2 ⇒ ∇(A1) = ∇(A2) ⇒

	((A1,
1)) = 	((A2,
2)).
	 is consistent: For A1 ≤ A2 and (A1,
1) ∈ CT we have

	((A1,
1)) =
1

∇(A1)
=

∇(A2)
∇(A1)

× 1
∇(A2)

= |N(A1,
1,A2)| ×
1

∇(A2)
=

∑
{	((A2,
2)) : (A1,
1) ≤ (A2,
2)}.
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This shows that 	 is a consistent random CT -admissible ordering on T , see page
23 in [1]. Now we show that 	 is the unique consistent random CT -admissible
ordering on T . Let B ∈ T be a balanced tree and let 
1and
2 be such that (B,
1)
and (B,
2) ∈ CT . Then there is φ ∈ Aut(B) such that φ(
1) = 
2. Since 	 is
invariant we have 	((B,
1)) = 	((B,
2)) = 1

∇(B) . Therefore, 	 is uniquely defined
on balanced trees in CT . For a given (A,
0) ∈ CT there is a balanced tree B such
that A ≤ B. Since 	 is unique on balanced trees and consistent Lemma 7.5 (i)
implies

	((A,
0)) =
∑

{	((A2,
2)) : (A1,
1) ≤ (A2,
2)}
1

∇(A)

= |N(A1,
1,A2)| ×
1

∇(A2)
=

1
∇(A1)

.

Therefore, 	 is unique and from Proposition 9.2 in [1] we obtain that Aut(T) is
amenable and uniquely ergodic. �
Let K be a class of finite structures in a given signature L. We say that K is
a Hrushovski class if for all A ∈ K there is B ∈ K such that any isomorphism
φ : A1 → A2 between substructures of A can be extended to an isomorphism

 : B → B.

Corollary 7.7. Let m ≥ 1 be a natural number. Then classes S, T , Tm are not
Hrushovski classes.
Proof. Let K ∈ {S,T ,Tm}. We consider A = (A, ◦A,≤A) ∈ K, where A =

{a1, a2} and a1 <A a2. Note that a1 and a2 determines isomorphic one-element
substructures of A, so we have a partial isomorphism φ : {a1} → {a2}. Suppose
that there is B = (B, ◦B ,≤B) ∈ K such that φ can be extended to an isomorphism

 : B → B. Since B is a finite structure and 
 is an isomorphism we have

|{b ∈ B : a2 <B b}| = |{b ∈ B : a1 <B b}|.
Since a1 <A a2 ⇒ a1 <B a2 we have

|{b ∈ B : a2 <B b}| < |{b ∈ B : a1 <B b}|.
Clearly, this is a contradiction which shows that K is not a Hrushovski class. �
The proof of Corollary 7.7 also implies the following.

Remark 7.8. The class of finite lattices, the class of finite distributive lattices,
the class of finite posets, the class of finite permutations the class of finite linearly
ordered sets are not Hrushovski classes.

We point out thatmost of the known examples of the unique ergodic groups of the
form Aut(F lim(K)) for which group Aut(F lim(K)) has infinite universal minimal
flow are given for aHrushovski classK. If we take thatK is the class of finite linearly
ordered sets we obtain a non Hrushovski class, but Aut(F lim(K)) = Aut(Q) is an
extremely amenable group. Therefore, we emphasize the following what is obtained
from Proposition 7.6 and Corollary 7.7.

Theorem 7.9. Let m ≥ 1 be a natural number. Aut(T) = Aut(F lim(T )) and
Aut(Tm) = Aut(F lim(Tm)) are uniquely ergodic groups which are not extremely
amenable and T and Tm are not Hrushovski classes.
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§8. Canonization. Canonical orderings on the combinatorial cubes are discussed
in [14] and [17]. In this section we canonize linear orderings for semilattices.
Let A = (A, ◦A(RAm,i)mi=1) ∈ DT m and let 
 be a linear ordering on A. We say
that
 is canonical on A for the class DT m if there is 	∈ lo({0, 1, . . . , m}) such that
for a, b ∈ A we have

a ≺ b ⇔((a < b & RAm,i(a, b) & 0 � i) or
(b < a & RAm,i(b, a) & i � 0) or
(a ◦A b = c & RAm,i(c, a) & RAm,j(c, b) & i � j)).

Let A = (A, ◦A,≤A) be a semilattice and let 
 be a linear ordering on A. Then we
say that
 is canonical on A for the class K if:

K = S: 
∈ le(≤A) or op(
) ∈ le(≤A).
K = T : (A,
� A2) ∈ CT or (A, op(
� A2)) ∈ CT .
K = Tm: There is (A, (RAm,i )mi=1) ∈ DT m such that
 is canonical on (A, (RAm,i)mi=1)

for the class DT m.
Note that a structure in DT m which is also a (k,m)-balanced tree has (m + 1)!
nonamenable canonical orderings. On the other hand, a structure in Tm which is
also a (k,m)-balanced tree has (m + 1) nonamenable canonical orderings.

Proposition 8.1. Let m ≥ 1 be a natural number and let K ∈ {S,T ,Tm}.
(i) ForA = (A, ◦A(RAm,i )mi=1) ∈ DT m there is B ∈ K such that for every	 ∈ lo(B)
there is C ∈

(
B

A

)
with the underlying set C such that 	� C 2 is canonical on C

for the class DT m.
(ii) For A = (A, ◦A,≤A) ∈ K there is B ∈ K such that for every 	 ∈ lo(B) there
is C = (C, ◦C ,≤C ) ∈

(
B

A

)
such that	� C 2 is canonical on C for the class K.

Proof.

(i) We consider structure Z = (Z, ◦Z ,≤Z, (RZm,i )mi=1) in DT m such that Z =
{z0, z1, . . . , zm}, z0 is the root, for 1 ≤ i < j ≤ m and 1 ≤ s ≤ m we have
z0 = zi ◦Z zj and RZm,s (z0, zi) ⇔ i = s . Without loss of generality we may
assume that A is a (k,m) balanced tree for some k. By Theorem 6.1, there is
a B ∈ DT m such that B → (A)Z(m+1)!. We show that B proves the statement
by considering 	 ∈ lo(B) and coloring

c :
(
B

Z

)
→ lo({0, 1, . . . , m}).

To describe the coloring c, we consider U ∈
(
B

Z

)
with the root u and the

unique isomorphism � : Z → U given by �(z0) = u and RUm,i(u, �(zi)) for
1 ≤ i ≤ m. Now we define c(U) by

ic(U)j ⇔ �(i) 	 �(j).

Then there isC ∈
(
B

A

)
and there is�∈ lo({0, 1, . . . , m}) such that c �

(
C

Z

)
= �.

Clearly this means that	� C 2 is canonical.
(ii) We consider structures P = (P, ◦P,≤P) and R = (R, ◦R,≤R) given by P =

{p1, p2}, p1 <P p2, R = {r0, r1, r2} and r0 = r1 ◦R r2. We have tK(P) = 1
only for K ∈ {S,T1,T } and tK(R) = 1 only for K ∈ {S,T2,T }.
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K ∈ {S,T1}: Since tK(P) = 1 we have a B ∈ K such that B → (A)P2 .
For a linear ordering 	∈ lo(B) we consider coloring

c :
(
B

P

)
→ {0, 1},

c(V) = 1⇔ 	� V 2 = ≤V ,

where V = (V, ◦V ,≤V ). Then there is C ∈
(
B

A

)
and there is r such that

c �
(
C

P

)
= r. If r = 1 then we have 	� C 2 ∈ le(≤A) and otherwise we have

op(	� C 2) ∈ le(≤A).
K = T : From the fact that tK(P) = 1 = tK(R) we obtain structures D,

B ∈ K such that D → (A)R2 and B → (D)P2 . We consider 	∈ lo(B). From
the first part of this proof there is H = (H, ◦H ,≤H ) ∈

(
B

D

)
such that 	� H 2

∈ le(≤H ) or op(	� H 2) ∈ le(≤H ).We discuss only the case	� H 2 ∈ le(≤H )
and the other case is similar. Let 
H∈ lo(H ) be such that (H,
H ) ∈ CT .
Then we have a coloring

c :
(
H

R

)
→ {0, 1},

c(V) = 1⇔ 	� V 2 = 
H � V 2,

where V = (V, ◦V ,≤V ). The coloring c is well-defined because there are
only two linear extensions of ≤R. Then there is C ∈

(
H

A

)
and there is r such

that c �
(
C

R

)
= r. If r = 1 then we have 	� C 2 = 
H � C 2 what implies

(C,	� C 2)∈CT . If r = 0 then we consider structureW = (W, ◦W, ≤W )∈T
such thatW = {w,w0, w1, w01},w is the root,ws <W ws′ iff s ′ end extends s .
Without loss of generality we may assume that

(
A

W

)
�= ∅. In order to show

that (C,	� C 2) ∈ CT it is enough to show thatw0 � w1 � w01 is impossible.
If this is the case then we have w01 ≺H w1 ≺H w0 what is in contradiction
with the fact that
H∈ le(≤H ).
K = Tm: This follows from the part (i) of this Proposition. �

§9. Appendix. We prove by an induction on |A| that each A ∈ CT is a Ramsey
object in CT .
Base of induction |A| = 1: Since |A| = 1, we may consider A also as a structure
in T . Let r ≥ 1 be a given natural number and let (B,≤B ) ∈ CT be such that((B,≤B )

A

)
�= ∅. Without loss of generality we may assume that B is a balanced tree.

Since the class T is closed under taking products and taking substructures, we have
by Proposition 2.1 in [10] that one-element structures are Ramsey objects in T .
So there is C ∈ T such that C → (B)Ar . Note that for a linear ordering ≤C with
(C,≤C ) ∈ CT and some D ≤ C we have (D,≤D) ∈ CT where ≤D is the restriction
of ≤C on the underlying set of the structure D. Then for a linear ordering ≤C with
the property that (C,≤C ) ∈ CT we have (C,≤C ) → (B,≤B )Ar , so A is a Ramsey
object in CT . In the rest of the proof we denote by � the unique one-element structure
in CT .
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Inductive step k − 1 �→ k, k > 1: We assume that A ∈ T is a Ramsey object
in T when |A| < k. Let r > 1 be a natural number and let A = (A, ◦A,
A) and
B = (B, ◦B ,
B) be structures from CT such that

(
B

A

)
�= ∅. By the base of induction

we choose D such that:

D → (B)�r . (9.1)

Without loss of generality we may assume that D is (m,k0)-balanced tree for some
m and k0. We going backward construct a sequence (Bi)mi=0 of structures from CT
such that for all 0 < i ≤ m we have:
• Bm = D.
• Bi−1 ≥ Bi .
• Trees Bi and Bi−1 have the same elements of the height 0, 1, . . . , i − 1.
• Elements in Bi with the height i − 1 have the same number of immediate
successors equal to ki .

• If b and b′ are elements in Bi with the height i then Bi(b) ∼= Bi (b′).

We suppose that we have constructed structure Bi+1 and we proceed with the
construction of the structure Bi . Let (bj)uj=1 be the list of all elements in Bi+1
with the height i . Note that we can calculate u, but it is not of importance for
our consideration. At this point we need to consider elements in A with the height
1 : a1 ≺A a2 ≺A · · · ≺A al . By the classical Ramsey theorem there is a natural
number v such that

v → (u)lr . (9.2)

Properties of Bi+1 implies:

Bi+1(b1) ∼= Bi+1(b2) ∼= · · · ∼= Bi+1(bu) ∼= Bi+1,0.

Now we use the product Ramsey theorem for classes, see Theorem 2 in [21], to

obtain recursively a sequence (Bi+1,s )
|(vl)|
s=0 in CT such that for 0 < s ≤ |

(
v
l

)
|we have:

Bi+1,s → (Bi+1,s−1, . . . ,Bi+1,s−1)(A(a1),...,A(al ))r . (9.3)

Note that this is possible by the inductive assumption since |A(ai)| < |A|. Without
loss of generality we may assume that each Bi+1,s is a balanced tree. Now we take
Bi to be such that:

• Bi and Bi+1 have the same elements of the height at most i .
• Each b in Bi with the height i has v immediate successors.
• For each b in Bi with the height i we have Bi(b) ∼= Bi+1,|(vl)|.

Now we have finished construction of the sequence (Bi )mi=0, and we claim that
B0 → (B)Ar . So, we need to consider a given coloring

c :
(
B0

A

)
→ {1, . . . , r}.

Let b be an element in B0 and let C = {c1 ≺Bm · · · ≺Bm cl} be a subset of imB0 (b).
Recall that l is the number of elements in A with height 1. We denote by

(
B0
A

)
b,C
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the collection of all elements in
(
B0
A

)
with the minimal element equal to b and such

that they are contained in {b} ∪
⋃l

i=1
B0(ci). Then we have an induced coloring

cb,C = c �
(
B0

A

)
b,C

.

Our choice of the sequence (Bi )mi=0 give us a sequence (B
′
i )
m
i=0 of structures from CT

such that for each 0 < i ≤ m we have:
• B′

0
∼= B0.

• B′
i
∼= Bi .

• B′
i ≥ B′

i+1.

• For all b ∈ B′
i with the height i and all A

′,A′′ ∈
(
B
′
m
A

)
with the same root equal

to b we have c(A′) = c(A′′).
Now we explain how to obtain the sequence (B′

i)
m
i=0. Suppose that we have

obtained B′
i−1 and we explain how to obtain B

′
i . Let b ∈ B′

i−1 has the height i and
let (Cj)wj=1 be the list of all l -subsets of imB′

i−1 (b). From 9.2 and 9.3 we may find
D ⊂ imB′

i−1 (b) and a sequence of trees (Td )d∈D in CT such that for all d, d
′ ∈ D

we have:
• Td ∼= Td ′ .
• Td ≤ B′

i−1(d ).
• Let Qb be the substructure of B′

i−1 given by the union of b and structures
(Td )d∈D . There is a constant conb such that for every l -subset C ⊂ D we have

c �
(
Qb

A

)
b,C

= conb.

In this way for every b ∈ B′
i−1 we find a tree Qb . Moreover we may assume that

for b �= b′ we have Qb ∼= Qb′ . Now we take that B′
i agrees with B

′
i−1 on the first i

many levels and for each b with height i we take B′
i(b) = Qb .

In particular structure B′
m has the property that every two copies of A in B

′
m with

the same root have the same color. Therefore we have an induced coloring

c′ :
(
B′
m

�

)
→ {1, . . . , r},

c′(b) = comb.

From 9.1 we obtain B′ ∈
(
B
′
m
B

)
such that c′ �

(
B
′

�

)
= const. Moreover this implies

that c �
(
B
′

A

)
= const, so CT satisfies RP.
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arXiv:1304.2839v2.

DEPARTMENT OFMATHEMATICS AND STATISTICS
YORK UNIVERSITY
TORONTOON, CANADA

E-mail: msokic@yorku.ca

https://doi.org/10.1017/jsl.2014.40 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.40

