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Abstract We describe the equivariant cohomology of cofibers of spherical perverse sheaves on the affine
Grassmannian of a reductive algebraic group in terms of the geometry of the Langlands dual group. In
fact we give two equivalent descriptions: one in terms of Z-modules of the basic affine space, and one
in terms of intertwining operators for universal Verma modules. We also construct natural collections
of isomorphisms parameterized by the Weyl group in these three contexts, and prove that they are
compatible with our isomorphisms. As applications we reprove some results of the first author and of
Braverman and Finkelberg.

1. Introduction

1.1.

The geometric Satake equivalence relates perverse sheaves (with complex coefficients in
our case) on the affine Grassmannian Gr of a complex connected reductive algebraic
group G and representations of the Langlands dual (complex) reductive group G. The
underlying vector space of the representation S(F) attached to a perverse sheaf F is
given by its total cohomology H* (Gr, F). It turns out that various equivariant cohomology
groups attached to F also carry information on the representation S(F); see e.g. [9, 22, 42].

In this paper, if T is a maximal torus of G we describe, in terms of G, the equ1varlant
cohomology of cofibers of F at a T-fixed point, with respect to the action of T or of
T x C*, where C* acts on Gr by loop rotation. In fact these groups can be described in
two equivalent ways, either in terms of Z-modules on the basic affine space or in terms
of intertwining operators for universal Verma modules. We also describe the Weyl group
action on this collection of spaces induced by the action of Né(f) on Gr.
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1.2,

To state our results more precisely, choose some Borel subgroup BcCG containing T, and
let T, B be the maximal torus and the Borel subgroup of G provided by the geometric
Satake equivalence. Note that the Tannakian construction of G also provides no zero
vectors in each simple root subspace of g := Lie(G). In this paper we study three families
of graded modules over a polynomial algebra, attached to G or é, and endowed with
symmetries parameterized by their common Weyl group W.

Let t:=Lie(T) and Sp := S(t)[], considered as a graded algebra where i and the
vectors in t are in degree 2. (Here, S(t) is the symmetric algebra of the vector space
t.) Let also X := X*(T) be the character lattice. Let Rep(G) be the category of finite
dimensional algebraic G-modules.

Our first family of graded modules over Sy is of “geometric” nature. Let U be the
unipotent radical of B, and let 2" := G/U be the basic affine space. Consider the algebra
Ir(Z) of (global) asymptotic differential operators on 27, i.e. the Rees algebra of the
algebra I'(Z", Z4°) of differential operators on 2", endowed with the order filtration
(see §2.4 for details). This algebra is naturally graded, and endowed with an action of T
induced by right multiplication on 2". We denote by Z (%), the weight space associated
with A € X. Then we set

ME™ = (Ve P7p(20,)°.
(Here the twist functor *)(-) will be defined in §2.4.)

Our second family of graded Sp-modules is of “algebraic” nature. Let Ux(g) be the
asymptotic enveloping algebra of g (i.e. the Rees algebra of the algebra U(g) endowed
with the Poincaré-Birkhoff-Witt filtration; see § 2.1 for details). For A € X we let M(A) be
the asymptotic universal Verma module associated with A, a graded (S, Uy (g))-bimodule
whose precise definition is recalled in §2.1. Then we set

1
M5, = Homs, v () (M(0), V @ M(2))

where we consider morphisms in the category of (Sp, Ux(g))-bimodules.

We will also construct a third family of graded modules, of “topological” nature,
which is associated with the “Langlands dual data”. Let t:= Lie(T). We have canonical
identifications X = X*(7V") and Sy = S(F)[]. Consider the category Pervé(o) (Gr) of

G (O)-equivariant perverse sheaves on the affine Grassmannian Gr of G. Then for any
A€ X and Fin Pervé(o) (Gr) we set

©0p | e+h(2) o
MP, = H PGP,

Here i is the inclusion of the point of Gr naturally associated with A, C* acts on Gr by
loop rotation, and p is the half-sum of positive coroots of G. Then Mt}o-p , is in a natural
way a graded Sp-module.

1.3.

Each of these families is endowed with a kind of “symmetry” governed by the Weyl
group W of (G, T) or (G, T). (Note that these Weyl groups can be canonically identified.)
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Namely, we have isomorphisms of graded Sz-modules

. ~w . ~w
Aviw My — "Myun or Ar,w:  Mru — "Mz

for all w € W. (Here the twist functor ¥(-) will be defined in §2.4.)

In the “geometric” case, the isomorphisms Ag » are constructed using a W-action on
Dn(Z") given by partial Fourier transforms due to Gelfand and Graev and studied in
particular by Bezrukavnikov, Braverman and Positselskii in [8]. These operators depend
on a choice of (non-zero) simple root vectors in g, which we choose to be those provided
by the geometric Satake equivalence.

In the “algebraic” setting, the isomorphisms A?,lg)\ » are constructed using properties of
intertwining operators, between a Verma module and a tensor product of a G-module and
a Verma module. Our constructions are “renormalized” variants of classical constructions
appearing in the definition of the dynamical Weyl group (see [19, 39]) but, as opposed to
those considered in loc. cit., our isomorphisms do not have poles. Again, the operators
AV ;.. depend on a choice of simple root vectors in g, which we choose as above.

In the “topological” setting, the isomorphisms A}-I’Jx’w are induced by the action of

Ng (T) on Gr by left multiplication.
In each setting, the collection of operators is compatible with the product in W in the
sense that

Y(Av,yix)oAvoy =Avixy or Y(Aryix)oAriy =Arix

for any A, V, F as above and x,y € W.

1.4.

In addition, these families of graded modules are endowed with morphisms

Convy v, t My ®s, WMy — Mygvritu
Conv]—',]—”,k,u t Mr i ®s, (A)M]:/,,u = MrF ju
related to the monoidal structure on the category Rep(G) (denoted as ®) or Pervé(o)(Gr)

(denoted as *).
In the “geometric” setting, morphisms Conv%f (;,H,IA are induced by the product in

the algebra Z;(Z°). In the “algebraic” setting, morphisms Convv Vi are induced

by composition of morphisms of bimodules. In the “topological” settlng7 morphisms
Convt}pp 5. are defined using a standard construction considered in particular in [3].

1.5.

Our main result might be stated as follows (see Corollary 2.4.2, Theorem 2.5.5, and
Proposition 8.1.5).

Theorem. For F in Pervé(o) (Gr) and A € X there exist canonical isomorphisms

top ~ geom ~ alg
M]—'A - S(]—'),A - S(F),r°
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where S : Pervé(o) G > Rep(G) is the geometric Satake equivalence. These families of
isomorphisms are compatible with operators A and with morphisms Conv.

The proof of this theorem is based on another crucial property of the modules M%,eim,

M?}i and ./\/lt]O_-l?k: they are all compatible with restriction to a Levi subgroup in the
appropriate sense. This property is used to reduce the proof of our claims to the case G
and G have semisimple rank 1, in which case they can be checked by explicit computation.
This strategy is rather classical in this context; see e.g. [1, 9, 10, 12].

1.6.

The present paper is closely related to, and motivated by, results of [3] and [9]. In fact,
in a follow-up paper the results of the present article will be used to obtain a common
generalization of the equivalences of categories established in these papers. A similar
generalization can also be obtained using recent results of Dodd [18], but our approach
is different and, we believe, more explicit. We will follow the strategy of [3] and a key
technical step in our approach is the following algebra isomorphism, which is a “quantum”
analogue of [3, Theorem 8.5.2] and which follows from the theorem stated in §1.5:

D Exty .. (Re.W'+Ra) ZUn@) x | P Zn(2)

reXt rexXt

Here, W* is the Wakimoto sheaf associated with A, R is an ind-perverse sheaf on Gr
corresponding to the regular representation of G, and we refer the reader to [3, §8] for
this and other unexplained notation.

1.7.

We will also consider “classical analogues” of the above constructions, by which we mean
specializing A to 0, and hence replacing Si by S(t) or S(*). The classical analogues of

M™P are easy to define: we simply set
~1p A 2P) 1
MZ, = H0 0 .
. St ~_t . .
We also have morphisms A" and Conv ” given by the same constructions as for AP
and Conv'P.

There is no interesting classical analogue of M®€. The classical analogues of M2%°™ are
defined using the geometry of the Grothendieck—Springer resolution g. More precisely,
we set

——geom

My = (VTG 051)°

where Og(A) is the G-equivariant line bundle on § associated with A. The operators

Conv®*™™ are induced by the natural morphisms

I'@ 05() ®T @, O5(w) — I'@, O5(x + ).

Finally, the operators A" are defined using the W-action on the regular part of g.
Again, these operators depend on a choice of simple root vectors in g. This construction
seems to be new, and has interesting consequences (see §5.5).
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Then we prove the following (see Corollary 2.4.5, Theorem 2.5.7 and Remark 8.1.6(2)).
Theorem. For F in Pervé(o) (Gr) and A € X, there exist canonical isomorphisms

geom

—top ~ 17
Mx, = Mgr) i

This family of isomorphisms is compatible with operators A and with morphisms Conv.

The modules appearing in the theorem (and the corresponding morphisms) are related
to those appearing in the theorem of § 1.5 by the functor C ®cs) (—) (where #i acts by zero
on C). For M"P and /pr, this easily follows from the parity vanishing of H® (ii]—"); see
Lemma 6.2.4. For MM and M*°" | this requires a more subtle argument; see § 3.5. In
particular, our results establish a relation between the automorphisms of Z5(%2") induced
by partial Fourier transforms and the W-action on the regular part of §, which seems to
be new.

1.8.

As applications of our constructions we give new proofs of two results: a geometric
description of the Brylinski-Kostant filtration due to the first author (see [22]), and
a geometric construction of the dynamical Weyl group due to Braverman and Finkelberg
(see [12]). We also observe that some of our technical preliminary results have interesting
applications: they allow us to give simpler proofs of results on the structure of the algebra
2(Z) of differential operators on 2" (see §3.6) and to construct an action of W on the
regular part of T*2" which “lifts” the action on the regular part of §; see §5.5.

One important tool in the first proof of the geometric Satake equivalence in [22] was the
specialized equivariant cohomology of cofibers (see in particular [loc. cit., §3.5]), while
in [35] the authors replaced this tool by the cohomology of corestrictions to semi-infinite
orbits ¥;. Our descriptions of H.i(i ;\]—' ), H.T (ti]—") (where t, denotes the inclusion of T;)
and the natural morphism between them (see Theorem 2.3.1) shed some light on the
precise relation between these points of view.

1.9. Description of the paper

In Section 2 we define our main players, and state our main results. In Section 3 we study
the modules ./\/l‘%,eim and define their symmetries. In Section 4 we study the modules

M?}gx, define their symmetries, and relate this algebraic family to the geometric one.

In Section 5 we study the modules m%,e’im, define their symmetries, and relate them
to the modules M%,e im. In Section 6 we recall the construction of the geometric Satake
equivalence and its main properties. In Section 7 we prove our main results. In Section 8
we give some complements and applications of these results. Finally, the paper finishes
with two appendices: Appendix A collects computations in semisimple rank 1 that are
needed in our proofs, and Appendix B is a reminder on partial Fourier transforms for

(asymptotic) Z-modules.
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1.10. Conventions

Throughout, we will work over the ground field C of complex numbers and write ® = Qc.
If M =@, ., M, is a graded vector space and m € Z, we define the graded vector space
M {(m) by the following rule: (M (m)), = M, _,,. Note that (1) is a “homological” shift, i.e. it
shifts graded vector spaces to the right. We will always consider C[#] as a graded algebra
where /i has degree 2. If A and B are C[h]-algebras, by an (A, B)-bimodule we mean an
(A ®cpr) B°P)-module. If A is an algebra, we write Hom_ 4 (—, —) for Homgoep (—, —).

2. Statement of the main results

2.1. Asymptotic Verma modules
Given a filtered C-algebra A = Ui€Z>0 F;A, we let Ap be the Rees algebra (sometimes
referred to as the “graded” or “asymptotic” version) of the filtered algebra A. It can be
defined as the following subalgebra of A[#4]:
) . 0 if i is odd;
An =P A}, with Af =] " (2.1.1)
i h'-FipA ifiis even.

Thus, Ap is a graded C[h]-algebra, where the indeterminate % has grade degree 2.
(The reason for our convention will become clear later.) Moreover, one has a natural
isomorphism

Ap/h-Ap Z grf A
(where degrees are doubled on the left-hand side).

If £ is a Lie algebra, the enveloping algebra U(¥) comes equipped with a natural
ascending filtration, the Poincaré-Birkhoff-Witt filtration, such that grU(£) = S(¥).
The corresponding asymptotic enveloping algebra Uj(E) := U(¥); has an alternative
(equivalent) definition as the C[#]-algebra generated by ¢, with relations xy — yx = A[x, y]
for x, y € £. Here elements of € have degree 2. We will use this description of Uy (¥), and
still denote by x the image of an element x € £. (If we were using the description (2.1.1),
this element should rather be denoted as Ax.)

Let G be a connected reductive group over C with Lie algebra g. We fix a triangular
decomposition g =udtdu—, so b =t u is a Borel subalgebra. Let T be the maximal
torus and B =T -U the Borel subgroup corresponding to the Lie algebras t and b,
respectively. We will denote by R the set of roots of G (relative to T'), by R the positive
roots (i.e. the roots of u), and by W the Weyl group of (G, T). Let p € t* (resp. p € t) be
the half-sum of positive roots (resp. coroots). We also let X be the lattice of characters of
T, and X* (resp. X7) be the subsemigroup of dominant (resp. antidominant) weights. We
will frequently consider elements of t* (resp. of X) as linear forms on b (resp. characters
of B) which are trivial on u (resp. on U). Also, as usual, when convenient we identify X
with a subset of t* via the differential.

We consider asymptotic C[h]-algebras Ux(g) and Up(t). The latter algebra is a
commutative graded algebra which is clearly isomorphic to Sy := S(t)[/i] where S(t), the
symmetric algebra of t, is equipped with its natural grading. Let Z(g) be the center of
the algebra U(g). The Poincaré—Birkhoff-Witt filtration on U(g) induces, by restriction,
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a filtration on Z(g). The corresponding asymptotic algebra Zp(g) is the center of the
algebra Uj(g). One has a Harish-Chandra isomorphism Zj(g) = ng = S®Y[A], a graded
C[h]-algebra isomorphism induced by the composition

Zi(g) < Un(g) — Un(g)/ (- Un(g) + Un(g) -u") < Sp — Sh

where the isomorphism on the right-hand side sends fr €t to t+/hp(t). Using this
isomorphism, we may (and will) identify the algebra Z;(g) with a subalgebra of S.

For any A € t*, let Sy ((A)) be the Uy (b)-bimodule defined as follows. As a C[#]-module, it
is isomorphic to Sp. The left Uy (b)-module structure is given by the natural isomorphism
S = Up(b)/Ux(b) -n. Then in the right Uy (b)-module structure, the Lie ideal u C b acts
by 0, and ¢ € t acts by multiplication by ¢ + A)L(f).

We define a graded (Up(b), Up(g))-bimodule, a certain asymptotic version of the
universal Verma module, as follows:

M) = Sp{(A + o) ®uy o) Un(g).

(We will mainly only consider M(A) as an (Sy, Up(g))-bimodule.) The action of Up(g) on
the vector v, :=1® 1 € M()\) induces an isomorphism of right Uy (g)-modules

M) = Un(g)/(u- Un(9)). (2.1.2)

Under this isomorphism, the right Sp-module structure is such that the action of ¢t € t is
induced by right multiplication by ¢t — - (A 4 p)(t) on Ux(g).

It is immediate from the definitions that there is well-defined ‘adjoint’ action b : m >
ad b(m) of the Lie algebra b on M(1X), which is related to the bimodule structure by the
equation

fi-adb(m) = (b+hpb))- m—m-b Vb € b.

The adjoint action of the subalgebra t C b is semisimple. Therefore, one has a weight
decomposition M(A) = EBuet* M(),. In particular, we have M(A)_, = C[A]-v,, and
M%), =0 unless u € —A—Z>oR*. For A € X, the adjoint action on M(A) can be
exponentiated to an algebraic B-action.

Let Rep(G) be the tensor category of finite dimensional rational G-modules. For V €
Rep(G) and A € X let V) denote the T-weight space of V of weight A.

The assignment A+~ 1®7%4, x> —x®h+1®x has a unique extension to an
algebra homomorphism Uy (g) — U (g)°P ® U (g). Via this homomorphism, for any right
U (g)-module M and V € Rep(G), the vector space V ® M acquires the structure of a
right Uy (g)-module. This gives an (Up (b), Ux(g))-bimodule structure on V ® M(A), where
the left action of the algebra Ux(b) on V ® M(A) comes from its action on M(A) on the
left. If A € X, the differential of the diagonal B-action on V ® M(X) and the bimodule
structure are related as follows: if b € b C U(b), i times the action of b is given by the
assignment n +— (b+hp(b))-n—n-b.

One has a natural morphism of left Sz-modules p; : M(A) — Sp, induced by the
projection Uy (g) — Up(b) orthogonal to Uy (g) -u™. If A € X, then p;, is also a morphism of
T-modules M(A) — S; ® C_,.. An important role will be played below by the morphism of
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graded Sp-modules K?,li defined (for V in Rep(G) and A € X) as the following composition:

idy ®pa

(VeMm)® = (vemm)' (VeSi®C_)T =V, ®S,.  (2.1.3)

Note that (V ®M(A))B has a natural structure of a Zj(g)-module, induced by the
(right) action of Z(g) C Ux(g) on M(A). With this definition, K;i/li is also a morphism of

Zr(g)-modules, where Zp(g) = SZV acts on Sy via the restriction of the right action of Sy
on Sp{(A)).

2.2. The affine Grassmannian: equivariant cohomology of cofibers

Write G,, for the multiplicative group. Let G be the Langlands dual group of G. The
group G comes equlpped with the maximal torus T C G, with opposite Borel bubgroups

=T-Uand B-=T-U" , and with a canonical isomorphism X = Hom(Gm, T), the
cocharacter lattice of T. (To be completely precise, one should first choose G, B , and
then use the affine Grassmannian of G to define G, B, T by the Tannakian formalism;
see §6.1 for details.)

Let K = C(2)) (resp. O = C[[z]}). Let Grg := G(K)/G(0) (resp. Gry := T (K)/T(0))
be the affine Grassmannian associated with the group G (resp. T). (We will consider the
reduced ind-scheme structure on these affine Grassmannians.) Thus, one has X = Gry.
and there is a natural embedding X = Gry. < Grg. For A € X, we let \ be the image of
A and let i; : {\} = Grg denote the one-point embedding. The group G(K) x Gy, acts
on Gr on the left, where the factor G, acts by rotation of the loop.

For the rest of this section, we will use simplified notation Gr := Gr. The following
subsets of the affine Grassmannian will play an important role. For A € X, we let Grt =
G(0) - \. This is a finite dimensional (é(O) X G,)-stable locally closed subvariety of Gr.
One has a stratification Gr = U cx+ Gr*. Further, for any A € X, following Mirkovié¢ and
Vilonen one puts %, = lV]*(K) -N. We let 1), : T, < Gr be the inclusion.

Let A:=T x Gy, a toral subgroup of G(K) X G,,. The Mirkovié—Vilonen space T, is
A-stable. Further, the set X C Gr is known to be equal to the set of A-fixed points in
Gr. Therefore, for any object F of the equivariant derived category Dg (Gr), there are
well-defined A-equivariant cohomology groups H', (T;, 1L F) (resp. Hk(iif)). These are
graded modules over the graded algebra H’ (pt) = S(t)[#] = Sj.

Let Pervé(o) (Gr) (resp. Pervé(OMG (Gr)) be the category of G (0)-equivariant

(resp. G(0) x Gm-equivariant) perverse sheaves on Gr. Let also PervG(O) mon (GN be
the category of perverse sheaves on Gr which are constructible with respect to the
stratification by é(O)—orbits. Recall that all three of these categories are semisimple,
with simple objects parameterized by XT. In particular, the forgetful functors

PervG<OMG (G — PervG(O) (Gr) — PervG<0) Imn(Gr)

are equivalences of categories (see [35, Appendix A] for a similar result in a much more
general situation). Let

S : Pervg, o, (Gn > Rep(G)
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be the geometric Satake equivalence. By the remark above, any object of Pervé(o)(Gr)

can be considered naturally as an object of Dg (Gn).
The following lemma is a simple consequence of results of Kazhdan and Lusztig [30]
and Mirkovi¢ and Vilonen [35]; cf. also [12, 42]. It will be proved in §6.2.

Lemma 2.2.1. For any F in Pervé(o) (Grg) and 1 € X, one has:

(1) The graded Sp-module H'A(iif) (resp. the graded S(t)-module H'f (ii]—')) is free.

(2) There is a canonical isomorphism of graded Sp-modules (resp. of graded
S(®)-modules)

Hy (S0, ) = (S(F)), @ Sh(A20)),  Hx(T, ,F) = (S(F)), ® SH(A(27)).
(2.2.2)

One may factor the embedding i; : {\} < Gr as a composition {\} 2 T % Gr. Hence,
there is a push-forward morphism

W HY G F) = H (L) — HY(Ta 1 F).

Let K;?p)\ be the following composite morphism:

@t (2.2.2)

K s Hy ) Hy (5o, . F) (S(F)), ® Sn(1(20)).

(2.2.3)
Thus, we get a diagram of morphisms of graded Sp-modules

alg ~ top
Ks( ) (M2P)) KF 5

(S(F) @MW) * (1 (20)) (S(F))1 ® Sn(r(20))

(2.1.3) (2.2.3)

H: (7).

One of our key results (to be proved in §7.6) reads as follows.

Theorem 2.2.4. For any F in Pervé(o)(Gr) and A € X, the morphisms Kgl(%r) ,(A2p))

and K;?PA are injective and have the same image. Thus, there is a natural isomorphism
of graded Sp-modules {F ;. that fits into the following commutative diagram:

(SP@M™m)” (124)) e H:, (L)
ki) (12P)) kP (2.2.5)
(S(F)), ® S ((2p)) =—= (S(F)), @ Sn(A(20)).

Remark 2.2.6. We have defined in §2.1 an action of Z;(g) on (S(F) @M(1))5. On the
other hand, it is explained in [9, § 2.4] that H’, (i;\]—') also has a natural action of Z;(g) =
Sg’ coming from the natural map Gr = (é(K) X Gm)/(é(O) X Gy) — pt/(é(O) X Gp).
We claim that our isomorphism ¢z, is also Z;(g)-equivariant.
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First, the action of Sy ® Z;(g) on Hk(ii]:) factors through an action of Sy @cyn) Zr(g) =
C[t* x (t*/W) x A!]. Then, the action of Sy, ®cyn) Zr(g) factors through the natural action
of the algebra H’ (X). Finally, it is explained in [9, § 3.2] that the S; ®ca) Zn(g)-algebra
H’, (M) is isomorphic to the direct image under the natural quotient map of Or,, where

= {01, m2,2) €t x " x A |y = i1 + 22},

The claim easily follows from these remarks and the Sp-equivariance of ¢r ;.

Remark 2.2.7. Consider the case where F =1IC, is the IC-sheaf associated with the
G(0)-orbit Gr” for some v € X, and A = wov (where wg € W is the longest element).
Then V" :=S(IC,) is a simple G-module with highest weight v, and A is the lowest
weight of V. In view of the right-hand isomorphism in Lemma 2.4.1 below, the image of
the morphism K?/lg! wov is computed by Kashiwara in [28]: namely, with our conventions,
combining Theorem 1.7 and Proposition 1.8 in loc. cit., we obtain that the image of
K;l}vg in V) &Sp = Sy is generated by the following element:

,WoV woVv
—v(woa)—1
I1 [[ @-jn]. (2.2.8)
a€RT j=0

The topological context is easy in this case. Namely we have

—v(woa)—1
Tupw NG =Ty NG =07(0)-wow = [T | [] Coaujn
j=0

a€Rt

as A-varieties. One can easily deduce that the image of /cltgl:,wov is also generated by
(2.2.8); see §6.2. Hence, in this particular case, Theorem 2.2.4 can be directly deduced
from these remarks.

In the case A =v, one can also directly check that both K?,l:g’v and Kltg:’v are
isomorphisms.

2.3. The classical analogue

We will also prove an analogue of Theorem 2.2.4 where one replaces A by T. In this case
the representation theory of the algebra Uy (g) has to be replaced by the geometry of the
algebraic variety g*.

We will identify t* with the subspace (g/u@®u™)* C g*. In this way we obtain a
canonical morphism ¢ : S(g/u) — S(t) induced by restriction of functions. For V in
Rep(G) and X € X, the “classical analogue” of the morphism K?}i, which we will denote

1 . s
by K_avg)” is the composition

T idy®g®1
—s

(VeS@/weC,)" — (VesSgmweC.,) (VOS®®C_;)" = Vi @S®.

This morphism is S(t)-equivariant, where the S(t)-action on the left-hand side is induced
by the morphism (g/u)* — t* given by restriction of linear maps.
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Now we consider perverse sheaves on Gr. For F in Pervé(o) (Gr) and A € X, we will

denote by Et;_-p)\ the following composite morphism:

@)1 2.2.2)

H (T, 1) = (S(F)), ®S®(1(27)).

Ry, o HLGF)

Then the classical analogue of Theorem 2.2.4 (to be proved in §7.7) reads as
follows.

Theorem 2.3.1. For any F in Pervé(o)(Gr) and ) € X, the morphisms K_aélf];) , (A(20))
and Et;-px are injective and have the same image. Thus, there is a natural isomorphism

of graded S(t)-modules E}-’A that fits into the following commutative diagram:

E]—'.A

(P ®S(g/w) ®C_) " (12p) - HE (1 F)
[f;]fnwaﬁ» [fp (2:3.2)
(S(F)), ® S (1(25)) (S(F)), ® S (1(25)).

2.4. Alternative descriptions: differential operators on G/U and
intertwining operators for Verma modules

An important role in our arguments will be played by two alternative descriptions of the
Clhl-modules (V @M®))".

If X is a smooth algebraic variety, we write Zx for the sheaf of differential operators
on X. The sheaf Zx comes equipped with a natural filtration by the order of differential
operator. We let 95 x be the corresponding sheaf of asymptotic differential operators.
As for enveloping algebras, this algebra has an alternative description as the sheaf of
graded C[h]-algebras generated (locally) by Ox in degree 0 and the left Ox-module Jx
(the tangent sheaf) in degree 2, with relations & -§' —§'-& = A[&,&'] for &,&" € Ix and
E-f—f-&E=hE(S) for £ € Tx and f € Oyx. As for enveloping algebras, we will use this
description of 25 x and still denote by & the image of an element & € Jx. (If we were
using the description provided by (2.1.1), this element should rather be denoted as h¢).
Note that Z5 x acts on Ox[h] via & - f = h&E(f) for & € Ix and f € Oy.

We put 2(X) = I'(X, Zx), (vesp. Zn(X) = T'(X, Z1.x),) for the corresponding algebra
of global sections. The order filtration makes Z(X) a filtered algebra; the associated
Rees algebra 2(X)s is canonically isomorphic to Zx(X). There is also a canonical
injective morphism Zy(X)/h- Dn(X) — I'(X, Dn.x/h - Dn x), which is not surjective in
general. Note finally that there exists a canonical algebra isomorphism %; x/h- Zn x =
(px)«Or=*x, where T*X is the cotangent bundle of X and py : T*X — X is the projection.

Consider the quasi-affine variety 2 := G/U. There is a natural G x T-action on 2
defined as follows: g xt: hU — ghtU. The T-action on £ also induces an action of
T on Z3(Z) by algebra automorphisms. In particular, this T-action gives a weight
decomposition Zp(Z) = P ex Zrn(Z)i.. Thus, Zp(2X )0 = Du(Z)T is the algebra of
right T-invariant asymptotic differential operators.
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Differentiating the T-action on % yields a morphism y :S; — Dp(Z") of graded
Cl[h]-algebras. Using this we will consider Z;(Z") as an Sp-module where ¢ € t acts by
right multiplication by ¢t —fip(¢). Note also that differentiating the G-action on Z~ we
obtain a morphism Z;(g) = Zs(Z"). This defines a Zj;(g)-module structure on Z5(2Z")
(induced by multiplication on the left).

If M is an Sp-module and ¢ an algebra automorphism of S;, we denote by YM the
Si-module which coincides with M as a C-vector space, and where s € Sy, acts as ¢(m) acts
on M. If ¢, ¢ are algebra automorphisms of Sy we have 1p(‘/’M ) = ¥°¥ M. This construction
provides an autoequivalence of the category of Sp-modules, acting trivially on morphisms.
We will use this notation in particular when ¢ = w € W (extended in the natural way to
an automorphism of S;), and for the following automorphisms: if u € X, we denote by
() : Sy 5 Sy the automorphism which sends r € t to t — hu(t) € Sp. We will use similar
notation for S(t)-modules.

If M, N are (Sy, Un(g))-bimodules, we will write Homgs, v, (g))(M, N) for the space of
morphisms of bimodules from M to N. It is an Sp-module and a Zp (g)-module in a natural
way. If M, N are graded and M is finitely generated as a bimodule then this space is a
graded Sp-module and a Zj(g)-module.

The following simple result will be proved in § 3.1 (for the first isomorphism) and §4.3
(for the second isomorphism).

Lemma 2.4.1. For any V in Rep(G) and X € X, there are canonical isomorphisms of
graded Sp-modules and Zy(g)-modules:

(Ve P7,(2),)° = (VeMm)® = Homs, v, ) MO0), V@M®)).

From Theorem 2.2.4 and Lemma 2.4.1 we deduce:

Corollary 2.4.2. For any F € Pervé(o)(Gr) and L € X, there are natural isomorphisms
of graded Sp- and Zp(g)-modules:

(S(F) ® P2 (27),)° (125)) = H, (i, F) = Homys, 1, (g (M(0), S(F) ® M(A)) (L(25)).

One can also give an alternative description of equivariant cohomology of cofibers in
the “classical case” of §2.3, as follows. Let & := G/B. For A € X, we denote by Oz()\)
the line bundle on % associated with the character —A of B (so ample line bundles
correspond to dominant weights). For any variety X over %, and any A € X, we will
denote by Ox(A) the pull-back to X of Oz(A). In particular, consider the G-varieties
G/T x t* and § := G xp (g/w)*, which are both equipped with a natural morphism to
A. Both varieties are equipped with a natural action of G x C*, where the action of G
is induced by left multiplication on G, and any z € C* acts by multiplication by z=2 on
(g/w)* or t*.

Consider the morphism

a:G/Txt" =7, @T,nw~ (gxpn)

where on the right-hand side 7 is considered as an element of g* trivial on u@ u~. For any
A € X' we have a canonical isomorphism a*Og(A) = Og, 1 x++ (1), so we obtain a pull-back
morphism a* : T'(§, Og(L) = T'(G/T x t*, Og/7xe= (V).
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Note that we have a canonical isomorphism F(G/T x t*, O/ Tx¢ (A)) = Ind?(—k)@
S(t) where Ind is the usual induction functor for representations of algebraic groups,
as defined e.g. in [26, §1.3.3]. Hence if V is in Rep(G), using the tensor identity and
Frobenius reciprocity we obtain an isomorphism

(VRT(G/T x t*, 06 75 (1)) = (VOSH®C_;)" = V2 ®@S(1). (2.4.3)
By a similar argument, there exists a canonical isomorphism
(Verd o;0)° = (VeSg/weC_,)”. (2.4.4)

Then one can easily check that, under isomorphisms (2.4.3) and (2.4.4), the morphism
E?,li identifies with the morphism

(VOrE 050))° — (VOT(G/T x t', Og/rxe- ()

induced by a*.
Using (2.4.4), from Theorem 2.3.1 we deduce the following description.

Corollary 2.4.5. For any F € Pervé(o)(Gr) and ) € X, there exists a natural isomorphism
of graded S(t)-modules

H: (3 F) = (S(F) ® T @. 05(1))) % (1(25)).

2.5. Weyl group symmetries

Each of the spaces in Corollaries 2.4.2 and 2.4.5 exhibits a kind of symmetry governed by
the Weyl group W. These symmetries play a technical role in our proofs of Theorem 2.2.4
and 2.3.1. But we will also show that they are respected by the isomorphisms in
Corollaries 2.4.2 and 2.4.5. Some of our constructions are based on isomorphisms which
do not respect the gradings; hence for simplicity we just forget the gradings in this
subsection.

The constructions on the side of the group G depend on the choice of root vectors
for all simple roots. For these constructions to match with the constructions in perverse
sheaves on Gr, one has to choose the root vectors provided by the Tannakian construction
of G from the tensor category PervG(O)(Gr); see §6.5 for details.

The symmetry in the case of equivariant cohomology of cofibers of perverse sheaves
is easy to construct. Namely, the normalizer Ny (T) of T in G acts naturally on Gr; we

denote by m, : Gr = Gr the action of g € NG(T). If we denote by g + g the projection
NG(T) —» NG(T)/T =W, for any A € X we have mgoi) = ig. (where we identify the
one-point varieties {A} and {gA}). If F is in Pervé(o)(GrL we deduce an isomorphism of
graded Sp-modules

Hey (i3 m, F) = SHy (i3, F).

On the other hand, since F is G(O)—equivariant (and hence in particular
Ng(T)-equivariant), there exists a canonical isomorphism mé,]-' = F. Hence we obtain
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an isomorphism H’ (i;t}-) = §H'A (i!@}—)- Using classical arguments one can check that
this isomorphism only depends on g (and not on g); we will denote by

20t HY P = "Hy G F)

the isomorphism associated with w € W. These isomorphisms generate an action of W
in the sense that for any F in F’ervé(o)(Gr)7 A€ Xand x,y € W we have

y(Exf,yA) o Ef’* _aF.A (2.5.1)

uxy .

Now, let us consider Z-modules on 2. In § 3.2 we recall a construction of Gelfand and
Graev (see [8, 29]) based on “partial Fourier transforms” for 2-modules which provides
an action of W on Z5(Z") by algebra automorphisms such that for any w € W and A € X
the action of w restricts to an isomorphism of Sj-modules:

DD = (DD (X ). (2.5.2)
For V in Rep(G), we will denote by
oY (Ve P73(2):)° 5 (V@ NP2 )un)°
the induced isomorphism. This collection of isomorphisms satisfies the relations
M@ M) o) = DY (2.5.3)

Finally, in §4.7 we will define, for any V in Rep(G), A € X and w € W, an isomorphism
of Sp-modules

O+ Homs,.u, (g (M(0), V @ M(%)) = “Homs, ., (g) (M(0), V @ M(wA)).

This collection of isomorphisms naturally appears in the construction of the dynamical
Weyl group; see §2.6 below. As above, it satisfies the relations

YO ooVt = et (2.5.4)

Our second main result, which will be proved in § 7.6, is the following.

Theorem 2.5.5. The isomorphisms of Corollary 2.4.2 are such that the following diagram
commutes for any F in Pervé(o)(Gr), reXandwe W:

(S(F) ® V2 (2),)°¢ H:, (i F) Homs,, v, () (M(0), S(F) @ M(1))

S(F).» o
Zl(pw( ).k l"‘"’ A ZL@)%'(]:)YA

U(S(F) @ “NPp( X ) 3)¢ ——= "H, (i}, F) —— “Homys, 1, g, (M(0), S(F) @ M(w)).

One can also give a “classical” analogue of Theorem 2.5.5. First, the same construction
as above provides, for any F in Pervé(o)(Gr), A e X and w € W, an isomorphism of
graded S(t)-modules

g0 HL GG F) = " (i, F)-
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This collection of isomorphisms satisfies relations
(T YA
6 og =60
On the other hand, let gf C g* be the open set consisting of regular elements, and let g;
be the inverse image of g* under the morphism 7 : § — g* defined by n(g xgn) = g-n.

Then there exists a canonical action of W on @, which induces for any A € X and w € W
an isomorphism of S(t)-modules and G-modules

I'(g 05(h) = "I (3 O5(wh));
see §5.2 for details. Hence we obtain, for any V in Rep(G), an isomorphism
G ~ G
oyt (VOT@E 050)7 = “(VRI @ O5wi))”.
This collection of isomorphisms again satisfies relations

y(UxV,y)») Og;/,x _ Gx‘;’)\' (2.5.6)

We have the following compatibility property, to be proved in §7.7.

Theorem 2.5.7. The isomorphism of Corollary 2.4.5 is such that the following diagram
commutes for any F in Pervé(o)(Gr), reXand w e W:

~

(SF BT E. 05()° H: )

S(F).A
ztgw( ) Zjéwf,x

"(SF) @ TG, Og(wh) ———="Hi. (i), F).

2.6. Applications: dynamical Weyl groups and Brylinski—Kostant filtration

The first application of our results concerns a geometric realization of the dynamical
Weyl group due to Braverman and Finkelberg ( [12]). Let Qs be the field of fractions
of Sp. If M is a Qp-module, we define the Qp-module M by a formula similar to that
above. In §8.3 we will recall the definition of the dynamical Weyl group, a collection of
isomorphisms of Qx-modules

DW?}%A,w L Qr® Vi — “Qn ® Vi
for all V in Rep(G), L € X and w € W.
Let O~ := C[z™!], and let (V;(Of)l be the kernel of the morphism CV;(O’) -G given
by evaluation at z = co. For A € X we set 2, = é(O_)l -'\; this is a locally closed
(ind-)subvariety of Gr which is a transverse slice to the orbit Gr* at X. We denote the

inclusion by
s W NT, — Gr.

mo= Yy M@,

aeRT
The following result is proved in [12]; we reproduce the proof in § 8.4 since we will need
some of the details.

We also set

https://doi.org/10.1017/51474748014000085 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000085

508 V. Ginzburg and S. Riche

Lemma 2.6.1. For any F in Pervé(o) (Gr) and A € X there exists a canonical isomorphism
of Sp-modules
Hyy (20, N Ty, 53 F) = (S(F)), ® Sniny).
The inclusion {\} — 20, N T, induces a morphism of Qx-modules
AT Qn ®s, Hy (3. F) — Qn ®s, Hy (W, N Ty, 5, F)

which is an isomorphism due to the localization theorem in equivariant cohomology (see

e.g. [20, Theorem B.2]). For F in Pervs ¢, (Gn), A € X and w € W we define the morphism

geom | F,wh =F, A Fa—1.
DW]—‘,/\,w = w(A w )o gy, o (AT T
Qn ®s, Hyy (05 N T, 53.F) = “(Qn @5, Hy (W N T, 53,,.F))-
The following result (which is a consequence of Theorem 2.5.5) is equivalent to the
main result of [12]. Our proof, given in §8.5, cannot really be considered as a new proof

since it is based on a similar strategy (namely reduction to rank 1), but we believe that
our point of view should help with understanding this question better.

Proposition 2.6.2. For any F in Pervé(o) (Gr) and A € X dominant, the following diagram
is commutative, where the vertical isomorphisms are induced by those of Lemma 2.6.1:

geom
Fhw

Qn ®s, Hy Q. N T, 5] F) ¥(Qp ®s, HYy (Wi N T, 55, F))

Zl ll
DWalg

Qi ® (SUP), i "(Qr ® (S(F)),,)-

The second application of our results is a new proof of a result of the first author ([22])
giving a geometric construction of the Brylinski—Kostant filtration. Namely, let e € u be
a regular nilpotent element which is a sum of (non-zero) simple root vectors. If V is in
Rep(G) and A € X, the Brylinski-Kostant filtration on V, associated with e is defined by

FBR(Vi)={veVi|e™ v=0} fori>0

and F?K(V;L) =0 for i < 0. This filtration is independent of the choice of e (since all the
choices for e are conjugate under the action of T').
On the other hand, for any ¢ € t* we consider the specialized equivariant cohomology

Hy(3F) = Cy®s H3(5F),

a filtered vector space. Assume that ¢ € t* ~ {0} satisfies (ad*e)?(¢) = 0, where ad* is the
coadjoint representation. Then ¢ is regular, and hence by the localization theorem in
equivariant cohomology, the morphism

Hy (i) = Cy @5y ((S(F) @ S(1) = (S(F)),

induced by Ef;-p , is an isomorphism. The left-hand side is equipped with a natural

filtration; we denote by F,geom((S(f)) A) the resulting filtration on (S(]-')) 5
The following result was first proved in [22] (see also [2] for a different proof). We
observe in §8.6 that it is an immediate consequence of Theorem 2.3.1.
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Proposition 2.6.3. For any F in Pervé(o)(Gr), reX andi € Z we have
BK geom geom

Fi ((S(F)))n) = F21+)L(2ﬁ)((8(f)))») = F2i+l+k(2ﬁ) ((S(‘F)))n)
Remark 2.6.4. Assume that G is quasi-simple. Then it follows from [31, Corollary 8.7]
that the three-dimensional representation of any sl-triple through e occurs only once
in g, and hence in g*. It follows that ¢ € t* is uniquely defined, up to a scalar, by the
condition (ad*e)?(¢) = 0. Using this remark one can easily check (for a general reductive
G, and independently of Proposition 2.6.3) that the filtration F§*°™ is independent of the
choice of ¢ once e is fixed. On the other hand all the possible choices for e are conjugate
under the action of T, and hence our filtration is independent of any choice (other than
T and B).

3. Differential operators on the basic affine space and partial Fourier
transforms

In Sections 3—-5 we fix a complex connected reductive group G, and we use the notation
of §2.1. We also choose for any simple root o a non-zero vector e, € g. We denote by
fo € g—o the unique vector such that [ey, fo] = @.

3.1. The structure of Z;(2)

The results in this subsection are taken from [7, 37]. Below we will use the two natural
actions of G on C[G] induced by the actions of G on itself. The action given by (g - f)(h) =
f(g~'h) for f € C[G] and g, h € G will be called the left reqular representation; it is a
left action of G. The action given by (f - g)(h) = f(hg™") for f € C[G] and g, h € G will
be called the right regular representation; it is a right action of G.

First we begin with the description of Z5;(G). Differentiating the right regular
representation defines an anti-homomorphism of algebras Up(g) — Z,(G). Then it is
well known that multiplication in Z5(G) induces an isomorphism of C[G]-modules

CIG1® Un(g) = Zn(G). (3.1.1)

The left regular representation induces an action on Z5(G), which will be called simply
the left action below. Through isomorphism (3.1.1), it is given by the left regular
representation of G on C[G] (and the trivial action on Ux(g)). Similarly, the action
induced by the right regular representation (which will be called simply the right action
below) corresponds, under isomorphism (3.1.1), to the right action on C[G]® Uy (g) which
is the tensor product of the right regular representation and the action on Up(g) which
is the composition of the adjoint action with the anti-automorphism g — g~!. There is
also a natural morphism Up(g) — Z;(G) obtained by differentiation of the left regular
representation. Under isomorphism (3.1.1), it is given by the map which sends m € Uy (g)
to the function G 3 g +— g~ -m € Us(g), considered as an element in C[G]® Ux(g). In
particular, this morphism restricts to the morphism m — 1 ® m on Z(g) C Ux(g).

Let us recall the standard description of Z;(%2") based on quantum Hamiltonian
reduction. As 2 is a quasi-affine variety, the natural morphism

Dy (Z) — Endcp(CLZ1[A])
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is injective. The algebra C[.Z"] identifies with the subalgebra of C[G] given by the
elements fixed by the right action of U C G. Any element D in Z;(G) induces a morphism
C[Z'1[h] — C[G][A]. This morphism is trivial iff D € C[G]® (u-Us(g)), and its image
is contained in C[Z7][#] iff the image of D in C[G]® (Uh (g@)/u-Us (g)) is U-invariant for
the right action. In this way we obtain a canonical isomorphism

In(2) = (CIG1® (Un(g)/u- Un(g))) e (3.1.2)

In this description, the action induced by the left G-action on £  is induced by the
left regular representation on C[G]. The morphism Zp(g) — Zi(Z") obtained from the
differentiation of this left action of G on £ corresponds to the morphism m +— 1Q®
(m mod u- Uy (g)).

Recall that there is also a T-action on % defined by ¢-gU = gtU. (Note that this
action is not induced by the right action of G on itself considered above, but rather by its
composition with # > ¢~1.) This action provides a T-action on Z;(2°) (where the action
of t € T is induced by the right action of 1! € G on Z4(G) described above) and a weight
decomposition Z5(2Z") = B, cx Zr(Z ). This T-action also defines a morphism y : S —
D(Z) which, under isomorphism (3.1.2), is given by y(m) = 1® (m mod u- Uy(g)).
Recall that we consider Z5(Z) as an Sp-module where ¢ € t acts by right multiplication
by y(t) —hp(t) - 1. Under isomorphism (3.1.2), this action is given by the Sp-action on
U (g)/u- Ur(g) where t € t acts by left multiplication by t —fip ().

From this description (and isomorphism (2.1.2)) one easily obtains the following result.

Lemma 3.1.3. For any A € X there exists a canonical isomorphism of graded Sy-modules
and Zp(g)-modules
Py (2); = Ind§MO)).

Proof of the first isomorphism in Lemma 2.4.1. We have
(Ve W2:(2),)° = (Veimd§Mm))° = (VeMm)”

where the first isomorphism follows from Lemma 3.1.3 and the second one from the tensor
identity and Frobenius reciprocity. O

3.2. Partial Fourier transforms for Z;(2")

Let us recall a construction due to Gelfand and Graev, and studied by Kazhdan and
Laumon [29] in the ¢-adic setting and by Bezrukavnikov, Braverman and Positselskii [8§]
in our Z-module setting. We choose a reductive group G*¢ with simply connected derived
subgroup and a surjective group morphism G% — G with finite central kernel denoted as
Z. We denote by T5¢, B¢ the inverse images of T', B in G*¢, and let U*° be the unipotent
radical of B%. We set 2'5¢ := G%¢/U*°. Note that Z acts naturally on 275, with quotient
Z . Note also that for any simple root « there exists a unique injective morphism of
algebraic groups ¢y : SL(2, C) — G%¢ such that

Z

e w5 ) =i ma aw (1) = aw(gg)=e

(where we identify the Lie algebras of G* and G.)
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Let o be a simple root, let P° be the minimal parabolic subgroup of G* containing
B*® associated with «, and let Q3 := [P}°, P;°]. Consider the projection

Ty %SC — GSC/Q(SIC-

It is explained in [29, §2.1] that 7, is the complement of the zero section of a
G*5¢-equivariant vector bundle
7, Vo = G¥/0¥

o

of rank 2. Moreover, there exists a canonical G*°-equivariant symplectic form on this
vector bundle (which depends on ¢q, i.e. on the choice of f,). Hence the constructions
recalled in §B.2 provide an automorphism of Z;(V,) as a C[h]-algebra. As the
complement of Z7%¢ in V, has codimension 2, restriction induces an isomorphism
Dy (Vy) = Dp(2°5°). Hence we obtain an automorphism F¥ : 25 (Z7%°) 5 Z5(2°%). This
automorphism is Z-equivariant (since Z acts on V, by symplectic automorphisms),
and we have Z5(2 %)% = Z5(%’) in a natural way. Hence we obtain a G-equivariant
C[h]-algebra automorphism

Fo: Dh(2) = Dn(Z)
on Z-fixed points. Using the fact that any two simply connected covers of a connected
semisimple group are isomorphic (as covers of the given group), one can check that the
automorphism F, does not depend on the choice of G*¢.

Lemma 3.2.1.

1. The automorphisms Fy, o a simple root, generate an action of W on D5(Z").

2. For any simple root a and any A € X, setting s = sy, ¥y restricts to an isomorphism
of G-modules and of Sp- and Zy(g)-modules

(XN = DD
Proof. We observe that there are natural isomorphisms
(IO N =ET(Z, Zno i) S T(2, 29 @Clh, i) = 2(2)®Clh, i ']

Moreover, under these isomorphisms, the automorphism induced by F, coincides with
the tensor product of the similar automorphism of Z(2’) considered in [8] with id¢p, 4-15.
Hence the lemma follows from [8, Proposition 3.1 and Lemma 3.3]. O

By (1), we can define a group morphism w + F,, from W to the group of C[#]-algebra
automorphisms of Z,(Z"), such that Fs, = F, for any simple root «. And by (2) these
isomorphisms restrict to isomorphisms of G-modules and of Sj- and Zjz(g)-modules

Fﬁ) D () > w@h(%)w(k)

which satisfy the relations
Y(F) oL = Fh,.

Using the relation M(*M) = ¥(WMM) we obtain isomorphism (2.5.2), which allows us to
define the collection of isomorphisms ®Y* of §2.5.
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Remark 3.2.2.

(1) As explained in § B.1, the construction of isomorphisms ®Y-* is not compatible with
the natural gradings on (V@ M%2;(2),)¢ and (VQ ®MZ5 (2 )1)¢. However, it
follows from Theorem 2.5.5 that it induces an isomorphism of graded modules

(VO PZh(2)2)C (12p)) = (V@ "N (2 i) (wh) (25)).

This property is also observed in [32, Proposition 2.9)].

(2) Statement (2) of Lemma 3.2.1 (and the fact that F, is an involution) can also
be proved directly as follows: by Corollary 3.3.3 below and the injectivity of the
morphisms %"G/i considered in this statement (see Lemmas 4.6.4 and 4.8.2), it is
enough to prove the claim in the case where G has semisimple rank 1, which can
be treated by explicit computation (see e.g. the proof of Lemma A.2.1 below).

As a consequence of these constructions we also obtain the following result, which will
be needed later. This result is also proved (using different methods) in [37].

Proposition 3.2.3. For any A € X, the graded Sp-module D (X)), is free.

Proof. Using isomorphisms Ff‘v defined above we can assume that A is dominant. Then
using Lemma 3.1.3 it is equivalent to prove that Indg (M())) is free over Sy.
We claim that, if A is dominant,

Ind$ (S(g/w)[A] ® C_y) is free over S and R”Ind§ (S(g/wh1®C_;) =0.  (3.2.4)

Indeed, it is sufficient to prove that the S(t)-module Indg (S(g/u) ® C_,) is free and that
we have R>0 Indg (S(g/u) ® C_,) = 0. Consider the vector bundles

ﬁ:ﬁ—)%’ and gg:9—> A.

Here N := G xp (g/b)* is the Springer resolution, and g is defined in §2.4. There is a
natural inclusion of vector bundles N <> ¥, and the quotient is the trivial vector bundle

* x . Hence there is a Zxo-filtration on (¢3)+Of (as a sheaf of S(t) ® O»- moduleb) with
assoc1ated graded (¢)«Of ® S(1). By [14, Theorem 2.4], we have H>O(N/, Ofr(1) =0.
It follows that H=0(g, O5()) =0, and that HO(@, O5(1)) has a filtration with associated
graded HO(N O N(A)) ®S(t). Now it follows from definitions that, for any i > 0,
H (g, Og(W) =R Ind§ (S(g/u) ® (C ,\) which finishes the proof of (3.2. 4)

For i >0, let M; :=Sy-vy U, () C M(%), where U (g) is the PBW filtration of
Un(g). Then M. is a B-stable and Sp-stable exhaustive filtration of M(X), and the
associated graded is isomorphic to S(g/u)[7]® C_,. From the second claim in (3.2.4)
it follows that Indg (M(A)) has a filtration with associated graded Indg S(g/wA1 @ C_,),
and then the corollary follows from the first claim in (3.2.4). O

Remark 3.2.5. The arguments in the proof of Proposition 3.2.3 also prove that, when A
is dominant, we have R>° Indg M@®)) = 0.
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3.3. Restriction to a Levi subgroup

Fix a subset I of the set of simple roots and let [ be the Levi subalgebra containing t that
has the set I as simple roots. Note that our choice of a Borel subgroup, a maximal torus
and simple root vectors for g determines a similar choice for [; hence the constructions
of the present section make sense both for g and for I.

We put

up = P gar br=t@ur, 7= P gar v = P e

aeRt aeRT aeR™
welZl ag¢Zl ag¢Zl

Thus, one has a triangular decomposition g = nz' ®©1®n;, and uy = uNlis the nilradical

of the Borel subalgebra by = bN [ of [. Further, let p4 := [@nf and by := b @nf (resp.
Ug i=ug Ean). Thus, p+ is a pair of opposite parabolic subalgebras of g such that
prNp_ =1, and by is a pair of Borel subalgebras of g such that by Nb_ = by, with
respective nilpotent radicals uy. Let L, P+, By, Uy, NLi, B, UL be the subgroups of G
corresponding to the Lie algebras [, pi, by, uy, nfLE, bz, ur, respectively. By definition,
we have £ = G/Uy and 21 = L/Uy. (Observe that By, Uy, by, uy coincide with the
objects denoted by B, U, b, u in the preceding sections).
Now we construct a morphism of L-modules

G Dn(26) — Dn(21)

as follows. Note that the right Uy (I)-action on Uy (g)/u- Us(g) descends to a well-defined
action on Ux(g)/(u-Ux(g) + Un(g)-n;). Using this, from the diagram g<>p_ — I
of natural Lie algebra morphisms, one obtains the following morphisms of right
Uy ()-modules:

Un(9)/(u-Un(g) + Un(g)-vp) = Un(p-)/(ur-Un(p-) + Un(p-)-ny) = Un(D)/ur-Un(D).
(3.3.1)
All the above maps are bijections since the linear maps

g/(udny) <—p_/u. —l/ug
are clearly vector space isomorphisms. We deduce the following chain of maps:
(CIG1® (Wa(g)/1- Un(9))” > (CIG1® Un(@)/u- Un(@))""
— (CIG1® (Un(@)/ (- Un(g) + Un(g) -np))) "

— (CIG1® WUn()/ur - Us(0))**
— (CIL1® WU () /ur - Us (),

where the third morphism is induced by (3.3.1), and the last one is induced by the
restriction of functions C[G] — C[L]. Using isomorphism (3.1.2), this allows us to define
the desired morphism

r8: I(26) = (CIG1® WUn(g)/u-Un(@)" — (CILI® (Un(h/ur - Un()))" = Th(21).
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We also define an automorphism of L-modules
7 (2L = Dn(21)

as follows. The linear map pg — pr on t extends naturally to a Lie algebra morphism
[ - C, which we denote similarly. Then the assignment [ 2 x > x 4+ (pg — pr)(x) defines
a graded C[A]-algebra automorphism lf of Ux(), which descends to a Ug-equivariant
automorphism of the quotient Ux(l)/(ur - Ux(1)). Using the isomorphism P (ZL) =
(CIL1® (Un(D/ur - Up(D)) UL a5 above, we obtain the wished for automorphism t9. This
morphism can also be described in more geometric terms as follows: the linear form
pc — pr on t can be considered as a character of T, which extends in a natural way to a
character of L, and then descends to an invertible function fLG on L/Ur. Then one can
easily check that tLG is the automorphism of Z;(Z1) sending D to (fLG)_1 -D- fLG.
Finally we define the morphism of L-modules
res,? = tf orLG Du(Z6) = Dr(ZL).

One can easily check that resg is Sp-equivariant, and T-equivariant for the T =
{1} x T-actions. The following result (in which we use superscripts on the left to indicate
which reductive group we consider) will be proved in § 3.4 below.

Proposition 3.3.2. Let o € I. Then the following diagram commutes:

GF(x
@h(%(;) @h(%G)
I'eS(L;L lres‘f
L
Dn(27) o Dn(21).

As a corollary we obtain the following result. For A € X and V in Rep(G), we denote
by
A (VO NI 260:) " — (Vi ® P (210:)"

the morphism induced by resf.

Corollary 3.3.3. For any » € X, V in Rep(G) and w € Wi C Wg, the following diagram

commutes:
G Gy G
(V&M (26):) UV Q@ WNIp(26)ws)
%Zjil L”«%:Z"
L Lt L
(ViL ® MZu(Z1)1) (Vi ® YN Du( X))

3.4. Proof of Proposition 3.3.2

If G has simply connected derived subgroup, then so does L. Hence we can assume that
G = G*.
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In the next lemma, if X is any variety we consider C[X][#] as the algebra of functions
on X with values in C[A]. The subset P_- Py C G is an open subvariety, so if x is in
Up(g) and f isin C[P_ - Py][#], it makes sense to consider x - f € C[P_ - P{][A], and also
the restriction (x - f)|z € C[L][A]. (Here we consider the right action of Uy (g) on C[G][#]
obtained by differentiating the right reqular representation of §3.1.)

Lemma 3.4.1. Let f € C[P_- Py][A] be a left N, -invariant function. Then for any x €
Un(g) -n; we have

(x- i =0.

Proof. For any y € Uy (g) the function y - f is again left N, -invariant, so we can assume
that x € n; . Then the result follows from the observation that for g € L we have g- N, =

N, -g. O
In the next lemma we use the embedding 27 =L/Up = Py/Uy — P_-P./Us C
G/Us = Z¢.

Lemma 3.4.2. For any left N, -invariant function f € C[P_-Py/U,][h] and any D €
D (Zc) we have
D(f)2;, = (rf D)(fi23)-

Proof. The element D € %;(%Z¢) induces a morphism C[P_ - P, /U,][A] — C[P_- P.][A].
Similarly, the restriction morphism C[P- - P+ /U+][h] — C[ZL][%] is the restriction to
right Uj-invariants of the restriction morphism C[P_ - Py][A] — C[P+][A]. Hence it
is enough to show that if f € C[P_- Py][h] is left N, -invariant then the morphism
P1(G) — C[L][A] sending D’ to D'(f)|r factors (via isomorphism (3.1.1)) through the
quotient

CIG1® Un(g) — CIG]® (Un(9)/(Un(g) -n,)).
This fact follows from Lemma 3.4.1. O

We obtain as a corollary of Lemma 3.4.2 the following description of the morphism
rf. We denote by &, : Z(N; ) — C[#] the morphism sending a differential operator D
to the value at 1 € N, of the function D(1 NL—)7 where 1 Ny is the constant function with
value 1.

Corollary 3.4.3. The morphism rLG coincides with the composition

D~®Dr>¢er(D7)-D
_

D(2G) < Dn(P- Py UL) > Dn (N ) ®cin) Dn(2L) Dp(Z1L)

where the first morphism is restriction to the open subset P_-Py/Uy C Zg, and the
second morphism uses the isomorphism P_- Py /U, = N; x 21 induced by the action of
N, on ZG.

Proof. As the action of Z5(Z1) on C[.Z]1[A] is faithful, it is gnough to clleck the claim
after acting on any f € C[.ZL]. However one can write f = f|2; where f = lNL— ®f €
C[P- - P+/U4], and then the claim follows from Lemma 3.4.2. O
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Finally we can give the proof of Proposition 3.3.2.

Proof of Proposition 3.3.2. It is enough to prove the commutativity of the following two

diagrams:
GFa LFO(
Dn(Z6) Dn(Z5) Dn(Z1) Dn(Z1)
T T
LFC( LFO[
Dn(Z1) Di(Z1), D (Z1) Dn(Z1).

The commutativity of the right-hand diagram follows from Lemma B.2.2 below; hence
we only have to consider the left-hand diagram. Now we observe that (since the
construction of the partial Fourier transform is local on the base of the vector bundle) the
automorphism °F, extends to an automorphism of Z,(P_ - Py/U,) denoted similarly,
which makes the following diagram commutative, where vertical morphisms are induced
by restriction:

GF(x

@h(%(;) @h(«%G)

G

Dn(P_ Py /U e Th(P_ . PLUL).

Next, by construction the following diagram commutes:

G
Dn(P—- P4/ UL fo Tn(P—- P4/ Us)

id®LF,

Dn(N;) ®cin) Dn(X1L) ————— Dn(N) Qcin) Zn(Z1).

Then the commutativity follows from Corollary 3.4.3. O

3.5. The classical analogue

Consider the sheaf of algebras
Ay = Dpa/h-Dny

on Z . This sheaf is canonically isomorphic to (p2°)«Or=g-, where py =T*Z — X
is the natural projection. We also set &/ (2") := (2, @¢°). If « is a simple root, we
define similarly the sheaf of rings @4, on V,, and the ring 2/ (V,). In §3.2 we have
defined an automorphism of %y, as a sheaf of C[#]-algebras. Specializing to # = 0 we
deduce an automorphism of @4, . By the same arguments as in § 3.2, restriction induces

an isomorphism 2 (V,) 5o (Z7), and hence we obtain an algebra automorphism

Fo A (X)) > (X))
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such that the following diagram commutes, where vertical arrows are induced by the
natural quotient morphism %5 o — g

(D) i Dn(Z)

~

.

X —T (D).

The following lemma will be used to deduce Theorem 2.3.1 from Theorem 2.2.4.

Lemma 3.5.2. The natural morphism 95(Z) — A (Z) induces an isomorphism
()l Dn(Z) = A (D).
In other words, for any V in Rep(G) and A € X, the morphism
(VveMm)® - (vesgmwec. ;)"

induced by the quotient morphism M(A) — M(A) /(A -M(A)) = S(g/u) ® C_,, induces an
isomorphism
(veMm)’/m S (Vese/wec.,)”.

Proof. By Lemma 3.1.3, both statements are equivalent to the fact that for any A € X
the morphism

Ind§ (M(1))/f — Ind§ (S(g/u) ® C_,)
is an isomorphism. In the case A is dominant, this property follows from the exact sequence
of B-modules

M) M(3) — S(g/u) @ C_y,

and the cohomology vanishing, R! Indg (M(1)) = 0; see Remark 3.2.5. Since F, induces an

isomorphism Z5 (2 ), — D (X )s,0. (see Lemma 3.2.1), using diagram (3.5.1) we deduce
the general case from the case where XA is dominant. O

It follows in particular from (3.5.1) and Lemma 3.5.2 (using Lemma 3.2.1) that the
assignment s, > %, defines an action of W on &/ (Z") by algebra automorphisms, which
we denote by w — %#,,. Moreover, for any w € W and A € X, .%,, defines an isomorphism

of S(t)-modules &7 (2 )5 — Yo (2 ).

3.6. Complementary results on the structure of 2(2")

In this subsection we observe that Lemma 3.5.2 has some interesting consequences for
the structure of 2(2"). These results will not be used in the rest of the paper.

We begin with the following direct consequence of Lemma 3.5.2 (using the natural
isomorphism &7 (%£") = C[T*Z]), which appears to be new.

Corollary 3.6.1. The canonical graded algebra morphism gr 2(Z) — C[T*Z'] is an
isomorphism.
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This corollary allows us to give new proofs of some results of [32] and [8]. These proofs
use the following simple lemma.

Lemma 3.6.2. The C-algebra C[T* 2] is finitely generated, and hence Noetherian.

Proof. First we observe that there exists a canonical isomorphism T*2 = G xy (g/uw)*.
Hence T*2 is a T-torsor over g, which implies that we have a natural algebra
isomorphism
CIT*2 1= r @@ 050).
reX

By the same observation, there exists a natural morphism T*2 — g* xg w t¥,
g Xy n+> (g-n, M), which induces an algebra morphism S(g) ®gyw S(t) — C[T*Z].
Note also that if A € XT, then I'(#, O%(})) identifies naturally with a subspace of C[.2],
and hence also defines a subspace X, of C[T*Z"] using the projection T* 2 — 2.

Let A, ..., A be a finite collection of dominant weights such that Xt = >"7_| Z>oA;.
We claim that C[T*2'] is generated (as an algebra) by S(g) ®gyyw S(t) and the

G-modules X, for i € {1,---,r}, together with the images of these subspaces under
the automorphisms %, for all w € W. This claim clearly implies the statement of the
lemma.

To prove the claim we first observe that if A € X* the morphism
(S(9) ®syw SH)) ® X, — I'(§, O5(1))

induced by the product in C[T*Z"] is surjective. Indeed by the graded Nakayama lemma
it is enough to prove surjectivity after tensoring with the trivial S(g) ®gyw S(t)-module;
hence it is also enough to prove surjectivity after tensoring with the trivial S(t)-module.
However the arguments in the proof of Proposition 3.2.3 imply that the natural morphism

C®s '@ 05) — TN, 0(»))

induced by restriction is an isomorphism, and hence the latter surjectivity statement
follows from [14, Proposition 2.6]. From this observation, together with the fact that if
A, € XT the natural morphism

N(#,020) @T'(AB, Oz(1) — T'(B, Oz(h+ 1))

is surjective (see e.g. [13, Theorem 3.1.2]), it follows that the subalgebra of C[T*.2]
generated by S(g) ®gyw S(t) and the modules X, contains

D r@ o56)).
reXt

The claim follows, using the W-action and the fact that every weight is W-conjugate to
a dominant weight. O

In the following corollary, statement (1) is due to Levasseur and Stafford (see [32,
Theorem 3.3]). The present proof is suggested in [32, Remark 3.4], but the authors did not
have Corollary 3.6.1 to complete the argument. Statement (2) is due to Bezrukavnikov,
Braverman and Positselskii (see [8, Theorem 1.1]).
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Corollary 3.6.3. The algebra 2(Z) is

(1) Auslander—Gorenstein and Cohen—Macaulay;
(2) left and right Noetherian.

Proof. (1) Choose some elements fi; € X.(T),i = 1,---s, such that if A(ft;) = 0 for all i
then A = 0, and set ||A]| :== >, |A(&%;)|. Consider the filtration on 2(Z") defined for n > 0
by

Fa9(X) = 225" 0| @ 22 .

IAll<n

where 2(2°)S* is the filtration by order of differential operators. Then this filtration
is connected (in the sense that FoZ(2") = C) and the associated graded is canonically
isomorphic to C[T*.2] by Corollary 3.6.1. Hence the claim follows from [41, Corollary
0.3], using the simplicity of 2(2") proved in [32, Proposition 3.1] and Lemma 3.6.2.

(2) Tt is enough to prove that Z,(2") is (left and right) Noetherian. But this follows
from [4, Lemma 8.2] (for g = /) and Lemma 3.6.2. O

4. Morphisms between asymptotic universal Verma modules

In this section we will use the following convention. If P(u) is a property depending on
w € t*, we will say that P(u) holds “for u € t* sufficiently large” is there exists n € Zx¢
such that P(u) holds for any u € t* satisfying |u(&)| > n for all simple roots a. We will
use similar conventions for subsets of t* (e.g. X).

4.1. A reminder on Verma modules

The results in this subsection are well known; see e.g. [19, 39]. We include (short) proofs
for the reader’s convenience. We will use the “dot-action” defined by w e u = w(u + p) —
p.

For any p € t* we consider the Verma module

V(w) :==U(g) ®up) Cp

(a left U(g)-module). We also set 1, :=1®1 € V(). We set V() := U@ )Hu™ -1, so
we have V(u) =C-1, & V(u)—.

If V is in Rep(G), » € X, u € t*, and ¢ € Homy(g)(V(1), V ® V(1 — 1)), then one can
write

ol =u®l; )+x

for uniqueu € Vy, andx € VV(u —A)_. We set u := El‘:’k(qﬁ); it is called the expectation
value of ¢.

Let pu € t* and let o be a simple root. If n := (&) + 1 € Zxo, then as in [25, §1.4] there
exists a unique embedding of U (g)-modules

V(sq o ) = V(w)
(fa)"

which sends 1,y to ~25—-1,. Iterating, we perform the following construction. Let u €
X* — p, and let w € W. Choose a reduced decomposition w = s - - - 51, where ay, - - - , o
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is a sequence of simple roots (possibly with repetitions) and s; is the reflection associated
with «;. Then for any i =1,--- ,k, n;j :== (si—1---s1eu)(@)+1 € Z>o. Moreover the
collection (ny, - -- , ng) and the product (fy,)"™ - (fy)™ do not depend on the reduced
decomposition of w (see [39, Lemma 4]). Hence there exists a unique embedding of graded
right U (g)-modules

e

Fa)™ )"
n

y V(wep) = V(u) such that ¢ (1ypeu) = N !

Lemma 4.1.1. Let V in Rep(G), and 1 € X.
(1) For n € t* sufficiently large, the morphism
EX’)‘ : Homy (g) (V(u), VeVu-— K)) — Vy

is an isomorphism.

(2) Forw e W and p € X* sufficiently large, the morphism
Homy (g) (V(w o), VV(we(u— A))) — Homy (g) (V(w o), VRV(u— A))
defined by ¢ — (idy ® Ll'f_k) o ¢ is an isomorphism.

Proof. (1) It is well known (see e.g. [25, Theorem 3.6]) that there exists an enumeration
Vi, -+, v of the T-weights of V and a filtration (as a U(g)-module)

0}=MoyC My C---CM=VRV(u—2)
where foralli =1,--- ,k, Mi/M;—1 = V,, V(i — A+ ;). Consider, forany i =1, --- , n,
the associated exact sequence
0 — Homy (g) (V(11), Mi_1) — Homy g (V(1), M;)
— Homyg)(V(), V(=2 +1v) ® V) — Eth(g)(V(M), Mi_y).

It is also well known that

Homy () (V(n1), V(n2)) = Exty; (g, (V). V(n2)) = 0

unless 71 € W 12, and Homy (g)(V(n), V(1)) = C. Now if u € t* is sufficiently large, the
property u € W e (u — A+ v;) implies that w = 1 and A = v;, and the result follows.

(2) First we remark that the morphism under consideration is indeed well defined if
w € XT is sufficiently large. As Ll“:_x is injective, our morphism is injective. Hence it is
enough to prove that the two sides have the same dimension for u € X sufficiently large.

By (1), if p is sufficiently large the left-hand side is isomorphic to Vy,,. Now similar
arguments, using the property that if n € X* — p then

Homy (g)(V(w e ), V(1)) = C,

show that, again if u is sufficiently large, the right-hand side is isomorphic to V;. As
dimc (Vy) = dimc (Vy,), this finishes the proof. O

https://doi.org/10.1017/51474748014000085 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000085

Differential operators on G /U and the affine Grassmannian 521

4.2. Asymptotic Verma modules

If uet*, we denote by C[a]{u)) the graded right Sz-module where any 7 € t acts by
multiplication by Au(z).
For u € t* we define the graded right Uj(g)-module

M() := C[R](0) ®s, M(u).

We also set v, :=1Q®v, € M(u). Any ¢ € t acts on v, by multiplication by A(u + p)(¢),
and M(u) admits a basis (as a C[A]-module) such that, for any vector v in this basis,
there exists y € Z;oR+ such that v-t = (u+p+y)(t) for any r € . We set M(p)_ :=
Vi -u” Up(u™). Then we have

M(u) = C[h] - ¥, @ M()—.
Note also that for any A, u € t* there exists a natural isomorphism
CLAl(K) ®s, ML) = M4+ p) (4.2.1)

sending 1 ® v, to Vy4,.
It will be convenient to invert 4. To simplify notation we set

Mioe (1) := ClA, A~ 1 @cim M), Uloe(9) := Cl, ™' ®cya Un (@)
We define Mjoe(i)_ in the obvious way. There exists an isomorphism of graded
C[h, h~'1-algebras
~ 1
U@®cClnh™] = U™, g3x+> —rx.

(In the left-hand side, U (g) is in degree 0.) Using this isomorphism one can regard Miqc(t)
as a (left) module over the algebra U(g) ®c Cl#, 7i~11. With this structure it is isomorphic
to V(= —p) ®c Clh, ™',

Let u € t* and let o be a simple root. If n := —u(&) € Zxo, then as in §4.1 there exists
a unique embedding of graded Ujoc(g)-modules

Mloc (S lb) = Mloc (n)

which sends vy, to v, - fa)” Iterating, we perform the following construction. Let

h"n!
n e X", and let w € W. Choose a reduced decomposition w = si---s;, where s; is
the reflection associated with the simple root «;. Then for any i =1,...,k, n; :=

—(Si—1---SI|, &;) € Zx0, and hence we can define

(_fail)"l o (_ftxik)nk

A" ng! Ay

W

VM € Mloc (}") ’

=V

and there exists a unique embedding of graded right Ujec(g)-modules

w

i;‘; : Mioc(wit) = Mjge(n)  such that iluj (Vuu) =V,
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4.3. Specialization

Let A € X. Recall that in §2.1 we have defined a structure of a B-module and of a
(Un(b), Ur(g))-bimodule on M(A). In particular, if V is in Rep(G), we have a (diagonal)
B-module structure on V@ M(L).

Lemma 4.3.1. For V in Rep(G) and A € X, the assignment ¢ +— ¢(vo), induces an
isomorphism
Homgs, 1, (g) (M(0), V@ M() = (VeM®))”.

Proof. By definition, M(0) is an induced right Uy (g)-module. Hence we have
Homgs,, v, (g)) M(0), V@M(X)) = Homgs; v, () (Sa{(0), V@ M(L)).

It follows that the left-hand side is isomorphic to the space of vectors x in V ® M())

which satisfy

x-b=(b+hnpD))-x
for all bebC Ux). This is exactly the condition for being U (b)-invariant
(i.e. B-invariant); see §2.1. O

If u e t*, we denote by P+ P(u) the unique algebra morphism S; — C[A] which
sends x € t to iu(x). Note that if P € Sy and if for some w € W we have P(u) = 0 for
all u € w(X7) sufficiently large, then P = 0.

If A, u € t*, we denote by

%ll« M@Q) — Mloc()\ + 1)

the natural morphism induced by isomorphism (4.2.1). The following lemma follows from
the fact that M(L) is a free Sp-module and the remarks above on the map P +— P(u).

Lemma 4.3.2. Let A e X and w € W. Let m € M(L), and assume that %M(m) =0 for all
w € w(X7) sufficiently large. Then m = 0.

We will derive several useful corollaries.

Corollary 4.3.3. Let V in Rep(G), A € X and w € W. Let m € VQM(X), and assume
that for all p € w(X™) sufficiently large we have

(idy ®@M)(m) b =h(u+p)(d)-(dy ®§#)(M)

for all b e b. Then there exists a unique ¢ € Homs, u,(g)(M(0), V@ M(X)) such that
m = ¢(vo).

Proof. By Lemma 4.3.1 we only have to prove that m is fixed by B, i.e. that for any
b € b we have

m-b—((b+hpb)) - m=0

(see the proof of Lemma 4.3.1). However, our assumption implies that this vector is
annihilated by (idy ® %M) for all © € w(X™) sufficiently large. Hence we conclude using
Lemma 4.3.2. O
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If ¢ € Homgs,, v, (g)) (M(0), V @ M(%)) we denote by Sp,, (¢) : Mioc (1) — V& Mige (A + 11)
the morphism obtained by tensoring with C[A]{(u)), using isomorphism (4.2.1), and
inverting fi. This construction induces a morphism of C[#, i~ "-modules

Sp,, : Homs, v, (g)) M(0), V ® M(%)) — Hom_y,(g) Mioc (1), V @ Mioc (A + 10)).

Corollary 4.3.4. Let V in Rep(G), » € X, we W, and ¢ € Hom, y,(5)M(0), V®
M®)). If Spﬂ(qb) =0 for all n € w(X7) sufficiently large, then ¢ = 0.

Proof. This follows from the commutativity of the following diagram:

d—=>d(vo)
Homys,y,(g)) (M(0), V ® M(1))S ‘ V@M
Sp,ll lidv®8pu
SV 8 v ¢’_>¢(VM) _—
Homeloc (9) (Mioc (i), V @ Mioc (A + 1)) V @M (A+ 1)
and Lemma 4.3.2. O

4.4. Intertwining operators

Let V in Rep(G), and let ¢ € Hom_g,(g)(Mioc (1), V ® Mioc(A + 1)) be an intertwining
operator. Then we can write

¢V =u® f(h) Vigu+x

for unique u € Vy, f(#) € Clh,i~'l and x € V®M(L+ p)_. The vector u ® f(h) € V3 ®
C[h, A~ "] is called the expectation value of ¢. In this way we have defined a morphism of
graded C[#, A~ ']-modules

E)* - Hom_y;(g) Mioc (1), V @ Mige (A + 1)) — Vi ® Clh, A~ '],

Lemma 4.4.1. Let V in Rep(G), and 1 € X.
(1) For p € t* sufficiently large, El‘:')‘ s an isomorphism.

(2) Forw e W and n € X~ sufficiently large, the morphism
Hom_y,. () (Mioc (Wi), V & Mige (w (% + 1))
- Homeloc(g) (Mloc(wﬂ)a Ve Mloc A+ M))
defined by ¢ — (idy ®i§’+u) o ¢ is an isomorphism.

Proof. By the remarks above we have an isomorphism Ui (g)° = U(g) @ C[A, A1,
which induces an isomorphism

Hom_g,,_ () Mioc(12), V' ® Mioe (1)) = Homy gy (V(—p — p), V' @ V(—v — p)) @ C[h, i~ 1]

for any V' in Rep(G) and u, v € t*. Moreover, under these isomorphisms the morphisms
considered in the lemma are induced by those of Lemma 4.1.1. Hence the claims follow
from Lemma 4.1.1. O
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Fix V in Rep(G), A € X and w € W. For any u € X~ sufficiently large, we define the
morphism of graded C[#, A~ 1-modules
WA H M M
ot Hom_ () (Mioe (14), V ® Mioe (14 + 1))
g Homeloc(g) (Mloc(wﬂ)’ Vv ®Mloc(w(,u +)L)))»

in such a way that for any ¢ € Hom_g, . (g) (Mioc (), V & Mioe (it + A)) we have
poill = (i, ®idy)o W, (¢).

This morphism is well defined by Lemma 4.4.1.
Let now o be a simple root, and consider the case w = s,. Then, even if u is not in
X™, one can define a morphism

wYr s Hom g, (g) (Mioc (1), V @ Mioc (11 + 1))
— Hom_y, (g (Mloc (Sat), V& Mloc (So(p + )‘)))

with the same properties as above as soon as u € X is sufficiently large and w(&) < 0.
With this extension of the definition, consider again some w € W, and let w = s - - - 51
be a reduced decomposition. Note that if we X™, for any i =1, ---,k we have
(si—1---s1)(@;) < 0. Then, by definition, for u € X~ sufficiently large we have

Va oy VoSk—1-51(2) V,s1() VoA
\ij’“ - LIJSqukfl"le(M) oo LIJSMl(M) \Ijsl ne (4'4'2)

4.5. Simple reflections

In this subsection we fix a simple root «, and set s = s4.

Proposition 4.5.1. Let V in Rep(G) and A € X. There exists a unique morphism of graded
Sp-modules

®;* : Homgs,. v (g (M(0), V @ M(1)) (L(27))
— SHom(sh,Uh(g))(M(O), Ve M(s)»))((s)»)(Z,b))

such that for any u € X sufficiently large such that u(@) < 0 we have
Spy, 00" =

(—=m*@ (= (@) (—p(@) = 1) - (—(@) — M@ + 1) - ¥ 0 Sp,,  if A@) >0,

1
- oS £ A@) <0,
(—h)_’\(“)(—,u(&) — (@) -+ (—ple) + 1) Wy u p if Al@)

"
(4.5.2)

Proof. Unicity follows from Corollary 4.3.4. Let us prove existence. Choose an
enumeration of positive roots ay, - - - , @, such that o, =« and, foranyi =1, --- ,n—1,
a non-zero vector f; € g—q,. (These choices can be arbitrary.) For any multi-index
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k=(ky, - ky_1) we set f&:= flk1 et i 1 € Uloc(g). Then any vector of M(X) can be
written in a unique way in the form

> P frf

k,i

where Py ; € Sp (and where only finitely many terms are non-zero). Choose also a basis
{uj, j € J} of V. To simplify the notation, for u € t* we set n(n) := —u(a).
For P in Sj we set

(P) _ P(P—h)---(P—(m—Dh)
h

m), mm—1)---1

With this notation, for u € X such that n(u) > m we have

(5‘> (sp) = A" <”(“)). (4.5.3)
m) m

Let ¢ : M(0) — V ® M(X) be a morphism of bimodules. Write
(VO) Zuj®ijl®f fl

Jik,i

where Pj i ; € Sp. Then for u € X such that n(u) > 0 we have

SPL(@Fu) =D uj®Pisi(w)® fEf) € V@Mie(h+ ),
Jok,i

and hence

(—=fa)" ™

SPu@ @) = (2w ® P ® £405) e

Jokii

1 n(pw) n() '
= CD Z( n" (n(pb)> Z uj @ Pjg i) ®f&folt+n(ﬂ)—m

Fn() 5\
h n( ! m=0 J.k,i

By Lemma 4.4.1(2) (or more precisely an obvious generalization, when w = s, to the
case (&) <0 instead of u € X7), if u is sufficiently large then the terms for which
i+n(u)—m < n(h+ w) vanish. Hence we obtain that in this case Spu(qﬁ)(VfL) equals

(= <n(M)> K i _
(_h)m fm uj ® Pj,k,i(ﬂ) ® f*fH_n(N') m ,
h”(“)n(,u)! ];n m a o
o<m<i—n(x)
i.e. equals
(R Pn+w)! () .
(idy ®1;,,) (=m" J2uy ® Pipi(u) @ fEf" 0.
n(w)! e </§n m
0<m<i—n()
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Note that in this sum the indices do not depend on ©. Hence we can consider the element

v

o .
x o=y (—1)'"f;".uj®<m> s(Pjgi) ® fEfin®=m ¢ y @ M(sh). (4.5.4)
j.k,i,m h
og;féiln(x)

By construction (and using (4.5.3)), for any wu € X sufficiently large with n(u) > 0,
(idy ®S_pm)(x) is a multiple of Spﬂ(¢)(V‘L); hence it satisfies

(idy ®Sp )(x)-b = h(sp+p)(b) - (idy ® Sp )(x)

for all b € b. Hence by Corollary 4.3.3 there exists a unique ¥ € Homgs;, v, (g) M(0), V ®

M(sA)) such that x = ¥ (vg). We set ©)*(¢) := . With this definition, for any ¢ and
any sufficiently large u with n(u) > 0 we have

—h)"®n(r !
Sp, (9) oif, = n(/’ff), T Gy i, ) 0 Sp,L (OF(9)),

which implies (4.5.2). O

4.6. Restriction to a Levi subgroup

Fix a subset I of the set of simple roots, and recall the notation of §3.3. As in §3.3 we
can consider our constructions both for G and for L; we add superscripts or subscripts
to indicate which reductive group we consider.

The projection g — [, along nz ®n;, is L-equivariant and it induces a morphism of
graded C[hl-modules 7f : Up(g) — Un(g)/(n} - Un(g) + Un(g) -n,) = Ux(). We consider
the morphism of graded Sj-modules

MS ) — M) (4.6.1)

sending p@u e Mé (L) to p® (lf onLG(u)). One can easily check that (4.6.1) is also a
morphism of By-modules, so it induces a morphism of graded C[/i]-modules

RS - (VeMOG)® — (VieeMEG)™ (4.6.2)

for any V in Rep(G) and 1 € X.
Note that if K C L is a smaller Levi subgroup containing T, then for any V in Rep(G)
and A € X we have

ViL.A

V.A V.A
R, oRE, =RU%. (4.6.3)

If L =T, then we have M7 (A) = S (1)), where By = T acts via —A. Hence we have an
isomorphism of graded Sj-modules

(Vir @M (1)) = V, ®Sh.

.. . . V. alg
Under this isomorphism, one can easily check that ReT =Ky
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Using Lemma 4.3.1, Rg)i induces a morphism of graded Sj-modules
Rg7 - Homes, v, () (MP(0), V@ ME (3)) — Homgs,.u,m) (M*(0), Vi ®M*(3).

Lemma 4.6.4. For all V in Rep(G) and A € X, the morphism R(V;)i is injective.

Proof. By (4.6.3), it is enough to prove the claim when L = T. Then by construction,
if we identify Hom_ g0 (M (0), Vir ® My, () with V4 ® C[A, A~'] in the natural way,
for any p € t* we have sz oRgi}% = El‘:’A o Spg.

Let ¢ € Homgs, v, () (MP(0), V ® M (%)) be such that Ry;; (¢) = 0. Then for any u €
t* we have EX**(Spg(qﬁ)) = 0. Using Lemma 4.4.1(1) we deduce that for p sufficiently

large we have Spg (¢) = 0. By Corollary 4.3.4 we deduce that ¢ = 0, which finishes the
proof. O

The following result follows from the construction (see the proof of Proposition 4.5.1),
using the fact that if « is a simple root of L, then [fy, n;] C ny . For simplicity, in this
statement we neglect the gradings.

Lemma 4.6.5. Let V in Rep(G) and A € X. If a € I the following diagram commutes:

G(_)v,x

Homs,, u;(g) (M?(0), V@M (1)) = S« Homgs,, Un(g)) (M (0), V @ M (s55))
e | |t
' LV
Hom(Sh,Uh([)) (ML 0, V|L ® ML ()»)) - = .S Hom(sh,Uh([)) (ML 0, V|L ® ML (Sa)»)) .

4.7. Definition of operators O,
Lemma 4.7.1. Let V in Rep(G), and » € X. For any simple root o, we have

(@) 0 ®)* =id

as endomorphisms of Hom(sh,U,l(g))(M(O), V®M(A))(A(2,5)). In particular, @;/’A is an
isomorphism.

Proof. Let L, be the Levi subgroup containing T with roots {«, —«}. Using Lemma 4.6.5
and Lemma 4.6.4 it is enough to prove the equality when G = L. In this case it is checked
in Corollary A.3.2 below. O

Let again V in Rep(G) and A € X. Let w € W, and choose a reduced expression w =
Sk -+ -51. We define the isomorphism of graded Sp-modules

@, * : Homs, v, (g (M(0), V @ M(1))(A(25))
= YHoms, v, (g) (M(0), V@ M(wA)) (wA)(2))
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by the formula

Vod o (k151 Vosk—1851(2) 51 V,s1h V,A
0," = Oy, 0:--0 ®S2 O@S1 .

Lemma 4.7.2. The operator @1‘;’)‘ does not depend on the choice of the reduced
decomposition.

Proof. Using (4.5.2) and (4.4.2) we obtain that for u € X~ sufficiently large we have

SPyy © OVt =n(w, x, w) - wYA oSp,

w, i1

where

[T 0.w(@) <0.1(6)>0(— M @ (= (@) -+ (—pu(&) — (@) + 1)
a0, <0.1.@) <0 (—1) @ (= (@) — A(@) -+ (—p(@ + 1)

n(w, A, u) =

The right-hand side is independent of the reduced decomposition; hence we conclude by
Corollary 4.3.4. O

By construction and Lemma 4.7.1, our collection of isomorphisms satisfies condition
(2.5.4) for all V in Rep(G), » e X and x,y € W.

4.8. The relation to the operators ¢

As explained in § 3.1, for any V in Rep(G) and A € X there exists a canonical isomorphism
of graded Sp-modules

(Ve P2,(2),)° = (voMm)”.
Using Lemma 4.3.1 we deduce a canonical isomorphism
(VP2 (2),)¢ = Homs, v, (g (M(0), V@ M(2)). (4.8.1)
The following result is clear from the definitions.

Lemma 4.8.2. Let us have V in Rep(G), L € X, and L C G a Levi subgroup containing
T. The following diagram commutes:

4.8.1)
Homs,, v, (g) (MY (0), V @MY (1)) — (VO WTh(26):)°¢
Rz;:j |
L L 4.8.1) o L
Homs,, v, (1) (M (0), Vi, @ ME (1)) .~ (Vi @ W2 (Z1)1)"

In the following proposition we assume that the vectors f, of §3 are the same as the
vectors fy of the present §4.
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Proposition 4.8.3. For any V in Rep(G), » € X and w € W the following diagram

commutes:
@ G 4.8.1)
(VR MZh(2))) = Homs,, v, (g)) (M(0), V @ M(M))
<1>,,V,’Al j@ﬁ-k
w (wA) G “.8.1) w
(VR “HDp( 2 ) w2) — Homs,, v, () (M(0), V @ M(wh)).

Proof. By (2.5.3) and (2.5.4) it is enough to prove commutativity when w is a simple
reflection.

By Corollary 3.3.3, Lemma 4.6.5 and Lemma 4.8.2; our constructions are compatible
with restriction to a Levi subgroup. Using Lemma 4.6.4, we deduce that it is enough to
prove the claim when G has semisimple rank 1. In this case it is proved in Lemma A.4.1
below. O

It follows from this proposition that for any V in Rep(G), A € X and w € W there
exists a unique isomorphism

Qyt s (VeMw)® S (v e Mwi)”

which corresponds to @g’)‘ under the left-hand isomorphism of Lemma 2.4.1, and to @x’)‘
under the right-hand isomorphism of Lemma 2.4.1.

5. The geometry of the Grothendieck—Springer resolution

5.1. The W-action on the regular part of §

In this section we are interested in the geometry of the Grothendieck—Springer resolution
d (see §2.4). We have a standard commutative diagram

T *
— 9

g

I

t—— /W =g")/G
where the right vertical and the lower horizontal maps are the natural quotient maps, &
is defined in §2.5, and § is defined by (g xg n) = njp € (b/u)* = t*.

It is well known that there exists an action of W on g; which commutes with the
natural G-action, and such that the restrictions of 7 and § are W-equivariant, where W
acts naturally on t* and trivially on g* (see e.g. [11, Proposition 1.9.2]). We denote the
action of w by 6 : §r — §r. In the whole section we will use [11] as a convenient reference
for the properties of this action, though much of this material was known before.

Recall that for any A € X we have a line bundle Og(1) on § and its restriction O, (1)
to gr.

Lemma 5.1.1. For any we W and A €X, there exists an isomorphism of G x
G -equivariant line bundles

(0,-1)" 05, (M) (A (20)) = O, (wh) (W) (26)).
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Proof. It is enough to prove the isomorphism when w = s, is a simple reflection. Next,
by the compatibility of 0:},1 with tensor products (and passing to a simply connected
cover if necessary), it is enough to prove the isomorphism when A(&) € {—1, 0, 1}. Finally
using duality one can assume that A(@) € {—1, 0}. In these cases the isomorphism follows
from [11, Lemma 1.11.3(2) and Remark 1.11.7(2)]. O

5.2. Construction of the operators o

The isomorphism of Lemma 5.1.1 is unique up to a scalar since we have
L@@, 05)%Cn =1 @@, 05)9*C =C

(see e.g. equation (5.2.2) below). We will need to fix a normalization of this isomorphism,
using our choice of vectors fy. Let us denote by no € g* the element which is zero on t
and on any gg where g is not opposite to a simple root, and such that no(fy) = 1 for any
simple root a. Then (1 X g 19) € gr, and this point is W-invariant. For any 1 € X, Oz(})
is the sheaf of sections of the line bundle

L) =G xp ((g/w)* x C-3)

over g. The fiber of this line bundle over (B/B, 19) can be canonically identified with
C through the morphism x — (1 x g (19, x)). Then there exists a unique isomorphism of
G x Gy-equivariant line bundles

01 05, ((A2P)) = O, (WA (WA)(25)) (5.2.1)

whose restriction to (B/B, 1g) € §; is id¢ via the identifications above.

Let jr:gr <> @ be the inclusion. As the codimension of g\ g; in § is at least 2 (see
e.g. [11, Proposition 1.9.3]), for any A € X the morphism Og(X) — (ji)«Og, (1) induced by
adjunction is an isomorphism (see [34, Theorem 11.5.(ii)]). We deduce that the restriction
induces an isomorphism

@, 05(0) — TG Og50). (5.2.2)

As 6,,-1 is an isomorphism, the adjunction morphism O (A) — (8,,-1)+(0,-1)*Of, () is
also an isomorphism; in particular there is a canonical isomorphism

TG 05,(0) = TG 0% ,050).

Putting these remarks together with isomorphism (5.2.1), we obtain for any w € W and
A € X a canonical isomorphism of graded S(t)-modules and G-modules

L@ 05 (A28) — "T@ O5(wh)(wh)(24)). (5.2.3)

Hence for any V in Rep(G) we obtain an isomorphism of graded S(t)-modules

olt (VOTE 0500)° (h28) > “(VRTE. O5(wi)’ (wh)2p)).

By construction, this collection of isomorphisms satisfies relations (2.5.6).
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As explained above, for any u € X we can describe I'(g, Og(n)) as the space of sections
of the line bundle £(u) over §. In particular, for any 7 € (g/u)* there exists a unique
morphism

evf; : I'(g, O5(n)) - C

(“evaluation at (I, 1)”) such that if f € I'(g, Og(n)) is considered as a section § — L(u)
we have

fxgn) =1xg @ evy(f).

With this definition, (5.2.1) can be characterized as the unique isomorphism of G x
C*-equivariant line bundles (8,,-1)*Og, (A){A(2p)) = Oz, (wA){((wAr)(2p)) such that the
following diagram commutes:

F@ 05(0) 629 I@. O5(wh))

(5.2.4)

A
no C no
In fact the diagram commutes by construction. To prove unicity it suffices to prove that
the morphism evi‘)0 is non-zero. However, if A is dominant, this property follows from
the fact that Og(A) is globally generated (which itself follows from the similar claim for
), and the general case follows from commutativity of (5.2.4) (and the fact that every
weight is W-conjugate to a dominant weight).

Below we will need a refinement of this characterization in the case w = s, for a simple
root o. We denote by n, € g* the element which is zero on t and on any gg with g # —«,
and such that ny(fy) = 1.

Lemma 5.2.5. When w = sy, (5.2.1) is the unique isomorphism of G x C*-equivariant
line bundles (65,)*Og, (M) (A(20)) = Of, (sa1){(sa1)(20)) such that the following diagram
commautes:

L@ 05(0) 629 L@ O5(51))

A Sar
ev,}a %

C

Proof. As for the similar claim concerning diagram (5.2.4), we only have to check
that the diagram commutes. In this proof we denote the isomorphism (5.2.3) by
U 1 T(g, O5(1)) 5@, Oz (sar)). Choose a coweight /i € X, (T) such that a(ft) = 0 and
B(ir) > 0 for all simple roots B # a. Then lim,_,¢ ft(z) - no = Ng, so it is enough to prove
that the following diagram commutes for all z € C*:

F@ 0500) i L@ O3(sa)

A Sah
m A%z)m
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However for v € X and f € I'(§, Og(v)) we have
F (1% Gil2) - 10)) = £Gi(2) x5 10) = 1)+ (G ) xp10))
= i@+ (1% (0, v}, (™) - 1)) = () X (0, ¥}, (=™ - 1)) )
= (1 x5 (3@ 10, "7 vl (i) - ).
On the other hand we have
F(1 x5 i@ 10) = (1 x5 (1) 10, o5 ) (),
which implies that

eV oy (F) = 2P evh (2™ - ).
Hence we obtain

o @ f) = 2P ek (U@ @ ) = 2P evh (1T - ) = eV ()

since (sqA)(ft) = A() and ¥y is G-equivariant. This finishes the proof. O

ev

5.3. Restriction to a Levi subgroup

Fix a subset I of the set of the set of simple roots, and recall the notation of §3.3. We
can consider the Grothendleck Springer resolution T associated with L, and there exists
a natural morphism wL G X[ =G X B ([/uL)* — ¢ induced by the 1dent1ﬁcat10n [* =
(g/(nL &) nL))* In particular for L = T we have f = t*, and the morphism w G xrt=
G/T x t* — §identifies with the morphism denoted as “a” in § 2.4. The following diagram
commutes by construction:

wf
- - N (5.3.1)
Gxpt——— = Gx [ ——=
Gx of wLG

We have (wL )y 1@ C G xp. [r (Note that this 1nclu810n is strict in general.) This open
subset is Wy -invariant (for the Wp-action on G XL [r induced by the action on [r) and
the morphism (wL )~ 1(‘ D = o 1nduced by wL is Wr-equivariant.

Adjunction for the morphism wL induces an injective morphism

I 05(0) < (G x. T Og, 1) = Ind§ (T[T, Oy(1))). (5.3.2)

For simplicity, in the next statement we forget about the gradings (i.e. the C*-actions).

Lemma 5.3.3. The following diagram commutes for any V in Rep(G), A € X and w € Wy,
where vertical maps are induced by (5.3.2):

VA

(Verg ozo)° v v (V@T @G, O5(wi))®
~ ot ~
(Vie @ T (T, 01()))" (Vi @ T (T, Oy(wa)) "
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Proof. It is enough to prove the result when w = 54 is a simple reflection associated with
a simple root o € I. Let slp o C g be the Lie subalgebra generated by g, and g—_o, and
consider the open subset

Gu—r:={(gxn) €| Nisly o #0} C g

By [11, Lemma 1.9.1] we have §; C §u—r, and it follows from [11, Lemma 2.9.1] that
the action map 0y, is the restriction of an isomorphism (denoted similarly) 6, : Ga—r 5

Go—r- Moreover, isomorphism (5.2.1) is (a shift of) the restriction of an isomorphism of
G x C*-equivariant line bundles

cO* (65" Ogus (V) = O, (5 (—21()).

The same assertions are of course true for the Levi subgroup L, and we obtain a similar
isomorphism gsLm’)‘.

The morphism wLG restricts to a morphism G x LTa_r — Go—r (denoted similarly) which
satisfies wLG o (G xp, Hsi) = Og o wLG. What we have to prove is that the two isomorphisms

@) O, Indf (cE™) : (G xL 0L Ogy 1, (W) = Ogy 1, (k)
coincide. As both isomorphisms are G x C*-equivariant, and as
TG %1 Tar Ogy, 7, ) TG x 104, " =C,

we know that these isomorphisms coincide up to multiplication by a scalar ¢ € C*.
Consider the following diagram:

I'@, Oz(») - '@, Og(sa)))

(5.3.2) (5.32)

e TOXT 06,700 — TG 1T O i) ) e
’evi‘h‘f l L/eviﬁ;)"L
C C’
(5.34)

where the upper horizontal morphism is induced by gg’)‘, the middle horizontal morphism
is induced by Indg( S‘SI;’)”)7 and the lower vertical maps are induced by evaluation at
(1 x g, na). We know that the upper square commutes up to multiplication by ¢, that the
lower square and the exterior square both commute and finally that the morphism evi]‘f

is non-zero (see Lemma 5.2.5 and its proof). We deduce that ¢ = 1, which finishes the
proof. U

5.4. The relation to the operators ¢

Recall that if A € X, there is a natural morphism M2, (2); — I'(g, Og(1)) sending 7 to
0 (see e.g. §3.5).
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Proposition 5.4.1. Let V in Rep(G), A € X and w € W. The following diagram commutes,
where vertical maps are the natural morphisms sending i to 0:

V.
Dy

(Vo M2h(2,)° (V@ DG (X))
(VorQg 050))° —2—— (v &', O5wi)))°.

Proof. First, using relations (2.5.3) and (2.5.6) it is enough to prove the lemma when
w = 5o is a simple reflection. Then using the compatibility of our constructions with
restriction to a Levi subgroup (see Corollary 3.3.3 and Lemma 5.3.3) and the injectivity
of morphism (5.3.2), it is enough to prove the lemma when G has semisimple rank 1
(with unique simple root «). In this case it is proved in Corollary A.5.2 below. O

Remark 5.4.2. By Lemma 3.5.2, the vertical arrows in the diagram of Proposition 5.4.1
induce isomorphisms

(Ve P7,(2),)° /iy S (VTG 050))°,

G ~ G
(VP2 (2)52)" /(h) — (V @T @, Og(s1)))".
Hence the proposition implies that the operators au‘)/  can be completely recovered from

the operators ®Y-* (or equivalently the operators ®)-*; see Proposition 4.8.3).

5.5. Geometric interpretation: W-action on the regular part of 7*.%2

The results in this subsection will not be used in the rest of the paper.

Consider the natural morphism T* 2" = G xy (g/w)* — g*, and denote by (T*Z"); the
inverse image of the open subset of regular elements in g*. Note that the G x T-action
on 2 defined in §2.4 induces an action on T*Z  which stabilizes (T*Z");, and also a
moment map T*%2 — t*.

The existence of the collection of isomorphisms (5.2.1) has the following quite surprising
consequence. This construction will be reinterpreted and studied further in [24].

Proposition 5.5.1. There exists an action of W on (T*Z"); (which depends on the choice
of the ey ), denoted as ©, which satisfies the following properties:

(1) for any w € W the morphism w ©® (=) is G-equivariant;

(2) forx € (T*Z ) andt € T we have wO (t-x) = w() - (w O x);

(3) the natural morphism (T*Z )y — G is W-equivariant;

(4) the restriction (T*Z ) — t* of the moment map is W -equivariant.

Proof. The morphism p; : (T*2"); — §; is a T-torsor; in particular it is affine. Hence
to prove the proposition it is enough to construct a collection of isomorphisms of
G-equivariant sheaves of algebras

O ((P)«O+27),) = (P)«O(r* 2,
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for all w € W, which are compatible with composition in W. Now we have a natural
isomorphism of G-equivariant sheaves of algebras

(P02, = P 05,1,
reX
and hence it is enough to construct a collection of isomorphisms of G-equivariant line
bundles
(Qw—l)*O’g‘r (A) = Og, (wi)
compatible with the tensor product and composition in W. However one can easily check
that the collection constructed in (5.2.1) satisfies these requirements. O

6. A reminder on the Satake equivalence

In §§6-8 we let G bea complex connected reductive group. We choose a maximal torus
T C G (with Lie algebra f), and a Borel subgroup B C G. We let U (resp. U~) be the
unipotent radical of B (resp. of the opposite Borel subgroup), with respect to T. We set
X := X,(T), and let X+ C X be the subsemigroup of dominant coweights of T (where
positive roots of G are those appearing in Lie(lvf)). We also set S := S(#)[A], considered
as a graded algebra where elements of ¥ and 7 are in degree 2. Finally we denote by
20 € X*(T) the sum of the positive roots.

6.1. Satake equivalence

Recall (see §2.2) that the affine Grassmannian attached to G is the ind-variety
Grg = G(K)/G(0)

(equipped with the reduced scheme structure). This ind-variety is equipped with an action
of the group scheme G(0). Recall (see [22, 35]) that the category

Pervé(o)(Gré)

of G(O)-equivariant perverse sheaves on Grg (with coefficients in C) can be endowed
with a natural convolution product * which makes it a tensor category, and that the
functor
Fe:=H(Grg, —): Pervé(o)(Gré) — Vect(C)
(where Vect(C) is the category of finite dimensional C-vector spaces) is a tensor functor.
(As usual, perverse sheaves on Gry are assumed to be supported on a finite union of
é(O)—orbits.) We let
G := Aut"(Fx)

be the C-group scheme of automorphisms of this tensor functor. It is well known (see [22,
35]) that G is a (complex) connected reductive group, with root datum dual to that of

v

G. Moreover, the functor F lifts to an equivalence of tensor categories
S¢ : Pervé(o)(Gré) — Rep(G)

known as the geometric Satake equivalence.
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In §2.2 we have defined the embedding X = Grj < Gr, the points \ (for A € X), the
orbits Grg (for A € XT), the semi-infinite orbits ¥, (for A € X), and the morphisms iy
and 1.

Using the identification of Gry with X, the group T (of automorphisms of the tensor
functor F;) is identified with the torus Homz (X, C*). In particular, the character lattice
X*(T) is canonically identified with X; hence the category Rep(T) identifies with the
category of finite dimensional X-graded vector spaces. Define the functor

F*:= @HP (T, 1,(-)) : Pervg ¢, (Grg) — Rep(T),
reX

By [35, Theorems 3.5 and 3.6], we have a canonical isomorphism
For” o F* = Fe, (6.1.1)

where For! : Rep(T') — Vect(C) is the forgetful functor. Moreover, F¥ is a tensor functor,
and (6.1.1) is an isomorphism of tensor functors. So F* is the composition of Sg with a
tensor functor Rep(G) — Rep(T) compatible with forgetful functors. By [17, Corollary
2.9], the latter functor is induced by a group morphism 7 — G. It is proved in [35]
that this morphism is injective, and identifies T with a maximal torus of G. Hence from
now on we will consider T as a subgroup of G. By construction, if A € X and if F is in
Perv ) (Grg), we have a canonical isomorphism of C-vector spaces

WO (5,.17) = (557, (612)

The choice of B C G determines a set of positive roots for G, and hence also a set of
positive roots for G. We denote by B the Borel subgroup of G containing T associated
with this set of positive roots.

6.2. Equivariant cohomology

For the results stated below, see e.g. [33, §1].

For any complex algebraic variety X endowed with an algebraic action of an algebraic
group H, recall that the equivariant cohomology (resp. Borel-Moore homology) is defined
by

Hyy (X) i= Extp, (x)(Cx. Cx).  HI (X) = Bxtyy "4 (Cy, Dy),

where Dy (X) is the H-equivariant derived category of X, Cy is the (equivariant) constant
sheaf on X and Dy is the (equivariant) dualizing sheaf. Then Hj (X) is a (graded
commutative) algebra for the Yoneda product (or cup product) and H¥(X) is a right
module over this algebra, again for the Yoneda product. If X is smooth, then this module
is free of rank 1.

Let now K be a torus, with Lie algebra t. Let A € X*(K), and consider the
one-dimensional K-module C;, considered as a K-variety. Consider the K-equivariant
morphisms

oty > C 5 {py)
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(where ¢(pt) = 0), and the induced morphisms in equivariant homology

u (r*)~!
HX (pt) —— HE ,(C) —=HEX , (pv).
which are morphisms of right Hy (pt)-modules. Since the right H% (pt)-module HEX (pt) is
free of rank 1, there exists a unique element c(1) € H%( (pt) such that the composition

above is the action of ¢(1), and ¢ : X*(K) — H¥% (pt) is a morphism of Abelian groups.
There exists a unique isomorphism a : £* = H% (pt) such that the following diagram
commutes:
X*(K)
S
& - H (o),

~

where d is the differential. Moreover, this isomorphism extends to an isomorphism of
graded C-algebras

S(E) = Hy (pv), (6.2.1)

where in the left-hand side £ is in degree 2. We will use this isomorphism throughout
the paper without further details. In particular we can make the identification

H (p) = Sp.  Hi(pt) = S(1),

where /i € Sj; corresponds to the natural generator of Héx (pt) = C.

If V is any K-module, with K-weights A1, ..., A, (counted with multiplicities), then
if as above ¢ denotes inclusion of 0 and 7 projection to 0, via isomorphism (6.2.1), the
composition
(7‘[*)71

(V) ——=HEK , (pv)

H.K (pt) —— HX t2n

e+2n

identifies with the action of d(A1)---d(A,;). Note that the action map induces an
isomorphism of Hy (pt)-modules Hé( (V) ® Hy (pt) = HX(V), and that the forgetful map
HX (V) — Hy(V) is an isomorphism. Hence we obtain a canonical isomorphism HX (V) =
Ho(V) ® Hy (pt). The Borel-Moore homology Ho(V) contains the canonical class [V],
which can therefore be viewed as a generator of HX (V). Similarly we have the canonical
class [pt] € HX (pt). Then we have m*[pt] = [V], and hence the morphism ¢ has the
property that

u(lpth =[V1-d1) - - d(An).
We can now give a proof of Lemma 2.2.1.
Proof of Lemma 2.2.1. To fix notation we treat the case of A; the case of T is similar.
Let F in Pervé(o)(Gré) and A € X.

(1) Using the Leray—Serre spectral sequence for an appropriate fibration, there exists
a spectral sequence which computes H’ (ii}' ) and with Ej-term

EDT = HE (py @ HY (i} F) (6.2.2)
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(see e.g. [33, Proof of Proposition 7.2]). It is well known also (see [30, Theorem 5.5] or
38, Corollaire 2.10]) that the ordinary cohomology H*(i}F) is concentrated in degrees
of constant parity. Hence the spectral sequence (6.2.2) degenerates at E,. It follows that
there exists a non-canonical isomorphism of graded Sj-modules

H, (i) F) = Hy (pH) @ H (i} F).

In particular, the left-hand side is free over S; = H’, (pt).

(2) By [35, Theorem 3.4], H'(Tx,t)!\]:) is concentrated in degree A(20). Hence the
same spectral sequence argument as in (1) shows that H’, (T;, . F) is free over H*, (pt).
Moreover, the morphism

Hy (Th, 1, F) — H (T, 4,.F)
induced by the forgetful functor is an isomorphism in degree A(20). Hence we obtain

(6.1.2) .
an inclusion (Sé(}—))x >~ H*20) (g, ti]-') — H, (T, ti}"). Using again the spectral

sequence argument, the morphism

Hy () ® (Se(FP), — Hy(Ta 1, F)
induced by the cup product is an isomorphism of H’ (pt)-modules, which finishes the
proof. O

We deduce the following result from Lemma 2.2.1.

Corollary 6.2.3. For A € X and F in Pervé(o) (Grg), the morphism Kt}(ipA is injective.

Proof. By the localization theorem in equivariant cohomology, the morphism
Qn ®s, Hy (5, F) = Qu ®s, Hy (T4, i3 F)

induced by (¢;.): is an isomorphism (since \ is the only A-fixed point in T;). As H’, (ii]—')

is free over Sy (see Lemma 2.2.1(1)), we deduce that (¢,); is injective, which implies that

top . .o s .
K]_-’)\ is also injective. O

We will also need the following result, which again follows from the fact that the

spectral sequence (6.2.2) degenerates.

Lemma 6.2.4. Let F in Pervé(o)(Gré) and X € X.
The forgetful morphism H’, (i!x]:) — H'f (ii}") induces an isomorphism

Hy @G F) ) (h-HyGF) = HLGP).

6.3. Restriction to a Levi subgroup

Below we will make extensive use of the geometric description of the functor of restriction
to a Levi subgroup, due to Mirkovi¢ and Vilonen [35] in the (crucial) case of the maximal
torus, and to Beilinson and Drinfeld [6] in the general case.
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Let PC G bea parabolic subgroup containing B, and let L C P be the (unique) Levi
factor containing T. Let also P~ be the opposite parabolic subgroup. Note that T is also
a maximal torus of L, and Bv := BN L is a Borel subgroup containing T. We have dual
groups G and L defined as in §6.1. Consider the diagram

q};_ llg_

Gry GrI;, Gré (6.3.1)

L

where g 5_ is induced by the projection P~ — L whose kernel is the unipotent radical of
P~, and ip- is induced by the embedding P~ < G. Define the functor

/mg = (qp_)x0(ip-) : DE(Grg) — DE(Gr;),

where DE (Gré) is the derived category of constructible complexes of C-vector spaces on
the ind-variety Grg which are supported on a finite union of é(O)—orbits, and similarly
for DE(GFZ). The functor ’ERI(:; does not map the subcategory Pervé(o) (Grg) of DE’(Gré)
into the subcategory Pervi(o) (Gry) of DE(GFL); however, the following modification of

this functor has this property.
Recall that the connected components of Gr; are parameterized by the quotient

X/(Zkz); see [6, Proposition 4.5.4]. (Here ki denotes the coroots of L, and Zﬁi is

the lattice that they generate). If M is in DE(GI’L) and x € X/(Zléi), we denote by
M, the restriction of M to the corresponding connected component. Define the functor

9%? : DE(GFG) — DE(GrL) by the formula

"M = P (R [xQpg—20)].
X€X/(ZR;)

where pgz and p; are the half-sums of positive roots of G and L. It is proved in [6,

Proposition 5.3.29] that D‘ig restricts to a functor

=
@

i Pervé(o)(Gré) — Pervi(o)(GrL).

Moreover, it is explained in [6, § 5.3.30] that this functor is a tensor functor.
Using the base change theorem one can easily construct an isomorphism of tensor
functors

~ G.
F(V; — Fi o %Z ;
see e.g. [1, §4.1] for details. We deduce a morphism of algebraic groups
L = Aut*(F;) — Aut*(F; omié) = Aut*(Fg) = G

It is known that this morphism is injective, and identifies L with the Levi subgroup of G
whose root system is the system of coroots of L. Hence we will consider L as a subgroup
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of G. By construction the following diagram is commutative:

RG
Perve o, (Gre) L Perv; o,(Gr)
Sal lSL
V>V
Rep(G) Rep(L).

Note that by the constructions of § 6.1 we have identified T with a subgroup of L, but
also with a subgroup of G. These identifications are compatible with the identification
of L as a subgroup of G; see e.g. [1, §4.1]. Moreover, by the base change theorem there
exists a canonical isomorphism of functors
= RO,

¢ (6.3.2)

i)"tjéom

Q)<

6.4. Restriction to a Levi subgroup: cofibers

Let P, P~, L be as in §6.3. Let also A € X and F in Pervé(o)(Gré). We want to compare
the Sp-modules

Hy (G'F) and Hy ((D'RE@).

where if and i){: are the inclusions of N in Grs and Gr; respectively. Let tf be the
inclusion of (g 15_)_1(X) in Gré. Then by the base change theorem there is a canonical
isomorphism of graded Sj-modules

Hy (G598 () = Hiy (9571 00 (5 F) (b2p1 — 276)).

As {\} is closed in (q;,_)fl(k), the (i, )-adjunction for the inclusion {\} < (ql;,_)*l()»)
induces a canonical morphism of Sj-modules

H (G9)'F) — Hi (988 () (256 — 260)). (6.4.1)
If P =B (and so L = T) we have canonical isomorphisms
Hiy ()RS (F)) = Hy (4 F) (~1.266)) = (S¢(F)), ® S

Via this isomorphism, (6.4.1) identifies with the morphism /c;(_zpk defined in (2.2.3).
Moreover, one can easily check that the following diagram is commutative:

G,.top
KF

Hy (91 F) Hiy (DR () (266 = 21)) ———— (S6:(F)), 8 S1(1(256))
KF

_—
(6.4.1)

(where for simplicity we neglect shifts of morphisms). As the morphism é/ct}qi is injective

(see Corollary 6.2.3), we deduce that (6.4.1) is also injective.
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We will also need the following result, which is clear by construction.

Lemma 6.4.2. Let 1 € X and F in Pervé(o)(Gré). For any w € Wi C Wg the following
diagram commutes:

He, (6)' ) — 20 He (D' ()
éaf,xt li”mg(}-) A
H () F) — = H (G RE ().

6.5. Construction of root vectors

There are several ways to construct simple root vectors in g := Lie(G) out of the
equivalence S using [22] and [35]; see e.g. [5, 42]. Here we recall a simple version essentially
explained in [40], which will be sufficient for our purposes.

Let o be a simple root. Let P* be the minimal parabohc bubgroup of G containing B
associated with &, and let L* be the Levi factor of P* containing 7. Then as explained
in §6.3, the “dual” group L associated with L? can be canonically identified with the
Levi subgroup of G whose Lie algebra is g_, ® t® gq, so to construct a root vector in gy
it is enough to construct a root vector in the a-weight space of the Lie algebra [* of L*.

Let Gr‘ia be the connected component of 0 in Gr;,. Then the subcategory
PervLa(O) (Gr?a) of PervLa(O)(Gria) is closed under convolution. If we denote by M¢ the
group of automorphisms of the restriction F%a of the fiber functor Fj, to this subcategory,
then by definition we have a natural morphism L% — M%, which induces a morphism
[ - m® whose restriction to a-weight spaces is an isomorphism. Hence to construct a
root vector in g4 it is enough to construct a root vector in the a-weight space of m®.

Now let £ be the positive generator of the Picard group of Gr%a. (See [40, §1.4] or [5,
§3.3] for the explicit construction of this line bundle.) The cup product with the first
Chern class of £ defines an endomorphism of the functor FOLQ. By the arguments of [42,
§ 3.4], this endomorphism defines an element in the a-weight space of m®, which finishes
the construction.

This construction of the root vectors is clearly compatible with restriction to a Levi
subgroup in the sense of §6.3.

7. Proofs of the main results

In §§ 7-8 we will use the results of §§ 3-5 for the datum T C B C G constructed in §6.1,
and for the root vectors constructed in §6.5. Note that all the objects which are denoted
by the same symbol in §§3-5 and in §6 (e.g. X, XT, S;) get identified canonically.

7.1. Preliminaries on Verma modules

Recall the Verma modules V(u) defined in §4.1.
Let p € t*, and assume that for all @ € R, u(a) ¢ Z. We claim that for v € t* we have

Homy () (V(v), V(1)) = C. (7.1.1)
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Indeed, if there exists a non-zero morphism V(v) — V(u), then by [25, §3.4], v must be
in Wi, e, where Wi, = {w € W | w(u) — u € ZR}. However, by [25, Theorem 3.4] and
our assumption on u, Wy, = {1}, which implies (7.1.1).

If A € X, then the t-weights of the U (b)-module V(u + 1) ® C_,, (where the U (b)-action
is diagonal, the action on V(u + A) being the restriction of the U(g)-action) are in X, and
the action of U (u) is locally finite. We deduce that the U (b)-action can be integrated to
a B-action.

Lemma 7.1.2. Let u € t* be such that u(a) ¢ Z for all « € R, and let A € X. Then there
ezists a natural isomorphism of B-modules

Vip+21)®C_, = Ind3().

Proof. First, let us explain how this morphism in constructed. The projection of
t-modules V(u +A) — C,q, (with kernel V(u+2)_) induces a morphism of T-modules
V(u+21)®C_,, = C,. By Frobenius reciprocity we deduce a morphism of B-modules as
in the statement of the lemma.

Now we prove that this morphism is injective. For this, it suffices to prove that
its restriction to the socle of the left-hand side (as a B-module, or equivalently as a
U(b)-module) is injective. We claim that this socle is isomorphic to C,, and has a
basis consisting of the vector 1,4, ®1 € V(u+21) ® C_,. Indeed, this is equivalent to
saying that the socle of V(u+ 1) is isomorphic to C,4,. However, if there exists a
non-zero morphism C, — V(u + A) for some v € t*, then we obtain a non-zero morphism
of U(g)-modules V(v) - V(i +2). By (7.1.1), this implies that v = u+ A, proving the
claim and the injectivity of the morphism.

Now, it is easy to see that the T-modules V(u+21)®C_, and Ind?(k) have the
same weights, with the same (finite) multiplicities. Hence our morphism must be an
isomorphism. [

Below we will use the standard order on t*, defined by v < w iff u —v € Z>oR™.

Let o be a simple root, P* C G the corresponding minimal parabolic subgroup
containing B, and L% the Levi factor of P% containing T. Let also B% := L* N B, and
b := Lie(B%). Let u € t* be such that /L(B) ¢ Z for any B € R~ {£a}. We claim that for
v € t* we have

C ifv=u;
Homy g)(V(v), V() =1 C ifv=s,0u and v < p; (7.1.3)
0 otherwise.
Indeed, if there exists a non-zero morphism V(v) — V(u) with v # w, then, with the same
notation as above, we must have v € Wy, e n and v < p. Again by [25, Theorem 3.4], this
implies that v = 5, e . On the other hand, if v =5, ¢ u and v < u, then the v-weight
space of V(i) is one-dimensional, and cousists of singular vectors by [25, Proposition 1.4].

In the following lemma, for u € t* we denote by V¥(u) the Verma module associated
with w for the reductive group L% with Borel subgroup B.
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Lemma 7.1.4. Let u € t* be such that ,u(/é) ¢ 7Z for all B € R~ {xa}, and let A € X. Then
there exists a natural isomorphism of B-modules

Vip+2)®C_, — Indbe (V¥ (n+21)®C_y).

Proof. First, let us explain the construction of this morphism. As in the proof of
Lemma 7.1.2, V(u+1) ® C_,, has a natural structure of a B-module, and V*(u+21) ®
C_,, has a natural structure of a B*-module. The subspace of V(1 + 1) ® C_,, spanned
by weight spaces whose weight is not in A+ Z«a is stable under the action of B¢,
and the quotient by this subspace is clearly isomorphic to V*(u+ 1) ® C_,,. Hence we
have constructed a morphism of B*-modules Vv +21)® C_,, — V*(u+21)®C_,,.. Using
Frobenius reciprocity we obtain the desired morphism of B-modules.

Now we prove that this morphism is injective. As in Lemma 7.1.2, it is enough to prove
that its restriction to the socle of the left-hand side is injective. But it follows from (7.1.3)
that this socle has dimension 1 or 2, and injectivity is clear by construction.

Finally, one can deduce surjectivity as in the proof of Lemma 7.1.2 by comparing
characters. O

7.2. Generic and subgeneric situations: the classical case

Let ¢ and (g/u)} be the sets of elements in t* and (g/u)* which are regular semisimple
(as elements of g*). Then (g/u)j = (g/u)* x¢ tf, and the action of B on (g/u)* induces
an isomorphism of B-varieties

B/T xt = (8/w} (7.2.1)

where the B-action on the left-hand side is trivial on , and given by left multiplication
on B/T (see e.g. [27, p. 188]). In particular, we deduce that for any A € X there is a

natural isomorphism of B-modules
Clt] ®sco S(g/w) ® C—y = Clt5] @ Ind7 (1) (7.2.2)

Now let o be a simple root, and let P¥, L%, B® be defined as in § 7.1. Let also [* be the
Lie algebra of L%, and u® := [* Nu. Let t__; be the complement in t* of the collection of
hyperplanes defined by the equations ,é for B € R~ {%a}. Let also (g/w)}_., = (g/u)* x¢
€ and ((F/u®)k_ o= (% /u*)* xe ..
Lemma 7.2.3. The (coadjoint) action of B on (g/w)* induces an isomorphism of
B-varieties

B xpe (IU/u)5 g = (/W

Proof. Both varieties under consideration are smooth complex varieties; hence it is
enough to prove that the map is bijective. We use the Killing form to get identifications
(g/w* = b and (I*/u¥)* = b* (where b* := Lie(B?%)), and define by_rs, b%_. in an obvious
way.

First, let x € by_rs, and consider the Jordan decomposition x = s +n. There exists
u € B such that u-s € t, and we must have u -s € ty—rs. Thenu-n € Zy(u-s) C b%, which

implies that u - x € b§_ ;. This proves surjectivity of our map.
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Next, we prove injectivity. Let u1, u2 € B and x1, x € b5 _,,, and assume that uq-x1 =

us - x2. Consider the Jordan decompositions x; = s1 +n1, xo = sp +ny, such that u; -s1 =
uy - s5. Conjugating if necessary x; by an element of B¢ (and modifying u; accordingly),
one can assume that s; € t,_s. Then the fact that (uz_lul) -s1 = 852 € b¥ implies that
u;lul € B%. We deduce that

-1 -1
(u1 Xpe x1) = (u2(uy u1) Xpe (U u2)-x2) = (U X g X2)

in Bxpgeb which finishes the proof. O

o
oa—T18s?

In particular it follows from Lemma 7.2.3 that for any A € X there is a natural
isomorphism of B-modules

Clth ] ®st S(g/w) ® C_;, = Indfa (C[t}_ ] ®s6) S(*/u®) ® C_;). (7.2.4)

Remark 7.2.5. The same arguments as in Lemma 7.2.3 can be used to prove the following
more general claim, which will not be used in this paper. Let I be a set of simple
roots, and consider the associated Levi subgroup L! containing T. Let B = BNL/,
u =Lie(UNL"). Let t;_,, be the complement in t* of the collection of hyperplanes
defined by the coroots associated with roots in R~ ZI. Let (g/w)j_, = (g9/w)* x ¢ t,
and similarly for (If /u! )7 _s- Then the coadjoint action of B induces an isomorphism of

varieties B x gr (I /ul)_ - (9/W] -

7.3. Generic and subgeneric situations: the quantum case

Set a := Lie(A) = t x A'. We will identify a* with t* x A in the natural way. We denote
by Claj] the localization of S with respect to the collection {&¢ +nh |« € R, n € Z}. If
(v, a) € a*, we denote by Cg, (v, a) the one-dimensional S;-module associated with (v, a).

Lemma 7.3.1. For any X € X, there exists a natural isomorphism of B-modules and
Clai]-modules,
ClaX]®s, M(\) — Cla]®IndE(—1).

Proof. Recall that there exists a morphism of T-modules and Sp-modules MY (A) —
M7 (1) =S ® C_;; see (4.6.1). Using Frobenius reciprocity we deduce a morphism as in
the statement of the lemma.

First, we claim that for any (v, a) € a* such that v(&) ¢ aZ for all « € R, the induced
morphism of B-modules

Cs, (v, @) ®s, M(%) — IndZ(-2) (7.3.2)

is an isomorphism. Indeed, if a = 0, then v € t}, and morphism (7.3.2) can be identified
with the specialization of isomorphism (7.2.2) at v; hence we are done. Now, assume
that a # 0. Then there is an algebra isomorphism Ux(g)°P ®cr; Co = U(g) which maps
X €9 C Un(g) to —ax (see §4.2). Using this isomorphism, the left-hand side of (7.3.2)
identifies with the U (b)-module V(—%v —A—p)® (Calv+p‘ By our assumption, —%v —p
satisfies the assumptions of Lemma 7.1.2, and hence (7.3.2) is an isomorphism in this
case also.
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Now we deduce that our morphism of C[af]-modules is an isomorphism. As this
morphism is B-equivariant, it is sufficient to prove that its restriction to each T-weight
space is an isomorphism. It is easily checked that for any A € X the A-weight spaces of both
modules are free C[a}]-modules, of the same rank. Choose a basis of each of these spaces,
and consider the determinant dj € Cl[a’] of the restriction of our morphism in these bases.
Then for each (v, a) € a* such that v(&) ¢ aZ for all « € R, we have d, (v, a) # 0. However
a polynomial P € S; which does not vanish on any hyperplane & +nh = 0 (with « € R,
n € Z) is necessarily a scalar multiple of a product of polynomials of the form a + n#.
Hence d,, is invertible in the algebra C[aj;], which proves that our morphism is indeed an
isomorphism. O

Let now o be a simple root, and let L* be the Levi subgroup defined in §7.1, with
its Borel subgroup B%. For A € X, we denote by M¥(1) the asymptotic universal Verma
module associated with A for the group L% and its Borel subgroup B“. Let C[a}_. ] be

the localization of S; with respect to the collection {B +nhi| B € R~ {£a},neZ}.

Lemma 7.3.3. For any A € X, there exists a natural isomorphism of B-modules and

Clag,_ . 1-modules

Cla}_.]®s, M(A) — Indf. (Clai_]®s, M*(1))

where in the right-hand side B acts trivially on Clak_ ]

o—TIs

Proof. Asin Lemma 7.3.1, the morphism in question is constructed using the morphism
M) — M¥(1) of (4.6.1) and Frobenius reciprocity.

To prove that this morphism is an isomorphism it is enough to prove that for any
(v, a) € a* such that v(,é) ¢ aZ for all B € R \ {£a}, the natural morphism of B-modules

Cs, (v, @) ®s, M(A) — Indb(Cs, (v, @) ®s, M* (1)) (7.3.4)

is an isomorphism. (Note that the functor Indga is exact by [26, Corollary 1.5.13]; hence
specialization commutes with induction here.)

If a = 0, then morphism (7.3.4) can be identified with the specialization of isomorphism
(7.2.4) at v; hence we are done. If a # 0, by the same arguments as in the proof of
Lemma 7.3.1, morphism (7.3.4) can be identified with the morphism

1 B 1
V(—;v—k—p) ®C%U+p — Indze (Vo‘ (—Zv—k—p) ®Civ+p>
considered in Lemma 7.1.4. Hence it is an isomorphism in this case also. O

7.4. Generic and subgeneric situations: isomorphism

Fix A € X and F in Pervé(o) (Grg). To simplify the notation, we set V := Sy (F).
As a first step towards proving Theorem 2.2.4, we construct a canonical isomorphism
of Cla}]-modules

Clak] ®s, (VOM®)® = Clak] ®s, Hy (). (7.4.1)
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In fact, we deduce this isomorphism from the fact that the morphism

Clak] ®s, H, (i, F) — ClaX]® Vi (resp. Clak]®s, (v ®M(k))B — Claj1® Vy)
(7.4.2)
induced by K}?& (resp. K?,li) is an isomorphism. For the first morphism this follows from
the localization theorem in equivariant cohomology. Let us now prove that the second
morphism is also an isomorphism. In fact we have a series of isomorphisms

Clak] ®s, (VOM®)” = (Ve (Clasl®s, MW)” = (V@ Cla] @ Indf (-1))”
= Cla]® (Ind2(V ® C_))” = Clai]® V.

Here the second isomorphism follows from Lemma 7.3.1, the third one from the tensor
identity, and the last one from the isomorphism (Ind? (VeC_ ,\))B = (VRC_y)T given by
Frobenius reciprocity. By construction, the composition of these isomorphisms is precisely
the right-hand morphism in (7.4.2).

Now, let @ be a simple root. As a second step towards proving Theorem 2.2.4, we want
to show that (7.4.1) restricts to a canonical isomorphism of C[a}_ . ]-modules

Clat_1®s, (VOM®M)” = Cla’_1®s, Hy (5.F). (7.4.3)

Let P be the minimal parabolic subgroup of G containing B associated with o, and let
L® be the unique Levi factor of P* containing T. By the constructions of §6.3, these
data determine a Levi factor L* in G, and hence the corresponding minimal parabolic
subgroup P containing B.

Consider first the right-hand side of (7.4.3). We will use the constructions of § 6.4 for the
Levi subgroup L. By the localization theorem in equivariant cohomology, the morphism

Cla}, 1 ®s, Hy (1 F) — Clal_J@s, Hy ((X)'9R, (7))

induced by (6.4.1) is an isomorphism.
Consider now the left-hand side of (7.4.3). Here we will use the constructions of §7.3.
We have a series of isomorphisms

Cla_1®s, (VoM®)®
= (V@ (Clay_y,] @5, M(2))” = (V @ Indfa (Clay_] @5, M*(2)))”
= Cla}_] ®s, (Indf. (Viee @M (1)))” = Cla}_ ] ®s, (Viee @M ()™

Here the second isomorphism follows from Lemma 7.3.3, the third one from the
tensor identity, and the last one from the isomorphism (Indgty (Ve @ M? (A)))B = (W e ®
M* (A))Ba given by Frobenius reciprocity.

Using these isomorphisms, to construct (7.4.3) we only have to construct a canonical
isomorphism of Sp-modules

(Viee @M )™ = Hy ((L)'RE, (7).

As L” has semisimple rank 1, this isomorphism is constructed in § A.7 below.
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One can check that the isomorphism obtained from (7.4.3) by extension of scalars to
Cla%] coincides with (7.4.1). In other words, (7.4.3) is the restriction of (7.4.1) to

Cla_1®s, (VOM™)® ¢ Claz] ®s, (V@M®))”®.

7.5. Equivariance
Recall the operators Qx’)‘ defined in §4.8.

Lemma 7.5.1. Let A € X and F in Pervé(o)(Gré). Isomorphism (7.4.1) is W -equivariant,
in the sense that for any w € W the following diagram commutes:

(7.4.1)

Clat] ®s, (SF) @MM)” Clat] ®s, H, (iLF)

Clagl®s, 2 “l LC[G?‘J@sh =0

(C[a;ks] Qs w((S(F) ® M(w)\))B> (7.4.1)

Cla] s, *(H 0L, )

Proof. It is enough to prove the commutativity when w is a simple reflection. So let o be
a simple root. Recall that isomorphism (7.4.1) is the restriction of isomorphism (7.4.3)
to a¥. Now isomorphism (7.4.3) is deduced from the isomorphism of Theorem 2.2.4 for
L*, proved (directly) in § A.7 below. Moreover, by Corollary 3.3.3 (or Lemma 4.6.5) and
Lemma 6.4.2, the operators 2 and E for the group G can also be constructed from

the similar operators for the group L*. Hence the commutativity for s, follows from
Theorem 2.5.5 for L*, which is proved (directly) in § A.9 below. O

7.6. Proof of the main results: the quantum case

* ] of S; by the same recipe as

If « € R is any root, we define the localization Cla_,
for simple roots (see §7.3). Then for any w € W we have w(Clag_]) = Clay,,, ] as

subalgebras of C[aj,] To finish the proofs we will need the following obvious lemma.
Lemma 7.6.1. Let M and N be free Sp-modules of finite rank, and let
¢ : Cla%]®s, M = Cla’]®s, N

be an isomorphism of Claj]-modules. Assume that, for any o« € R, ¢ restricts to an
isomorphism of Cla}_.]-modules Cla}_. .1 ®s, M = Cla}_.1®s, N. Then ¢ restricts to
an isomorphism M = ON.
Proof of Theorem 2.2.4. Let A € X and F in Pervé(o)(Gré)7 and set V := S(F).
Injectivity of K?/li follows from Lemma 4.6.4, while injectivity of Kt]_?pk is proved in
Corollary 6.2.3. By Lemma 2.2.1(1), H'A(ii]-') is a free Sp-module. It follows from
Proposition 3.2.3 and the first isomorphism in Lemma 2.4.1 that the same is true for
(V®M(A))B. In (7.4.1) we have constructed an isomorphism between the extensions
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of scalars of these Sp-modules to C[a%]. By (7.4.3) this isomorphism restricts to an
isomorphism between extensions of scalars to Cla}_.] for any simple root «. From
Lemma 7.5.1 we deduce that the same property is true for any root. Hence the
isomorphism follows from Lemma 7.6.1. O

Proof of Theorem 2.5.5. As our Sp-modules are free, it is enough to prove commutativity
after restriction to ay, C a*. In this setting the claim follows from Lemma 7.5.1. O

7.7. Classical analogues

Proof of Theorem 2.3.1. One can prove Theorem 2.3.1 using exactly the same strategy
as for Theorem 2.2.4. Alternatively, isomorphism ¢ F.» can be deduced from isomorphism
¢r of Theorem 2.2.4 using Lemma 3.5.2 and Lemma 6.2.4. (The statements about
injectivity are easy.) O

Proof of Theorem 2.5.7. One can prove Theorem 2.5.7 using exactly the same strategy
as for Theorem 2.5.5. Alternatively, one can deduce Theorem 2.5.7 from Theorem 2.5.5
using Proposition 5.4.1, Lemma 3.5.2 and Lemma 6.2.4 (see also Remark 5.4.2). O

8. Complementary results and applications

8.1. Convolution

In this subsection we construct the morphisms Conv considered in § 1.3, and prove their
compatibility with the isomorphisms of Corollary 2.4.2, thereby finishing the proof of the
theorem stated in § 1.5.

First, consider the “geometric” setting. Multiplication induces a morphism
Dr(Z) ®cin) (X)) = Zr(Z). One can check that for A, u € X this morphism induces
a morphism of graded Sp-modules

MDD ( 23 @5, MTD (X ) = CTPDH (X )ssp

Hence for V, V' in Rep(G) we obtain a morphism of graded S;-modules

Conviy ;= PV @ Z(20,) T (25) @s, “ TV @ Zn(2)),) (n(25))
— GV @V ® Tn(X i) *(h + 1)(25)).

Now, consider the “algebraic” setting. Note that if A, u € X we have a canonical
isomorphism of (Sp, Uy (g))-bimodules

Sn{(A) ®s, M) = M(A + )

which sends 1 ® v, to vay,. In particular if V is in Rep(G) and ¢ : M(0) — V @ M(u) is
a morphism of (Sz, Up(g))-bimodules, then we can consider S;{(A)) ®s, ¢ as a morphism
of bimodules M(A) —> V QM + ).

Fix V, V' in Rep(G) and A, u € X. Then following [3, § 8.4] we define the morphism of
graded Sp-modules
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Convy¥,, , , - Hom(M(0), V @ M(1)) (%(2)) ®s, * Hom(M(0), V/ @ M(10)) (12(25))
— Hom(M(0), V ® V' @ M(x + 1)) (A + 11)(25))

(where as usual we consider morphisms of (Sy, Up(g))-bimodules) which sends a pair
(¢, ¥) to the following composition:

é idy ®(Sn (1) ®s, ¥) ,
M(0) V®M®) VRV @M+ ).

Finally we consider the “topological” setting. Here again we follow [3, §8.7] (though
we have to be more careful because we use equivariant cohomology). Let F,G in
Pervé(o)(Gr), and let A, u € X. The convolution FxG is defined in terms of the
“convolution diagram”

mult : G(K) X 0y GF = Gr

iniuced by left multiplication of G(K) on Gr. More precisely, F xG = mult, (F X G) where
FKG is the twisted external product, as defined e.g. in [35, §4].
Let v := A+ u. Consider the Cartesian square

—1 jv ~ .
mult™' (»)——— G(K) X&) Gr
mult, lmult

vC il Gr.

This diagram is A-equivariant if we consider G(K) x &(0) Gr as an A-variety where T acts

by left multiplication on G(K), and C* acts diagonally by loop rotation. By the base
change theorem we have an isomorphism

iN(FxG) =iimult. (FRG) = (mult,),j (FRG),
so we obtain an isomorphism
H, (il (Fx§)) = Hyy (mult™ (v), jL(FRG)).

Now let Kk , :{\ X &(0) n} — é(K) X &(0) Gr be the obvious embedding. The

(1, )-adjunction for the embedding {\ X&(0) n} — mult_l(v) induces a morphism
Hyy (k. (FRG)) — Hy(mult™ (v), j(FRG)),
which can be reinterpreted as a morphism
Hy (K, (FRG) — Hy (i}, (F*9). (8.1.1)
Lemma 8.1.2. There exists a canonical isomorphism of graded Sp-modules

H:y (K}, (FRG) = Hy (5. F) @5, VHy 1, ).
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Proof. Choose some closed finite union of é(O) orbits ¥ C Gr such that G is supported
on Y, and a closed normal subgroup H <IG(O) of finite codimension ¢, which acts
trivially on Y. Let f: G(K)/HXY—> G(K) XG(O)Y and g: G(K)/H—> Gr be the

natural projections. Then by definition of F XG we have a canonical isomorphism
f*(]-‘& g) = (g*F)X G and hence (since both f and g are smooth morphisms of relative
dimension ¢) a canonical isomorphism

f(FRG) = (' HNG. (8.1.3)
We will consider CV;(K) /H x Y as an A-variety where any t € T (resp. a € C*) acts by
t-(gH,x):= (tgt " "H,t-x) (vesp. a-(gH,x):= ((a-g)r(@) "H, () (a-x))).

With this definition, the InOI‘phlSIIl fis A- equlvarlant and the point (X, ) € G(K) /H X
Y is A-stable. (Here \ := NH/H, where \ is A considered as an element of G(K)) Now
k... factors as the composition

(O w)) ———{(\, u)}% G(K)/H x Y — L G X0 V-

G(O)
and hence using (8.1.3) we obtain an isomorphism
H (k5 (FRG)) = Hiy (. (' FRG)).

Now we have
(L, (8 FRG)) = Hy (L) ®s, PH L0

(where we use the fact that ()‘)H;‘(iitg) is free over S; by Lemma 2.2.1, so we have a
Kiinneth formula in equivariant cohomology). This finishes the proof. O

Using the isomorphism of Lemma 8.1.2 we can reinterpret (8.1.1) as a morphism

Convy¥y , ,  Hu(F) ®s, PH(i,0) — Hiy (i}, (F* ).

Remark 8.1.4. In the case where A, u are antidominant, the morphism Convt;-pg 5o AN
also be described in terms of Wakimoto sheaves, as in [3, diagram on p. 652].

The following result will be proved in § 8.2

Proposition 8.1.5. Let F,G be in PervG(O)(Gr) and ,, u € X. Under the isomorphisms

geom

of Corollary 2.4.2, the morphisms ConvS(f) S@) Convs(f) S@) and Conv}- G
match.
Remark 8.1.6.

(1) Note that, unlike most of the constructions in the paper, the morphisms Conv are
not compatible with restriction to a Levi subgroup (see §3.3, §4.6 or §6.4) in the
obvious strong sense. We will use a weaker compatibility result in the proof of
Proposition 8.1.5.
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(2) Proposition 8.1.5 has an obvious “classical analogue”, that we do not state for
simplicity, but which can be proved by the same methods.

(3) Using similar constructions one can define, for V, V/ in Rep(G) and A, p € X, a
“geometric” convolution morphism

(veM@)° ®s, (v, ®S1)" > (V& V)i, ®Sh)°

(where for simplicity we disregard the grading) and, for F, G in Pervé(o) (Gr) and
A, € X, a “topological” convolution morphism

Hy (6, F) ®s, PH (1,.G) — H (1, (F % 9)).

1 t . .
(These maps “extend” Conv?/,gv,’/\,u and Conv}{’ G i the natural sense, using
. . 1 1
the inclusions K?,/%M, K?,fw/wr#, (1)1 and (1a4,)1). Then the same arguments as for

Proposition 8.1.5 show that the following diagram commutes:
(VM) ®s, PV, @85)7 — (V& V)14, ®5)°
Th. 224 & Lem. 2.2,1Lz Lem. 2.2.1Lz
Hy (5.F) ®s, WHY (1,9) ————Hy (1, (F x 9)).

In particular, for V = V' = C[G] (the regular representation of G, considered as an
ind-object in Rep(G)) and taking the direct sum over A and u, one can check that on
composing the “algebraic” map with the morphism induced by the multiplication
morphism m : C[G] ® C[G] — C[G], one obtains an action of the algebra Z;(Z")
on the C[#4]-algebra 9,;"’1 of relative asymptotic differential operators along the fibers
of the projection G — G/T. This action can be realized “topologically” using the
composition

.. . . S .
H, (3 R) ®s, (A)HA(%R) — H} (t)!HrM(R*R)) o, HA([)!\HLR)’

where R := S(C[G]).
In this construction one can also replace T by a Levi factor of a parabolic subgroup;
the details are left to the reader.

8.2. Proof of Proposition 8.1.5
For A, u € X we set

T =\ xg 0y mm) | n,m € N™(K)} € G(K) x5, G,

and we denote the inclusion by #, , : Ty 4 — G(K) X&) Gr. (The notation \ is defined
in the proof of Lemma 8.1.2.) Then we have decompositions

é(K) XG(O)GrZ I_l SA,M, mU|t_1(‘Z\;)= |_| {I}L,M‘
A,pueX Ap=v

In fact, T, , is the inverse image of %) x T4, C Grx Gr under the isomorphism
G(K) X ) Gr = Gr x Gr sending (g1 ¢, 82G(0)) to (g1G(0), £182G(0)).
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Lemma 8.2.1. For any F, G in Pervé(o) (Gr), there exists a natural isomorphism of graded
Sr-modules

Hy (T £, (FRG)) = Hy (Ti, 1, F) ®s, PHY (T 1,0).

Proof. If we set %X = ):-1(7_(0 )1 C G(K) (where N™ (O )1 - N- (0O7) is the kernel
of the evaluation at z = o00), then the composition ‘EA — G(K) —» Gr induces an
isomorphism %;L 5 %,. Then the same arguments as in the proof of Lemma 8.1.2 prove
our claim. O

Now we fix v € X and F, G in Perv )(Gr). For A € X we set

GO

= | | T cmuti@)),

M4p=v
M=
. . > >a . .
and denote the inclusion by f] :‘Zv — G(K)XG(O) Gr. Then T5" is closed in

mult_l(Tv), and T, ,_, is open in Tf)‘. It follows in particular from Lemma 8.2.1 and
Lemma 2.2.1 that for any A, u such that A + u = v, the cohomology H;\(‘ZA,M, tiyu(]-'@ Q))
is concentrated in degrees of the same parity as v(24). From this parity vanishing
observation, one can deduce that the long exact sequence associated with the
decomposition ‘I,,} b= T ay Tr.v—» (where T * has the obvious definition) for the object
(tl,2 )”)!(.7-" %g) breaks into a family of short exact sequences. And then (using the base
change theorem) we deduce that the graded Sp-module

Hy (T0, 1, (F* G))

admits a decreasing X-filtration with the part bigger than A isomorphic to

H'A(‘S/ (tv>)‘)'(}"® G)), and with associated graded

P Hy(Tow 1, (FRG) = P Hy T 4,5 ®s, PHY (T, 1,0).
At+p=v At+p=v

(Here the isomorphism is provided by Lemma 8.2.1.)

Lemma 8.2.2. Under the isomorphisms
H:y (To, 1(F %)) = (S(F) ©S(9)), ® S (v(27)),

and

Hy (Th. 6,.7) ®s, PH (T, 1,0) = (S(F)2 ®S(G)) @ S (v(25))

provided by Lemma 2.2.1, the “topological” filtration on H;‘(T‘,,ti(]—"* Q)) considered
above is induced by the filtration on (S(]-") ®S(Q))U by the subspaces

P P ®S@)v-r-

VA
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Sketch of proof. By construction of the isomorphisms in Lemma 2.2.1, it is sufficient to
prove the analogous claim for ordinary cohomology; in other words one can forget about
A-equivariance. Now recall the construction of the tensor structure in [35, Proposition
6.4]; in particular let X be a smooth (algebraic) curve, and consider the local analogues
of Gr and the convolution diagram over X2 as in [35, Equation (5.2)]. In the proof of [35,
Proposition 6.4], the authors define a global counterpart T, (X ¢ Gry2 of ¥,. Then one
can consider
mult™" (%,(X?) c GryXGrx

in the “global analogue” of G(K) x &(0) Gr. One can define locally closed ind-subvarieties
T, M(Xz) inside this inverse image (when A+ u = v) which, over points in the diagonal
copy of X in X2, coincide with our subvarieties T » and which, over points outside the
diagonal, coincide with T, x T,,. Then one has a filtration as above, but this time globally
over X2. Over points in the diagonal, this filtration coincides with the one considered
above by construction. And over points outside of the diagonal, the variety T,(X?) is a
disjoint union U)»+;L:U %5 x %y, and the filtration is obtained from the decomposition of
the appropriate cohomology sheaves as a direct sum, as e.g. in [35, Equation (6.25b)].
This implies the claim. O

Using these remarks we are now ready to give a proof of Proposition 8.1.5.

Proof of Proposition 8.1.5. First it is easy to check, by explicit computation, that the
isomorphism between the left-hand side and the right-hand side of the equation in
Corollary 2.4.2 is compatible with the morphisms Conv&®™ and Conv®¢.

Set vi=A+pu, V:=S(F), V' :=S(G). To finish the proof we have to prove that
the left square in the following diagram commutes, where the isomorphisms are as in
Theorem 2.2.4:

Hy, (L F) ®s, PH:, (140) Hy G (F* G2 s He (T, 14 (F + 0))

lz LZ 2
al al,
Conv*E | ¢

KV®V’,U

(VeM@)’ ®s, DV @Muw)” — (Ve V' eMw) = (Ve V'), @ Ss.

Of course it is sufficient to prove that the outer square commutes.

Now recall the filtrations on H’, (%, tl!)(}'* G)) and (V® V'), ®S; considered above.
Then each of our morphisms factors through the part of the filtration bigger than A: for
the first line this follows from the fact that (): X &(0) n e ‘Iv} )‘, and for the second line this
can be checked by explicit computation. Moreover, the restriction to the image of these
morphisms of the projection to Hy (Ty., 1 F) ®s, PH (T, 1,G) (resp. (Vi ® V) ® Sp) is
injective. Hence it is enough to check that the corresponding diagram:

H:, (i F) ®s, “Hy (i,G) H: (Th. 4, F) ®s, WH, (Ty. 1,0)

| z

(VeM®)® ®s, P(V' @M(u)” (Vi ® V) ®Sh
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commutes. However the upper line is induced by (1;); ® (1,)1, and the bottom line is

. alg alg | . P
induced by «y5 Ky 5 hence this claim is clear. O

8.3. A reminder on dynamical Weyl groups

Let us fix V in Rep(G), A € X and w € W. For any u € X~ sufficiently large we consider
the morphism of C[#, i~ !]-modules

DWYE 1 Cl A~ 1@ Vi — Clh A7 1@ iy, DWYE = BNt owld o (B4~

This morphism is well defined by Lemma 4.4.1(1). We will sometimes extend this
morphism to a morphism of C(%)-modules C(A) ® V;, - C(fi) ® Vi, in the obvious way
(and denote the extension also by DW?,I%A’ won)-

Recall that for u € t* we have defined a morphism P +— P(u) in §4.3. We denote
similarly the induced morphisms S; ® Vi — ClA, A~ 1® V) or Sp ® Vur — Clh, A1 ®
Via-

Lemma 8.3.1. There exists a unique isomorphism of C(h)-modules
1 ~
DWYE L Qe ® Vi = Qu ® Vi

such that for any x € Qn ® Vi the following property holds: for any u € X~ sufficiently
large such that x(u) is defined, we have

(DWE , (0) (wp) = DWYE, |, (x(w)

(in particular, the left-hand side is defined). This morphism induces an isomorphism of
Qr-modules

DWE\I}%A,W :Qr® Vi 5 YQi ® V.

Proof. This claim is proved in [19, 39]. For later use, let us explain how it can be deduced
from our constructions. Unicity is clear (see e.g. §4.3). Let us prove existence.

It is enough to treat the case where w = s is the reflection associated with a simple
root @ (provided we only require u € X to satisfy (&) <0, not necessarily to be
antidominant); see in particular (4.4.2). Define the isomorphism of C(%)-modules

/Dwz‘l},gk,s : Qh ® VA :) Qh & Vsk
to be the composition

alg

K Q:/’}”
Qi ® Vi <= Qn ®s, (VOMMW)” = Qy ®s, (V @M(s1))”

alg
Ky s

— Q1 ®s,, *(Vss ® Sn)

gV pr>s(q) pQU
- Qn ® Via.

(The fact that the first and third arrows are invertible was proved in the course of the
proof of Theorem 2.2.4; see §7.4). Then for x € Q; ® V, we set

1
DWYE () = | (=@)(=@+7) - (=& + (A(&) — Dh)

(=& — h) (=& —2) - -~ (& + A@)h) - 'DWE () if A(@) <0

CDWHE (x) ifA@) > 0;
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in Qs ® V. It follows from Proposition 4.5.1 that the morphism DW?/]gA , satisfies our
requirements. O

The operators DWZ‘I}gAw form the dynamical Weyl group as considered (in the

non-asymptotic case) in [19, 39] and (in the asymptotic case) in [12].
8.4. Transverse slices and semi-infinite orbits

Recall the definition of 20,, s, and n; in §2.6. The following result contains in particular
Lemma 2.6.1. It is essentially proved in [12]; we explain the details for the reader’s
convenience.

Lemma 8.4.1. Let F in Pervé(o)(Gr) and ) € X.

(1) There exists a canonical isomorphism of graded Sp-modules
Hyy (205, N Ty, 5, F) = (S(F)), ® Snina).
(2) Under the isomorphism of (1) and (2.2.2), the natural morphism
HY (20, NS5, 50 F) — HY(Ta, 6 F)
induced by the (closed) inclusion T, NAW, — T, identifies with multiplication by

—M(&@)—1

IT II ~a+im

a>0, i=0
oo !

on (S(}")))L Q®Sh.

Proof. There exists a closed subvariety V C G(0) isomorphic to a (finite dimensional)
affine space, which is stable under conjugation by A, and which satisfies the following
conditions:

e the morphism V — Gr)‘, u — u-\,is an open embedding;
e the morphism V x 20, — Gr induced by the é(O)-action on Gr is an open embedding.

Indeed, by Né(f")—equivariance it is enough to treat the case where A is dominant. And
in this case one can e.g. take as V the subvariety J* considered in [36, Lemme 2.2]. We
will identify V x 20, with its image in Gr, and denote it by O.

We have canonical isomorphisms

H, (S, 6L F) = HL (5 F) = HY (M = 0NT)*(0NT, — Gr)'F).

Here the first isomorphism follows from [21, Proposition 2.3] (since '\ is an attractive
fixed point of A on ¥, ), and the second one from the fact that O is open in Gr.
As F is G(0O)-equivariant, there exists a canonical isomorphism

(0 = GN*FZCy2220) 1R F,) where Fgy = (W — Gn*F[-2A1(2p)]. (8.4.2)
As V is smooth of dimension dim(Gr)‘) = A(2p), we also have canonically

.7:()0 = 20, — Gr)!]:.
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By definition we have
T ={x €Cr| Sl_i)rgOZp(s) -x =\)
(Here p is considered as a cocharacter of 7V") If follows that we have an isomorphism
ONTZ(VNT) x (W, NT,). (8.4.3)

The variety V NS, is open in Gr* N, and by [35, Equation (3.6)] we have

—(na)—1
GrNT, =00 = [ [] Cat-a+kn (8.4.4)
a>0, k=0

(A.&)<0

as A-varieties. In particular, V N%, is smooth.
Using (8.4.2) we obtain (under the identification (8.4.3)) a canonical isomorphism

(0NT; = GN'F = Cyng, [2dim(V NT)H QN T, — Wy Fi.
We deduce a canonical isomorphism
HY (Th, £ F) = H (M) = 05, N T5) s F)(—2dim(V N Ty)).
Again by [21, Proposition 2.3], we have a canonical isomorphism
Hy (0, N Ty, 55, F) = Hy (M = 20, N Ty)*s) F).
Using the first isomorphism in (2.2.2), we obtain finally an isomorphism
Hy (53 7) = (S(F)), ® Sh(A(25) +2dim(V NT,)).

Now the dimension dim(V N'¥;) can be computed using (8.4.4), and (1) follows.
To prove (2) we have to understand the natural morphism

HA(N) — HA(V N T)(=2dim(V NTy)).
However this morphism factorizes as the following composition:
HA((\}) — HAGr NT,)(—2dim(Gr* NT,)) = HA(V NT)(—2dim(V N'T,)),

where the first morphism is induced by the inclusion {\} — Gr* N%¥,, and the second
morphism is given by restriction to the open subvariety V NT,. Now the first morphism
can be computed using (8.4.4) and the reminder in §6.2, and the result follows. O

8.5. Geometric realization of dynamical Weyl groups

Now we are in a position to prove Proposition 2.6.2.

Proof of Proposition 2.6.2. Fix F in Pervé(o)(Gr), and set V :=S(F). Then it is

enough to prove that for any simple root o and any A € X such that A(&) > 0 the
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following diagram commutes, where the vertical isomorphisms are induced by those of
Lemma 8.4.1(1) and where s := s4:

geom
Fh,s

Qs ®s, Hy 0, N T, 5, F) Qn ®s, HY (W N Ty, 58, F)

al
DW‘:/g)L s

Qr®Vy — Qr ® Vi,

Consider the isomorphism of C(%)-modules

'DWET : Qn ®s, Hy (Th, ,F) = Qi ®s, Hiy (Tan, 15, F)
defined by the composition

) oM

Qn ® HY (Th, L F) <= Qn @ Hy (i} F) —— Qn @ °Hi (i}, F)

(52 . ®l1 .

=5 Qi ®s;, Hiy (T, 14, F) = Qn ®s, Hy (Ton, 17, F).
(Here the first and third arrows are invertible by the localization theorem in equivariant
cohomology.) Using the notation of §8.3, it follows from Theorems 2.2.4 and 2.5.5 that
the following diagram commutes:

'pyyEeom

. FA,s .
Qi ®s, Hy (%1, £, F) : Q1 ®s, HYy (Tx, 1, F)
ZL(2.2.2) ] (2.2.2)12
'DWE s
Qr®V; o Qn ® Vsa.

As explained in the proof of Lemma 8.3.1, for any x € Qp ® V) we have
'DWE () = (=&) (=& +h) - (=& + (1@ — DA) -DWLE | (x)

in Qs ® Vj,.. On the other hand, it follows from Lemma 8.4.1(2) that if we identify the
Qp-modules Q; ®s, H', (Ty., 1} F) and Qs ®s, HY (W5 N5, s} F) with Qs ® Vi, and Qp ®s,
H:, (T, 15, F) and Qp ®s, HY (Wi Ny, 58, F) with Q ® Vi by the isomorphisms of
Lemma 2.2.1(2) and Lemma 8.4.1(1), we have for any x € Q ® Vj,

'DWYSN () = (=&) (=& +7) - - (=6 + (A(&) — Dh) - DWS" (x)
in Qp ® V. The proposition follows. O

8.6. Brylinski—Kostant filtration

We have a natural isomorphism of algebras S(g/u) = C[(g/u)*] so for any ¢ € t* there is
a natural surjective algebra morphism

S(g/w) — Clp + (g/b)"] (8.6.1)

associated with the inclusion ¢ 4 (g/b)* < (g/uw)*. (Here, as usual we consider ¢ as a
linear form on g trivial on u@u™.)
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Lemma 8.6.2. Let V in Rep(G) and A € X. For any ¢ € t, the morphism

Cy ®st) (VOSg/w) @ Cfx)B - (VeClp+(g/0)"1® CC,A)B
induced by (8.6.1) is an isomorphism.
Proof. We have

Cy Rs(p) (V ®S(g/w) ® C—A)B = Cy ®crez] Clt] ®s(e) (V @ S(g/w) ® (C—A)B

B
= Cy ®cyyy) (V @ (Cl] @50 /0 © C-) )
0z RURY
= Cy®cre] (VQClt] ®Ind7 (—1))
=~ (VeC_, ®C[B/T])".

On the other hand we have ¢ + (g/b)* = B-¢ = B/T as a B-variety, and hence there is a
natural isomorphism of B-modules C[g + (g/b)*] = C[B/T]. This implies our claim. [

Let us now fix A € X and F in Pervé(o) (Gr). To simply notation we set V := S(F).

Recall that for ¢ € t* we have defined the filtered vector space H,, (i;\}") in §2.6. On the
other hand, the algebra C[g + (g/b)*] is also naturally filtered: the filtration is defined
such that for any ¢ € ¢+ (g/b)*, the algebra isomorphism Clg + (g/b)*] = C[(g/b)*]
induced by the isomorphism

@/0)* = o+ @/ [yt f
is an isomorphism of filtered algebras, where the filtration on C[(g/b)*] is the one induced
by the grading such that the vectors in g/b C C[(g/b)*] are in degree 2. Hence we have

an induced filtration on the vector space (V ® Clo + (g/b)*] ®(C,A)B.
Combining Theorem 2.3.1 and Lemma 8.6.2, one obtains the following.

Corollary 8.6.3. For any ¢ € t¥, there exists a canonical isomorphism

Hy (i} F) = (V@ Cly + (a/0)" 1@ C_;)".

This isomorphism is an isomorphism of filtered vector spaces, where the filtration on the
right-hand side is shifted by A(2p), i.e. for any j € Z it restricts to an isomorphism

Fi(Ho@1 ) = Fjap ((V @ Clyo+ @/ 1@ C0) ).

Now we are in a position to give a proof of Proposition 2.6.3. In fact, this proposition
is a consequence of Corollary 8.6.3 and the following result (which is essentially proved
in [15]; we reproduce the proof for the reader’s convenience).

Proposition 8.6.4. Let e € u be a sum of non-zero simple root vectors. If ¢ € t* {0}
satisfies (ad*e)(p) = 0, then evaluation at ¢ induces an isomorphism

(VOClp+(g/0) 10C_,)" 5 V. (8.6.5)
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For any j € Z, this isomorphism restricts to an isomorphism
Fa ((V ®Cly + (g/0)*1® C_A)B> = Faj1 <(V ®Cly +(9/0)"1® C—A)B) = F .

Proof. Let us denote morphism (8.6.5) by A,. The fact that A, is an isomorphism
follows from the proof of Lemma 8.6.2. What remains is to prove that this isomorphism
is compatible with filtrations. Note that A, is the restriction to the A-weight spaces of
the isomorphism of T-modules

A: (VOClp+(g/0)yDY =V

given again by evaluation at ¢. By construction, the filtration on the left-hand side of
(8.6.5) has jumps only in even degrees, which justifies the equality F2; = F2;11. For j € Z
we set

FI(v3) 1= A5 (Fay ((V @ Cly + (9/0) 1€ C-1)F)).
Hence what we have to check is that Ffi® coincides with FBK.

It will be convenient to work in g rather than g*. Hence we choose a G-equivariant
isomorphism g = g*; it restricts to a B-equivariant isomorphism (g/w)* = b. Let h € b
be the image of ¢, so we obtain an identification ¢ + (g/b)* = h+u. Consider the
isomorphisms

(VOClp+(5/0)*19C_1)" = (VRCh+u®C_;)" =Hom? (V*®Cy, Clh +ul).
Under this identification, A, sends a morphism f : V*® C, — C[h+u] to the linear
form on (V3)* given by ¥ — f (¥ ® 1)(h). In fact the image of A, (f) in V is A(f), which
can be described as the linear form on V* given by ¢ — f (¢ ® 1)(h).

Fix some f € HomB(V* ®C,, Clh +n]), and let v = A, (f) be its image in V; (or in
V). By definition, v is in F?b(VA) iff for any x € u and any ¢ € V*, the polynomial in ¢
given by

f 1) (h+1tx)
has degree < j. Fix ¢ € V*, and choose x € u such that this degree is maximal. By
density of regular nilpotent elements, one can assume that x is regular. Then there exists
b € B such that x =b-e. (Indeed, it is well known that there exists g € G such that
x = g-e. Then x € g-b; as a regular nilpotent element is contained in only one Borel
subalgebra we deduce that b = g - b, which implies that g € B.) And we have

f@@Dh+1x) = f@DB-b~ ' -h+ie) = fO - (@)D -h+re).

Now, by [15, Lemma 4.2], the degree of the polynomial on the right-hand side is the same
as the degree of the polynomial f(b~!- (¥ ® 1))(h +te). Moreover, we have

FOT @@ D) (h+te)= (b (Y @ 1)(exp(te) -h) = flexp(—te)b™" - (¥ @ 1))(h).
Hence, finally, v is in F?b(VA) iff for any ¥ € V*, the polynomial
f(exp(—=te) - (Y @ 1))(h)

has degree < j.
Now, the linear form on V* given by ¥ — f(exp(—te) - (¢ ® 1))(h) is exp(te) - v. Hence
v is in F;‘!b(vx) iff e/t1.v =0, ie. iffve F';K(V,\). O
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8.7. The ordinary cohomology of cofibers
As a consequence of Corollary 2.4.5 we can prove the following result, which is equivalent

o [3, Theorem 8.5.2]. (More precisely, [3, Theorem 8.5.2] also contains a claim about
compatibility with convolution, which can be deduced from Proposition 8.1.5.)

Proposition 8.7.1. For F in Pervé(o)(Gr) and A € XT, there exists a canonical
isomorphism of graded vector spaces

~ G
H" (il ) = (S(]—") ®T (N, O/\N/(k))) n2p)).

Proof. By the arguments in the proof of Lemma 2.2.1 the forgetful functor induces an
isomorphism

C®s(y Hyx (5 F) = H(i; F)
(where, in the left-hand side, S(t) acts trivially on C). On the other hand, as observed in
the proof of Lemma 3.6.2, restriction induces an isomorphism

C®s I'(F O5) = T (N, Og()).

Then the result follows from Corollary 2.4.5, using the fact that the functor of G-fixed
points is exact. O

Remark 8.7.2. One can obtain in a similar way a description of H('CX (ii]-') (in the case
where A is dominant) in terms of asymptotic Z-modules on #. We omit the details.

8.8. The equivariant cohomology of spherical perverse sheaves

In this subsection we explain the relation between our description of the equivariant
cohomology of cofibers of spherical perverse sheaves on Grg and the description of
the full equivariant cohomology of these perverse sheaves given in [9]. Details (and a
generalization to all reductive groups) will be discussed in a future publication.

From now on, for simplicity we assume that G is quasi-simple and simply connected, so
G is simple (of adjoint type). The Killing form determines an isomorphism of G-modules
K:g 5 g*. Let us choose an element e € u which is a sum of non-zero simple root vectors.
Then e is regular nilpotent, and it can be completed to an sly-triple (e, 5, f). (Note that
f is uniquely determined by e, and that the different choices for e are all conjugate under
the adjoint action of T.) We consider the Kostant slice

Ye:=k(et+gy) C g

It is well known that ¥, is included in gf, and that the (co)adjoint quotient g* —
g*/G = t*/W restricts to an 1somorphlsm T, St /W. We denote by Y, the inverse
image of X, under the projection 7 : § — g*. Then ¥, C §;, and the morphlsm s, -
¥, is W-equivariant, where W acts on %, by the restriction of the action on g, and
trivially on X,. It is also known that the natural morphism § — g* x¢/w t* restricts to
an isomorphism of algebraic varieties gy — gi x¢/w t* (see [23, Remark 4.2.4(i)]). We

deduce that the morphism 6§ : § — t* restricts to an isomorphism 55
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Lemma 8.8.1. The projection T* 2 — § admits a canonical section w, : 5, < T*Z over
Y. This section is independent of the choice of e in the following sense: if t € T then
the following diagram commutes:

~ t-(—) ~
Yo ———— 24,

&Ut-e

'O ey

"%
The morphism we is also W-equivariant, if W acts on (T*Z); via the action of §5.5,
for the choice of simple oot vectors given by the components of e on each gy.

Proof. Given a Borel subalgebra by C g with unipotent radical ug, the “universal Cartan
subalgebra” bg/ug acts on (ug/[ug, upl)*; under this action (ug/[ug, ugl)* decomposes
as a direct sum of one-dimensional eigenspaces, and the eigenvalues can be naturally
identified with the negative simple roots under the canonical isomorphism t* = (bg/ug)*.
Following [24], we denote by O(bg) C (uo/[uo, uo])* the subset of vectors whose component
in each eigenspace is non-zero. We also set PB = {(bg,x) | bgp € A, x € (O)(bo)} Then our
choice of simple root vectors defines a G-equivariant isomorphism 2~ — B sending U /U
to (b, ¥), where ¢ := k() € O(b).

To define the section we need, given some n € ¥, and by € & with unipotent radical
ug such that np,, = 0, to define a lift of by to 2, or equivalently to 2. However, by [24]
the Borel subalgebras by and b are in general relative position. Hence the Killing form
induces a non-degenerate pairing between u and ugp, and hence an isomorphism u = ug.
If we denote by no € uj the image of e under this isomorphism, then one can check that
no € O(bg), and hence the pair (bg, n9) provides the desired lifting of by to B. O

From now on we fix a choice for e. Let use denote by
i:Gry— Grg and t:Gry < Grg

the inclusions. We have Gry. = | |, .x{M}, and i identifies with |_|; .x /1. Similarly one can

identify Gry_ with | |, x Ts, and then ¢ with | |; 5 1. Let F be in Perv Grg) and

consider the diagram

é(O)(

H @Grj-. 1'F) <————H(Gry, i' F)—————H3(Grg. F).

Here the left-hand morphism is induced by the inclusion Gry. < Gry_, and the right-hand
morphism is induced by i as in §2.2. By the localization theorem in equivariant
cohomology, both morphisms become isomorphisms when we extend scalars from S(t)
to its fraction field Q, which provides a canonical isomorphism

Q®s(y H3(Grg, F) = Q®s(y Hy(Gry, 1 F). (8.8.2)

By Lemma 2.2.1 there exists a canonical isomorphism of S(t)-modules H'T TP ESH
S(t); hence we obtain a canonical isomorphism

Q®H:(Grg, F) — Q®S(F). (8.8.3)
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On the other hand, let V in Rep(G), and consider the diagram
VSt ~——2(VeC[T*21) ' — = Ve C[Z,].

Here the left-hand morphism is induced by an inverse image with respect to the natural
morphism G x t* — T*2, and the right-hand morphism is induced by an inverse image
with respect to the morphism w, : 5, < T*% of Lemma 8.8.1. One can check that both
morphisms in this diagram become isomorphisms when we extend scalars from S(t) to
Q, so we obtain a canonical isomorphism

Q®s (VR®C[E.]) = Q®V. (8.8.4)

As far as we understand, the isomorphism like our (8.8.2) which is implicitly used
in [9] (see in particular the proof of Theorem 6 in loc. cit.) is the one that we are defining
here. With this interpretation, the “quasi-classical limit” (or “classical analogue”) of [9,
Theorem 6] says the following.

Proposition 8.8.5. Let F be in Pervé(o)(Gré).
The image of H'T(Gré,]-") in Q®S(F) under isomorphism (8.8.3) coincides with
the image of S(]—')@(C[ge] under isomorphism (8.8.4), which provides a canonical

isomorphism _
H% (Grg, F) = S(F) @ C[Ze]. (8.8.6)

Combined with Lemma 2.2.1 and Corollary 2.4.5, this implies that we have the following
commutative diagram:

H: Grj-. t'F) °H (Gry, i'F)C H: Grg. F)
Lem. 2.2.1 |2 Cor. 2.4-5l2 (8.8‘6)lz
S(F) ® S(t) =< (S(F) @ CIT* 2 1) = S(F) & C[Z,].

Isomorphism (8.8.6) is W-equivariant, where the W-action on the left-hand side is
defined similarly to how the isomorphisms E‘Z,: * are defined in §2.5, and the action on
the right-hand side is induced by the W-action on X,. Hence taking fixed points we obtain

the following result, also proved in [9] (see in particular [loc. cit., Lemma 9]).

Corollary 8.8.7. There exists a canonical isomorphism H.

&) (Grg, F) =S(FH) @C[Z].

A. Computations in rank 1

In §§ A.1-A.5 we use the notation of Sections 3-5, assuming in addition that G has
semisimple rank 1. We let o be the unique simple root, and set s := sy, € := ey, f = fo-

A.1. Asymptotic universal Verma modules
For any v € X*, we denote by V" the corresponding simple G-module. We choose a

basis (vb’, Uy gy - U ) of V¥ such that the following formulas are satisfied for
v—v(a)a
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k=0,...,v(@):

a-v_, = (v(&) — 2k)v” eV _py = kvl‘j_(k_l)a. (A.1.1)

v—ko v—ka> o

Such a basis exists and is unique up to a constant. We also set v} = 0 if A is not a weight
of VV. The following commutation relation in the asymptotic enveloping algebra Up(g)
is easily checked by induction:

fre=ef* —kn-af*' —k(k —Dn%- FF1. (A.1.2)
Lemma A.1.3. Letv e XT.
(1) If & is not a weight of V¥, then (V" ®M(A))B =0.
(2) If ke€{0,...,v(®)}, the Sp-module (V” QM(v —ka))B is free of rank 1, and
generated by

X) ke =0, Q1® k- <]1€>v]‘j_a ® (& + (v(&@) —k)h) ® fr!
k v ~ v v ~ —
+ <2> Uy, ® (a + (v(a) —k)h)(a + (v(a) —k— l)h> Qfk24...

¥ (-1)"(2) WY ® (& +(v(@) - k)h) . (& +(0(&) — 2k + 1)h> ®1.
Proof.

.. - lg
(1) follows from the injectivity of K?,v’)h; see Lemma 4.6.4.

(2) We have to decide when an element of the form
0, @ P @1+ 40 ® Py(h, h) ® f*

is annihilated by e € b C U(b). (Here the action of U(b) is the differential of the
B-action.) However, the image by e of such an element is given by

k—1
1 .
e'U\l)}—ka ® Pk®1+2<e'v\l)}—ia®Pi®fk_l_EUL}—ia@Pi@fk_le)
i=1
1

h
i.e. (using (A.1.1) and (A.1.2)) by

k-1
kvy_—1)e ® Pk ®1+ Z((iv:))f(ifl)a ®P®
i=1

P e i) ® P&+ (@) —k— D) @ £ 1)
+kv ® Po(q + (v(@) — k) ® f<L.
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Hence the fact that this element is zero amounts to the following equations:

k- P = —(&+ (@) —2k+ 1hA)- Py,
i-P; _ —(k—i+ (a4 W@ —k—i+Dh) Pi_y,

Py = —k(&+ (v(&) —k)h) - Po.
The result follows. O

If & € X is not a weight of V", we set x; = 0. We obtain as an immediate consequence
of Lemma A.1.3 the following result.

Corollary A.1.4. For v e XT and k € {0, ..., v(&@)}, the image of the morphism

kpS et (VP OMO —ka)® — V), ®Sy =Sy
s generated by (& + (v(a@) — k)h) e (& + (v(@) — 2k + 1)h>

A.2. Operators ¢

In this subsection we consider the constructions of Section 3, with the choice of root
vector f. In particular, for v € X and A € X, we have an isomorphism

oV (V'@ P 2(2),)¢ S (VY @ P a(2):)°.
Recall that, by the first isomorphism in Lemma 2.4.1, x; defines an element
¥ e (V'@ Pan(2),)°.
Lemma A.2.1. For v € XT and » € X we have
o/ 0) = Wi

Proof. If X is not a weight of V'V, then sA is not either. Hence y; = 0 =y}, , and the result
is clear.

Now assume that A = v —ka for some k € {0, ..., v(@)}. As CD;/V’}‘ is an isomorphism
of S-modules, we know that <I>;/v’)”(y;j) =c-y,, for some ¢ € C*, and we have to prove
that ¢ = 1. Let z; be the image of y} under the composition

(V'@ W24(2),) = V'@ Zn(Z) — V' @ (X)),
and similarly for z},. Then by definition (see §3.5) we have (idyv ® F)(2}) =c-z;.

Since, in the notation of § 3.2, one can take as G*¢ a product of SL(2, C) and a torus,
it suffices to prove the claim in the case G = SL(2, C), with B the subgroup of upper
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triangular matrices, T the subgroup of diagonal matrices, and f = ((1) 8). Let vy, vy be
the natural basis of C2 and N1, n2 the dual basis. Then the morphism gU +— g - v induces
an isomorphism G/U 5 Cr {0}, and V, = C?, with the symplectic form w defined by
w(vi, v2) = 1. Hence we have a canonical isomorphism &/ (2°) = C[T*(C?)] = C[C? x
(C?*], and the automorphism .%, can be computed using Example B.2.1 below: it is
defined by

n = vz, n2t—> —v;, Vik>—n2, V2N

Consider the morphism ev: @/ (Z) — C given by the evaluation of functions at
(v1, m2) € T*(C?). The formulas above imply that evo.%, = ev. Hence to conclude, we
only have to check that

(idyv ®ev)(z;) = (idvv ® ev)(zy;).
However we have
(dyr ®ev)(z)) = vy ® 1 = (idy» Qev)(zy,),
which finishes the proof. O

A.3. Operators ®

In this subsection we consider the constructions of §4, with the choice f, := f. In
particular, for v € X* and A € X, we have a morphism

©)"* : Homgs,, v (gn (M(0), V' @ M(1)) — *Homgs,.u; (g (M(0), V" @ M(s1)).
By Lemma 4.3.1, x; defines a morphism of (S, Us(g))-bimodules
@; :M(0) - V' M),
which is a generator of the Sz-module Hom(sh,Uh(g))(M(O), 1% ®M(A)).

Lemma A.3.1. Forv € XT and 1 € X we have
0y (@) = ¢l
Proof. If A is not a weight of V", then sA is not either. Hence ¢} =0 = ¢/, and the
result is clear.
Now assume that A = v — ka for some k € {0, ..., v(&)}. Then sA = v — (v(&) — k). By
Lemma A.1.3 we know that ®) k¢ (@) _1p) is a multiple of (p:_(v(&)_k)a (by an elemel}t of
Sk). Hence to prove the lemma it is enough to check that the coefficient of v} ® 1 ® fr@—k

in the element of (V" QM — (v(a) —k)a))B corresponding to @Xl)’%ka(w]‘j_ka) is the

same as the coefficient of v) ® 1 ® fre@—k i x:_(u(&)_k)a, i.e. 1. However this coefficient
can be computed using formula (4.5.4), and the result is 1 as expected. This concludes
the proof. O

Corollary A.3.2. For any V in Rep(G) and 1 € X we have
f(©) ) o)t =id

as endomorphisms of Hom(shiuh(g))(M(O), V®M(A)), In particular, each ®;/’A s an
isomorphism.
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Proof. By complete reducibility it is enough to prove the result when V = V" for some
v € XT. In this case, by Lemma A.3.1 we have

S(@XU,S‘A) o@X”,K(w)ILJ) — (p)lj’

which proves the claim, since ¢} is a generator of Homs,,uj () (M(0), V¥ ® M(1)) over
Sy by Lemma A.1.3. O

A.4. Comparison of ® and &
Lemma A.4.1. For any V in Rep(G) and A € X, the following diagram commutes:

4.8.1)
(V@ P (2);)° ———=——= Homs, v (g) (M(0). V @ M(1))

®K*L j@f“
(V@ P (2)52) ¢ — 2o Homs, (g (M(0), V @ M(s2).
= 1,Un(9)) >

Proof. By complete reducibility it is enough to prove the lemma when V = V" for some
v € X*. In this case it follows from Lemma A.2.1 and Lemma A.3.1. O

A.5. Operators o
If v e Xt and A € X, we denote by

2 € (V' eI @, 050))°
the image of y; under the natural morphism
(V' @M 7h(2),)° - (V' &I E. 0501))°

sending /i to 0. These elements can be naturally identified with the ones denoted similarly
in the proof of Lemma A.2.1. By Lemma 3.5.2 and Lemma A.1.3, z} is a generator of the

S(t)-module (V” ®TI'(g, Og(k)))c, and z; # 0 iff A is a weight of V".
Lemma A.5.1. Forv e XT and A € X we have
oM (@) = 2.

Proof. The statement is clear if A is not a weight of VV. Now assume that A = v — ka

for some k € {0,...,v(a)}. As GSVU’)” is an isomorphism of S(t)-modules we must have
USV ’A(zK) =c-z}, for some ¢ € C*. Now recall the commutative diagram (5.2.4). We
have

(idy» ®ev} )(2)) = v) = (idy» ® evir)(2hy).

This proves that ¢ = 1, and finishes the proof. O
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Corollary A.5.2. Let V in Rep(G) and A € X. The following diagram commutes, where
vertical maps are the natural morphisms sending h to 0:

V.

(V@ P (2);)¢ —= (V@ PII(2)3)°

(VRTE, 0500))¢ —2- (V®T G, O5(s0))°.

Proof. By complete reducibility it is enough to prove the claim when V = VV for some
v € X*. In this case it follows by comparing Lemma A.2.1 and Lemma A.5.1. O

A.6. Satake equivalence

From now on we use the notation of § 6-8, assuming in addition that G has semisimple
rank 1. We denote by o« the unique positive coroot of G. Note that & and A can be
considered either as characters of A = T x C* or as elements of a* = t& C.

To simplify the statements of the next results we introduce the following notation. For
A€ X and k > 1 we define the A-module

Vi = Cog@+n D Cog—p@+2n @ ® Cog ) tin-
We also set V* = {0}. Note that dim(V}*) = k, and that there are natural inclusions V} C
0 k k
A
Vk+1 :
Lemma A.6.1. Let A € X.
(1) Assume that (&) > 0. For v € X we have isomorphisms of A-varieties
M ifv==a;
E5) ﬂGrUé =1 VENVE, ifv=»Xr+ka for somek € Zo;
% otherwise.
(2) Assume that A(&) < 0. For v € X we have isomorphisms of A-varieties
Vi & if v =A+(—Ma@);
E2 ﬂGrvé S VENVE, ifv=»A+ka for somek € Lo _j);
@ otherwise.

Proof. Each connected component of Gr(v; is isomorphic to a connected component of

GrpgL2.c), and the action of ker(a) = Z(é) C T is trivial. Hence it is enough to prove
the isomorphism when G= PGL(2, C). In this case we can identify X with Z through
u = (), so v and A can be considered as integers.

The first case: even weights. Write A = 2¢ with £ € Z. Then \ is the class of the matrix
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and ¥, is given by the classes of matrices of the form
20

M(Q) =
0@) z7*

where Q(z) € z7¢'C[z7']. If Q(z) = 0, then this point is in Gr. Otherwise, write Q(z) =
az7™+-.., where a 20, m > £, and “--” means terms of degree between —m + 1 and
—£ — 1. Assume first that m + £ > 0. (This condition is always satisfied when £ > 0. Note
also that it implies that m > 0.) Then we have

20 "t R(®2) 1 2"t R(2) 7" 0

0@) 7" —Z"Q0() 0 0 1 0 z7™
where R(z) € O is the inverse to z” Q(z). This equality implies that M(Q) € Gr*™".
If £ <0, then we also have to consider the case where £ < m < —¢. However, in this

case M(Q) is in é(O) A= Grg“L(_)”(d))a. This settles the first case.

The second case: odd weights. Write A = 2£ + 1 with £ € Z. Then '\ is the class of the
matrix

and T, is given by the classes of matrices of the form

Z€+l 0

N(Q) =
0() z7*

where Q(z) € x¢~IC[z7']. If Q(z) =0, then this point is in Gr*. Otherwise, write as
above Q(z) =az ™™ +---, where a # 0 and m > £. We have the following equality:

ZE+1 0 Zm—E R(Z) 1ZZ+m+1R(Z) Zm+1 0

0@) z7* . —-7z"Q(z) O 0 1 0 zm

where as above R(z) € O is the inverse to 7 Q(z). This equality implies that N(Q) €
G if e+ m+12>0.

If ¢ <0and £+m+1 <0, then N(Q) is in G(0)-k = Gr*H @ Thig settles the
second case, and finishes the proof. O

The following result is a direct consequence of Lemma A.6.1. It is stated without proof
in [9, 12].

Corollary A.6.2. Let v € XT.
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(1) If » € X is not of the form v —ka for some k € {0, ..., v(&)}, then T, ﬁGr”é =0.
(2) Ifk € {0, ..., v(@)} and A = v —ka, then there exists an isomorphism of A-varieties

TN G_r‘é = Vkv_ka
sending N to 0.

By the constructions of § 6.1 we have a dual group G (which is also of semisimple rank 1)
and a maximal torus 7 C G such that X = X*(T). If v € X, we set IC,, := IC(Gr”é, Cer )
G

Corollary A.6.3. Forv e Xt and k € {0, ..., v(&@)}, the image of the morphism

ngju_ka Y (o 1Cy) — (SeCY)), ., ®Sh = Sh

v—ka

s generated by (55 + (v(@) — k)h) e (5{ + (v(@) — 2k + 1)h>.

Proof. It is well known that G_rz; is rationally smooth. This implies that
IC, = @@[v(&)] = D@[—U(&)].

We deduce isomorphisms

Hiy ) 1o1C0) = HA o (), Hi () IC) =HA o (Ty ke NGIY),

!

and the morphism H;‘(i’ IC)) — H(t,_;,1C,) identifies with the morphism

v—ka v—ka
H.A_U(g,)({)»}) — Hf‘_u(&)+2k(r£v—k“ ﬂG—rVé)

given by the proper push-forward in the equivariant Borel-Moore homology. Hence
we deduce the result from the description of T,_zy ﬂGr”é in Corollary A.6.2 and the
considerations on equivariant (co)homology in §6.2. O

A.7. Proof of Theorem 2.2.4 for G

By semisimplicity of the category Perv s (0)(Gr), it is enough to prove the theorem when
F =1C, for some v € XT. Then V¥ := Sg(ICy) is the G-module with highest weight v.
Comparing Corollary A.1.4 and Corollary A.6.3 we observe that the images of /cltgri, , and

K;l,§ , do indeed coincide, which implies the existence of the isomorphism ¢ic, 1.

A.8. The root vector and the Mirkovié—Vilonen basis

We denote by e € gy the vector constructed in §6.5.
Let ve XT and k € {0,...,v(@)}. Let VY := Sg(ICy), a simple G-module with highest
weight v. As in the proof of Corollary A.6.3, we have canonical isomorphisms

6.12) .
= @2 1C,) = HNT, ke ﬂGrv@)'

v—ka v—ka

The right-hand side is one-dimensional, and has a canonical generator, namely the
fundamental class [T, _go N Gré]. We denote by vl‘j—ka € Vv"fka the vector corresponding
to this generator.
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Remark A.8.1. Be aware that the basis that we consider here is not the same as the
one used in [9, §5.2] or in [12, §2.2], but rather the basis which is dual in the sense of
Poincaré duality.

The following lemma is a special case of [5, Théoreme 2].

Lemma A.8.2. For anyv e X" and k € {0, ..., v(&)} we have
€Uy q = KUy (k1)

It follows from this lemma that, for the choice of root vector e € gy, the basis just
constructed satisfies conditions (A.1.1). Hence we can use the results and notation of
8§ A.1-A.5 for this choice.

We can now give a more precise version of Theorem 2.2.4 for G. As in the proof of
Corollary A.6.3 there exists a canonical isomorphism

!
v—ka

Hiy (i) 1C0) = HE o (WD

The right-hand side has a canonical generator, namely the unique element

!

CE—koz € Hz(a) (iv—ka ICV)

whose image in H'@ (!, 1C,) = Ho({\}) is the fundamental class [{\}]. Then (see §6.2)

v—ka
we have

CICU,vfka(x:_ka) = C:j_ka- (A.8.3)

A.9. Proof of Theorem 2.5.5 for G

We have already proved in Lemma A.4.1 that the operators ® and ® match under the
natural isomorphisms. Hence we only have to compare them with operators E. Moreover,
it is enough to prove the theorem in the case F = IC, for some v € X*. By construction
(see §2.5), we have ghcv ke Ch_ia) . Hence the claim follows from (A.8.3)

and Lemma A.2.1 or Lemma A.3.1.

— v
= G @) ke

B. The Fourier transform for differential operators

In this appendix we briefly explain how to adapt some classical constructions of Fourier
transform for Z-modules (see e.g. [16]) to the asymptotic setting.

B.1. The partial Fourier transform

Let X be a smooth complex algebraic variety, and let p : E — X be a rank r algebraic
vector bundle. Let p : E* — X be the dual vector bundle, and let € := E xx E* be the
total space of the direct sum E @ E*, a vector bundle on X of rank 2r. The canonical
pairing of E and E* gives a regular function f: E xx E* — C. We define a connection
V:0g — Qle by V = d — df. This connection is flat and makes P = (O¢, V) a holonomic
left Z¢-module, with irregular singularities. Explicitly, we have P = P¢/J where J C
D¢ is the left ideal generated by the elements & —&(f) for all vector fields & on €.
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(Note that this ideal is the annihilator of the function exp of on &, the classical kernel for
the Fourier transform.)

Now, let € : € = E xx E* < E x E* be the natural closed embedding and let €,P be a
direct image of the Z-module P. Thus, €,P is a holonomic left Zg gx-module supported
on the subvariety €. Write Ky for the canonical bundle on a smooth variety Y and let

Q= (O p*Kx) ®0y, p« €P-
The sheaf Q has the structure of a module of the algebra
ZER (p*Kx ®0,. ZE+ ®0,. P Kx').

and this module has a canonical section 1g € Q that corresponds to the section 1 mod J €
P /J. Furthermore, a local computation shows that Q is a rank 1 free module (with
generator 1g) over the ring Zg K 1, as well as over the ring 1X (p*Kx ® Zg+ ® [V)*IC;(I).

Let p : € - X be the natural projection. Then p,Q is a rank 1 free module both over
p«Zr and over Kx ®0y P« ZEx ®0y IC;(], with a canonical generator 15,0 Therefore,
there is a uniquely determined morphism F : p,Zp — Kx ® ps«PE~ ®IC;1 such that
one has u-lj o = F(u)-15,¢. It is immediately checked that this morphism is an

anti-isomorphism of rings, i.e. it induces a ring isomomorphism
PP — (Kx ®0y pxZpr ®0y Kx)P. (B.1.1)

On the other hand, we have Kgx = p*(det(E) ®o, Kx), where det(E) denotes the sheaf
of sections of the line bundle A" E on X. Hence, using the well-known isomorphism @gﬁ =
KEex ®0,+ PE* ®0 4 ICEi, we compute

(’CX ®OX ﬁ*@E* ®0X ’C}I)Op ; IC}_(l ®Ox ﬁ*(—@ga) ®OX ICX

= Ky' ®0y P+ (Ker ®0,. Zi- ®0,. Kit) ®0y Kx

det(E) ®0y Px P+ ®0y det(E) .

Thus, from (B.1.1) we deduce a canonical isomorphism of sheaves of algebras on X,
called the Fourier isomorphism:

F: p.Zp — det(E)®0, (p«Zr+) @0y det(E) ™"

Now, in a Rees algebra setting, we define Js to be the left ideal of &5 ¢ generated by
the elements & — &(f) for all vector fields & on &, viewed as degree 2 homogeneous elements
of the graded algebra 25 ¢. (Here we use the notational conventions of §2.4. Note that
the ideal [J; is the annihilator of the “function” exp(%f), considered as an element of
some completion of Ox/[#, h_l].) We put P := D¢/ Th, a Dy e-module. Note that the
ideal J is not homogeneous, so the module P; has no natural grading.

Under the specialization # = 0, we have Z5 ¢/(h) = (pe)«Or*¢, where pg : T*E€ — €&
is the cotangent bundle. The differential of the function f gives a section df : € — T*€.
The image of this section is a smooth closed Lagrangian subvariety A C T*€&, so the sheaf
(pe)«Op has anatural structure of a (pg)Or*e-module. Then, it follows from definitions
that the projection %5 ¢ — Pp induces an isomorphism of (pe).Or+e-modules:

Pr/(h) = (pe)xOn.
We also consider the cotangent bundle q : T*(E x E*) — E x E* and let T*(E x E*)|¢
denote the total space of the restriction of the cotangent bundle to € C E x E*, a closed

12
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subvariety. One has a natural diagram
T*E x TH(E*) =—— T*(Ex E*) =5 D T*(Ex E*)|¢ — = T*¢.
Here, the isomorphism on the left involves a sign and the map pr on the right is a smooth

morphism.
The following result is easily verified by a local computation.

Lemma B.1.2. The variety Z := e(pr~'(A)) is a smooth Lagrangian subvariety of T*(E x
E*). Furthermore, this subvariety is the graph of an isomorphism T*E = T*(E*), of
algebraic varieties over X.

To proceed further we observe that, for any smooth variety Y, the sheaf y[#] has a
canonical right 95 y-action such that a vector field & € Jy acts on Ky by 8 — —fi - L¢B,
where Lg stands for the Lie derivative. We write IC?, for the resulting right %5 y-module.
Then, one has a canonical isomorphism

.@;f’y = /C?/ ®oy 1] Dh.y @0y 1h) (’C?/)fl-
Note that this isomorphism specializes at i =0 to the identity map (pe¢)«Or+y —
(Pe)«Or+y.
Next, mimicking the corresponding constructions for Z-modules, one can define a direct
image €4Pr, a left Dy gxgx-module. Further, we put Qp := (O X ﬁ*lCi) ®O . prlh) €Ph-
Then, one checks that there is a natural isomorphism

Qn/(h) = q:0¢z,

of q+Or+(ExE*-modules. Furthermore, repeating earlier constructions, one obtains a
canonical isomorphism

Fr: psne — det(E)Rl @0y (PxZn. £*) @0y det(E) ™ [A]. (B.1.3)

This is an isomorphism of sheaves of C[#]-algebras on X. This isomorphism does not
respect the natural gradings on each side in (B.1.3) unless » = 0 and it specializes, at
i =0, to the isomorphism p,Orsg — pxOr+g+) that results from Lemma B.1.2.

The above isomorphism can be described locally as follows. Let U C X be an open
subvariety over which E is trivializable, and let us choose an isomorphism of vector
bundles E|y = C" x U. Then for i =1, ...,r we have a function x; on Ejy given by the
projection on the ith copy of C, and the corresponding vector fields dy,, so we have an
isomorphism of sheaves of C[/]-algebras

(P«Zn.E) y = Dnu Ocin (Clxi, 3,)/[8x,, xi] = h). (B.1.4)

(Here i runs over {1,...,r}.) Our isomorphism Ejy = C" x U also defines a canonical
section T of det(E) over U, the dual section TV of det(E)~!, and an isomorphism (E")w =
C" x U, so we obtain functions &, ..., & and vector fields 9, ..., d; on (E*)y, and an
isomorphism

(P*@h,E*)W = Inu ®cin (Cl&, 9g,) /105, &1 = h). (B.1.5)
Then using isomorphisms (B.1.4) and (B.1.5), the restriction of isomorphism (B.1.3) to
U can be described as follows: it sends any P € Zpy to TQ P71, Xx; to T® —0g ® 1",
and oy, t0 TR & ®TY.

https://doi.org/10.1017/51474748014000085 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748014000085

Differential operators on G /U and the affine Grassmannian 573

B.2. The “symplectic” partial Fourier transform

Now we assume that E is a symplectic vector bundle with symplectic form w over a
smooth complex algebraic variety X. Then we have an isomorphism of vector bundles

ESEY, v ol —)

over X, and hence an induced isomorphism p.Zh g = p«Ph gx. Moreover, @ defines a
trivialization of det(E). Hence isomorphism (B.1.3) provides an automorphism of p,%s .
We denote the induced automorphism by

Fr : Zh(E) — Dn(E).

One can easily check that Fg is equivariant under the natural action of the group of
symplectic automorphisms of E, and that we have Fg oFg =idg, ).

Example B.2.1. If X =pt, then E is simply a symplectic vector space. For instance,
assume that E = C? = Cv; @ Cva, equipped with the symplectic form such that
w (v, v2) = 1. Let (51, n2) be the basis of E* dual to (vi, v2). Then Z;(E) is generated by
n1, n2 (considered as functions on E) and vy, vy (considered as vector fields on E), and
Fg is defined by

Nyt v, Mnt—> —v;, Vik>—0n2, U211

The following result (which can easily be checked using local trivializations) is used in
§3.4.

Lemma B.2.2. Let f € C[X] be an invertible function, which we consider as a function on
E via the projection E — X. Then the automorphism of Zy(E) given by D — f~1.D. f
commutes with Fg.
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