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Abstract We describe the equivariant cohomology of cofibers of spherical perverse sheaves on the affine
Grassmannian of a reductive algebraic group in terms of the geometry of the Langlands dual group. In

fact we give two equivalent descriptions: one in terms of D-modules of the basic affine space, and one

in terms of intertwining operators for universal Verma modules. We also construct natural collections
of isomorphisms parameterized by the Weyl group in these three contexts, and prove that they are

compatible with our isomorphisms. As applications we reprove some results of the first author and of

Braverman and Finkelberg.

1. Introduction

1.1.

The geometric Satake equivalence relates perverse sheaves (with complex coefficients in

our case) on the affine Grassmannian Gr of a complex connected reductive algebraic

group Ǧ and representations of the Langlands dual (complex) reductive group G. The

underlying vector space of the representation S(F) attached to a perverse sheaf F is

given by its total cohomology H q
(Gr,F). It turns out that various equivariant cohomology

groups attached to F also carry information on the representation S(F); see e.g. [9, 22, 42].

In this paper, if Ť is a maximal torus of Ǧ, we describe, in terms of G, the equivariant

cohomology of cofibers of F at a Ť -fixed point, with respect to the action of Ť or of

Ť ×C×, where C× acts on Gr by loop rotation. In fact these groups can be described in

two equivalent ways, either in terms of D-modules on the basic affine space or in terms

of intertwining operators for universal Verma modules. We also describe the Weyl group

action on this collection of spaces induced by the action of NǦ(Ť ) on Gr.
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1.2.

To state our results more precisely, choose some Borel subgroup B̌ ⊂ Ǧ containing Ť , and

let T, B be the maximal torus and the Borel subgroup of G provided by the geometric

Satake equivalence. Note that the Tannakian construction of G also provides no zero

vectors in each simple root subspace of g := Lie(G). In this paper we study three families

of graded modules over a polynomial algebra, attached to G or Ǧ, and endowed with

symmetries parameterized by their common Weyl group W .

Let t := Lie(T ) and Sh̄ := S(t)[h̄], considered as a graded algebra where h̄ and the

vectors in t are in degree 2. (Here, S(t) is the symmetric algebra of the vector space

t.) Let also X := X∗(T ) be the character lattice. Let Rep(G) be the category of finite

dimensional algebraic G-modules.

Our first family of graded modules over Sh̄ is of “geometric” nature. Let U be the

unipotent radical of B, and let X := G/U be the basic affine space. Consider the algebra

Dh̄(X ) of (global) asymptotic differential operators on X , i.e. the Rees algebra of the

algebra 0(X ,DX ) of differential operators on X , endowed with the order filtration

(see § 2.4 for details). This algebra is naturally graded, and endowed with an action of T
induced by right multiplication on X . We denote by Dh̄(X )λ the weight space associated

with λ ∈ X. Then we set

Mgeom
V,λ :=

(
V ⊗ (λ)Dh̄(X )λ

)G
.

(Here the twist functor (λ)(·) will be defined in § 2.4.)

Our second family of graded Sh̄-modules is of “algebraic” nature. Let Uh̄(g) be the

asymptotic enveloping algebra of g (i.e. the Rees algebra of the algebra U (g) endowed

with the Poincaré–Birkhoff–Witt filtration; see § 2.1 for details). For λ ∈ X we let M(λ) be

the asymptotic universal Verma module associated with λ, a graded (Sh̄,Uh̄(g))-bimodule

whose precise definition is recalled in § 2.1. Then we set

Malg
V,λ := Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)
where we consider morphisms in the category of (Sh̄,Uh̄(g))-bimodules.

We will also construct a third family of graded modules, of “topological” nature,

which is associated with the “Langlands dual data”. Let ť := Lie(Ť ). We have canonical

identifications X ∼= X∗(Ť ) and Sh̄ ∼= S(ť∗)[h̄]. Consider the category PervǦ(O)(Gr) of

Ǧ(O)-equivariant perverse sheaves on the affine Grassmannian Gr of Ǧ. Then for any
λ ∈ X and F in PervǦ(O)(Gr) we set

Mtop
F ,λ := H

q+λ(2ρ̌)
Ť×C× (i !λF).

Here iλ is the inclusion of the point of Gr naturally associated with λ, C× acts on Gr by

loop rotation, and ρ̌ is the half-sum of positive coroots of G. Then Mtop
F ,λ is in a natural

way a graded Sh̄-module.

1.3.

Each of these families is endowed with a kind of “symmetry” governed by the Weyl

group W of (G, T ) or (Ǧ, Ť ). (Note that these Weyl groups can be canonically identified.)
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Namely, we have isomorphisms of graded Sh̄-modules

AV,λ,w :MV,λ
∼−→ wMV,wλ or AF ,λ,w :MF ,λ

∼−→ wMF ,wλ

for all w ∈ W . (Here the twist functor w(·) will be defined in § 2.4.)

In the “geometric” case, the isomorphisms Ageom
V,λ,w are constructed using a W -action on

Dh̄(X ) given by partial Fourier transforms due to Gelfand and Graev and studied in

particular by Bezrukavnikov, Braverman and Positselskii in [8]. These operators depend

on a choice of (non-zero) simple root vectors in g, which we choose to be those provided

by the geometric Satake equivalence.

In the “algebraic” setting, the isomorphisms Aalg
V,λ,w are constructed using properties of

intertwining operators, between a Verma module and a tensor product of a G-module and

a Verma module. Our constructions are “renormalized” variants of classical constructions

appearing in the definition of the dynamical Weyl group (see [19, 39]) but, as opposed to

those considered in loc. cit., our isomorphisms do not have poles. Again, the operators

Aalg
V,λ,w depend on a choice of simple root vectors in g, which we choose as above.

In the “topological” setting, the isomorphisms Atop
F ,λ,w are induced by the action of

NǦ(Ť ) on Gr by left multiplication.

In each setting, the collection of operators is compatible with the product in W in the

sense that

y(AV,yλ,x
) ◦AV,λ,y = AV,λ,xy or y(AF ,yλ,x

) ◦AF ,λ,y = AF ,λ,xy

for any λ, V,F as above and x, y ∈ W .

1.4.

In addition, these families of graded modules are endowed with morphisms

ConvV,V ′,λ,µ :MV,λ⊗Sh̄
(λ)MV ′,µ→MV⊗V ′,λ+µ,

ConvF ,F ′,λ,µ :MF ,λ⊗Sh̄
(λ)MF ′,µ→MF?F ′,λ+µ

related to the monoidal structure on the category Rep(G) (denoted as ⊗) or PervǦ(O)(Gr)
(denoted as ?).

In the “geometric” setting, morphisms Convgeom
V,V ′,λ,µ are induced by the product in

the algebra Dh̄(X ). In the “algebraic” setting, morphisms Convalg
V,V ′,λ,µ are induced

by composition of morphisms of bimodules. In the “topological” setting, morphisms

Convtop
F ,F ′,λ,µ are defined using a standard construction considered in particular in [3].

1.5.

Our main result might be stated as follows (see Corollary 2.4.2, Theorem 2.5.5, and

Proposition 8.1.5).

Theorem. For F in PervǦ(O)(Gr) and λ ∈ X there exist canonical isomorphisms

Mtop
F ,λ
∼=Mgeom

S(F),λ
∼=Malg

S(F),λ,
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where S : PervǦ(O)(Gr) ∼−→ Rep(G) is the geometric Satake equivalence. These families of

isomorphisms are compatible with operators A and with morphisms Conv.

The proof of this theorem is based on another crucial property of the modules Mgeom
V,λ ,

Malg
V,λ and Mtop

F ,λ: they are all compatible with restriction to a Levi subgroup in the

appropriate sense. This property is used to reduce the proof of our claims to the case G
and Ǧ have semisimple rank 1, in which case they can be checked by explicit computation.

This strategy is rather classical in this context; see e.g. [1, 9, 10, 12].

1.6.

The present paper is closely related to, and motivated by, results of [3] and [9]. In fact,

in a follow-up paper the results of the present article will be used to obtain a common

generalization of the equivalences of categories established in these papers. A similar

generalization can also be obtained using recent results of Dodd [18], but our approach

is different and, we believe, more explicit. We will follow the strategy of [3] and a key

technical step in our approach is the following algebra isomorphism, which is a “quantum”

analogue of [3, Theorem 8.5.2] and which follows from the theorem stated in § 1.5:⊕
λ∈X+

Ext
q̌
T×C×(RG ,Wλ ?RG) ∼= Uh̄(g)n

⊕
λ∈X+

Dh̄(X )λ

 .
Here, Wλ is the Wakimoto sheaf associated with λ, RG is an ind-perverse sheaf on Gr
corresponding to the regular representation of G, and we refer the reader to [3, § 8] for

this and other unexplained notation.

1.7.

We will also consider “classical analogues” of the above constructions, by which we mean

specializing h̄ to 0, and hence replacing Sh̄ by S(t) or S(ť∗). The classical analogues of

Mtop are easy to define: we simply set

Mtop
F ,λ := H

q+λ(2ρ̌)
Ť

(i !λF).

We also have morphisms A
top

and Conv
top

given by the same constructions as for Atop

and Convtop.

There is no interesting classical analogue of Malg. The classical analogues of Mgeom are

defined using the geometry of the Grothendieck–Springer resolution g̃. More precisely,

we set

Mgeom
V,λ :=

(
V ⊗0(̃g,Og̃(λ))

)G

where Og̃(λ) is the G-equivariant line bundle on g̃ associated with λ. The operators

Conv
geom

are induced by the natural morphisms

0(̃g,Og̃(λ))⊗0(̃g,Og̃(µ))→ 0(̃g,Og̃(λ+µ)).
Finally, the operators A

geom
are defined using the W -action on the regular part of g̃.

Again, these operators depend on a choice of simple root vectors in g. This construction

seems to be new, and has interesting consequences (see § 5.5).
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Then we prove the following (see Corollary 2.4.5, Theorem 2.5.7 and Remark 8.1.6(2)).

Theorem. For F in PervǦ(O)(Gr) and λ ∈ X, there exist canonical isomorphisms

Mtop
F ,λ ∼=Mgeom

S(F),λ.

This family of isomorphisms is compatible with operators A and with morphisms Conv.

The modules appearing in the theorem (and the corresponding morphisms) are related

to those appearing in the theorem of § 1.5 by the functor C⊗C[h̄] (−) (where h̄ acts by zero

on C). For Mtop and Mtop
, this easily follows from the parity vanishing of H q

(i !λF); see

Lemma 6.2.4. For Mgeom and Mgeom
, this requires a more subtle argument; see § 3.5. In

particular, our results establish a relation between the automorphisms of Dh̄(X ) induced

by partial Fourier transforms and the W -action on the regular part of g̃, which seems to

be new.

1.8.

As applications of our constructions we give new proofs of two results: a geometric

description of the Brylinski–Kostant filtration due to the first author (see [22]), and

a geometric construction of the dynamical Weyl group due to Braverman and Finkelberg

(see [12]). We also observe that some of our technical preliminary results have interesting

applications: they allow us to give simpler proofs of results on the structure of the algebra

D(X ) of differential operators on X (see § 3.6) and to construct an action of W on the

regular part of T ∗X which “lifts” the action on the regular part of g̃; see § 5.5.

One important tool in the first proof of the geometric Satake equivalence in [22] was the

specialized equivariant cohomology of cofibers (see in particular [loc. cit., § 3.5]), while

in [35] the authors replaced this tool by the cohomology of corestrictions to semi-infinite

orbits Tλ. Our descriptions of H q̌
T
(i !λF), H q̌

T
(t !λF) (where tλ denotes the inclusion of Tλ)

and the natural morphism between them (see Theorem 2.3.1) shed some light on the

precise relation between these points of view.

1.9. Description of the paper

In Section 2 we define our main players, and state our main results. In Section 3 we study

the modules Mgeom
V,λ and define their symmetries. In Section 4 we study the modules

Malg
V,λ, define their symmetries, and relate this algebraic family to the geometric one.

In Section 5 we study the modules Mgeom
V,λ , define their symmetries, and relate them

to the modules Mgeom
V,λ . In Section 6 we recall the construction of the geometric Satake

equivalence and its main properties. In Section 7 we prove our main results. In Section 8

we give some complements and applications of these results. Finally, the paper finishes

with two appendices: Appendix A collects computations in semisimple rank 1 that are

needed in our proofs, and Appendix B is a reminder on partial Fourier transforms for

(asymptotic) D-modules.

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


498 V. Ginzburg and S. Riche

1.10. Conventions

Throughout, we will work over the ground field C of complex numbers and write ⊗ = ⊗C.

If M =⊕n∈Z Mn is a graded vector space and m ∈ Z, we define the graded vector space

M〈m〉 by the following rule: (M〈m〉)n = Mn−m . Note that 〈1〉 is a “homological” shift, i.e. it

shifts graded vector spaces to the right. We will always consider C[h̄] as a graded algebra

where h̄ has degree 2. If A and B are C[h̄]-algebras, by an (A, B)-bimodule we mean an

(A⊗C[h̄] Bop)-module. If A is an algebra, we write Hom−A(−,−) for HomAop(−,−).

2. Statement of the main results

2.1. Asymptotic Verma modules

Given a filtered C-algebra A =⋃i∈Z>0
Fi A, we let Ah̄ be the Rees algebra (sometimes

referred to as the “graded” or “asymptotic” version) of the filtered algebra A. It can be

defined as the following subalgebra of A[h̄]:

Ah̄ :=
⊕
i∈Z

Ai
h̄ with Ai

h̄ =
 0 if i is odd;

h̄i · Fi/2 A if i is even.
(2.1.1)

Thus, Ah̄ is a graded C[h̄]-algebra, where the indeterminate h̄ has grade degree 2.

(The reason for our convention will become clear later.) Moreover, one has a natural

isomorphism

Ah̄/h̄ · Ah̄ ∼= grF A

(where degrees are doubled on the left-hand side).

If k is a Lie algebra, the enveloping algebra U (k) comes equipped with a natural

ascending filtration, the Poincaré–Birkhoff–Witt filtration, such that gr U (k) = S(k).
The corresponding asymptotic enveloping algebra Uh̄(k) := U (k)h̄ has an alternative

(equivalent) definition as the C[h̄]-algebra generated by k, with relations xy− yx = h̄[x, y]
for x, y ∈ k. Here elements of k have degree 2. We will use this description of Uh̄(k), and

still denote by x the image of an element x ∈ k. (If we were using the description (2.1.1),

this element should rather be denoted as h̄x .)

Let G be a connected reductive group over C with Lie algebra g. We fix a triangular

decomposition g = u⊕ t⊕ u−, so b = t⊕ u is a Borel subalgebra. Let T be the maximal

torus and B = T ·U the Borel subgroup corresponding to the Lie algebras t and b,

respectively. We will denote by R the set of roots of G (relative to T ), by R+ the positive

roots (i.e. the roots of u), and by W the Weyl group of (G, T ). Let ρ ∈ t∗ (resp. ρ̌ ∈ t) be

the half-sum of positive roots (resp. coroots). We also let X be the lattice of characters of

T , and X+ (resp. X−) be the subsemigroup of dominant (resp. antidominant) weights. We

will frequently consider elements of t∗ (resp. of X) as linear forms on b (resp. characters

of B) which are trivial on u (resp. on U). Also, as usual, when convenient we identify X
with a subset of t∗ via the differential.

We consider asymptotic C[h̄]-algebras Uh̄(g) and Uh̄(t). The latter algebra is a

commutative graded algebra which is clearly isomorphic to Sh̄ := S(t)[h̄] where S(t), the

symmetric algebra of t, is equipped with its natural grading. Let Z(g) be the center of

the algebra U (g). The Poincaré–Birkhoff–Witt filtration on U (g) induces, by restriction,
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a filtration on Z(g). The corresponding asymptotic algebra Z h̄(g) is the center of the

algebra Uh̄(g). One has a Harish-Chandra isomorphism Z h̄(g) ∼= SW
h̄ = S(t)W [h̄], a graded

C[h̄]-algebra isomorphism induced by the composition

Z h̄(g) ↪→ Uh̄(g)� Uh̄(g)/(u ·Uh̄(g)+Uh̄(g) · u−) ∼←− Sh̄
∼−→ Sh̄

where the isomorphism on the right-hand side sends t ∈ t to t + h̄ρ(t). Using this

isomorphism, we may (and will) identify the algebra Z h̄(g) with a subalgebra of Sh̄ .

For any λ ∈ t∗, let Sh̄〈〈λ〉〉 be the Uh̄(b)-bimodule defined as follows. As a C[h̄]-module, it

is isomorphic to Sh̄ . The left Uh̄(b)-module structure is given by the natural isomorphism

Sh̄ ∼= Uh̄(b)/Uh̄(b) · n. Then in the right Uh̄(b)-module structure, the Lie ideal u ⊂ b acts

by 0, and t ∈ t acts by multiplication by t + h̄λ(t).
We define a graded (Uh̄(b), Uh̄(g))-bimodule, a certain asymptotic version of the

universal Verma module, as follows:

M(λ) = Sh̄〈〈λ+ ρ〉〉⊗Uh̄(b) Uh̄(g).

(We will mainly only consider M(λ) as an (Sh̄,Uh̄(g))-bimodule.) The action of Uh̄(g) on

the vector vλ := 1⊗ 1 ∈M(λ) induces an isomorphism of right Uh̄(g)-modules

M(λ) ∼= Uh̄(g)/(u ·Uh̄(g)). (2.1.2)

Under this isomorphism, the right Sh̄-module structure is such that the action of t ∈ t is

induced by right multiplication by t − h̄ · (λ+ ρ)(t) on Uh̄(g).

It is immediate from the definitions that there is well-defined ‘adjoint’ action b : m 7→
ad b(m) of the Lie algebra b on M(λ), which is related to the bimodule structure by the

equation

h̄ · ad b(m) = (b+ h̄ρ(b)) ·m−m · b ∀b ∈ b.

The adjoint action of the subalgebra t ⊂ b is semisimple. Therefore, one has a weight

decomposition M(λ) =⊕µ∈t∗ M(λ)µ. In particular, we have M(λ)−λ = C[h̄] · vλ, and

M(λ)µ = 0 unless µ ∈ −λ−Z>0 R+. For λ ∈ X, the adjoint action on M(λ) can be

exponentiated to an algebraic B-action.

Let Rep(G) be the tensor category of finite dimensional rational G-modules. For V ∈
Rep(G) and λ ∈ X, let Vλ denote the T -weight space of V of weight λ.

The assignment h̄ 7→ 1⊗ h̄, x 7→ −x ⊗ h̄+ 1⊗ x has a unique extension to an

algebra homomorphism Uh̄(g)→ U (g)op⊗Uh̄(g). Via this homomorphism, for any right

Uh̄(g)-module M and V ∈ Rep(G), the vector space V ⊗M acquires the structure of a

right Uh̄(g)-module. This gives an (Uh̄(b),Uh̄(g))-bimodule structure on V ⊗M(λ), where

the left action of the algebra Uh̄(b) on V ⊗M(λ) comes from its action on M(λ) on the

left. If λ ∈ X, the differential of the diagonal B-action on V ⊗M(λ) and the bimodule

structure are related as follows: if b ∈ b ⊂ U (b), h̄ times the action of b is given by the

assignment n 7→ (b+ h̄ρ(b)) · n− n · b.

One has a natural morphism of left Sh̄-modules pλ :M(λ)→ Sh̄ , induced by the

projection Uh̄(g)→ Uh̄(b) orthogonal to Uh̄(g) · u−. If λ ∈ X, then pλ is also a morphism of

T -modules M(λ)→ Sh̄ ⊗C−λ. An important role will be played below by the morphism of
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graded Sh̄-modules κ
alg
V,λ defined (for V in Rep(G) and λ ∈ X) as the following composition:

(
V ⊗M(λ)

)B
↪→ (

V ⊗M(λ)
)T idV⊗pλ // (V ⊗Sh̄ ⊗C−λ)T = Vλ⊗Sh̄ . (2.1.3)

Note that
(
V ⊗M(λ)

)B
has a natural structure of a Z h̄(g)-module, induced by the

(right) action of Z h̄(g) ⊂ Uh̄(g) on M(λ). With this definition, κ
alg
V,λ is also a morphism of

Z h̄(g)-modules, where Z h̄(g) = SW
h̄ acts on Sh̄ via the restriction of the right action of Sh̄

on Sh̄〈〈λ〉〉.

2.2. The affine Grassmannian: equivariant cohomology of cofibers

Write Gm for the multiplicative group. Let Ǧ be the Langlands dual group of G. The

group Ǧ comes equipped with the maximal torus Ť ⊂ Ǧ, with opposite Borel subgroups

B̌ = Ť · Ǔ and B̌− = Ť · Ǔ−, and with a canonical isomorphism X = Hom(Gm, Ť ), the

cocharacter lattice of Ť . (To be completely precise, one should first choose Ǧ, B̌, Ť , and

then use the affine Grassmannian of Ǧ to define G, B, T by the Tannakian formalism;

see § 6.1 for details.)

Let K = C((z)) (resp. O = C[[z]]). Let GrǦ := Ǧ(K)/Ǧ(O) (resp. GrŤ := Ť (K)/Ť (O))
be the affine Grassmannian associated with the group Ǧ (resp. Ť ). (We will consider the

reduced ind-scheme structure on these affine Grassmannians.) Thus, one has X = GrŤ
and there is a natural embedding X = GrŤ ↪→ GrǦ . For λ ∈ X, we let λ be the image of

λ and let iλ : {λ} ↪→ GrǦ denote the one-point embedding. The group Ǧ(K)oGm acts

on GrǦ on the left, where the factor Gm acts by rotation of the loop.

For the rest of this section, we will use simplified notation Gr := GrǦ . The following

subsets of the affine Grassmannian will play an important role. For λ ∈ X+, we let Grλ :=
Ǧ(O) ·λ. This is a finite dimensional (Ǧ(O)oGm)-stable locally closed subvariety of Gr.
One has a stratification Gr = tλ∈X+ Grλ. Further, for any λ ∈ X, following Mirković and

Vilonen one puts Tλ := Ǔ−(K) ·λ. We let tλ : Tλ ↪→ Gr be the inclusion.

Let A := Ť ×Gm , a toral subgroup of Ǧ(K)oGm . The Mirković–Vilonen space Tλ is

A-stable. Further, the set X ⊂ Gr is known to be equal to the set of A-fixed points in

Gr. Therefore, for any object F of the equivariant derived category Db
A(Gr), there are

well-defined A-equivariant cohomology groups H q
A(Tλ, t !λF) (resp. H q

A(i
!
λF)). These are

graded modules over the graded algebra H q
A(pt) ∼= S(t)[h̄] = Sh̄ .

Let PervǦ(O)(Gr) (resp. PervǦ(O)oGm
(Gr)) be the category of Ǧ(O)-equivariant

(resp. Ǧ(O)oGm-equivariant) perverse sheaves on Gr. Let also PervǦ(O)-mon(Gr) be

the category of perverse sheaves on Gr which are constructible with respect to the

stratification by Ǧ(O)-orbits. Recall that all three of these categories are semisimple,

with simple objects parameterized by X+. In particular, the forgetful functors

PervǦ(O)oGm
(Gr)→ PervǦ(O)(Gr)→ PervǦ(O)-mon(Gr)

are equivalences of categories (see [35, Appendix A] for a similar result in a much more

general situation). Let

S : PervǦ(O)(Gr) ∼−→ Rep(G)
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be the geometric Satake equivalence. By the remark above, any object of PervǦ(O)(Gr)
can be considered naturally as an object of Db

A(Gr).
The following lemma is a simple consequence of results of Kazhdan and Lusztig [30]

and Mirković and Vilonen [35]; cf. also [12, 42]. It will be proved in § 6.2.

Lemma 2.2.1. For any F in PervǦ(O)(GrǦ) and λ ∈ X, one has:

(1) The graded Sh̄-module H q
A(i
!
λF) (resp. the graded S(t)-module H q̌

T
(i !λF)) is free.

(2) There is a canonical isomorphism of graded Sh̄-modules (resp. of graded

S(t)-modules)

H q
A(Tλ, t !λF) ∼=

(
S(F)

)
λ
⊗Sh̄〈λ(2ρ̌)〉, H q̌

T
(Tλ, t !λF) ∼=

(
S(F)

)
λ
⊗S(t)〈λ(2ρ̌)〉.

(2.2.2)

One may factor the embedding iλ : {λ} ↪→ Gr as a composition {λ} ıλ−→ Tλ
tλ−→ Gr. Hence,

there is a push-forward morphism

(ıλ)! : H q
A(i
!
λF) = H q

A(ı
!
λt !λF) −→ H q

A(Tλ, t !λF).

Let κ
top
F ,λ be the following composite morphism:

κ
top
F ,λ : H q

A(i
!
λF)

(ıλ)! // H q
A(Tλ, t !λF)

(2.2.2)
∼ //

(
S(F)

)
λ
⊗Sh̄〈λ(2ρ̌)〉.

(2.2.3)
Thus, we get a diagram of morphisms of graded Sh̄-modules

(S(F)⊗M(λ))B〈λ(2ρ̌)〉 κ
alg
S(F),λ

〈λ(2ρ̌)〉
(2.1.3)

// (S(F))λ⊗Sh̄〈λ(2ρ̌)〉 H q
A(i
!
λF).

κ
top
F ,λ

(2.2.3)
oo

One of our key results (to be proved in § 7.6) reads as follows.

Theorem 2.2.4. For any F in PervǦ(O)(Gr) and λ ∈ X, the morphisms κ
alg
S(F),λ〈λ(2ρ̌)〉

and κ
top
F ,λ are injective and have the same image. Thus, there is a natural isomorphism

of graded Sh̄-modules ζF ,λ that fits into the following commutative diagram:

(
S(F)⊗M(λ)

)B〈λ(2ρ̌)〉 ζF ,λ
∼ //

� _

κ
alg
S(F),λ〈λ(2ρ̌)〉
��

H q
A(i
!
λF)� _
κ

top
F ,λ
��(

S(F)
)
λ
⊗Sh̄〈λ(2ρ̌)〉

(
S(F)

)
λ
⊗Sh̄〈λ(2ρ̌)〉.

(2.2.5)

Remark 2.2.6. We have defined in § 2.1 an action of Z h̄(g) on (S(F)⊗M(λ))B . On the

other hand, it is explained in [9, § 2.4] that H q
A(i
!
λF) also has a natural action of Z h̄(g) =

SW
h̄ coming from the natural map Gr = (Ǧ(K)oGm)/(Ǧ(O)oGm)→ pt/(Ǧ(O)oGm).

We claim that our isomorphism ζF ,λ is also Z h̄(g)-equivariant.
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First, the action of Sh̄ ⊗ Z h̄(g) on H q
A(i
!
λF) factors through an action of Sh̄ ⊗C[h̄] Z h̄(g) =

C[t∗× (t∗/W )×A1]. Then, the action of Sh̄ ⊗C[h̄] Z h̄(g) factors through the natural action

of the algebra H q
A(λ). Finally, it is explained in [9, § 3.2] that the Sh̄ ⊗C[h̄] Z h̄(g)-algebra

H q
A(λ) is isomorphic to the direct image under the natural quotient map of O0λ , where

0λ := {(η1, η2, z) ∈ t∗× t∗×A1 | η2 = η1+ zλ}.
The claim easily follows from these remarks and the Sh̄-equivariance of ζF ,λ.

Remark 2.2.7. Consider the case where F = ICν is the IC-sheaf associated with the

Ǧ(O)-orbit Grν for some ν ∈ X, and λ = w0ν (where w0 ∈ W is the longest element).

Then V ν := S(ICν) is a simple G-module with highest weight ν, and λ is the lowest

weight of V ν . In view of the right-hand isomorphism in Lemma 2.4.1 below, the image of

the morphism κ
alg
V ν ,w0ν

is computed by Kashiwara in [28]: namely, with our conventions,

combining Theorem 1.7 and Proposition 1.8 in loc. cit., we obtain that the image of

κ
alg
V ν ,w0ν

in V ν
w0ν
⊗Sh̄ ∼= Sh̄ is generated by the following element:

∏
α∈R+

−ν(w0α)−1∏
j=0

(α̌− j h̄)

 . (2.2.8)

The topological context is easy in this case. Namely we have

Tw0ν ∩Grν = Tw0ν ∩Grν = Ǔ−(O) · (w0ν) ∼=
∏
α∈R+

−ν(w0α)−1∏
j=0

C−α̌+ j h̄


as A-varieties. One can easily deduce that the image of κ

top
ICν ,w0ν

is also generated by

(2.2.8); see § 6.2. Hence, in this particular case, Theorem 2.2.4 can be directly deduced

from these remarks.

In the case λ = ν, one can also directly check that both κ
alg
V ν ,ν and κ

top
ICν ,ν are

isomorphisms.

2.3. The classical analogue

We will also prove an analogue of Theorem 2.2.4 where one replaces A by Ť . In this case

the representation theory of the algebra Uh̄(g) has to be replaced by the geometry of the

algebraic variety g∗.
We will identify t∗ with the subspace (g/u⊕ u−)∗ ⊂ g∗. In this way we obtain a

canonical morphism q : S(g/u)→ S(t) induced by restriction of functions. For V in

Rep(G) and λ ∈ X, the “classical analogue” of the morphism κ
alg
V,λ, which we will denote

by κ
alg
V,λ, is the composition(

V ⊗S(g/u)⊗C−λ
)B
↪→ (

V ⊗S(g/u)⊗C−λ
)T idV⊗q⊗1−−−−−→ (V ⊗S(t)⊗C−λ)T = Vλ⊗S(t).

This morphism is S(t)-equivariant, where the S(t)-action on the left-hand side is induced

by the morphism (g/u)∗→ t∗ given by restriction of linear maps.
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Now we consider perverse sheaves on Gr. For F in PervǦ(O)(Gr) and λ ∈ X, we will

denote by κ
top
F ,λ the following composite morphism:

κ
top
F ,λ : H q̌

T
(i !λF)

(ıλ)! // H q̌
T
(Tλ, t !λF)

(2.2.2)
∼ //

(
S(F)

)
λ
⊗S(t)〈λ(2ρ̌)〉.

Then the classical analogue of Theorem 2.2.4 (to be proved in § 7.7) reads as

follows.

Theorem 2.3.1. For any F in PervǦ(O)(Gr) and λ ∈ X, the morphisms κ
alg
S(F),λ〈λ(2ρ̌)〉

and κ
top
F ,λ are injective and have the same image. Thus, there is a natural isomorphism

of graded S(t)-modules ζF ,λ that fits into the following commutative diagram:

(
S(F)⊗S(g/u)⊗C−λ

)B〈λ(2ρ̌)〉 ζF ,λ
∼ //

� _

κ
alg
S(F),λ〈λ(2ρ̌)〉
��

H q̌
T
(i !λF)� _
κ

top
F ,λ
��(

S(F)
)
λ
⊗S(t)〈λ(2ρ̌)〉 (

S(F)
)
λ
⊗S(t)〈λ(2ρ̌)〉.

(2.3.2)

2.4. Alternative descriptions: differential operators on G/U and

intertwining operators for Verma modules

An important role in our arguments will be played by two alternative descriptions of the

C[h̄]-modules
(
V ⊗M(λ)

)B
.

If X is a smooth algebraic variety, we write DX for the sheaf of differential operators

on X . The sheaf DX comes equipped with a natural filtration by the order of differential

operator. We let Dh̄,X be the corresponding sheaf of asymptotic differential operators.

As for enveloping algebras, this algebra has an alternative description as the sheaf of

graded C[h̄]-algebras generated (locally) by OX in degree 0 and the left OX -module TX
(the tangent sheaf) in degree 2, with relations ξ · ξ ′− ξ ′ · ξ = h̄[ξ, ξ ′] for ξ, ξ ′ ∈ TX and

ξ · f − f · ξ = h̄ξ( f ) for ξ ∈ TX and f ∈ OX . As for enveloping algebras, we will use this

description of Dh̄,X and still denote by ξ the image of an element ξ ∈ TX . (If we were

using the description provided by (2.1.1), this element should rather be denoted as h̄ξ).

Note that Dh̄,X acts on OX [h̄] via ξ · f = h̄ξ( f ) for ξ ∈ TX and f ∈ OX .
We put D(X) = 0(X,DX ), (resp. Dh̄(X) = 0(X,Dh̄,X ),) for the corresponding algebra

of global sections. The order filtration makes D(X) a filtered algebra; the associated

Rees algebra D(X)h̄ is canonically isomorphic to Dh̄(X). There is also a canonical

injective morphism Dh̄(X)/h̄ ·Dh̄(X)→ 0(X,Dh̄,X/h̄ ·Dh̄,X ), which is not surjective in

general. Note finally that there exists a canonical algebra isomorphism Dh̄,X/h̄ ·Dh̄,X ∼=
(pX )∗OT ∗X , where T ∗X is the cotangent bundle of X and pX : T ∗X → X is the projection.

Consider the quasi-affine variety X := G/U . There is a natural G× T -action on X
defined as follows: g× t : hU 7→ ghtU. The T -action on X also induces an action of

T on Dh̄(X ) by algebra automorphisms. In particular, this T -action gives a weight

decomposition Dh̄(X ) =⊕λ∈X Dh̄(X )λ. Thus, Dh̄(X )0 = Dh̄(X )T is the algebra of

right T -invariant asymptotic differential operators.
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Differentiating the T -action on X yields a morphism γ : Sh̄ → Dh̄(X ) of graded

C[h̄]-algebras. Using this we will consider Dh̄(X ) as an Sh̄-module where t ∈ t acts by

right multiplication by t − h̄ρ(t). Note also that differentiating the G-action on X we

obtain a morphism Z h̄(g)→ Dh̄(X ). This defines a Z h̄(g)-module structure on Dh̄(X )

(induced by multiplication on the left).

If M is an Sh̄-module and ϕ an algebra automorphism of Sh̄ , we denote by ϕM the

Sh̄-module which coincides with M as a C-vector space, and where s ∈ Sh̄ acts as ϕ(m) acts

on M . If ϕ,ψ are algebra automorphisms of Sh̄ we have ψ
(
ϕM

) = ϕ◦ψM . This construction

provides an autoequivalence of the category of Sh̄-modules, acting trivially on morphisms.

We will use this notation in particular when ϕ = w ∈ W (extended in the natural way to

an automorphism of Sh̄), and for the following automorphisms: if µ ∈ X, we denote by

(µ) : Sh̄
∼−→ Sh̄ the automorphism which sends t ∈ t to t − h̄µ(t) ∈ Sh̄ . We will use similar

notation for S(t)-modules.

If M, N are (Sh̄,Uh̄(g))-bimodules, we will write Hom(Sh̄ ,Uh̄(g))(M, N ) for the space of

morphisms of bimodules from M to N . It is an Sh̄-module and a Z h̄(g)-module in a natural

way. If M, N are graded and M is finitely generated as a bimodule then this space is a

graded Sh̄-module and a Z h̄(g)-module.

The following simple result will be proved in § 3.1 (for the first isomorphism) and § 4.3

(for the second isomorphism).

Lemma 2.4.1. For any V in Rep(G) and λ ∈ X, there are canonical isomorphisms of

graded Sh̄-modules and Z h̄(g)-modules:(
V ⊗ (λ)Dh̄(X )λ

)G ∼= (V ⊗M(λ)
)B ∼= Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ)).

From Theorem 2.2.4 and Lemma 2.4.1 we deduce:

Corollary 2.4.2. For any F ∈ PervǦ(O)(Gr) and λ ∈ X, there are natural isomorphisms

of graded Sh̄- and Z h̄(g)-modules:(
S(F)⊗ (λ)Dh̄(X )λ

)G〈λ(2ρ̌)〉 ∼= H q
A(i
!
λF) ∼= Hom(Sh̄ ,Uh̄(g))(M(0),S(F)⊗M(λ))〈λ(2ρ̌)〉.

One can also give an alternative description of equivariant cohomology of cofibers in

the “classical case” of § 2.3, as follows. Let B := G/B. For λ ∈ X, we denote by OB(λ)

the line bundle on B associated with the character −λ of B (so ample line bundles

correspond to dominant weights). For any variety X over B, and any λ ∈ X, we will

denote by OX (λ) the pull-back to X of OB(λ). In particular, consider the G-varieties

G/T × t∗ and g̃ := G×B (g/u)
∗, which are both equipped with a natural morphism to

B. Both varieties are equipped with a natural action of G×C×, where the action of G
is induced by left multiplication on G, and any z ∈ C× acts by multiplication by z−2 on

(g/u)∗ or t∗.
Consider the morphism

a : G/T × t∗→ g̃, (gT, η) 7→ (g×B η)

where on the right-hand side η is considered as an element of g∗ trivial on u⊕ u−. For any

λ ∈ X we have a canonical isomorphism a∗Og̃(λ) ∼= OG/T×t∗(λ), so we obtain a pull-back

morphism a∗ : 0(̃g,Og̃(λ)
)→ 0

(
G/T × t∗,OG/T×t∗(λ)

)
.

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


Differential operators on G/U and the affine Grassmannian 505

Note that we have a canonical isomorphism 0
(
G/T × t∗,OG/T×t∗(λ)

) ∼= IndG
T (−λ)⊗

S(t) where Ind is the usual induction functor for representations of algebraic groups,

as defined e.g. in [26, § I.3.3]. Hence if V is in Rep(G), using the tensor identity and

Frobenius reciprocity we obtain an isomorphism(
V ⊗0(G/T × t∗,OG/T×t∗(λ))

)G ∼= (V ⊗S(t)⊗C−λ
)T = Vλ⊗S(t). (2.4.3)

By a similar argument, there exists a canonical isomorphism(
V ⊗0(̃g,Og̃(λ))

)G ∼= (V ⊗S(g/u)⊗C−λ
)B
. (2.4.4)

Then one can easily check that, under isomorphisms (2.4.3) and (2.4.4), the morphism

κ
alg
V,λ identifies with the morphism(

V ⊗0(̃g,Og̃(λ))
)G → (

V ⊗0(G/T × t∗,OG/T×t∗(λ))
)G

induced by a∗.
Using (2.4.4), from Theorem 2.3.1 we deduce the following description.

Corollary 2.4.5. For any F ∈ PervǦ(O)(Gr) and λ ∈ X, there exists a natural isomorphism

of graded S(t)-modules

H q̌
T
(i !λF) ∼=

(
S(F)⊗0(̃g,Og̃(λ))

)G〈λ(2ρ̌)〉.

2.5. Weyl group symmetries

Each of the spaces in Corollaries 2.4.2 and 2.4.5 exhibits a kind of symmetry governed by

the Weyl group W . These symmetries play a technical role in our proofs of Theorem 2.2.4

and 2.3.1. But we will also show that they are respected by the isomorphisms in

Corollaries 2.4.2 and 2.4.5. Some of our constructions are based on isomorphisms which

do not respect the gradings; hence for simplicity we just forget the gradings in this

subsection.

The constructions on the side of the group G depend on the choice of root vectors

for all simple roots. For these constructions to match with the constructions in perverse

sheaves on Gr, one has to choose the root vectors provided by the Tannakian construction

of G from the tensor category PervǦ(O)(Gr); see § 6.5 for details.

The symmetry in the case of equivariant cohomology of cofibers of perverse sheaves

is easy to construct. Namely, the normalizer NǦ(Ť ) of Ť in Ǧ acts naturally on Gr; we

denote by mg : Gr ∼−→ Gr the action of g ∈ NǦ(Ť ). If we denote by g 7→ g the projection

NǦ(Ť )� NǦ(Ť )/Ť ∼= W , for any λ ∈ X we have mg ◦ iλ = igλ (where we identify the

one-point varieties {λ} and {gλ}). If F is in PervǦ(O)(Gr), we deduce an isomorphism of

graded Sh̄-modules

H q
A(i
!
λm!gF)

∼−→ gH q
A(i
!
gλF).

On the other hand, since F is Ǧ(O)-equivariant (and hence in particular

NǦ(Ť )-equivariant), there exists a canonical isomorphism m!gF ∼= F . Hence we obtain
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an isomorphism H q
A(i
!
λF)

∼−→ gH q
A(i
!
gλF). Using classical arguments one can check that

this isomorphism only depends on g (and not on g); we will denote by

4F ,λ
w : H q

A(i
!
λF)

∼−→ wH q
A(i
!
wλF)

the isomorphism associated with w ∈ W . These isomorphisms generate an action of W
in the sense that for any F in PervǦ(O)(Gr), λ ∈ X and x, y ∈ W we have

y(4F ,yλ
x

) ◦4F ,λ
y = 4F ,λ

xy . (2.5.1)

Now, let us consider D-modules on X . In § 3.2 we recall a construction of Gelfand and

Graev (see [8, 29]) based on “partial Fourier transforms” for D-modules which provides

an action of W on Dh̄(X ) by algebra automorphisms such that for any w ∈ W and λ ∈ X
the action of w restricts to an isomorphism of Sh̄-modules:

(λ)Dh̄(X )λ
∼−→ w

(
(wλ)Dh̄(X )wλ

)
. (2.5.2)

For V in Rep(G), we will denote by

8V,λ
w : (V ⊗ (λ)Dh̄(X )λ

)G ∼−→ w
(
V ⊗ (wλ)Dh̄(X )wλ

)G

the induced isomorphism. This collection of isomorphisms satisfies the relations

y(8V,yλ
x

) ◦8V,λ
y = 8V,λ

xy . (2.5.3)

Finally, in § 4.7 we will define, for any V in Rep(G), λ ∈ X and w ∈ W , an isomorphism

of Sh̄-modules

2V,λ
w : Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ))

∼−→ wHom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(wλ)).

This collection of isomorphisms naturally appears in the construction of the dynamical

Weyl group; see § 2.6 below. As above, it satisfies the relations

y(2V,yλ
x

) ◦2V,λ
y = 2V,λ

xy . (2.5.4)

Our second main result, which will be proved in § 7.6, is the following.

Theorem 2.5.5. The isomorphisms of Corollary 2.4.2 are such that the following diagram
commutes for any F in PervǦ(O)(Gr), λ ∈ X and w ∈ W :

(S(F)⊗ (λ)Dh̄(X )λ)
G

o 8
S(F),λ
w

��

∼ // H q
A(i
!
λF)

o 4F ,λ
w

��

∼ // Hom(Sh̄ ,Uh̄ (g))(M(0),S(F)⊗M(λ))

o 2
S(F),λ
w

��
w(S(F)⊗ (wλ)Dh̄(X )wλ)

G ∼ // wH q
A(i
!
wλF)

∼ // wHom(Sh̄ ,Uh̄ (g))(M(0), S(F)⊗M(wλ)).

One can also give a “classical” analogue of Theorem 2.5.5. First, the same construction

as above provides, for any F in PervǦ(O)(Gr), λ ∈ X and w ∈ W , an isomorphism of

graded S(t)-modules

ξF ,λw : H q̌
T
(i !λF)

∼−→ wH q̌
T
(i !wλF).
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This collection of isomorphisms satisfies relations

y(ξF ,yλx
) ◦ ξF ,λy = ξF ,λxy .

On the other hand, let g∗r ⊂ g∗ be the open set consisting of regular elements, and let g̃r
be the inverse image of g∗r under the morphism π : g̃→ g∗ defined by π(g×B η) = g · η.

Then there exists a canonical action of W on g̃r, which induces for any λ ∈ X and w ∈ W
an isomorphism of S(t)-modules and G-modules

0
(̃
g,Og̃(λ)

) ∼−→ w0
(̃
g,Og̃(wλ)

);
see § 5.2 for details. Hence we obtain, for any V in Rep(G), an isomorphism

σ V,λ
w : (V ⊗0(̃g,Og̃(λ))

)G ∼−→ w
(
V ⊗0(̃g,Og̃(wλ))

)G
.

This collection of isomorphisms again satisfies relations

y(σ V,yλ
x

) ◦ σ V,λ
y = σ V,λ

xy . (2.5.6)

We have the following compatibility property, to be proved in § 7.7.

Theorem 2.5.7. The isomorphism of Corollary 2.4.5 is such that the following diagram

commutes for any F in PervǦ(O)(Gr), λ ∈ X and w ∈ W :(
S(F)⊗0(̃g,Og̃(λ)

)G

o σS(F),λw

��

∼ // H q̌
T
(i !λF)

o ξF ,λw

��
w
(
S(F)⊗0(̃g,Og̃(wλ)

)G ∼ // wH q̌
T
(i !wλF).

2.6. Applications: dynamical Weyl groups and Brylinski–Kostant filtration

The first application of our results concerns a geometric realization of the dynamical

Weyl group due to Braverman and Finkelberg ( [12]). Let Qh̄ be the field of fractions

of Sh̄ . If M is a Qh̄-module, we define the Qh̄-module wM by a formula similar to that

above. In § 8.3 we will recall the definition of the dynamical Weyl group, a collection of

isomorphisms of Qh̄-modules

DWalg
V,λ,w : Qh̄ ⊗ Vλ

∼−→ wQh̄ ⊗ Vwλ

for all V in Rep(G), λ ∈ X and w ∈ W .

Let O− := C[z−1], and let Ǧ(O−)1 be the kernel of the morphism Ǧ(O−)→ Ǧ given

by evaluation at z = ∞. For λ ∈ X we set Wλ := Ǧ(O−)1 ·λ; this is a locally closed

(ind-)subvariety of Gr which is a transverse slice to the orbit Grλ at λ. We denote the

inclusion by

sλ :Wλ ∩Tλ ↪→ Gr.
We also set

nλ :=
∑
α∈R+
|λ(α̌)|.

The following result is proved in [12]; we reproduce the proof in § 8.4 since we will need

some of the details.
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Lemma 2.6.1. For any F in PervǦ(O)(Gr) and λ ∈ X there exists a canonical isomorphism

of Sh̄-modules

H q
A(Wλ ∩Tλ, s!λF) ∼=

(
S(F)

)
λ
⊗Sh̄〈nλ〉.

The inclusion {λ} ↪→Wλ ∩Tλ induces a morphism of Qh̄-modules

1F ,λ : Qh̄ ⊗Sh̄ H q
A(i
!
λF)→ Qh̄ ⊗Sh̄ H q

A(Wλ ∩Tλ, s!λF)
which is an isomorphism due to the localization theorem in equivariant cohomology (see

e.g. [20, Theorem B.2]). For F in PervǦ(O)(Gr), λ ∈ X and w ∈ W we define the morphism

DWgeom
F ,λ,w := w

(
1F ,wλ) ◦4F ,λ

w ◦ (1F ,λ)−1 :
Qh̄ ⊗Sh̄ H q

A(Wλ ∩Tλ, s!λF)
∼−→ w

(
Qh̄ ⊗Sh̄ H q

A(Wwλ ∩Twλ, s!wλF)
)
.

The following result (which is a consequence of Theorem 2.5.5) is equivalent to the

main result of [12]. Our proof, given in § 8.5, cannot really be considered as a new proof

since it is based on a similar strategy (namely reduction to rank 1), but we believe that

our point of view should help with understanding this question better.

Proposition 2.6.2. For any F in PervǦ(O)(Gr) and λ ∈ X dominant, the following diagram

is commutative, where the vertical isomorphisms are induced by those of Lemma 2.6.1:

Qh̄ ⊗Sh̄ H q
A(Wλ ∩Tλ, s!λF)

DWgeom
F ,λ,w //

o
��

w
(
Qh̄ ⊗Sh̄ H q

A(Wwλ ∩Twλ, s!wλF)
)

o
��

Qh̄ ⊗
(
S(F)

)
λ

DWalg
S(F),λ,w // w

(
Qh̄ ⊗

(
S(F)

)
wλ

)
.

The second application of our results is a new proof of a result of the first author ([22])

giving a geometric construction of the Brylinski–Kostant filtration. Namely, let e ∈ u be

a regular nilpotent element which is a sum of (non-zero) simple root vectors. If V is in

Rep(G) and λ ∈ X, the Brylinski–Kostant filtration on Vλ associated with e is defined by

FBK
i (Vλ) = {v ∈ Vλ | ei+1 · v = 0} for i > 0

and FBK
i (Vλ) = 0 for i < 0. This filtration is independent of the choice of e (since all the

choices for e are conjugate under the action of T ).

On the other hand, for any ϕ ∈ t∗ we consider the specialized equivariant cohomology

Hϕ(i !λF) := Cϕ ⊗S(t) H q̌
T
(i !λF),

a filtered vector space. Assume that ϕ ∈ t∗r {0} satisfies (ad∗e)2(ϕ) = 0, where ad∗ is the

coadjoint representation. Then ϕ is regular, and hence by the localization theorem in

equivariant cohomology, the morphism

Hϕ(i !λF)→ Cϕ ⊗S(t)
(
(S(F))λ⊗S(t)

) = (S(F))
λ

induced by κ
top
F ,λ is an isomorphism. The left-hand side is equipped with a natural

filtration; we denote by Fgeomq (
(S(F))λ

)
the resulting filtration on

(
S(F)

)
λ
.

The following result was first proved in [22] (see also [2] for a different proof). We

observe in § 8.6 that it is an immediate consequence of Theorem 2.3.1.

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


Differential operators on G/U and the affine Grassmannian 509

Proposition 2.6.3. For any F in PervǦ(O)(Gr), λ ∈ X and i ∈ Z we have

FBK
i
(
(S(F))λ

) = Fgeom
2i+λ(2ρ̌)

(
(S(F))λ

) = Fgeom
2i+1+λ(2ρ̌)

(
(S(F))λ

)
.

Remark 2.6.4. Assume that G is quasi-simple. Then it follows from [31, Corollary 8.7]

that the three-dimensional representation of any sl2-triple through e occurs only once

in g, and hence in g∗. It follows that ϕ ∈ t∗ is uniquely defined, up to a scalar, by the

condition (ad∗e)2(ϕ) = 0. Using this remark one can easily check (for a general reductive

G, and independently of Proposition 2.6.3) that the filtration Fgeomq is independent of the

choice of ϕ once e is fixed. On the other hand all the possible choices for e are conjugate

under the action of T , and hence our filtration is independent of any choice (other than

T and B).

3. Differential operators on the basic affine space and partial Fourier

transforms

In Sections 3–5 we fix a complex connected reductive group G, and we use the notation

of § 2.1. We also choose for any simple root α a non-zero vector eα ∈ gα. We denote by

fα ∈ g−α the unique vector such that [eα, fα] = α̌.

3.1. The structure of Dh̄(X )

The results in this subsection are taken from [7, 37]. Below we will use the two natural

actions of G on C[G] induced by the actions of G on itself. The action given by (g · f )(h) =
f (g−1h) for f ∈ C[G] and g, h ∈ G will be called the left regular representation; it is a

left action of G. The action given by ( f · g)(h) = f (hg−1) for f ∈ C[G] and g, h ∈ G will

be called the right regular representation; it is a right action of G.

First we begin with the description of Dh̄(G). Differentiating the right regular

representation defines an anti-homomorphism of algebras Uh̄(g)→ Dh̄(G). Then it is

well known that multiplication in Dh̄(G) induces an isomorphism of C[G]-modules

C[G]⊗Uh̄(g)
∼−→ Dh̄(G). (3.1.1)

The left regular representation induces an action on Dh̄(G), which will be called simply

the left action below. Through isomorphism (3.1.1), it is given by the left regular

representation of G on C[G] (and the trivial action on Uh̄(g)). Similarly, the action

induced by the right regular representation (which will be called simply the right action

below) corresponds, under isomorphism (3.1.1), to the right action on C[G]⊗Uh̄(g) which

is the tensor product of the right regular representation and the action on Uh̄(g) which

is the composition of the adjoint action with the anti-automorphism g 7→ g−1. There is

also a natural morphism Uh̄(g)→ Dh̄(G) obtained by differentiation of the left regular

representation. Under isomorphism (3.1.1), it is given by the map which sends m ∈ Uh̄(g)

to the function G 3 g 7→ g−1 ·m ∈ Uh̄(g), considered as an element in C[G]⊗Uh̄(g). In

particular, this morphism restricts to the morphism m 7→ 1⊗m on Z h̄(g) ⊂ Uh̄(g).

Let us recall the standard description of Dh̄(X ) based on quantum Hamiltonian

reduction. As X is a quasi-affine variety, the natural morphism

Dh̄(X )→ EndC[h̄](C[X ][h̄])
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is injective. The algebra C[X ] identifies with the subalgebra of C[G] given by the

elements fixed by the right action of U ⊂ G. Any element D in Dh̄(G) induces a morphism

C[X ][h̄] → C[G][h̄]. This morphism is trivial iff D ∈ C[G]⊗ (u ·Uh̄(g)
)
, and its image

is contained in C[X ][h̄] iff the image of D in C[G]⊗ (Uh̄(g)/u ·Uh̄(g)
)

is U -invariant for

the right action. In this way we obtain a canonical isomorphism

Dh̄(X ) ∼= (C[G]⊗ (Uh̄(g)/u ·Uh̄(g)
))Uright . (3.1.2)

In this description, the action induced by the left G-action on X is induced by the

left regular representation on C[G]. The morphism Z h̄(g)→ Dh̄(X ) obtained from the

differentiation of this left action of G on X corresponds to the morphism m 7→ 1⊗
(m mod u ·Uh̄(g)).

Recall that there is also a T -action on X defined by t · gU = gtU . (Note that this

action is not induced by the right action of G on itself considered above, but rather by its

composition with t 7→ t−1.) This action provides a T -action on Dh̄(X ) (where the action

of t ∈ T is induced by the right action of t−1 ∈ G on Dh̄(G) described above) and a weight

decomposition Dh̄(X ) =⊕λ∈X Dh̄(X )λ. This T -action also defines a morphism γ : Sh̄ →
Dh̄(X ) which, under isomorphism (3.1.2), is given by γ (m) = 1⊗ (m mod u ·Uh̄(g)).

Recall that we consider Dh̄(X ) as an Sh̄-module where t ∈ t acts by right multiplication

by γ (t)− h̄ρ(t) · 1. Under isomorphism (3.1.2), this action is given by the Sh̄-action on

Uh̄(g)/u ·Uh̄(g) where t ∈ t acts by left multiplication by t − h̄ρ(t).
From this description (and isomorphism (2.1.2)) one easily obtains the following result.

Lemma 3.1.3. For any λ ∈ X there exists a canonical isomorphism of graded Sh̄-modules

and Z h̄(g)-modules
(λ)Dh̄(X )λ ∼= IndG

B (M(λ)).

Proof of the first isomorphism in Lemma 2.4.1. We have(
V ⊗ (λ)Dh̄(X )λ

)G ∼= (V ⊗ IndG
B (M(λ))

)G ∼= (V ⊗M(λ)
)B

where the first isomorphism follows from Lemma 3.1.3 and the second one from the tensor

identity and Frobenius reciprocity.

3.2. Partial Fourier transforms for Dh̄(X )

Let us recall a construction due to Gelfand and Graev, and studied by Kazhdan and

Laumon [29] in the `-adic setting and by Bezrukavnikov, Braverman and Positselskii [8]

in our D-module setting. We choose a reductive group Gsc with simply connected derived

subgroup and a surjective group morphism Gsc � G with finite central kernel denoted as

Z . We denote by T sc, Bsc the inverse images of T , B in Gsc, and let U sc be the unipotent

radical of Bsc. We set X sc := Gsc/U sc. Note that Z acts naturally on X sc, with quotient

X . Note also that for any simple root α there exists a unique injective morphism of

algebraic groups ϕα : SL(2,C)→ Gsc such that

∀z ∈ C×, ϕα(

(
z 0
0 z−1

)
= α̌(z) and d(ϕα)

(
0 0
1 0

)
= fα, d(ϕα)

(
0 1
0 0

)
= eα

(where we identify the Lie algebras of Gsc and G.)
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Let α be a simple root, let Psc
α be the minimal parabolic subgroup of Gsc containing

Bsc associated with α, and let Qsc
α := [Psc

α , Psc
α ]. Consider the projection

τα : X sc → Gsc/Qsc
α .

It is explained in [29, § 2.1] that τα is the complement of the zero section of a

Gsc-equivariant vector bundle

τ ′α : Vα → Gsc/Qsc
α

of rank 2. Moreover, there exists a canonical Gsc-equivariant symplectic form on this

vector bundle (which depends on ϕα, i.e. on the choice of fα). Hence the constructions

recalled in § B.2 provide an automorphism of Dh̄(Vα) as a C[h̄]-algebra. As the

complement of X sc in Vα has codimension 2, restriction induces an isomorphism

Dh̄(Vα)
∼−→ Dh̄(X sc). Hence we obtain an automorphism Fsc

α : Dh̄(X sc)
∼−→ Dh̄(X sc). This

automorphism is Z -equivariant (since Z acts on Vα by symplectic automorphisms),

and we have Dh̄(X sc)Z = Dh̄(X ) in a natural way. Hence we obtain a G-equivariant

C[h̄]-algebra automorphism

Fα : Dh̄(X )
∼−→ Dh̄(X )

on Z -fixed points. Using the fact that any two simply connected covers of a connected

semisimple group are isomorphic (as covers of the given group), one can check that the

automorphism Fα does not depend on the choice of Gsc.

Lemma 3.2.1.

1. The automorphisms Fα, α a simple root, generate an action of W on Dh̄(X ).

2. For any simple root α and any λ ∈ X, setting s = sα, Fα restricts to an isomorphism

of G-modules and of Sh̄- and Z h̄(g)-modules

Dh̄(X )λ
∼−→ sDh̄(X )sλ.

Proof. We observe that there are natural isomorphisms

Dh̄(X )[h̄−1] ∼= 0(X ,Dh̄,X [h̄−1]) ∼= 0(X ,DX ⊗C[h̄, h̄−1]) ∼= D(X )⊗C[h̄, h̄−1].
Moreover, under these isomorphisms, the automorphism induced by Fα coincides with

the tensor product of the similar automorphism of D(X ) considered in [8] with idC[h̄,h̄−1].
Hence the lemma follows from [8, Proposition 3.1 and Lemma 3.3].

By (1), we can define a group morphism w 7→ Fw from W to the group of C[h̄]-algebra

automorphisms of Dh̄(X ), such that Fsα = Fα for any simple root α. And by (2) these

isomorphisms restrict to isomorphisms of G-modules and of Sh̄- and Z h̄(g)-modules

Fλw : Dh̄(X )λ
∼−→ wDh̄(X )w(λ)

which satisfy the relations
y(Fyλ

x
) ◦Fλy = Fλxy .

Using the relation (λ)(wM) = w((wλ)M) we obtain isomorphism (2.5.2), which allows us to

define the collection of isomorphisms 8V,λ
w of § 2.5.
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Remark 3.2.2.

(1) As explained in § B.1, the construction of isomorphisms 8V,λ
w is not compatible with

the natural gradings on (V ⊗ (λ)Dh̄(X )λ)
G and (V ⊗ (wλ)Dh̄(X )wλ)

G . However, it

follows from Theorem 2.5.5 that it induces an isomorphism of graded modules(
V ⊗ (λ)Dh̄(X )λ

)G〈λ(2ρ̌)〉 ∼−→ w
(
V ⊗ (wλ)Dh̄(X )wλ

)G〈(wλ)(2ρ̌)〉.
This property is also observed in [32, Proposition 2.9].

(2) Statement (2) of Lemma 3.2.1 (and the fact that Fα is an involution) can also

be proved directly as follows: by Corollary 3.3.3 below and the injectivity of the

morphisms RV,λ
G,L considered in this statement (see Lemmas 4.6.4 and 4.8.2), it is

enough to prove the claim in the case where G has semisimple rank 1, which can

be treated by explicit computation (see e.g. the proof of Lemma A.2.1 below).

As a consequence of these constructions we also obtain the following result, which will

be needed later. This result is also proved (using different methods) in [37].

Proposition 3.2.3. For any λ ∈ X, the graded Sh̄-module Dh̄(X )λ is free.

Proof. Using isomorphisms Fλw defined above we can assume that λ is dominant. Then

using Lemma 3.1.3 it is equivalent to prove that IndG
B (M(λ)) is free over Sh̄ .

We claim that, if λ is dominant,

IndG
B (S(g/u)[h̄]⊗C−λ) is free over Sh̄ and R>0 IndG

B (S(g/u)[h̄]⊗C−λ) = 0. (3.2.4)

Indeed, it is sufficient to prove that the S(t)-module IndG
B (S(g/u)⊗C−λ) is free and that

we have R>0 IndG
B (S(g/u)⊗C−λ) = 0. Consider the vector bundles

qÑ : Ñ → B and qg̃ : g̃→ B.

Here Ñ := G×B (g/b)
∗ is the Springer resolution, and g̃ is defined in § 2.4. There is a

natural inclusion of vector bundles Ñ ↪→ g̃, and the quotient is the trivial vector bundle

t∗×B. Hence there is a Z>0-filtration on (qg̃)∗Og̃ (as a sheaf of S(t)⊗OB-modules) with

associated graded (qÑ )∗OÑ ⊗S(t). By [14, Theorem 2.4], we have H>0(Ñ ,OÑ (λ)) = 0.

It follows that H>0(̃g,Og̃(λ)) = 0, and that H0(̃g,Og̃(λ)) has a filtration with associated

graded H0(Ñ ,OÑ (λ))⊗S(t). Now it follows from definitions that, for any i > 0,

Hi (̃g,Og̃(λ)) ∼= Ri IndG
B
(
S(g/u)⊗C−λ

)
, which finishes the proof of (3.2.4).

For i > 0, let Mi := Sh̄ · vλ ·U6i
h̄ (g) ⊂M(λ), where U6 q

h̄ (g) is the PBW filtration of

Uh̄(g). Then M q is a B-stable and Sh̄-stable exhaustive filtration of M(λ), and the

associated graded is isomorphic to S(g/u)[h̄]⊗C−λ. From the second claim in (3.2.4)

it follows that IndG
B (M(λ)) has a filtration with associated graded IndG

B (S(g/u)[h̄]⊗C−λ),
and then the corollary follows from the first claim in (3.2.4).

Remark 3.2.5. The arguments in the proof of Proposition 3.2.3 also prove that, when λ

is dominant, we have R>0 IndG
B (M(λ)) = 0.
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3.3. Restriction to a Levi subgroup

Fix a subset I of the set of simple roots and let l be the Levi subalgebra containing t that

has the set I as simple roots. Note that our choice of a Borel subgroup, a maximal torus

and simple root vectors for g determines a similar choice for l; hence the constructions

of the present section make sense both for g and for l.

We put

uL :=
⊕
α∈R+
α∈ZI

gα, bL := t⊕ uL , n+L :=
⊕
α∈R+
α/∈ZI

gα, n−L :=
⊕
α∈R−
α/∈ZI

gα.

Thus, one has a triangular decomposition g = n+L ⊕ l⊕ n−L , and uL = u∩ l is the nilradical

of the Borel subalgebra bL = b∩ l of l. Further, let p± := l⊕ n±L and b± := bL ⊕ n±L (resp.

u± := uL ⊕ n±L ). Thus, p± is a pair of opposite parabolic subalgebras of g such that

p+ ∩ p− = l, and b± is a pair of Borel subalgebras of g such that b+ ∩ b− = bL , with

respective nilpotent radicals u±. Let L , P±, B±, U±, N±L , BL , UL be the subgroups of G
corresponding to the Lie algebras l, p±, b±, u±, n±L , bL , uL , respectively. By definition,

we have XG = G/U+ and XL = L/UL . (Observe that B+, U+, b+, u+ coincide with the

objects denoted by B, U, b, u in the preceding sections).

Now we construct a morphism of L-modules

r G
L : Dh̄(XG)→ Dh̄(XL)

as follows. Note that the right Uh̄(l)-action on Uh̄(g)/u ·Uh̄(g) descends to a well-defined

action on Uh̄(g)/(u ·Uh̄(g)+Uh̄(g) · n−L ). Using this, from the diagram g←↩ p− � l

of natural Lie algebra morphisms, one obtains the following morphisms of right

Uh̄(l)-modules:

Uh̄(g)/(u ·Uh̄(g)+Uh̄(g) ·n−L ) ∼= Uh̄(p−)/(uL ·Uh̄(p−)+Uh̄(p−) ·n−L ) ∼= Uh̄(l)/uL ·Uh̄(l).

(3.3.1)

All the above maps are bijections since the linear maps

g/(u⊕ n−L ) p−/u−
∼ //∼oo l/uL

are clearly vector space isomorphisms. We deduce the following chain of maps:(
C[G]⊗ (Uh̄(g)/u ·Uh̄(g))

)U
↪−→ (

C[G]⊗ (Uh̄(g)/u ·Uh̄(g))
)UL

−→ (
C[G]⊗ (Uh̄(g)/(u ·Uh̄(g)+Uh̄(g) · n−L )

))UL

−→ (
C[G]⊗ (Uh̄(l)/uL ·Uh̄(l))

)UL

−→ (
C[L]⊗ (Uh̄(l)/uL ·Uh̄(l))

)UL ,

where the third morphism is induced by (3.3.1), and the last one is induced by the

restriction of functions C[G] → C[L]. Using isomorphism (3.1.2), this allows us to define

the desired morphism

r G
L : Dh̄(XG) ∼=

(
C[G]⊗ (Uh̄(g)/u ·Uh̄(g)

)U → (
C[L]⊗ (Uh̄(l)/uL ·Uh̄(l))

)UL ∼= Dh̄(XL).
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We also define an automorphism of L-modules

tG
L : Dh̄(XL)

∼−→ Dh̄(XL)

as follows. The linear map ρG − ρL on t extends naturally to a Lie algebra morphism

l→ C, which we denote similarly. Then the assignment l 3 x 7→ x + h̄(ρG − ρL)(x) defines

a graded C[h̄]-algebra automorphism ı G
L of Uh̄(l), which descends to a UL -equivariant

automorphism of the quotient Uh̄(l)/(uL ·Uh̄(l)). Using the isomorphism Dh̄(XL) ∼=(
C[L]⊗ (Uh̄(l)/uL ·Uh̄(l))

)UL as above, we obtain the wished for automorphism tG
L . This

morphism can also be described in more geometric terms as follows: the linear form

ρG − ρL on t can be considered as a character of T , which extends in a natural way to a

character of L, and then descends to an invertible function f G
L on L/UL . Then one can

easily check that tG
L is the automorphism of Dh̄(XL) sending D to ( f G

L )
−1 · D · f G

L .

Finally we define the morphism of L-modules

resG
L := tG

L ◦ r G
L : Dh̄(XG)→ Dh̄(XL).

One can easily check that resG
L is Sh̄-equivariant, and T -equivariant for the T =

{1}× T -actions. The following result (in which we use superscripts on the left to indicate

which reductive group we consider) will be proved in § 3.4 below.

Proposition 3.3.2. Let α ∈ I . Then the following diagram commutes:

Dh̄(XG)
GFα //

resG
L
��

Dh̄(XG)

resG
L

��
Dh̄(XL)

LFα // Dh̄(XL).

As a corollary we obtain the following result. For λ ∈ X and V in Rep(G), we denote

by

RV,λ
G,L :

(
V ⊗ (λ)Dh̄(XG)λ

)G → (
V|L ⊗ (λ)Dh̄(XL)λ

)L

the morphism induced by resG
L .

Corollary 3.3.3. For any λ ∈ X, V in Rep(G) and w ∈ WL ⊂ WG , the following diagram

commutes: (
V ⊗ (λ)Dh̄(XG)λ

)G

RV,λ
G,L
��

G8
V,λ
w // w

(
V ⊗ (wλ)Dh̄(XG)wλ

)G

wRV,wλ
G,L

��(
V|L ⊗ (λ)Dh̄(XL)λ

)L L8
V|L ,λ
w // w

(
V|L ⊗ (wλ)Dh̄(XL)wλ

)L
.

3.4. Proof of Proposition 3.3.2

If G has simply connected derived subgroup, then so does L. Hence we can assume that

G = Gsc.
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In the next lemma, if X is any variety we consider C[X ][h̄] as the algebra of functions

on X with values in C[h̄]. The subset P− · P+ ⊂ G is an open subvariety, so if x is in

Uh̄(g) and f is in C[P− · P+][h̄], it makes sense to consider x · f ∈ C[P− · P+][h̄], and also

the restriction (x · f )|L ∈ C[L][h̄]. (Here we consider the right action of Uh̄(g) on C[G][h̄]
obtained by differentiating the right regular representation of § 3.1.)

Lemma 3.4.1. Let f ∈ C[P− · P+][h̄] be a left N−L -invariant function. Then for any x ∈
Uh̄(g) · n−L we have

(x · f )|L = 0.

Proof. For any y ∈ Uh̄(g) the function y · f is again left N−L -invariant, so we can assume

that x ∈ n−L . Then the result follows from the observation that for g ∈ L we have g · N−L =
N−L · g.

In the next lemma we use the embedding XL = L/UL = P+/U+ ↪→ P− · P+/U+ ⊂
G/U+ =XG .

Lemma 3.4.2. For any left N−L -invariant function f ∈ C[P− · P+/U+][h̄] and any D ∈
Dh̄(XG) we have

D( f )|XL = (r G
L D)( f|XL ).

Proof. The element D ∈ Dh̄(XG) induces a morphism C[P− · P+/U+][h̄] → C[P− · P+][h̄].
Similarly, the restriction morphism C[P− · P+/U+][h̄] → C[XL ][h̄] is the restriction to

right U+-invariants of the restriction morphism C[P− · P+][h̄] → C[P+][h̄]. Hence it

is enough to show that if f ∈ C[P− · P+][h̄] is left N−L -invariant then the morphism

Dh̄(G)→ C[L][h̄] sending D′ to D′( f )|L factors (via isomorphism (3.1.1)) through the

quotient

C[G]⊗Uh̄(g)→ C[G]⊗ (Uh̄(g)/(Uh̄(g) · n−L )
)
.

This fact follows from Lemma 3.4.1.

We obtain as a corollary of Lemma 3.4.2 the following description of the morphism

r G
L . We denote by εL : Dh̄(N−L )→ C[h̄] the morphism sending a differential operator D

to the value at 1 ∈ N−L of the function D(1N−L
), where 1N−L

is the constant function with

value 1.

Corollary 3.4.3. The morphism r G
L coincides with the composition

Dh̄(XG) ↪→ Dh̄(P− · P+/U+)
∼−→ Dh̄(N−L )⊗C[h̄]Dh̄(XL)

D−⊗D 7→εL (D−)·D−−−−−−−−−−−→ Dh̄(XL)

where the first morphism is restriction to the open subset P− · P+/U+ ⊂XG , and the

second morphism uses the isomorphism P− · P+/U+ ∼= N−L ×XL induced by the action of

N−L on XG .

Proof. As the action of Dh̄(XL) on C[XL ][h̄] is faithful, it is enough to check the claim

after acting on any f ∈ C[XL ]. However one can write f = f̃|XL where f̃ = 1N−L
⊗ f ∈

C[P− · P+/U+], and then the claim follows from Lemma 3.4.2.
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Finally we can give the proof of Proposition 3.3.2.

Proof of Proposition 3.3.2. It is enough to prove the commutativity of the following two

diagrams:

Dh̄(XG)
GFα //

r G
L
��

Dh̄(XG)

r G
L
��

Dh̄(XL)
LFα // Dh̄(XL),

Dh̄(XL)
LFα //

tG
L
��

Dh̄(XL)

tG
L
��

Dh̄(XL)
LFα // Dh̄(XL).

The commutativity of the right-hand diagram follows from Lemma B.2.2 below; hence

we only have to consider the left-hand diagram. Now we observe that (since the

construction of the partial Fourier transform is local on the base of the vector bundle) the

automorphism GFα extends to an automorphism of Dh̄(P− · P+/U+) denoted similarly,

which makes the following diagram commutative, where vertical morphisms are induced

by restriction:

Dh̄(XG)
GFα //

� _

��

Dh̄(XG)� _

��
Dh̄(P− · P+/U+)

GFα // Dh̄(P− · P+/U+).

Next, by construction the following diagram commutes:

Dh̄(P− · P+/U+)
GFα //

o
��

Dh̄(P− · P+/U+)

o
��

Dh̄(N−L )⊗C[h̄]Dh̄(XL)
id⊗LFα // Dh̄(N−L )⊗C[h̄]Dh̄(XL).

Then the commutativity follows from Corollary 3.4.3.

3.5. The classical analogue

Consider the sheaf of algebras

AX := Dh̄,X /h̄ ·Dh̄,X

on X . This sheaf is canonically isomorphic to (pX )∗OT ∗X , where pX = T ∗X →X
is the natural projection. We also set A (X ) := 0(X ,AX ). If α is a simple root, we

define similarly the sheaf of rings AVα on Vα, and the ring A (Vα). In § 3.2 we have

defined an automorphism of Dh̄,Vα as a sheaf of C[h̄]-algebras. Specializing to h̄ = 0 we

deduce an automorphism of AVα . By the same arguments as in § 3.2, restriction induces

an isomorphism A (Vα)
∼−→ A (X ), and hence we obtain an algebra automorphism

Fα : A (X )
∼−→ A (X )
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such that the following diagram commutes, where vertical arrows are induced by the

natural quotient morphism Dh̄,X → AX :

Dh̄(X )
Fα
∼ //

��

Dh̄(X )

��
A (X )

Fα

∼ // A (X ).

(3.5.1)

The following lemma will be used to deduce Theorem 2.3.1 from Theorem 2.2.4.

Lemma 3.5.2. The natural morphism Dh̄(X )→ A (X ) induces an isomorphism

Dh̄(X )/h̄ ·Dh̄(X )
∼−→ A (X ).

In other words, for any V in Rep(G) and λ ∈ X, the morphism(
V ⊗M(λ)

)B → (
V ⊗S(g/u)⊗C−λ

)B

induced by the quotient morphism M(λ)→M(λ)/(h̄ ·M(λ)) ∼= S(g/u)⊗C−λ induces an

isomorphism (
V ⊗M(λ)

)B
/h̄

∼−→ (
V ⊗S(g/u)⊗C−λ

)B
.

Proof. By Lemma 3.1.3, both statements are equivalent to the fact that for any λ ∈ X
the morphism

IndG
B (M(λ))/h̄ → IndG

B
(
S(g/u)⊗C−λ

)
is an isomorphism. In the case λ is dominant, this property follows from the exact sequence

of B-modules

M(λ)
� � h̄ // M(λ) // // S(g/u)⊗C−λ

and the cohomology vanishing, R1 IndG
B (M(λ)) = 0; see Remark 3.2.5. Since Fα induces an

isomorphism Dh̄(X )λ
∼−→ Dh̄(X )sαλ (see Lemma 3.2.1), using diagram (3.5.1) we deduce

the general case from the case where λ is dominant.

It follows in particular from (3.5.1) and Lemma 3.5.2 (using Lemma 3.2.1) that the

assignment sα 7→ Fα defines an action of W on A (X ) by algebra automorphisms, which

we denote by w 7→ Fw. Moreover, for any w ∈ W and λ ∈ X, Fw defines an isomorphism

of S(t)-modules A (X )λ
∼−→ wA (X )wλ.

3.6. Complementary results on the structure of D(X )

In this subsection we observe that Lemma 3.5.2 has some interesting consequences for

the structure of D(X ). These results will not be used in the rest of the paper.

We begin with the following direct consequence of Lemma 3.5.2 (using the natural

isomorphism A (X ) ∼= C[T ∗X ]), which appears to be new.

Corollary 3.6.1. The canonical graded algebra morphism gr D(X )→ C[T ∗X ] is an

isomorphism.
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This corollary allows us to give new proofs of some results of [32] and [8]. These proofs

use the following simple lemma.

Lemma 3.6.2. The C-algebra C[T ∗X ] is finitely generated, and hence Noetherian.

Proof. First we observe that there exists a canonical isomorphism T ∗X ∼= G×U (g/u)
∗.

Hence T ∗X is a T -torsor over g̃, which implies that we have a natural algebra

isomorphism

C[T ∗X ] ∼=
⊕
λ∈X

0
(̃
g,Og̃(λ)

)
.

By the same observation, there exists a natural morphism T ∗X → g∗×t∗/W t∗,
g×U η 7→ (g · η, η|t), which induces an algebra morphism S(g)⊗S(t)W S(t)→ C[T ∗X ].
Note also that if λ ∈ X+, then 0(B,OB(λ)) identifies naturally with a subspace of C[X ],
and hence also defines a subspace Xλ of C[T ∗X ] using the projection T ∗X →X .

Let λ1, . . . , λr be a finite collection of dominant weights such that X+ =∑r
i=1 Z>0λi .

We claim that C[T ∗X ] is generated (as an algebra) by S(g)⊗S(t)W S(t) and the

G-modules Xλi for i ∈ {1, · · · , r}, together with the images of these subspaces under

the automorphisms Fw for all w ∈ W . This claim clearly implies the statement of the

lemma.

To prove the claim we first observe that if λ ∈ X+ the morphism(
S(g)⊗S(t)W S(t)

)⊗ Xλ→ 0
(̃
g,Og̃(λ)

)
induced by the product in C[T ∗X ] is surjective. Indeed by the graded Nakayama lemma

it is enough to prove surjectivity after tensoring with the trivial S(g)⊗S(t)W S(t)-module;

hence it is also enough to prove surjectivity after tensoring with the trivial S(t)-module.

However the arguments in the proof of Proposition 3.2.3 imply that the natural morphism

C⊗S(t) 0
(̃
g,Og̃(λ)

)→ 0
(
Ñ ,OÑ (λ)

)
induced by restriction is an isomorphism, and hence the latter surjectivity statement

follows from [14, Proposition 2.6]. From this observation, together with the fact that if

λ,µ ∈ X+ the natural morphism

0(B,OB(λ))⊗0(B,OB(µ))→ 0(B,OB(λ+µ))
is surjective (see e.g. [13, Theorem 3.1.2]), it follows that the subalgebra of C[T ∗X ]
generated by S(g)⊗S(t)W S(t) and the modules Xλi contains⊕

λ∈X+
0
(̃
g,Og̃(λ)

)
.

The claim follows, using the W -action and the fact that every weight is W -conjugate to

a dominant weight.

In the following corollary, statement (1) is due to Levasseur and Stafford (see [32,

Theorem 3.3]). The present proof is suggested in [32, Remark 3.4], but the authors did not

have Corollary 3.6.1 to complete the argument. Statement (2) is due to Bezrukavnikov,

Braverman and Positselskii (see [8, Theorem 1.1]).
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Corollary 3.6.3. The algebra D(X ) is

(1) Auslander–Gorenstein and Cohen–Macaulay;

(2) left and right Noetherian.

Proof. (1) Choose some elements µ̌i ∈ X∗(T ), i = 1, · · · s, such that if λ(µ̌i ) = 0 for all i
then λ = 0, and set ‖λ‖ :=∑i |λ(µ̌i )|. Consider the filtration on D(X ) defined for n > 0
by

FnD(X ) := D(X )6n ∩
 ⊕
‖λ‖6n

D(X )λ

 ,
where D(X )6

q
is the filtration by order of differential operators. Then this filtration

is connected (in the sense that F0D(X ) = C) and the associated graded is canonically

isomorphic to C[T ∗X ] by Corollary 3.6.1. Hence the claim follows from [41, Corollary

0.3], using the simplicity of D(X ) proved in [32, Proposition 3.1] and Lemma 3.6.2.

(2) It is enough to prove that Dh̄(X ) is (left and right) Noetherian. But this follows

from [4, Lemma 8.2] (for g = h̄) and Lemma 3.6.2.

4. Morphisms between asymptotic universal Verma modules

In this section we will use the following convention. If P(µ) is a property depending on

µ ∈ t∗, we will say that P(µ) holds “for µ ∈ t∗ sufficiently large” is there exists n ∈ Z>0
such that P(µ) holds for any µ ∈ t∗ satisfying |µ(α̌)| > n for all simple roots α. We will

use similar conventions for subsets of t∗ (e.g. X).

4.1. A reminder on Verma modules

The results in this subsection are well known; see e.g. [19, 39]. We include (short) proofs

for the reader’s convenience. We will use the “dot-action” defined by w •µ = w(µ+ ρ)−
ρ.

For any µ ∈ t∗ we consider the Verma module

V(µ) := U (g)⊗U (b)Cµ

(a left U (g)-module). We also set 1µ := 1⊗ 1 ∈ V(µ). We set V(µ)− := U (u−)u− · 1µ, so

we have V(µ) = C · 1µ⊕V(µ)−.

If V is in Rep(G), λ ∈ X, µ ∈ t∗, and φ ∈ HomU (g)(V(µ), V ⊗V(µ− λ)), then one can

write

φ(1µ) = u⊗ 1µ−λ+ x

for unique u ∈ Vλ and x ∈ V ⊗V(µ− λ)−. We set u := EV,λ
µ (φ); it is called the expectation

value of φ.

Let µ ∈ t∗ and let α be a simple root. If n := µ(α̌)+ 1 ∈ Z>0, then as in [25, § 1.4] there

exists a unique embedding of U (g)-modules

V(sα •µ) ↪→ V(µ)

which sends 1sα•µ to ( fα)n
n! · 1µ. Iterating, we perform the following construction. Let µ ∈

X+− ρ, and let w ∈ W . Choose a reduced decomposition w = sk · · · s1, where α1, · · · , αk
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is a sequence of simple roots (possibly with repetitions) and si is the reflection associated

with αi . Then for any i = 1, · · · , k, ni := (si−1 · · · s1 •µ)(α̌i )+ 1 ∈ Z>0. Moreover the

collection (n1, · · · , nk) and the product ( fαk )
nk · · · ( fα1)

n1 do not depend on the reduced

decomposition of w (see [39, Lemma 4]). Hence there exists a unique embedding of graded

right U (g)-modules

ιwµ : V(w •µ) ↪→ V(µ) such that ιwµ(1w•µ) =
( fαk )

nk

nk ! · · ·
( fα1)

n1

n1! · 1µ.

Lemma 4.1.1. Let V in Rep(G), and λ ∈ X.

(1) For µ ∈ t∗ sufficiently large, the morphism

EV,λ
µ : HomU (g)

(
V(µ), V ⊗V(µ− λ))→ Vλ

is an isomorphism.

(2) For w ∈ W and µ ∈ X+ sufficiently large, the morphism

HomU (g)
(
V(w •µ), V ⊗V(w • (µ− λ)))→ HomU (g)

(
V(w •µ), V ⊗V(µ− λ))

defined by φ 7→ (idV ⊗ ιwµ−λ) ◦φ is an isomorphism.

Proof. (1) It is well known (see e.g. [25, Theorem 3.6]) that there exists an enumeration

ν1, · · · , νk of the T -weights of V and a filtration (as a U (g)-module)

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mk = V ⊗V(µ− λ)
where for all i = 1, · · · , k, Mi/Mi−1 ∼= Vνi ⊗V(µ− λ+ νi ). Consider, for any i = 1, · · · , n,

the associated exact sequence

0→ HomU (g)
(
V(µ),Mi−1

)→ HomU (g)
(
V(µ),Mi

)
→ HomU (g)

(
V(µ),V(µ− λ+ νi )⊗ Vνi

)→ Ext1U (g)
(
V(µ),Mi−1

)
.

It is also well known that

HomU (g)
(
V(η1),V(η2)

) = Ext1U (g)
(
V(η1),V(η2)

) = 0

unless η1 ∈ W • η2, and HomU (g)
(
V(η),V(η)

) = C. Now if µ ∈ t∗ is sufficiently large, the

property µ ∈ W • (µ− λ+ νi ) implies that w = 1 and λ = νi , and the result follows.

(2) First we remark that the morphism under consideration is indeed well defined if

µ ∈ X+ is sufficiently large. As ιwµ−λ is injective, our morphism is injective. Hence it is

enough to prove that the two sides have the same dimension for µ ∈ X+ sufficiently large.

By (1), if µ is sufficiently large the left-hand side is isomorphic to Vwλ. Now similar

arguments, using the property that if η ∈ X+− ρ then

HomU (g)(V(w • η),V(η)) = C,

show that, again if µ is sufficiently large, the right-hand side is isomorphic to Vλ. As

dimC(Vλ) = dimC(Vwλ), this finishes the proof.
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4.2. Asymptotic Verma modules

If µ ∈ t∗, we denote by C[h̄]〈〈µ〉〉 the graded right Sh̄-module where any t ∈ t acts by

multiplication by h̄µ(t).
For µ ∈ t∗ we define the graded right Uh̄(g)-module

M(µ) := C[h̄]〈〈0〉〉⊗Sh̄ M(µ).

We also set vµ := 1⊗ vµ ∈M(µ). Any t ∈ t acts on vµ by multiplication by h̄(µ+ ρ)(t),
and M(µ) admits a basis (as a C[h̄]-module) such that, for any vector v in this basis,

there exists γ ∈ Z>0 R+ such that v · t = (µ+ ρ+ γ )(t) for any t ∈ t. We set M(µ)− :=
vµ · u−Uh̄(u

−). Then we have

M(µ) = C[h̄] · vµ⊕M(µ)−.

Note also that for any λ,µ ∈ t∗ there exists a natural isomorphism

C[h̄]〈〈µ〉〉⊗Sh̄ M(λ) ∼=M(λ+µ) (4.2.1)

sending 1⊗ vλ to vλ+µ.

It will be convenient to invert h̄. To simplify notation we set

Mloc(µ) := C[h̄, h̄−1]⊗C[h̄]M(µ), Uloc(g) := C[h̄, h̄−1]⊗C[h̄]Uh̄(g).

We define Mloc(µ)− in the obvious way. There exists an isomorphism of graded

C[h̄, h̄−1]-algebras

U (g)⊗C C[h̄, h̄−1] ∼−→ Uloc(g)
op, g 3 x 7→ −1

h̄
x .

(In the left-hand side, U (g) is in degree 0.) Using this isomorphism one can regard Mloc(µ)

as a (left) module over the algebra U (g)⊗C C[h̄, h̄−1]. With this structure it is isomorphic

to V(−µ− ρ)⊗C C[h̄, h̄−1].
Let µ ∈ t∗ and let α be a simple root. If n := −µ(α̌) ∈ Z>0, then as in § 4.1 there exists

a unique embedding of graded Uloc(g)-modules

Mloc(sαµ) ↪→Mloc(µ)

which sends vsαµ to vµ · (− fα)n
h̄nn! . Iterating, we perform the following construction. Let

µ ∈ X−, and let w ∈ W . Choose a reduced decomposition w = sk · · · s1, where si is

the reflection associated with the simple root αi . Then for any i = 1, . . . , k, ni :=
−(si−1 · · · s1µ, α̌i ) ∈ Z>0, and hence we can define

vwµ := vµ ·
(− fαi1

)n1

h̄n1 · n1! · · ·
(− fαik

)nk

h̄nk · nk ! ∈Mloc(λ),

and there exists a unique embedding of graded right Uloc(g)-modules

iwµ :Mloc(wµ) ↪→Mloc(µ) such that iwµ(vwµ) = vwµ .
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4.3. Specialization

Let λ ∈ X. Recall that in § 2.1 we have defined a structure of a B-module and of a

(Uh̄(b),Uh̄(g))-bimodule on M(λ). In particular, if V is in Rep(G), we have a (diagonal)

B-module structure on V ⊗M(λ).

Lemma 4.3.1. For V in Rep(G) and λ ∈ X, the assignment φ 7→ φ(v0), induces an

isomorphism

Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ))
∼−→ (

V ⊗M(λ)
)B
.

Proof. By definition, M(0) is an induced right Uh̄(g)-module. Hence we have

Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ)) ∼= Hom(Sh̄ ,Uh̄(b))(Sh̄〈〈0〉〉, V ⊗M(λ)).

It follows that the left-hand side is isomorphic to the space of vectors x in V ⊗M(λ)

which satisfy

x · b = (b+ h̄ρ(b)) · x
for all b ∈ b ⊂ Uh̄(b). This is exactly the condition for being U (b)-invariant

(i.e. B-invariant); see § 2.1.

If µ ∈ t∗, we denote by P 7→ P(µ) the unique algebra morphism Sh̄ → C[h̄] which

sends x ∈ t to h̄µ(x). Note that if P ∈ Sh̄ and if for some w ∈ W we have P(µ) = 0 for

all µ ∈ w(X−) sufficiently large, then P = 0.

If λ,µ ∈ t∗, we denote by

Sp
µ
:M(λ)→Mloc(λ+µ)

the natural morphism induced by isomorphism (4.2.1). The following lemma follows from

the fact that M(λ) is a free Sh̄-module and the remarks above on the map P 7→ P(µ).

Lemma 4.3.2. Let λ ∈ X and w ∈ W . Let m ∈M(λ), and assume that Sp
µ
(m) = 0 for all

µ ∈ w(X−) sufficiently large. Then m = 0.

We will derive several useful corollaries.

Corollary 4.3.3. Let V in Rep(G), λ ∈ X and w ∈ W . Let m ∈ V ⊗M(λ), and assume

that for all µ ∈ w(X−) sufficiently large we have

(idV ⊗Sp
µ
)(m) · b = h̄(µ+ ρ)(b) · (idV ⊗Sp

µ
)(m)

for all b ∈ b. Then there exists a unique φ ∈ Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ)) such that

m = φ(v0).

Proof. By Lemma 4.3.1 we only have to prove that m is fixed by B, i.e. that for any

b ∈ b we have

m · b− (b+ h̄ρ(b)) ·m = 0

(see the proof of Lemma 4.3.1). However, our assumption implies that this vector is

annihilated by (idV ⊗Sp
µ
) for all µ ∈ w(X−) sufficiently large. Hence we conclude using

Lemma 4.3.2.
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If φ ∈ Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ)) we denote by Spµ(φ) :Mloc(µ)→V⊗Mloc(λ+µ)
the morphism obtained by tensoring with C[h̄]〈〈µ〉〉, using isomorphism (4.2.1), and

inverting h̄. This construction induces a morphism of C[h̄, h̄−1]-modules

Spµ : Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ))→ Hom−Uloc(g)(Mloc(µ), V ⊗Mloc(λ+µ)).

Corollary 4.3.4. Let V in Rep(G), λ ∈ X, w ∈ W , and φ ∈ Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗
M(λ)). If Spµ(φ) = 0 for all µ ∈ w(X−) sufficiently large, then φ = 0.

Proof. This follows from the commutativity of the following diagram:

Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗M(λ))
� � φ 7→φ(v0) //

Spµ
��

V ⊗M(λ)

idV⊗Sp
µ

��
Hom−Uloc(g)(Mloc(µ), V ⊗Mloc(λ+µ))

φ 7→φ(vµ) // V ⊗Mloc(λ+µ)
and Lemma 4.3.2.

4.4. Intertwining operators

Let V in Rep(G), and let φ ∈ Hom−Uloc(g)(Mloc(µ), V ⊗Mloc(λ+µ)) be an intertwining

operator. Then we can write

φ(vµ) = u⊗ f (h̄) · vλ+µ+ x

for unique u ∈ Vλ, f (h̄) ∈ C[h̄, h̄−1] and x ∈ V ⊗M(λ+µ)−. The vector u⊗ f (h̄) ∈ Vλ⊗
C[h̄, h̄−1] is called the expectation value of φ. In this way we have defined a morphism of

graded C[h̄, h̄−1]-modules

EV,λ
µ : Hom−Uloc(g)

(
Mloc(µ), V ⊗Mloc(λ+µ)

)→ Vλ⊗C[h̄, h̄−1].

Lemma 4.4.1. Let V in Rep(G), and λ ∈ X.

(1) For µ ∈ t∗ sufficiently large, EV,λ
µ is an isomorphism.

(2) For w ∈ W and µ ∈ X− sufficiently large, the morphism

Hom−Uloc(g)

(
Mloc(wµ), V ⊗Mloc(w(λ+µ))

)
→ Hom−Uloc(g)

(
Mloc(wµ), V ⊗Mloc(λ+µ)

)
defined by φ 7→ (idV ⊗ iwλ+µ) ◦φ is an isomorphism.

Proof. By the remarks above we have an isomorphism Uloc(g)
op ∼= U (g)⊗C[h̄, h̄−1],

which induces an isomorphism

Hom−Uloc(g)(Mloc(µ), V ′⊗Mloc(ν)) ∼= HomU (g)(V(−µ− ρ), V ′⊗V(−ν− ρ))⊗C[h̄, h̄−1]
for any V ′ in Rep(G) and µ, ν ∈ t∗. Moreover, under these isomorphisms the morphisms

considered in the lemma are induced by those of Lemma 4.1.1. Hence the claims follow

from Lemma 4.1.1.
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Fix V in Rep(G), λ ∈ X and w ∈ W . For any µ ∈ X− sufficiently large, we define the

morphism of graded C[h̄, h̄−1]-modules

9V,λ
w,µ : Hom−Uloc(g)

(
Mloc(µ), V ⊗Mloc(µ+ λ)

)
→ Hom−Uloc(g)

(
Mloc(wµ), V ⊗Mloc(w(µ+ λ))

)
,

in such a way that for any φ ∈ Hom−Uloc(g)(Mloc(µ), V ⊗Mloc(µ+ λ)
)

we have

φ ◦ iwµ = (iwλ+µ⊗ idV ) ◦9V,λ
w,µ(φ).

This morphism is well defined by Lemma 4.4.1.

Let now α be a simple root, and consider the case w = sα. Then, even if µ is not in

X−, one can define a morphism

9V,λ
sα,µ : Hom−Uloc(g)

(
Mloc(µ), V ⊗Mloc(µ+ λ)

)
→ Hom−Uloc(g)

(
Mloc(sαµ), V ⊗Mloc(sα(µ+ λ))

)
with the same properties as above as soon as µ ∈ X is sufficiently large and µ(α̌) < 0.

With this extension of the definition, consider again some w ∈ W , and let w = sk · · · s1
be a reduced decomposition. Note that if µ ∈ X−, for any i = 1, · · · , k we have

(si−1 · · · s1µ)(α̌i ) 6 0. Then, by definition, for µ ∈ X− sufficiently large we have

9V,λ
w,µ = 9V,sk−1···s1(λ)

sk ,sk−1···s1(µ)
◦ · · · ◦9V,s1(λ)

s2,s1(µ)
◦9V,λ

s1,µ
. (4.4.2)

4.5. Simple reflections

In this subsection we fix a simple root α, and set s = sα.

Proposition 4.5.1. Let V in Rep(G) and λ ∈ X. There exists a unique morphism of graded

Sh̄-modules

2V,λ
s : Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)〈λ(2ρ̌)〉
→ s Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(sλ)

)〈(sλ)(2ρ̌)〉
such that for any µ ∈ X sufficiently large such that µ(α̌) < 0 we have

Spsµ ◦2V,λ
s =

(−h̄)λ(α̌)(−µ(α̌))(−µ(α̌)− 1) · · · (−µ(α̌)− λ(α̌)+ 1) ·9V,λ
s,µ ◦Spµ if λ(α̌) > 0,

1
(−h̄)−λ(α̌)(−µ(α̌)− λ(α̌)) · · · (−µ(α̌)+ 1)

·9V,λ
s,µ ◦Spµ if λ(α̌) 6 0.

(4.5.2)

Proof. Unicity follows from Corollary 4.3.4. Let us prove existence. Choose an

enumeration of positive roots α1, · · · , αn such that αn = α and, for any i = 1, · · · , n− 1,

a non-zero vector fi ∈ g−αi . (These choices can be arbitrary.) For any multi-index
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k = (k1, · · · , kn−1) we set f k := f k1
1 · · · f kn−1

n−1 ∈ Uloc(g). Then any vector of M(λ) can be

written in a unique way in the form ∑
k,i

Pk,i ⊗ f k f i
α

where Pk,i ∈ Sh̄ (and where only finitely many terms are non-zero). Choose also a basis

{u j , j ∈ J } of V . To simplify the notation, for µ ∈ t∗ we set n(µ) := −µ(α̌).
For P in Sh̄ we set (

P
m

)
h̄
:= P(P − h̄) · · · (P − (m− 1)h̄)

m(m− 1) · · · 1 .

With this notation, for µ ∈ X such that n(µ) > m we have(
α̌

m

)
h̄
(sµ) = h̄m

(
n(µ)

m

)
. (4.5.3)

Let φ :M(0)→ V ⊗M(λ) be a morphism of bimodules. Write

φ(v0) =
∑
j,k,i

u j ⊗ Pj,k,i ⊗ f k f i
α

where Pj,k,i ∈ Sh̄ . Then for µ ∈ X such that n(µ) > 0 we have

Spµ(φ)(vµ) =
∑
j,k,i

u j ⊗ Pj,k,i (µ)⊗ f k f i
α ∈ V ⊗Mloc(λ+µ),

and hence

Spµ(φ)(v
s
µ) =

(∑
j,k,i

u j ⊗ Pj,k,i (µ)⊗ f k f i
α

)
· (− fα)n(µ)

h̄n(µ)n(µ)!

= (−1)n(µ)

h̄n(µ)n(µ)!

n(µ)∑
m=0

(−h̄)m
(

n(µ)
m

)∑
j,k,i

f m
α · u j ⊗ Pj,k,i (µ)⊗ f k f i+n(µ)−m

α

 .
By Lemma 4.4.1(2) (or more precisely an obvious generalization, when w = s, to the

case µ(α̌) 6 0 instead of µ ∈ X−), if µ is sufficiently large then the terms for which
i + n(µ)−m < n(λ+µ) vanish. Hence we obtain that in this case Spµ(φ)(vs

µ) equals

(−1)n(µ)

h̄n(µ)n(µ)!

 ∑
j,k,i,m

06m6i−n(λ)

(−h̄)m
(

n(µ)
m

)
f m
α · u j ⊗ Pj,k,i (µ)⊗ f k f i+n(µ)−m

α

 ,
i.e. equals

(−h̄)n(λ)n(λ+µ)!
n(µ)! (idV ⊗ is

λ+µ)

 ∑
j,k,i,m

06m6i−n(λ)

(−h̄)m
(

n(µ)
m

)
f m
α · u j ⊗ Pj,k,i(µ)⊗ f k f i−n(λ)−m

α

.
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Note that in this sum the indices do not depend on µ. Hence we can consider the element

x :=
∑
j,k,i,m

06m6i−n(λ)

(−1)m f m
α · u j ⊗

(
α̌

m

)
h̄
s(Pj,k,i )⊗ f k f i−n(λ)−m

α ∈ V ⊗M(sλ). (4.5.4)

By construction (and using (4.5.3)), for any µ ∈ X sufficiently large with n(µ) > 0,

(idV ⊗Sp
sµ
)(x) is a multiple of Spµ(φ)(vs

µ); hence it satisfies

(idV ⊗Sp
sµ
)(x) · b = h̄(sµ+ ρ)(b) · (idV ⊗Sp

sµ
)(x)

for all b ∈ b. Hence by Corollary 4.3.3 there exists a unique ψ ∈ Hom(Sh̄ ,Uh̄(g))(M(0), V ⊗
M(sλ)) such that x = ψ(v0). We set 2V,λ

s (φ) := ψ . With this definition, for any φ and

any sufficiently large µ with n(µ) > 0 we have

Spµ(φ) ◦ isµ =
(−h̄)n(λ)n(λ+µ)!

n(µ)! (idV ⊗ isλ+µ) ◦Spsµ(2
V,λ
s (φ)),

which implies (4.5.2).

4.6. Restriction to a Levi subgroup

Fix a subset I of the set of simple roots, and recall the notation of § 3.3. As in § 3.3 we

can consider our constructions both for G and for L; we add superscripts or subscripts

to indicate which reductive group we consider.

The projection g� l, along n+L ⊕ n−L , is L-equivariant and it induces a morphism of

graded C[h̄]-modules πG
L : Uh̄(g)� Uh̄(g)/(n

+
L ·Uh̄(g)+Uh̄(g) · n−L ) ∼= Uh̄(l). We consider

the morphism of graded Sh̄-modules

MG(λ)→ML(λ) (4.6.1)

sending p⊗ u ∈MG(λ) to p⊗ (ı G
L ◦πG

L (u)
)
. One can easily check that (4.6.1) is also a

morphism of BL -modules, so it induces a morphism of graded C[h̄]-modules

RV,λ
G,L :

(
V ⊗MG(λ)

)B → (
V|L ⊗ML(λ)

)BL (4.6.2)

for any V in Rep(G) and λ ∈ X.

Note that if K ⊂ L is a smaller Levi subgroup containing T , then for any V in Rep(G)
and λ ∈ X we have

RV|L ,λ
L ,K ◦RV,λ

G,L = RV,λ
G,K . (4.6.3)

If L = T , then we have MT (λ) = Sh̄〈〈λ〉〉, where BT = T acts via −λ. Hence we have an

isomorphism of graded Sh̄-modules(
V|T ⊗MT (λ)

)BT = Vλ⊗Sh̄ .

Under this isomorphism, one can easily check that RV,λ
G,T = κalg

V,λ.

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


Differential operators on G/U and the affine Grassmannian 527

Using Lemma 4.3.1, RV,λ
G,L induces a morphism of graded Sh̄-modules

RV,λ
G,L : Hom(Sh̄ ,Uh̄(g))

(
MG(0), V ⊗MG(λ)

)→ Hom(Sh̄ ,Uh̄(l))

(
ML(0), V|L ⊗ML(λ)

)
.

Lemma 4.6.4. For all V in Rep(G) and λ ∈ X, the morphism RV,λ
G,L is injective.

Proof. By (4.6.3), it is enough to prove the claim when L = T . Then by construction,

if we identify Hom−Uloc(t)

(
MT

loc(0), V|T ⊗MT
loc(λ)

)
with Vλ⊗C[h̄, h̄−1] in the natural way,

for any µ ∈ t∗ we have SpT
µ ◦RV,λ

G,T = EV,λ
µ ◦SpG

µ .

Let φ ∈ Hom(Sh̄ ,Uh̄(g))

(
MG(0), V ⊗MG(λ)

)
be such that RV,λ

G,T (φ) = 0. Then for any µ ∈
t∗ we have EV,λ

µ (SpG
µ (φ)) = 0. Using Lemma 4.4.1(1) we deduce that for µ sufficiently

large we have SpG
µ (φ) = 0. By Corollary 4.3.4 we deduce that φ = 0, which finishes the

proof.

The following result follows from the construction (see the proof of Proposition 4.5.1),

using the fact that if α is a simple root of L, then [ fα, n−L ] ⊂ n−L . For simplicity, in this

statement we neglect the gradings.

Lemma 4.6.5. Let V in Rep(G) and λ ∈ X. If α ∈ I the following diagram commutes:

Hom(Sh̄ ,Uh̄(g))

(
MG(0), V ⊗MG(λ)

) G2
V,λ
sα //

RV,λ
G,L
��

sα Hom(Sh̄ ,Uh̄(g))

(
MG(0), V ⊗MG(sαλ)

)
sαRV,sαλ

G,L
��

Hom(Sh̄ ,Uh̄(l))

(
ML(0), V|L ⊗ML(λ)

) L2
V|L ,λ
sα // sα Hom(Sh̄ ,Uh̄(l))

(
ML(0), V|L ⊗ML(sαλ)

)
.

4.7. Definition of operators 2w

Lemma 4.7.1. Let V in Rep(G), and λ ∈ X. For any simple root α, we have

sα
(
2V,sαλ

sα

) ◦2V,λ
sα = id

as endomorphisms of Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)〈λ(2ρ̌)〉. In particular, 2V,λ
s is an

isomorphism.

Proof. Let Lα be the Levi subgroup containing T with roots {α,−α}. Using Lemma 4.6.5

and Lemma 4.6.4 it is enough to prove the equality when G = Lα. In this case it is checked

in Corollary A.3.2 below.

Let again V in Rep(G) and λ ∈ X. Let w ∈ W , and choose a reduced expression w =
sk · · · s1. We define the isomorphism of graded Sh̄-modules

2V,λ
w : Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)〈λ(2ρ̌)〉
∼−→ wHom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(wλ)

)〈(wλ)(2ρ̌)〉
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by the formula

2V,λ
w := (sk−1···s1)2

V,sk−1···s1(λ)
sk ◦ · · · ◦ s12V,s1λ

s2
◦2V,λ

s1
.

Lemma 4.7.2. The operator 2V,λ
w does not depend on the choice of the reduced

decomposition.

Proof. Using (4.5.2) and (4.4.2) we obtain that for µ ∈ X− sufficiently large we have

Spwµ ◦2V,λ
w = n(w, λ, µ) ·9V,λ

w,µ ◦Spµ

where

n(w, λ, µ) =
∏
α̌>0,w(α̌)<0,λ(α̌)>0(−h̄)λ(α̌)(−µ(α̌)) · · · (−µ(α̌)− λ(α̌)+ 1)∏
α̌>0,w(α̌)<0,λ(α̌)<0(−h̄)−λ(α̌)(−µ(α̌)− λ(α̌)) · · · (−µ(α̌)+ 1)

.

The right-hand side is independent of the reduced decomposition; hence we conclude by

Corollary 4.3.4.

By construction and Lemma 4.7.1, our collection of isomorphisms satisfies condition

(2.5.4) for all V in Rep(G), λ ∈ X and x, y ∈ W .

4.8. The relation to the operators 8

As explained in § 3.1, for any V in Rep(G) and λ ∈ X there exists a canonical isomorphism

of graded Sh̄-modules (
V ⊗ (λ)Dh̄(X )λ

)G ∼= (V ⊗M(λ)
)B
.

Using Lemma 4.3.1 we deduce a canonical isomorphism(
V ⊗ (λ)Dh̄(X )λ

)G ∼= Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)
. (4.8.1)

The following result is clear from the definitions.

Lemma 4.8.2. Let us have V in Rep(G), λ ∈ X, and L ⊂ G a Levi subgroup containing

T . The following diagram commutes:

Hom(Sh̄ ,Uh̄(g))

(
MG(0), V ⊗MG(λ)

)
RV,λ

G,L
��

∼
(4.8.1) //

(
V ⊗ (λ)Dh̄(XG)λ

)G

RV,λ
G,L
��

Hom(Sh̄ ,Uh̄(l))

(
ML(0), V|L ⊗ML(λ)

)
∼

(4.8.1) //
(
V|L ⊗ (λ)Dh̄(XL)λ

)L
.

In the following proposition we assume that the vectors fα of § 3 are the same as the

vectors fα of the present § 4.
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Proposition 4.8.3. For any V in Rep(G), λ ∈ X and w ∈ W the following diagram

commutes:(
V ⊗ (λ)Dh̄(X )λ

)G (4.8.1)
∼ //

8
V,λ
w

��

Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)
2

V,λ
w

��
w
(
V ⊗ (wλ)Dh̄(X )wλ

)G (4.8.1)
∼ // wHom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(wλ)

)
.

Proof. By (2.5.3) and (2.5.4) it is enough to prove commutativity when w is a simple

reflection.

By Corollary 3.3.3, Lemma 4.6.5 and Lemma 4.8.2, our constructions are compatible

with restriction to a Levi subgroup. Using Lemma 4.6.4, we deduce that it is enough to

prove the claim when G has semisimple rank 1. In this case it is proved in Lemma A.4.1

below.

It follows from this proposition that for any V in Rep(G), λ ∈ X and w ∈ W there

exists a unique isomorphism

�V,λ
w : (V ⊗M(λ)

)B ∼−→ w
(
V ⊗M(wλ)

)B

which corresponds to 8V,λ
w under the left-hand isomorphism of Lemma 2.4.1, and to 2V,λ

w

under the right-hand isomorphism of Lemma 2.4.1.

5. The geometry of the Grothendieck–Springer resolution

5.1. The W -action on the regular part of g̃

In this section we are interested in the geometry of the Grothendieck–Springer resolution

g̃ (see § 2.4). We have a standard commutative diagram

g̃
π //

δ

��

g∗

��
t∗ // t∗//W ∼= g∗//G

where the right vertical and the lower horizontal maps are the natural quotient maps, π

is defined in § 2.5, and δ is defined by δ(g×B η) = η|b ∈ (b/u)∗ ∼= t∗.
It is well known that there exists an action of W on g̃r which commutes with the

natural G-action, and such that the restrictions of π and δ are W -equivariant, where W
acts naturally on t∗ and trivially on g∗ (see e.g. [11, Proposition 1.9.2]). We denote the

action of w by θw : g̃r
∼−→ g̃r. In the whole section we will use [11] as a convenient reference

for the properties of this action, though much of this material was known before.

Recall that for any λ ∈ X we have a line bundle Og̃(λ) on g̃ and its restriction Og̃r(λ)

to g̃r.

Lemma 5.1.1. For any w ∈ W and λ ∈ X, there exists an isomorphism of G×
Gm-equivariant line bundles

(θw−1)
∗Og̃r(λ)〈λ(2ρ̌)〉 ∼= Og̃r(wλ)〈(wλ)(2ρ̌)〉.

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


530 V. Ginzburg and S. Riche

Proof. It is enough to prove the isomorphism when w = sα is a simple reflection. Next,

by the compatibility of θ∗
w−1 with tensor products (and passing to a simply connected

cover if necessary), it is enough to prove the isomorphism when λ(α̌) ∈ {−1, 0, 1}. Finally

using duality one can assume that λ(α̌) ∈ {−1, 0}. In these cases the isomorphism follows

from [11, Lemma 1.11.3(2) and Remark 1.11.7(2)].

5.2. Construction of the operators σ

The isomorphism of Lemma 5.1.1 is unique up to a scalar since we have

0(̃gr,Og̃r)
G×Gm ∼= 0(̃g,Og̃)

G×Gm = C

(see e.g. equation (5.2.2) below). We will need to fix a normalization of this isomorphism,

using our choice of vectors fα. Let us denote by η0 ∈ g∗ the element which is zero on t

and on any gβ where β is not opposite to a simple root, and such that η0( fα) = 1 for any

simple root α. Then (1×B η0) ∈ g̃r, and this point is W -invariant. For any λ ∈ X, Og̃(λ)

is the sheaf of sections of the line bundle

L(λ) := G×B
(
(g/u)∗×C−λ

)
over g̃. The fiber of this line bundle over (B/B, η0) can be canonically identified with

C through the morphism x 7→ (1×B (η0, x)). Then there exists a unique isomorphism of

G×Gm-equivariant line bundles

(θw−1)
∗Og̃r(λ)〈λ(2ρ̌)〉 ∼−→ Og̃r(wλ)〈(wλ)(2ρ̌)〉 (5.2.1)

whose restriction to (B/B, η0) ∈ g̃r is idC via the identifications above.

Let jr : g̃r ↪→ g̃ be the inclusion. As the codimension of g̃r g̃r in g̃ is at least 2 (see

e.g. [11, Proposition 1.9.3]), for any λ ∈ X the morphism Og̃(λ)→ ( jr)∗Og̃r(λ) induced by

adjunction is an isomorphism (see [34, Theorem 11.5.(ii)]). We deduce that the restriction

induces an isomorphism

0(̃g,Og̃(λ))
∼−→ 0(̃gr,Og̃r(λ)). (5.2.2)

As θw−1 is an isomorphism, the adjunction morphism Og̃r(λ)→ (θw−1)∗(θw−1)∗Og̃r(λ) is

also an isomorphism; in particular there is a canonical isomorphism

0(̃gr,Og̃r(λ))
∼−→ 0(̃gr, θ

∗
w−1Og̃r(λ)).

Putting these remarks together with isomorphism (5.2.1), we obtain for any w ∈ W and

λ ∈ X a canonical isomorphism of graded S(t)-modules and G-modules

0(̃g,Og̃(λ))〈λ(2ρ̌)〉 ∼−→ w0(̃g,Og̃(wλ))〈(wλ)(2ρ̌)〉. (5.2.3)

Hence for any V in Rep(G) we obtain an isomorphism of graded S(t)-modules

σ V,λ
w : (V ⊗0(̃g,Og̃(λ))

)G〈λ(2ρ̌)〉 ∼−→ w
(
V ⊗0(̃g,Og̃(wλ))

)G〈(wλ)(2ρ̌)〉.
By construction, this collection of isomorphisms satisfies relations (2.5.6).
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As explained above, for any µ ∈ X we can describe 0(̃g,Og̃(µ)) as the space of sections

of the line bundle L(µ) over g̃. In particular, for any η ∈ (g/u)∗ there exists a unique

morphism

evµη : 0(̃g,Og̃(µ))→ C

(“evaluation at (1, η)”) such that if f ∈ 0(̃g,Og̃(µ)) is considered as a section g̃→ L(µ)
we have

f (1×B η) = 1×B (η, evµη ( f )).

With this definition, (5.2.1) can be characterized as the unique isomorphism of G×
C×-equivariant line bundles (θw−1)∗Og̃r(λ)〈λ(2ρ̌)〉 ∼−→ Og̃r(wλ)〈(wλ)(2ρ̌)〉 such that the

following diagram commutes:

0(̃g,Og̃(λ)) ∼
(5.2.3) //

evλη0 ''

0(̃g,Og̃(wλ))

evwλη0vvC.

(5.2.4)

In fact the diagram commutes by construction. To prove unicity it suffices to prove that

the morphism evλη0
is non-zero. However, if λ is dominant, this property follows from

the fact that Og̃(λ) is globally generated (which itself follows from the similar claim for

B), and the general case follows from commutativity of (5.2.4) (and the fact that every

weight is W -conjugate to a dominant weight).

Below we will need a refinement of this characterization in the case w = sα for a simple

root α. We denote by ηα ∈ g∗ the element which is zero on t and on any gβ with β 6= −α,

and such that ηα( fα) = 1.

Lemma 5.2.5. When w = sα, (5.2.1) is the unique isomorphism of G×C×-equivariant

line bundles (θsα )
∗Og̃r(λ)〈λ(2ρ̌)〉 → Og̃r(sαλ)〈(sαλ)(2ρ̌)〉 such that the following diagram

commutes:

0(̃g,Og̃(λ)) ∼
(5.2.3) //

evληα ''

0(̃g,Og̃(sαλ))

evsαλ
ηαvvC

Proof. As for the similar claim concerning diagram (5.2.4), we only have to check

that the diagram commutes. In this proof we denote the isomorphism (5.2.3) by

ϑα : 0(̃g,Og̃(λ))
∼−→ 0(̃g,Og̃(sαλ)). Choose a coweight µ̌ ∈ X∗(T ) such that α(µ̌) = 0 and

β(µ̌) > 0 for all simple roots β 6= α. Then limz→0 µ̌(z) · η0 = ηα, so it is enough to prove

that the following diagram commutes for all z ∈ C×:

0(̃g,Og̃(λ)) ∼
ϑα //

evλ
µ̌(z)·η0 ''

0(̃g,Og̃(sαλ))

evsαλ
µ̌(z)·η0vvC
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However for ν ∈ X and f ∈ 0(̃g,Og̃(ν)) we have

f
(
1×B (µ̌(z) · η0)

) = f (µ̌(z)×B η0) = µ̌(z) ·
(
(µ̌(z−1) · f )(1×B η0)

)
= µ̌(z) ·

(
1×B

(
η0, evλη0

(µ̌(z−1) · f )
)) = (µ̌(z)×B

(
η0, evλη0

(µ̌(z−1) · f )
))

=
(

1×B
(
µ̌(z) · η0, zλ(µ̌) · evλη0

(µ̌(z−1) · f )
))
.

On the other hand we have

f
(
1×B (µ̌(z) · η0)

) = (1×B
(
µ̌(z) · η0, evλ

µ̌(z)·η0
( f )

))
,

which implies that

evλ
µ̌(z)·η0

( f ) = zλ(µ̌) · evλη0
(µ̌(z−1) · f ).

Hence we obtain

evsαλ
µ̌(z)·η0

(ϑα f ) = z(sαλ)(µ̌) · evsαλ
η0
(µ̌(z−1) · (ϑα f )) = zλ(µ̌) · evλη0

(µ̌(z−1) · f ) = evλ
µ̌(z)·η0

( f )

since (sαλ)(µ̌) = λ(µ̌) and ϑα is G-equivariant. This finishes the proof.

5.3. Restriction to a Levi subgroup

Fix a subset I of the set of the set of simple roots, and recall the notation of § 3.3. We

can consider the Grothendieck–Springer resolution l̃ associated with L, and there exists

a natural morphism $G
L : G×L l̃ = G×BL (l/uL)

∗→ g̃ induced by the identification l∗ ∼=
(g/(n+L ⊕ n−L ))

∗. In particular for L = T we have t̃ = t∗, and the morphism $G
T : G×T t̃ =

G/T × t∗→ g̃ identifies with the morphism denoted as “a” in § 2.4. The following diagram

commutes by construction:

G×T t̃
G×L$

L
T

//

$G
T

**G×L l̃
$G

L

// g̃.
(5.3.1)

We have ($G
L )
−1(̃gr) ⊂ G×L l̃r. (Note that this inclusion is strict in general.) This open

subset is WL -invariant (for the WL -action on G×L l̃r induced by the action on l̃r), and

the morphism ($G
L )
−1(̃gr)→ g̃r induced by $G

L is WL -equivariant.

Adjunction for the morphism $G
L induces an injective morphism

0(̃g,Og̃(λ)) ↪→ 0(G×L l̃,OG×L l̃
(λ)) ∼= IndG

L
(
0(̃l, Õl(λ))

)
. (5.3.2)

For simplicity, in the next statement we forget about the gradings (i.e. the C×-actions).

Lemma 5.3.3. The following diagram commutes for any V in Rep(G), λ ∈ X and w ∈ WL ,

where vertical maps are induced by (5.3.2):(
V ⊗0(̃g,Og̃(λ))

)G σ
V,λ
w //

� _

��

w
(
V ⊗0(̃g,Og̃(wλ))

)G
� _

��(
V|L ⊗0(̃l, Õl(λ))

)L σ
V|L ,λ
w // w

(
V|L ⊗0(̃l, Õl(wλ))

)L
.
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Proof. It is enough to prove the result when w = sα is a simple reflection associated with

a simple root α ∈ I . Let sl2,α ⊂ g be the Lie subalgebra generated by gα and g−α, and

consider the open subset

g̃α−r := {(g×B η) ∈ g̃ | η|sl2,α 6= 0} ⊂ g̃.

By [11, Lemma 1.9.1] we have g̃r ⊂ g̃α−r, and it follows from [11, Lemma 2.9.1] that

the action map θsα is the restriction of an isomorphism (denoted similarly) θsα : g̃α−r
∼−→

g̃α−r. Moreover, isomorphism (5.2.1) is (a shift of) the restriction of an isomorphism of

G×C×-equivariant line bundles

ςG,λ
sα : (θsα )

∗Og̃α−r(λ)
∼−→ Og̃α−r(sαλ)〈−2λ(α̌)〉.

The same assertions are of course true for the Levi subgroup L, and we obtain a similar

isomorphism ς
L ,λ
sα .

The morphism$G
L restricts to a morphism G×L l̃α−r → g̃α−r (denoted similarly) which

satisfies $G
L ◦ (G×L θ

L
sα ) = θG

sα ◦$G
L . What we have to prove is that the two isomorphisms

($G
L )
∗ςG,λ

sα , IndG
L (ς

L ,λ
sα ) : (G×L θ

L
sα )
∗OG×L l̃α−r

(λ)
∼−→ OG×L l̃α−r

(sαλ)

coincide. As both isomorphisms are G×C×-equivariant, and as

0(G×L l̃α−r,OG×L l̃α−r
)G×C

× ∼= 0(G×L l̃,OG×L l̃
)G×C

× ∼= C,

we know that these isomorphisms coincide up to multiplication by a scalar c ∈ C×.

Consider the following diagram:

0(̃g,Og̃(λ))
∼ //

� _

(5.3.2)
��

evλ,Gηα

++

0(̃g,Og̃(sαλ))� _

(5.3.2)
��

evsαλ,G
ηα

ss

0(G×L l̃,OG×L l̃
(λ))

∼ //

′evλ,Lηα

��

0(G×L l̃,OG×L l̃
(sαλ))

′evsαλ,L
ηα

��
C C,

(5.3.4)

where the upper horizontal morphism is induced by ςG,λ
sα , the middle horizontal morphism

is induced by IndG
L (ς

L ,λ
sα ), and the lower vertical maps are induced by evaluation at

(1×BL ηα). We know that the upper square commutes up to multiplication by c, that the

lower square and the exterior square both commute and finally that the morphism evλ,Gηα
is non-zero (see Lemma 5.2.5 and its proof). We deduce that c = 1, which finishes the

proof.

5.4. The relation to the operators 8

Recall that if λ ∈ X, there is a natural morphism (λ)Dh̄(X )λ→ 0(̃g,Og̃(λ)) sending h̄ to

0 (see e.g. § 3.5).
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Proposition 5.4.1. Let V in Rep(G), λ ∈ X and w ∈ W . The following diagram commutes,

where vertical maps are the natural morphisms sending h̄ to 0:(
V ⊗ (λ)Dh̄(X )λ

)G 8
V,λ
w //

��

w
(
V ⊗ (wλ)Dh̄(X )wλ

)G

��(
V ⊗0(̃g,Og̃(λ))

)G σ
V,λ
w // w

(
V ⊗0(̃g,Og̃(wλ))

)G
.

Proof. First, using relations (2.5.3) and (2.5.6) it is enough to prove the lemma when

w = sα is a simple reflection. Then using the compatibility of our constructions with

restriction to a Levi subgroup (see Corollary 3.3.3 and Lemma 5.3.3) and the injectivity

of morphism (5.3.2), it is enough to prove the lemma when G has semisimple rank 1

(with unique simple root α). In this case it is proved in Corollary A.5.2 below.

Remark 5.4.2. By Lemma 3.5.2, the vertical arrows in the diagram of Proposition 5.4.1

induce isomorphisms(
V ⊗ (λ)Dh̄(X )λ

)G
/〈h̄〉 ∼−→ (

V ⊗0(̃g,Og̃(λ))
)G
,(

V ⊗ (sλ)Dh̄(X )sλ
)G
/〈h̄〉 ∼−→ (

V ⊗0(̃g,Og̃(sλ))
)G
.

Hence the proposition implies that the operators σ V,λ
w can be completely recovered from

the operators 8V,λ
w (or equivalently the operators 2V,λ

w ; see Proposition 4.8.3).

5.5. Geometric interpretation: W -action on the regular part of T ∗X
The results in this subsection will not be used in the rest of the paper.

Consider the natural morphism T ∗X = G×U (g/u)
∗→ g∗, and denote by (T ∗X )r the

inverse image of the open subset of regular elements in g∗. Note that the G× T -action

on X defined in § 2.4 induces an action on T ∗X which stabilizes (T ∗X )r, and also a

moment map T ∗X → t∗.
The existence of the collection of isomorphisms (5.2.1) has the following quite surprising

consequence. This construction will be reinterpreted and studied further in [24].

Proposition 5.5.1. There exists an action of W on (T ∗X )r (which depends on the choice

of the eα), denoted as �, which satisfies the following properties:

(1) for any w ∈ W the morphism w� (−) is G-equivariant;

(2) for x ∈ (T ∗X )r and t ∈ T we have w� (t · x) = w(t) · (w� x);

(3) the natural morphism (T ∗X )r → g̃r is W -equivariant;

(4) the restriction (T ∗X )r → t∗ of the moment map is W -equivariant.

Proof. The morphism pr : (T ∗X )r → g̃r is a T -torsor; in particular it is affine. Hence

to prove the proposition it is enough to construct a collection of isomorphisms of

G-equivariant sheaves of algebras

(θw−1)
∗((pr)∗O(T ∗X )r

) ∼= (pr)∗O(T ∗X )r
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for all w ∈ W , which are compatible with composition in W . Now we have a natural

isomorphism of G-equivariant sheaves of algebras

(pr)∗O(T ∗X )r
∼=
⊕
λ∈X

Og̃r(λ),

and hence it is enough to construct a collection of isomorphisms of G-equivariant line

bundles

(θw−1)
∗Og̃r(λ)

∼= Og̃r(wλ)

compatible with the tensor product and composition in W . However one can easily check

that the collection constructed in (5.2.1) satisfies these requirements.

6. A reminder on the Satake equivalence

In §§ 6–8 we let Ǧ be a complex connected reductive group. We choose a maximal torus

Ť ⊂ Ǧ (with Lie algebra ť), and a Borel subgroup B̌ ⊂ Ǧ. We let Ǔ (resp. Ǔ−) be the

unipotent radical of B̌ (resp. of the opposite Borel subgroup), with respect to Ť . We set

X := X∗(Ť ), and let X+ ⊂ X be the subsemigroup of dominant coweights of Ť (where

positive roots of Ǧ are those appearing in Lie(Ǔ )). We also set Sh̄ := S(ť∗)[h̄], considered

as a graded algebra where elements of ť∗ and h̄ are in degree 2. Finally we denote by

2ρ̌ ∈ X∗(Ť ) the sum of the positive roots.

6.1. Satake equivalence

Recall (see § 2.2) that the affine Grassmannian attached to Ǧ is the ind-variety

GrǦ := Ǧ(K)/Ǧ(O)

(equipped with the reduced scheme structure). This ind-variety is equipped with an action

of the group scheme Ǧ(O). Recall (see [22, 35]) that the category

PervǦ(O)(GrǦ)

of Ǧ(O)-equivariant perverse sheaves on GrǦ (with coefficients in C) can be endowed

with a natural convolution product ? which makes it a tensor category, and that the

functor

FǦ := H q
(GrǦ ,−) : PervǦ(O)(GrǦ)→ Vect(C)

(where Vect(C) is the category of finite dimensional C-vector spaces) is a tensor functor.

(As usual, perverse sheaves on GrǦ are assumed to be supported on a finite union of

Ǧ(O)-orbits.) We let

G := Aut?(FǦ)

be the C-group scheme of automorphisms of this tensor functor. It is well known (see [22,

35]) that G is a (complex) connected reductive group, with root datum dual to that of

Ǧ. Moreover, the functor FǦ lifts to an equivalence of tensor categories

SǦ : PervǦ(O)(GrǦ)
∼−→ Rep(G)

known as the geometric Satake equivalence.
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In § 2.2 we have defined the embedding X = GrŤ ↪→ GrǦ , the points λ (for λ ∈ X), the

orbits Grλ
Ǧ

(for λ ∈ X+), the semi-infinite orbits Tλ (for λ ∈ X), and the morphisms iλ
and tλ.

Using the identification of GrŤ with X, the group T (of automorphisms of the tensor

functor FŤ ) is identified with the torus HomZ(X,C×). In particular, the character lattice

X∗(T ) is canonically identified with X; hence the category Rep(T ) identifies with the

category of finite dimensional X-graded vector spaces. Define the functor

FX :=
⊕
λ∈X

Hλ(2ρ̌)
(
Tλ, t !λ(−)

) : PervǦ(O)(GrǦ)→ Rep(T ).

By [35, Theorems 3.5 and 3.6], we have a canonical isomorphism

ForT ◦FX ∼−→ FǦ , (6.1.1)

where ForT : Rep(T )→ Vect(C) is the forgetful functor. Moreover, FX is a tensor functor,

and (6.1.1) is an isomorphism of tensor functors. So FX is the composition of SǦ with a

tensor functor Rep(G)→ Rep(T ) compatible with forgetful functors. By [17, Corollary

2.9], the latter functor is induced by a group morphism T → G. It is proved in [35]

that this morphism is injective, and identifies T with a maximal torus of G. Hence from

now on we will consider T as a subgroup of G. By construction, if λ ∈ X and if F is in

PervǦ(O)(GrǦ), we have a canonical isomorphism of C-vector spaces

Hλ(2ρ̌)
(
Tλ, t !λF

) ∼= (SǦ(F)
)
λ
. (6.1.2)

The choice of B̌ ⊂ Ǧ determines a set of positive roots for Ǧ, and hence also a set of

positive roots for G. We denote by B the Borel subgroup of G containing T associated

with this set of positive roots.

6.2. Equivariant cohomology

For the results stated below, see e.g. [33, § 1].

For any complex algebraic variety X endowed with an algebraic action of an algebraic

group H , recall that the equivariant cohomology (resp. Borel–Moore homology) is defined

by

H q
H (X) := Ext

q
DH (X)(CX ,CX ), HHq (X) := Ext

q−2 dim(X)
DH (X)

(CX ,DX ),

where DH (X) is the H -equivariant derived category of X , CX is the (equivariant) constant

sheaf on X and DX is the (equivariant) dualizing sheaf. Then H q
H (X) is a (graded

commutative) algebra for the Yoneda product (or cup product) and HHq (X) is a right

module over this algebra, again for the Yoneda product. If X is smooth, then this module

is free of rank 1.

Let now K be a torus, with Lie algebra k. Let λ ∈ X∗(K ), and consider the

one-dimensional K -module Cλ, considered as a K -variety. Consider the K -equivariant

morphisms

{pt} ι−→ Cλ
π−→ {pt}
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(where ι(pt) = 0), and the induced morphisms in equivariant homology

HKq (pt)
ι! // HKq+2(Cλ)

(π∗)−1

∼ // HKq+2(pt),

which are morphisms of right H q
K (pt)-modules. Since the right H q

K (pt)-module HKq (pt) is

free of rank 1, there exists a unique element c(λ) ∈ H2
K (pt) such that the composition

above is the action of c(λ), and c : X∗(K )→ H q
K (pt) is a morphism of Abelian groups.

There exists a unique isomorphism a : k∗ ∼−→ H2
K (pt) such that the following diagram

commutes:

X∗(K )
c
''

d

yy
k∗ a

∼ // H2
K (pt),

where d is the differential. Moreover, this isomorphism extends to an isomorphism of

graded C-algebras

S(k∗) ∼−→ H q
K (pt), (6.2.1)

where in the left-hand side k∗ is in degree 2. We will use this isomorphism throughout

the paper without further details. In particular we can make the identification

H q
A(pt) ∼= Sh̄, H q̌

T
(pt) ∼= S(t),

where h̄ ∈ Sh̄ corresponds to the natural generator of H2
C×(pt) ∼= C.

If V is any K -module, with K -weights λ1, . . . , λn (counted with multiplicities), then

if as above ι denotes inclusion of 0 and π projection to 0, via isomorphism (6.2.1), the

composition

HKq (pt)
ι! // HKq+2n(V )

(π∗)−1

∼ // HKq+2n(pt)

identifies with the action of d(λ1) · · · d(λn). Note that the action map induces an

isomorphism of H q
K (pt)-modules HK

0 (V )⊗H q
K (pt)

∼−→ HKq (V ), and that the forgetful map

HK
0 (V )→ H0(V ) is an isomorphism. Hence we obtain a canonical isomorphism HKq (V ) ∼=

H0(V )⊗H q
K (pt). The Borel–Moore homology H0(V ) contains the canonical class [V ],

which can therefore be viewed as a generator of HKq (V ). Similarly we have the canonical

class [pt] ∈ HKq (pt). Then we have π∗[pt] = [V ], and hence the morphism ι! has the

property that

ι!([pt]) = [V ] · d(λ1) · · · d(λn).

We can now give a proof of Lemma 2.2.1.

Proof of Lemma 2.2.1. To fix notation we treat the case of A; the case of Ť is similar.

Let F in PervǦ(O)(GrǦ) and λ ∈ X.

(1) Using the Leray–Serre spectral sequence for an appropriate fibration, there exists

a spectral sequence which computes H q
A(i
!
λF) and with E2-term

E p,q
2 = Hp

A(pt)⊗Hq(i !λF) (6.2.2)
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(see e.g. [33, Proof of Proposition 7.2]). It is well known also (see [30, Theorem 5.5] or

[38, Corollaire 2.10]) that the ordinary cohomology H q
(i !λF) is concentrated in degrees

of constant parity. Hence the spectral sequence (6.2.2) degenerates at E2. It follows that

there exists a non-canonical isomorphism of graded Sh̄-modules

H q
A(i
!
λF) ∼= H q

A(pt)⊗H q
(i !λF).

In particular, the left-hand side is free over Sh̄ = H q
A(pt).

(2) By [35, Theorem 3.4], H q
(Tλ, t !λF) is concentrated in degree λ(2ρ̌). Hence the

same spectral sequence argument as in (1) shows that H q
A(Tλ, t !λF) is free over H q

A(pt).
Moreover, the morphism

H q
A(Tλ, t !λF)→ H q

(Tλ, t !λF)

induced by the forgetful functor is an isomorphism in degree λ(2ρ̌). Hence we obtain

an inclusion
(
SǦ(F)

)
λ

(6.1.2)∼= H(λ,2ρ̌)(Tλ, t !λF) ↪→ H q
A(Tλ, t !λF). Using again the spectral

sequence argument, the morphism

H q
A(pt)⊗ (SǦ(F)

)
λ
→ H q

A(Tλ, t !λF)

induced by the cup product is an isomorphism of H q
A(pt)-modules, which finishes the

proof.

We deduce the following result from Lemma 2.2.1.

Corollary 6.2.3. For λ ∈ X and F in PervǦ(O)(GrǦ), the morphism κ
top
F ,λ is injective.

Proof. By the localization theorem in equivariant cohomology, the morphism

Qh̄ ⊗Sh̄ H q
A(i
!
λF)→ Qh̄ ⊗Sh̄ H q

A(Tλ, i !λF)

induced by (ιλ)! is an isomorphism (since λ is the only A-fixed point in Tλ). As H q
A(i
!
λF)

is free over Sh̄ (see Lemma 2.2.1(1)), we deduce that (ιλ)! is injective, which implies that

κ
top
F ,λ is also injective.

We will also need the following result, which again follows from the fact that the

spectral sequence (6.2.2) degenerates.

Lemma 6.2.4. Let F in PervǦ(O)(GrǦ) and λ ∈ X.

The forgetful morphism H q
A(i
!
λF)→ H q̌

T
(i !λF) induces an isomorphism

H q
A(i
!
λF)

/(
h̄ ·H q

A(i
!
λF)

) ∼−→ H q̌
T
(i !λF).

6.3. Restriction to a Levi subgroup

Below we will make extensive use of the geometric description of the functor of restriction

to a Levi subgroup, due to Mirković and Vilonen [35] in the (crucial) case of the maximal

torus, and to Beilinson and Drinfeld [6] in the general case.
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Let P̌ ⊂ Ǧ be a parabolic subgroup containing B̌, and let Ľ ⊂ P̌ be the (unique) Levi

factor containing Ť . Let also P̌− be the opposite parabolic subgroup. Note that Ť is also

a maximal torus of Ľ, and B̌Ľ := B̌ ∩ Ľ is a Borel subgroup containing Ť . We have dual

groups G and L defined as in § 6.1. Consider the diagram

GrĽ GrP̌−
q P̌−oo

i P̌− // GrǦ (6.3.1)

where q P̌− is induced by the projection P̌− � Ľ whose kernel is the unipotent radical of

P̌−, and i P̌− is induced by the embedding P̌− ↪→ Ǧ. Define the functor

′RǦ
Ľ
:= (q P̌−)∗ ◦ (i P̌−)

! : Db
c (GrǦ)→ Db

c (GrĽ),

where Db
c (GrǦ) is the derived category of constructible complexes of C-vector spaces on

the ind-variety GrǦ which are supported on a finite union of Ǧ(O)-orbits, and similarly

for Db
c (GrĽ). The functor ′RǦ

Ľ
does not map the subcategory PervǦ(O)(GrǦ) of Db

c (GrǦ)

into the subcategory PervĽ(O)(GrĽ) of Db
c (GrĽ); however, the following modification of

this functor has this property.

Recall that the connected components of GrĽ are parameterized by the quotient

X/(ZŘĽ); see [6, Proposition 4.5.4]. (Here ŘĽ denotes the coroots of Ľ, and ZŘĽ is

the lattice that they generate). If M is in Db
c (GrĽ) and χ ∈ X/(ZŘĽ), we denote by

Mχ the restriction of M to the corresponding connected component. Define the functor

RǦ
Ľ
: Db

c (GrǦ)→ Db
c (GrĽ) by the formula

RǦ
Ľ
(M) =

⊕
χ∈X/(ZŘĽ )

(′RǦ
Ľ
(M)

)
χ
[χ(2ρǦ − 2ρĽ)],

where ρǦ and ρĽ are the half-sums of positive roots of Ǧ and Ľ. It is proved in [6,

Proposition 5.3.29] that RǦ
Ľ

restricts to a functor

RǦ
Ľ
: PervǦ(O)(GrǦ)→ PervĽ(O)(GrĽ).

Moreover, it is explained in [6, § 5.3.30] that this functor is a tensor functor.

Using the base change theorem one can easily construct an isomorphism of tensor

functors

FǦ
∼−→ FĽ ◦RǦ

Ľ
;

see e.g. [1, § 4.1] for details. We deduce a morphism of algebraic groups

L = Aut?(FĽ)→ Aut?(FĽ ◦RǦ
Ľ
) ∼= Aut?(FǦ) = G.

It is known that this morphism is injective, and identifies L with the Levi subgroup of G
whose root system is the system of coroots of Ľ. Hence we will consider L as a subgroup
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of G. By construction the following diagram is commutative:

PervǦ(O)(GrǦ)
RǦ

Ľ //

SǦ
��

PervĽ(O)(GrĽ)

SĽ
��

Rep(G)
V 7→V|L // Rep(L).

Note that by the constructions of § 6.1 we have identified T with a subgroup of L, but

also with a subgroup of G. These identifications are compatible with the identification

of L as a subgroup of G; see e.g. [1, § 4.1]. Moreover, by the base change theorem there

exists a canonical isomorphism of functors

RĽ
Ť
◦RǦ

Ľ
∼= RǦ

Ť
. (6.3.2)

6.4. Restriction to a Levi subgroup: cofibers

Let P̌, P̌−, Ľ be as in § 6.3. Let also λ ∈ X and F in PervǦ(O)(GrǦ). We want to compare

the Sh̄-modules

H q
A
(
(i Ǧ
λ )
!F
)

and H q
A
(
(i Ľ
λ )
!RǦ

Ľ
(F)

)
,

where i Ǧ
λ and i Ľ

λ are the inclusions of λ in GrǦ and GrĽ respectively. Let t P̌
λ be the

inclusion of (q P̌−)
−1(λ) in GrǦ . Then by the base change theorem there is a canonical

isomorphism of graded Sh̄-modules

H q
A
(
(i Ľ
λ )
!RǦ

Ľ
(F)

) ∼= H q
A
(
(q P̌−)

−1(λ); (t P̌
λ )
!F
)〈λ(2ρ̌L − 2ρ̌G)〉.

As {λ} is closed in (q P̌−)
−1(λ), the (!, !)-adjunction for the inclusion {λ} ↪→ (q P̌−)

−1(λ)

induces a canonical morphism of Sh̄-modules

H q
A
(
(i Ǧ
λ )
!F
)→ H q

A
(
(i Ľ
λ )
!RǦ

Ľ
(F)

)〈λ(2ρ̌G − 2ρ̌L)〉. (6.4.1)

If P̌ = B̌ (and so Ľ = Ť ) we have canonical isomorphisms

H q
A
(
(i Ť
λ )
!RǦ

Ť
(F)

) ∼= H q
A(t
!
λF)〈−λ(2ρ̌G)〉 ∼=

(
SǦ(F)

)
λ
⊗Sh̄ .

Via this isomorphism, (6.4.1) identifies with the morphism κ
top
F ,λ defined in (2.2.3).

Moreover, one can easily check that the following diagram is commutative:

H q
A
(
(i Ǧ
λ )
!F
)

Ǧκ
top
F ,λ

,,

(6.4.1)
// H q

A
(
(i Ľ
λ )
!RǦ

Ľ
(F)

)〈λ(2ρ̌G − 2ρ̌L)〉
Ľκ

top
F ,λ

//
(
SǦ(F)

)
λ
⊗Sh̄〈λ(2ρ̌G)〉

(where for simplicity we neglect shifts of morphisms). As the morphism Ǧκ
top
F ,λ is injective

(see Corollary 6.2.3), we deduce that (6.4.1) is also injective.
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We will also need the following result, which is clear by construction.

Lemma 6.4.2. Let λ ∈ X and F in PervǦ(O)(GrǦ). For any w ∈ WL ⊂ WG the following

diagram commutes:

H q
A
(
(i Ǧ
λ )
!F
)

Ǧ4
F ,λ
w

��

(6.4.1) // H q
A
(
(i Ľ
λ )
!RǦ

Ľ
(F)

)
Ľ4

RǦ
Ľ
(F),λ

w��
wH q

A
(
(i Ǧ
wλ)
!F
) (6.4.1) // H q

A
(
(i Ľ
λ )
!RǦ

Ľ
(F)

)
.

6.5. Construction of root vectors

There are several ways to construct simple root vectors in g := Lie(G) out of the

equivalence S using [22] and [35]; see e.g. [5, 42]. Here we recall a simple version essentially

explained in [40], which will be sufficient for our purposes.

Let α be a simple root. Let P̌α be the minimal parabolic subgroup of Ǧ containing B̌
associated with α, and let Ľα be the Levi factor of P̌α containing Ť . Then as explained

in § 6.3, the “dual” group Lα associated with Ľα can be canonically identified with the

Levi subgroup of G whose Lie algebra is g−α ⊕ t⊕ gα, so to construct a root vector in gα
it is enough to construct a root vector in the α-weight space of the Lie algebra lα of Lα.

Let Gr◦
Ľα

be the connected component of 0 in GrĽα . Then the subcategory

PervĽα(O)(Gr◦
Ľα
) of PervĽα(O)(GrĽα ) is closed under convolution. If we denote by Mα the

group of automorphisms of the restriction F◦
Ľα

of the fiber functor FĽα to this subcategory,

then by definition we have a natural morphism Lα → Mα, which induces a morphism

lα → mα whose restriction to α-weight spaces is an isomorphism. Hence to construct a

root vector in gα it is enough to construct a root vector in the α-weight space of mα.

Now let L be the positive generator of the Picard group of Gr◦
Ľα

. (See [40, § 1.4] or [5,

§ 3.3] for the explicit construction of this line bundle.) The cup product with the first

Chern class of L defines an endomorphism of the functor F◦
Ľα

. By the arguments of [42,

§ 3.4], this endomorphism defines an element in the α-weight space of mα, which finishes

the construction.

This construction of the root vectors is clearly compatible with restriction to a Levi

subgroup in the sense of § 6.3.

7. Proofs of the main results

In §§ 7–8 we will use the results of §§ 3–5 for the datum T ⊂ B ⊂ G constructed in § 6.1,

and for the root vectors constructed in § 6.5. Note that all the objects which are denoted

by the same symbol in §§ 3–5 and in § 6 (e.g. X, X+, Sh̄) get identified canonically.

7.1. Preliminaries on Verma modules

Recall the Verma modules V(µ) defined in § 4.1.

Let µ ∈ t∗, and assume that for all α ∈ R, µ(α̌) /∈ Z. We claim that for ν ∈ t∗ we have

HomU (g)(V(ν),V(µ)) = Cδµ,ν . (7.1.1)

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


542 V. Ginzburg and S. Riche

Indeed, if there exists a non-zero morphism V(ν)→ V(µ), then by [25, § 3.4], ν must be

in W[µ] •µ, where W[µ] = {w ∈ W | w(µ)−µ ∈ ZR}. However, by [25, Theorem 3.4] and

our assumption on µ, W[µ] = {1}, which implies (7.1.1).

If λ ∈ X, then the t-weights of the U (b)-module V(µ+ λ)⊗C−µ (where the U (b)-action

is diagonal, the action on V(µ+ λ) being the restriction of the U (g)-action) are in X, and

the action of U (u) is locally finite. We deduce that the U (b)-action can be integrated to

a B-action.

Lemma 7.1.2. Let µ ∈ t∗ be such that µ(α̌) /∈ Z for all α ∈ R, and let λ ∈ X. Then there

exists a natural isomorphism of B-modules

V(µ+ λ)⊗C−µ
∼−→ IndB

T (λ).

Proof. First, let us explain how this morphism in constructed. The projection of

t-modules V(µ+ λ)→ Cµ+λ (with kernel V(µ+ λ)−) induces a morphism of T -modules

V(µ+ λ)⊗C−µ→ Cλ. By Frobenius reciprocity we deduce a morphism of B-modules as

in the statement of the lemma.

Now we prove that this morphism is injective. For this, it suffices to prove that

its restriction to the socle of the left-hand side (as a B-module, or equivalently as a

U (b)-module) is injective. We claim that this socle is isomorphic to Cλ, and has a

basis consisting of the vector 1λ+µ⊗ 1 ∈ V(µ+ λ)⊗C−µ. Indeed, this is equivalent to

saying that the socle of V(µ+ λ) is isomorphic to Cµ+λ. However, if there exists a

non-zero morphism Cν → V(µ+ λ) for some ν ∈ t∗, then we obtain a non-zero morphism

of U (g)-modules V(ν)→ V(µ+ λ). By (7.1.1), this implies that ν = µ+ λ, proving the

claim and the injectivity of the morphism.

Now, it is easy to see that the T -modules V(µ+ λ)⊗C−µ and IndB
T (λ) have the

same weights, with the same (finite) multiplicities. Hence our morphism must be an

isomorphism.

Below we will use the standard order on t∗, defined by ν 6 µ iff µ− ν ∈ Z>0 R+.

Let α be a simple root, Pα ⊂ G the corresponding minimal parabolic subgroup

containing B, and Lα the Levi factor of Pα containing T . Let also Bα := Lα ∩ B, and

bα := Lie(Bα). Let µ ∈ t∗ be such that µ(β̌) /∈ Z for any β ∈ R r {±α}. We claim that for

ν ∈ t∗ we have

HomU (g)(V(ν),V(µ)) ∼=


C if ν = µ;
C if ν = sα •µ and ν < µ;
0 otherwise.

(7.1.3)

Indeed, if there exists a non-zero morphism V(ν)→ V(µ) with ν 6= µ, then, with the same

notation as above, we must have ν ∈ W[µ] •µ and ν < µ. Again by [25, Theorem 3.4], this

implies that ν = sα •µ. On the other hand, if ν = sα •µ and ν < µ, then the ν-weight

space of V(µ) is one-dimensional, and consists of singular vectors by [25, Proposition 1.4].

In the following lemma, for µ ∈ t∗ we denote by Vα(µ) the Verma module associated

with µ for the reductive group Lα with Borel subgroup Bα.
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Lemma 7.1.4. Let µ ∈ t∗ be such that µ(β̌) /∈ Z for all β ∈ R r {±α}, and let λ ∈ X. Then

there exists a natural isomorphism of B-modules

V(µ+ λ)⊗C−µ
∼−→ IndB

Bα
(
Vα(µ+ λ)⊗C−µ

)
.

Proof. First, let us explain the construction of this morphism. As in the proof of

Lemma 7.1.2, V(µ+ λ)⊗C−µ has a natural structure of a B-module, and Vα(µ+ λ)⊗
C−µ has a natural structure of a Bα-module. The subspace of V(µ+ λ)⊗C−µ spanned

by weight spaces whose weight is not in λ+Zα is stable under the action of Bα,

and the quotient by this subspace is clearly isomorphic to Vα(µ+ λ)⊗C−µ. Hence we

have constructed a morphism of Bα-modules V(ν+ λ)⊗C−µ→ Vα(µ+ λ)⊗C−µ. Using

Frobenius reciprocity we obtain the desired morphism of B-modules.

Now we prove that this morphism is injective. As in Lemma 7.1.2, it is enough to prove

that its restriction to the socle of the left-hand side is injective. But it follows from (7.1.3)

that this socle has dimension 1 or 2, and injectivity is clear by construction.

Finally, one can deduce surjectivity as in the proof of Lemma 7.1.2 by comparing

characters.

7.2. Generic and subgeneric situations: the classical case

Let t∗rs and (g/u)∗rs be the sets of elements in t∗ and (g/u)∗ which are regular semisimple

(as elements of g∗). Then (g/u)∗rs = (g/u)∗×t∗ t∗rs, and the action of B on (g/u)∗ induces

an isomorphism of B-varieties

B/T × t∗rs
∼−→ (g/u)∗rs (7.2.1)

where the B-action on the left-hand side is trivial on t∗rs, and given by left multiplication

on B/T (see e.g. [27, p. 188]). In particular, we deduce that for any λ ∈ X there is a

natural isomorphism of B-modules

C[t∗rs]⊗S(t) S(g/u)⊗C−λ ∼= C[t∗rs]⊗ IndB
T (−λ). (7.2.2)

Now let α be a simple root, and let Pα, Lα, Bα be defined as in § 7.1. Let also lα be the

Lie algebra of Lα, and uα := lα ∩ u. Let t∗α−rs be the complement in t∗ of the collection of

hyperplanes defined by the equations β̌ for β ∈ R r {±α}. Let also (g/u)∗α−rs = (g/u)∗×t∗
t∗α−rs, and (lα/uα)∗α−rs = (lα/uα)∗×t∗ t∗α−rs.

Lemma 7.2.3. The (coadjoint) action of B on (g/u)∗ induces an isomorphism of

B-varieties

B×Bα (l
α/uα)∗α−rs

∼−→ (g/u)∗α−rs.

Proof. Both varieties under consideration are smooth complex varieties; hence it is

enough to prove that the map is bijective. We use the Killing form to get identifications

(g/u)∗ ∼= b and (lα/uα)∗ ∼= bα (where bα := Lie(Bα)), and define bα−rs, b
α
α−rs in an obvious

way.

First, let x ∈ bα−rs, and consider the Jordan decomposition x = s+ n. There exists

u ∈ B such that u · s ∈ t, and we must have u · s ∈ tα−rs. Then u · n ∈ Zb(u · s) ⊂ bα, which

implies that u · x ∈ bαα−rs. This proves surjectivity of our map.
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Next, we prove injectivity. Let u1, u2 ∈ B and x1, x2 ∈ bαα−rs, and assume that u1 · x1 =
u2 · x2. Consider the Jordan decompositions x1 = s1+ n1, x2 = s2+ n2, such that u1 · s1 =
u2 · s2. Conjugating if necessary x1 by an element of Bα (and modifying u1 accordingly),

one can assume that s1 ∈ tα−rs. Then the fact that (u−1
2 u1) · s1 = s2 ∈ bα implies that

u−1
2 u1 ∈ Bα. We deduce that

(u1×Bα x1) = (u2(u−1
2 u1)×Bα (u−1

1 u2) · x2) = (u2×Bα x2)

in B×Bα b
α
α−rs, which finishes the proof.

In particular it follows from Lemma 7.2.3 that for any λ ∈ X there is a natural

isomorphism of B-modules

C[t∗α−rs]⊗S(t) S(g/u)⊗C−λ ∼= IndB
Bα
(
C[t∗α−rs]⊗S(t) S(lα/uα)⊗C−λ

)
. (7.2.4)

Remark 7.2.5. The same arguments as in Lemma 7.2.3 can be used to prove the following

more general claim, which will not be used in this paper. Let I be a set of simple

roots, and consider the associated Levi subgroup L I containing T . Let B I = B ∩ L I ,

uI = Lie(U ∩ L I ). Let t∗I−rs be the complement in t∗ of the collection of hyperplanes

defined by the coroots associated with roots in R rZI . Let (g/u)∗I−rs = (g/u)∗×t∗ t∗rs,
and similarly for (lI /uI )∗I−rs. Then the coadjoint action of B induces an isomorphism of

varieties B×B I (lI /uI )∗I−rs
∼−→ (g/u)∗I−rs.

7.3. Generic and subgeneric situations: the quantum case

Set a := Lie(A) = t×A1. We will identify a∗ with t∗×A1 in the natural way. We denote

by C[a∗rs] the localization of Sh̄ with respect to the collection {α̌+ nh̄ | α ∈ R, n ∈ Z}. If

(ν, a) ∈ a∗, we denote by CSh̄ (ν, a) the one-dimensional Sh̄-module associated with (ν, a).

Lemma 7.3.1. For any λ ∈ X, there exists a natural isomorphism of B-modules and

C[a∗rs]-modules,

C[a∗rs]⊗Sh̄ M(λ)
∼−→ C[a∗rs]⊗ IndB

T (−λ).
Proof. Recall that there exists a morphism of T -modules and Sh̄-modules MG(λ)→
MT (λ) = Sh̄ ⊗C−λ; see (4.6.1). Using Frobenius reciprocity we deduce a morphism as in

the statement of the lemma.

First, we claim that for any (ν, a) ∈ a∗ such that ν(α̌) /∈ aZ for all α ∈ R, the induced

morphism of B-modules

CSh̄ (ν, a)⊗Sh̄ M(λ) → IndB
T (−λ) (7.3.2)

is an isomorphism. Indeed, if a = 0, then ν ∈ t∗rs, and morphism (7.3.2) can be identified

with the specialization of isomorphism (7.2.2) at ν; hence we are done. Now, assume

that a 6= 0. Then there is an algebra isomorphism Uh̄(g)
op⊗C[h̄] Ca ∼= U (g) which maps

x ∈ g ⊂ Uh̄(g) to −ax (see § 4.2). Using this isomorphism, the left-hand side of (7.3.2)

identifies with the U (b)-module V(− 1
a ν− λ− ρ)⊗C 1

a ν+ρ . By our assumption, − 1
a ν− ρ

satisfies the assumptions of Lemma 7.1.2, and hence (7.3.2) is an isomorphism in this

case also.
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Now we deduce that our morphism of C[a∗rs]-modules is an isomorphism. As this

morphism is B-equivariant, it is sufficient to prove that its restriction to each T -weight

space is an isomorphism. It is easily checked that for any λ ∈ X the λ-weight spaces of both

modules are free C[a∗rs]-modules, of the same rank. Choose a basis of each of these spaces,

and consider the determinant dλ ∈ C[a∗rs] of the restriction of our morphism in these bases.

Then for each (ν, a) ∈ a∗ such that ν(α̌) /∈ aZ for all α ∈ R, we have dλ(ν, a) 6= 0. However

a polynomial P ∈ Sh̄ which does not vanish on any hyperplane α̌+ nh̄ = 0 (with α ∈ R,

n ∈ Z) is necessarily a scalar multiple of a product of polynomials of the form α̌+ nh̄.

Hence dλ is invertible in the algebra C[a∗rs], which proves that our morphism is indeed an

isomorphism.

Let now α be a simple root, and let Lα be the Levi subgroup defined in § 7.1, with

its Borel subgroup Bα. For λ ∈ X, we denote by Mα(λ) the asymptotic universal Verma

module associated with λ for the group Lα and its Borel subgroup Bα. Let C[a∗α−rs] be

the localization of Sh̄ with respect to the collection {β̌ + nh̄ | β ∈ R r {±α}, n ∈ Z}.

Lemma 7.3.3. For any λ ∈ X, there exists a natural isomorphism of B-modules and

C[a∗α−rs]-modules

C[a∗α−rs]⊗Sh̄ M(λ) → IndB
Bα
(
C[a∗α−rs]⊗Sh̄ Mα(λ)

)
where in the right-hand side Bα acts trivially on C[a∗α−rs].
Proof. As in Lemma 7.3.1, the morphism in question is constructed using the morphism

M(λ)→Mα(λ) of (4.6.1) and Frobenius reciprocity.

To prove that this morphism is an isomorphism it is enough to prove that for any

(ν, a) ∈ a∗ such that ν(β̌) /∈ aZ for all β ∈ R r {±α}, the natural morphism of B-modules

CSh̄ (ν, a)⊗Sh̄ M(λ) → IndB
Bα
(
CSh̄ (ν, a)⊗Sh̄ Mα(λ)

)
(7.3.4)

is an isomorphism. (Note that the functor IndB
Bα is exact by [26, Corollary I.5.13]; hence

specialization commutes with induction here.)

If a = 0, then morphism (7.3.4) can be identified with the specialization of isomorphism

(7.2.4) at ν; hence we are done. If a 6= 0, by the same arguments as in the proof of

Lemma 7.3.1, morphism (7.3.4) can be identified with the morphism

V
(
−1

a
ν− λ− ρ

)
⊗C 1

a ν+ρ → IndB
Bα

(
Vα
(
−1

a
ν− λ− ρ

)
⊗C 1

a ν+ρ

)
considered in Lemma 7.1.4. Hence it is an isomorphism in this case also.

7.4. Generic and subgeneric situations: isomorphism

Fix λ ∈ X and F in PervǦ(O)(GrǦ). To simplify the notation, we set V := SǦ(F).
As a first step towards proving Theorem 2.2.4, we construct a canonical isomorphism

of C[a∗rs]-modules

C[a∗rs]⊗Sh̄

(
V ⊗M(λ)

)B ∼= C[a∗rs]⊗Sh̄ H q
A(i
!
λF). (7.4.1)
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In fact, we deduce this isomorphism from the fact that the morphism

C[a∗rs]⊗Sh̄ H q
A(i
!
λF)→ C[a∗rs]⊗ Vλ (resp. C[a∗rs]⊗Sh̄

(
V ⊗M(λ)

)B → C[a∗rs]⊗ Vλ)
(7.4.2)

induced by κ
top
F ,λ (resp. κ

alg
V,λ) is an isomorphism. For the first morphism this follows from

the localization theorem in equivariant cohomology. Let us now prove that the second

morphism is also an isomorphism. In fact we have a series of isomorphisms

C[a∗rs]⊗Sh̄

(
V ⊗M(λ)

)B ∼= (V ⊗ (C[a∗rs]⊗Sh̄ M(λ))
)B ∼= (V ⊗C[a∗rs]⊗ IndB

T (−λ)
)B

∼= C[a∗rs]⊗
(
IndB

T (V ⊗C−λ)
)B ∼= C[a∗rs]⊗ Vλ.

Here the second isomorphism follows from Lemma 7.3.1, the third one from the tensor

identity, and the last one from the isomorphism
(
IndB

T (V ⊗C−λ)
)B = (V ⊗C−λ)T given by

Frobenius reciprocity. By construction, the composition of these isomorphisms is precisely

the right-hand morphism in (7.4.2).

Now, let α be a simple root. As a second step towards proving Theorem 2.2.4, we want

to show that (7.4.1) restricts to a canonical isomorphism of C[a∗α−rs]-modules

C[a∗α−rs]⊗Sh̄

(
V ⊗M(λ)

)B ∼= C[a∗α−rs]⊗Sh̄ H q
A(i
!
λF). (7.4.3)

Let P̌α be the minimal parabolic subgroup of Ǧ containing B̌ associated with α, and let

Ľα be the unique Levi factor of P̌α containing Ť . By the constructions of § 6.3, these

data determine a Levi factor Lα in G, and hence the corresponding minimal parabolic

subgroup Pα containing B.

Consider first the right-hand side of (7.4.3). We will use the constructions of § 6.4 for the

Levi subgroup Ľα. By the localization theorem in equivariant cohomology, the morphism

C[a∗α−rs]⊗Sh̄ H q
A(i
!
λF) → C[a∗α−rs]⊗Sh̄ H q

A
(
(i Ľα
λ )!RǦ

Ľα
(F)

)
induced by (6.4.1) is an isomorphism.

Consider now the left-hand side of (7.4.3). Here we will use the constructions of § 7.3.

We have a series of isomorphisms

C[a∗α−rs]⊗Sh̄

(
V ⊗M(λ)

)B

∼= (V ⊗ (C[a∗α−rs]⊗Sh̄ M(λ))
)B ∼= (V ⊗ IndB

Bα (C[a∗α−rs]⊗Sh̄ Mα(λ))
)B

∼= C[a∗α−rs]⊗Sh̄

(
IndB

Bα (V|Lα ⊗Mα(λ))
)B ∼= C[a∗α−rs]⊗Sh̄

(
V|Lα ⊗Mα(λ)

)Bα
.

Here the second isomorphism follows from Lemma 7.3.3, the third one from the

tensor identity, and the last one from the isomorphism
(
IndB

Bα (V|Lα ⊗Mα(λ))
)B ∼= (V|Lα ⊗

Mα(λ)
)Bα

given by Frobenius reciprocity.

Using these isomorphisms, to construct (7.4.3) we only have to construct a canonical

isomorphism of Sh̄-modules(
V|Lα ⊗Mα(λ)

)Bα ∼= H q
A
(
(i Ľα
λ )!RǦ

Ľα
(F)

)
.

As Ľα has semisimple rank 1, this isomorphism is constructed in § A.7 below.
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One can check that the isomorphism obtained from (7.4.3) by extension of scalars to

C[a∗rs] coincides with (7.4.1). In other words, (7.4.3) is the restriction of (7.4.1) to

C[a∗α−rs]⊗Sh̄

(
V ⊗M(λ)

)B ⊂ C[a∗rs]⊗Sh̄

(
V ⊗M(λ)

)B
.

7.5. Equivariance

Recall the operators �V,λ
w defined in § 4.8.

Lemma 7.5.1. Let λ ∈ X and F in PervǦ(O)(GrǦ). Isomorphism (7.4.1) is W -equivariant,

in the sense that for any w ∈ W the following diagram commutes:

C[a∗rs]⊗Sh̄

(
S(F)⊗M(λ)

)B (7.4.1) //

C[a∗rs]⊗Sh̄�
S(F),λ
w

��

C[a∗rs]⊗Sh̄ H q
A(i
!
λF)

C[a∗rs]⊗Sh̄4
F ,λ
w

��

C[a∗rs]⊗Sh̄
w
((
S(F)⊗M(wλ)

)B
)

(7.4.1) // C[a∗rs]⊗Sh̄
w
(
H q

A(i
!
wλF)

)
.

Proof. It is enough to prove the commutativity when w is a simple reflection. So let α be

a simple root. Recall that isomorphism (7.4.1) is the restriction of isomorphism (7.4.3)

to a∗rs. Now isomorphism (7.4.3) is deduced from the isomorphism of Theorem 2.2.4 for

Ľα, proved (directly) in § A.7 below. Moreover, by Corollary 3.3.3 (or Lemma 4.6.5) and

Lemma 6.4.2, the operators � and 4 for the group Ǧ can also be constructed from

the similar operators for the group Ľα. Hence the commutativity for sα follows from

Theorem 2.5.5 for Ľα, which is proved (directly) in § A.9 below.

7.6. Proof of the main results: the quantum case

If α ∈ R is any root, we define the localization C[a∗α−rs] of Sh̄ by the same recipe as

for simple roots (see § 7.3). Then for any w ∈ W we have w(C[a∗α−rs]) = C[a∗w(α)−rs] as

subalgebras of C[a∗rs] To finish the proofs we will need the following obvious lemma.

Lemma 7.6.1. Let M and N be free Sh̄-modules of finite rank, and let

ϕ : C[a∗rs]⊗Sh̄ M
∼−→ C[a∗rs]⊗Sh̄ N

be an isomorphism of C[a∗rs]-modules. Assume that, for any α ∈ R, ϕ restricts to an

isomorphism of C[a∗α−rs]-modules C[a∗α−rs]⊗Sh̄ M
∼−→ C[a∗α−rs]⊗Sh̄ N . Then ϕ restricts to

an isomorphism M
∼−→ N .

Proof of Theorem 2.2.4. Let λ ∈ X and F in PervǦ(O)(GrǦ), and set V := S(F).
Injectivity of κ

alg
V,λ follows from Lemma 4.6.4, while injectivity of κ

top
F ,λ is proved in

Corollary 6.2.3. By Lemma 2.2.1(1), H q
A(i
!
λF) is a free Sh̄-module. It follows from

Proposition 3.2.3 and the first isomorphism in Lemma 2.4.1 that the same is true for(
V ⊗M(λ)

)B
. In (7.4.1) we have constructed an isomorphism between the extensions
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of scalars of these Sh̄-modules to C[a∗rs]. By (7.4.3) this isomorphism restricts to an

isomorphism between extensions of scalars to C[a∗α−rs] for any simple root α. From

Lemma 7.5.1 we deduce that the same property is true for any root. Hence the

isomorphism follows from Lemma 7.6.1.

Proof of Theorem 2.5.5. As our Sh̄-modules are free, it is enough to prove commutativity

after restriction to a∗rs ⊂ a∗. In this setting the claim follows from Lemma 7.5.1.

7.7. Classical analogues

Proof of Theorem 2.3.1. One can prove Theorem 2.3.1 using exactly the same strategy

as for Theorem 2.2.4. Alternatively, isomorphism ζF ,λ can be deduced from isomorphism

ζF ,λ of Theorem 2.2.4 using Lemma 3.5.2 and Lemma 6.2.4. (The statements about

injectivity are easy.)

Proof of Theorem 2.5.7. One can prove Theorem 2.5.7 using exactly the same strategy

as for Theorem 2.5.5. Alternatively, one can deduce Theorem 2.5.7 from Theorem 2.5.5

using Proposition 5.4.1, Lemma 3.5.2 and Lemma 6.2.4 (see also Remark 5.4.2).

8. Complementary results and applications

8.1. Convolution

In this subsection we construct the morphisms Conv considered in § 1.3, and prove their

compatibility with the isomorphisms of Corollary 2.4.2, thereby finishing the proof of the

theorem stated in § 1.5.

First, consider the “geometric” setting. Multiplication induces a morphism

Dh̄(X )⊗C[h̄]Dh̄(X )→ Dh̄(X ). One can check that for λ,µ ∈ X this morphism induces

a morphism of graded Sh̄-modules

(λ)Dh̄(X )λ⊗Sh̄
(λ+µ)Dh̄(X )µ→ (λ+µ)Dh̄(X )λ+µ.

Hence for V, V ′ in Rep(G) we obtain a morphism of graded Sh̄-modules

Convgeom
V,V ′,λ,µ : (λ)

(
V ⊗Dh̄(X )λ

)G〈λ(2ρ̌)〉⊗Sh̄
(λ+µ)(V ′⊗Dh̄(X )µ

)G〈µ(2ρ̌)〉
→ (λ+µ)(V ⊗ V ′⊗Dh̄(X )λ+µ

)G〈(λ+µ)(2ρ̌)〉.
Now, consider the “algebraic” setting. Note that if λ,µ ∈ X we have a canonical

isomorphism of (Sh̄,Uh̄(g))-bimodules

Sh̄〈〈λ〉〉⊗Sh̄ M(µ) ∼=M(λ+µ)
which sends 1⊗ vµ to vλ+µ. In particular if V is in Rep(G) and φ :M(0)→ V ⊗M(µ) is

a morphism of (Sh̄,Uh̄(g))-bimodules, then we can consider Sh̄〈〈λ〉〉⊗Sh̄ φ as a morphism

of bimodules M(λ)→ V ⊗M(λ+µ).
Fix V, V ′ in Rep(G) and λ,µ ∈ X. Then following [3, § 8.4] we define the morphism of

graded Sh̄-modules
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Convalg
V,V ′,λ,µ : Hom

(
M(0), V ⊗M(λ)

)〈λ(2ρ̌)〉⊗Sh̄
(λ) Hom

(
M(0), V ′⊗M(µ)

)〈µ(2ρ̌)〉
→ Hom

(
M(0), V ⊗ V ′⊗M(λ+µ))〈(λ+µ)(2ρ̌)〉

(where as usual we consider morphisms of (Sh̄,Uh̄(g))-bimodules) which sends a pair

(φ, ψ) to the following composition:

M(0)
φ // V ⊗M(λ)

idV⊗(Sh̄〈〈λ〉〉⊗Sh̄ψ) // V ⊗ V ′⊗M(λ+µ).
Finally we consider the “topological” setting. Here again we follow [3, § 8.7] (though

we have to be more careful because we use equivariant cohomology). Let F ,G in

PervǦ(O)(Gr), and let λ,µ ∈ X. The convolution F ?G is defined in terms of the

“convolution diagram”

mult : Ǧ(K)×Ǧ(O) Gr→ Gr

induced by left multiplication of Ǧ(K) on Gr. More precisely, F ?G = mult∗(F �̃G) where

F �̃G is the twisted external product, as defined e.g. in [35, § 4].

Let ν := λ+µ. Consider the Cartesian square

mult−1(ν)
� � jν //

multν
��

Ǧ(K)×Ǧ(O) Gr

mult
��

ν
� � iν // Gr.

This diagram is A-equivariant if we consider Ǧ(K)×Ǧ(O) Gr as an A-variety where Ť acts

by left multiplication on Ǧ(K), and C× acts diagonally by loop rotation. By the base

change theorem we have an isomorphism

i !ν(F ?G) = i !νmult∗(F �̃G) ∼= (multν)∗ j !ν(F �̃G),

so we obtain an isomorphism

H q
A
(
i !ν(F ?G)

) ∼= H q
A
(
mult−1(ν), j !ν(F �̃G)

)
.

Now let kλ,µ : {λ×Ǧ(O) µ} ↪→ Ǧ(K)×Ǧ(O) Gr be the obvious embedding. The

(!, !)-adjunction for the embedding {λ×Ǧ(O) µ} ↪→ mult−1(ν) induces a morphism

H q
A
(
k!λ,µ(F �̃G)

) → H q
A
(
mult−1(ν), j !ν(F �̃G)

)
,

which can be reinterpreted as a morphism

H q
A
(
k!λ,µ(F �̃G)

) → H q
A
(
i !λ+µ(F ?G)

)
. (8.1.1)

Lemma 8.1.2. There exists a canonical isomorphism of graded Sh̄-modules

H q
A
(
k!λ,µ(F �̃G)

) ∼= H q
A(i
!
λF)⊗Sh̄

(λ)H q
A(i
!
µG).
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Proof. Choose some closed finite union of Ǧ(O)-orbits Y ⊂ Gr such that G is supported

on Y , and a closed normal subgroup H � Ǧ(O) of finite codimension c, which acts

trivially on Y . Let f : Ǧ(K)/H × Y → Ǧ(K)×Ǧ(O) Y and g : Ǧ(K)/H → Gr be the

natural projections. Then by definition of F �̃G we have a canonical isomorphism

f ∗
(
F �̃G

) ∼= (g∗F)�G and hence (since both f and g are smooth morphisms of relative

dimension c) a canonical isomorphism

f !
(
F �̃G

) ∼= (g!F)�G. (8.1.3)

We will consider Ǧ(K)/H × Y as an A-variety where any t ∈ Ť (resp. a ∈ C×) acts by

t · (gH, x) := (tgt−1 H, t · x) (resp. a · (gH, x) := ((a · g)λ(a)−1 H, λ(a) · (a · x))).
With this definition, the morphism f is A-equivariant, and the point (λ̃,µ) ∈ Ǧ(K)/H ×
Y is A-stable. (Here λ̃ := λ̂H/H , where λ̂ is λ considered as an element of Ǧ(K)). Now

kλ,µ factors as the composition

{(λ,µ)} ∼ // {(λ̃,µ)} � � lλ,µ // Ǧ(K)/H × Y
f // Ǧ(K)×Ǧ(O) Y,

and hence using (8.1.3) we obtain an isomorphism

H q
A
(
k!λ,µ(F �̃G)

) ∼= H q
A
(
l !λ,µ(g

!F �G)
)
.

Now we have

H q
A
(
l !λ,µ(g

!F �G)
) ∼= H q

A(i
!
λF)⊗Sh̄

(λ)H q
A(i
!
µG)

(where we use the fact that (λ)H q
A(i
!
µG) is free over Sh̄ by Lemma 2.2.1, so we have a

Künneth formula in equivariant cohomology). This finishes the proof.

Using the isomorphism of Lemma 8.1.2 we can reinterpret (8.1.1) as a morphism

Convtop
F ,G,λ,µ : H

q
A(i
!
λF)⊗Sh̄

(λ)H q
A(i
!
µG)→ H q

A
(
i !λ+µ(F ?G)

)
.

Remark 8.1.4. In the case where λ,µ are antidominant, the morphism Convtop
F ,G,λ,µ can

also be described in terms of Wakimoto sheaves, as in [3, diagram on p. 652].

The following result will be proved in § 8.2

Proposition 8.1.5. Let F ,G be in PervǦ(O)(Gr) and λ,µ ∈ X. Under the isomorphisms

of Corollary 2.4.2, the morphisms Convgeom
S(F),S(G),λ,µ, Convalg

S(F),S(G),λ,µ and Convtop
F ,G,λ,µ

match.

Remark 8.1.6.

(1) Note that, unlike most of the constructions in the paper, the morphisms Conv are

not compatible with restriction to a Levi subgroup (see § 3.3, § 4.6 or § 6.4) in the

obvious strong sense. We will use a weaker compatibility result in the proof of

Proposition 8.1.5.
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(2) Proposition 8.1.5 has an obvious “classical analogue”, that we do not state for

simplicity, but which can be proved by the same methods.

(3) Using similar constructions one can define, for V, V ′ in Rep(G) and λ,µ ∈ X, a

“geometric” convolution morphism(
V ⊗M(λ)

)G ⊗Sh̄
(λ)
(
V ′µ⊗Sh̄

)G → (
(V ⊗ V ′)λ+µ⊗Sh̄

)G

(where for simplicity we disregard the grading) and, for F ,G in PervǦ(O)(Gr) and

λ,µ ∈ X, a “topological” convolution morphism

H q
A(i
!
λF)⊗Sh̄

(λ)H q
A(t
!
µG)→ H q

A
(
t !λ+µ(F ?G)

)
.

(These maps “extend” Convalg
V,V ′,λ,µ and Convtop

F ,G,λ,µ in the natural sense, using

the inclusions κ
alg
V ′,µ, κ

alg
V⊗V ′,λ+µ, (ıµ)! and (ıλ+µ)!). Then the same arguments as for

Proposition 8.1.5 show that the following diagram commutes:(
V ⊗M(λ)

)G ⊗Sh̄
(λ)
(
V ′µ⊗Sh̄

)G //

oTh. 2.2.4 & Lem. 2.2.1
��

(
(V ⊗ V ′)λ+µ⊗Sh̄

)G

oLem. 2.2.1
��

H q
A(i
!
λF)⊗Sh̄

(λ)H q
A(t
!
µG) // H q

A
(
t !λ+µ(F ?G)

)
.

In particular, for V = V ′ = C[G] (the regular representation of G, considered as an

ind-object in Rep(G)) and taking the direct sum over λ and µ, one can check that on

composing the “algebraic” map with the morphism induced by the multiplication

morphism m : C[G]⊗C[G] → C[G], one obtains an action of the algebra Dh̄(X )

on the C[h̄]-algebra D rel
h̄ of relative asymptotic differential operators along the fibers

of the projection G → G/T . This action can be realized “topologically” using the

composition

H q
A(i
!
λR)⊗Sh̄

(λ)H q
A(t
!
µR) −→ H q

A
(
t !λ+µ(R ?R)

) S(m)−−→ H q
A
(
t !λ+µR

)
,

where R := S(C[G]).
In this construction one can also replace T by a Levi factor of a parabolic subgroup;

the details are left to the reader.

8.2. Proof of Proposition 8.1.5

For λ,µ ∈ X we set

Tλ,µ := {(nλ̂×Ǧ(O) mµ) | n,m ∈ Ň−(K)} ⊂ Ǧ(K)×Ǧ(O) Gr,

and we denote the inclusion by tλ,µ : Tλ,µ ↪→ Ǧ(K)×Ǧ(O) Gr. (The notation λ̂ is defined

in the proof of Lemma 8.1.2.) Then we have decompositions

Ǧ(K)×Ǧ(O) Gr =
⊔
λ,µ∈X

Tλ,µ, mult−1(Tν) =
⊔

λ+µ=ν
Tλ,µ.

In fact, Tλ,µ is the inverse image of Tλ×Tλ+µ ⊂ Gr×Gr under the isomorphism

Ǧ(K)×Ǧ(O) Gr ∼−→ Gr×Gr sending (g1×Ǧ(O) g2Ǧ(O)) to (g1Ǧ(O), g1g2Ǧ(O)).
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Lemma 8.2.1. For any F ,G in PervǦ(O)(Gr), there exists a natural isomorphism of graded

Sh̄-modules

H q
A
(
Tλ,µ, t !λ,µ(F �̃G)

) ∼= H q
A(Tλ, t !λF)⊗Sh̄

(λ)H q
A(Tµ, t !µG).

Proof. If we set T̃λ := λ̃ · Ň−(O−)1 ⊂ Ǧ(K) (where Ň−(O−)1 ⊂ Ň−(O−) is the kernel

of the evaluation at z = ∞), then the composition T̃λ ↪→ Ǧ(K)� Gr induces an

isomorphism T̃λ
∼−→ Tλ. Then the same arguments as in the proof of Lemma 8.1.2 prove

our claim.

Now we fix ν ∈ X and F ,G in PervǦ(O)(Gr). For λ ∈ X we set

T>λ
ν :=

⊔
λ′+µ=ν
λ′>λ

Tλ′,µ ⊂ mult−1(Tν),

and denote the inclusion by t>λν : T>λ
ν ↪→ Ǧ(K)×Ǧ(O) Gr. Then T

>λ
ν is closed in

mult−1(Tν), and Tλ,ν−λ is open in T
>λ
ν . It follows in particular from Lemma 8.2.1 and

Lemma 2.2.1 that for any λ,µ such that λ+µ = ν, the cohomology H q
A
(
Tλ,µ, t !λ,µ(F �̃G)

)
is concentrated in degrees of the same parity as ν(2ρ̌). From this parity vanishing

observation, one can deduce that the long exact sequence associated with the

decomposition T
>λ
ν = T>λν tTλ,ν−λ (where T>λν has the obvious definition) for the object

(t>λν )!(F �̃G) breaks into a family of short exact sequences. And then (using the base

change theorem) we deduce that the graded Sh̄-module

H q
A
(
Tν, t !ν(F ?G)

)
admits a decreasing X-filtration with the part bigger than λ isomorphic to

H q
A(T

>λ
ν , (t>λν )!(F �̃G)), and with associated graded⊕

λ+µ=ν
H q

A
(
Tλ,µ, t !λ,µ(F �̃G)

) ∼= ⊕
λ+µ=ν

H q
A(Tλ, t !λF)⊗Sh̄

(λ)H q
A(Tµ, t !µG).

(Here the isomorphism is provided by Lemma 8.2.1.)

Lemma 8.2.2. Under the isomorphisms

H q
A
(
Tν, t !ν(F ?G)

) ∼= (S(F)⊗ S(G)
)
ν
⊗Sh̄〈ν(2ρ̌)〉,

and

H q
A(Tλ, t !λF)⊗Sh̄

(λ)H q
A(Tµ, t !µG) ∼= (S(F)λ⊗ S(G)µ)⊗Sh̄〈ν(2ρ̌)〉

provided by Lemma 2.2.1, the “topological” filtration on H q
A
(
Tν, t !ν(F ?G)

)
considered

above is induced by the filtration on
(
S(F)⊗S(G)

)
ν

by the subspaces⊕
λ′>λ

S(F)λ′ ⊗ S(G)ν−λ′ .
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Sketch of proof. By construction of the isomorphisms in Lemma 2.2.1, it is sufficient to

prove the analogous claim for ordinary cohomology; in other words one can forget about

A-equivariance. Now recall the construction of the tensor structure in [35, Proposition

6.4]; in particular let X be a smooth (algebraic) curve, and consider the local analogues

of Gr and the convolution diagram over X2 as in [35, Equation (5.2)]. In the proof of [35,

Proposition 6.4], the authors define a global counterpart Tν(X2) ⊂ GrX2 of Tν . Then one

can consider

mult−1(Tν(X2)
) ⊂ GrX ×̃GrX

in the “global analogue” of Ǧ(K)×Ǧ(O) Gr. One can define locally closed ind-subvarieties

Tλ,µ(X2) inside this inverse image (when λ+µ = ν) which, over points in the diagonal

copy of X in X2, coincide with our subvarieties Tλ,µ and which, over points outside the

diagonal, coincide with Tλ×Tµ. Then one has a filtration as above, but this time globally

over X2. Over points in the diagonal, this filtration coincides with the one considered

above by construction. And over points outside of the diagonal, the variety Tν(X2) is a

disjoint union
⊔
λ+µ=ν Tλ×Tµ, and the filtration is obtained from the decomposition of

the appropriate cohomology sheaves as a direct sum, as e.g. in [35, Equation (6.25b)].

This implies the claim.

Using these remarks we are now ready to give a proof of Proposition 8.1.5.

Proof of Proposition 8.1.5. First it is easy to check, by explicit computation, that the

isomorphism between the left-hand side and the right-hand side of the equation in

Corollary 2.4.2 is compatible with the morphisms Convgeom and Convalg.

Set ν := λ+µ, V := S(F), V ′ := S(G). To finish the proof we have to prove that

the left square in the following diagram commutes, where the isomorphisms are as in

Theorem 2.2.4:

H q
A(i
!
λF)⊗Sh̄

(λ)H q
A(i
!
µG)

Convtop
F ,G,λ,µ //

o
��

H q
A(i
!
ν(F ?G))

� � (ıν )! //

o
��

H q
A(Tν, t !ν(F ?G))

o
��(

V ⊗M(λ)
)B ⊗Sh̄

(λ)
(
V ′⊗M(µ)

)B
Convalg

V,V ′,λ,µ//
(
V ⊗ V ′⊗M(ν)

)B � �
κ

alg
V⊗V ′,ν // (V ⊗ V ′)ν ⊗Sh̄ .

Of course it is sufficient to prove that the outer square commutes.

Now recall the filtrations on H q
A(Tν, t !ν(F ?G)) and (V ⊗ V ′)ν ⊗Sh̄ considered above.

Then each of our morphisms factors through the part of the filtration bigger than λ: for

the first line this follows from the fact that (λ̂×Ǧ(O) µ) ∈ T
>λ
ν , and for the second line this

can be checked by explicit computation. Moreover, the restriction to the image of these

morphisms of the projection to H q
A(Tλ, t !λF)⊗Sh̄

(λ)H q
A(Tµ, t !µG) (resp. (Vλ⊗ Vµ)⊗Sh̄) is

injective. Hence it is enough to check that the corresponding diagram:

H q
A(i
!
λF)⊗Sh̄

(λ)H q
A(i
!
µG)

o
��

// H q
A(Tλ, t !λF)⊗Sh̄

(λ)H q
A(Tµ, t !µG)

o
��(

V ⊗M(λ)
)B ⊗Sh̄

(λ)
(
V ′⊗M(µ)

)B // (Vλ⊗ Vµ)⊗Sh̄
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commutes. However the upper line is induced by (ıλ)!⊗ (ıµ)!, and the bottom line is

induced by κ
alg
V,λ⊗ κalg

V ′,µ; hence this claim is clear.

8.3. A reminder on dynamical Weyl groups

Let us fix V in Rep(G), λ ∈ X and w ∈ W . For any µ ∈ X− sufficiently large we consider

the morphism of C[h̄, h̄−1]-modules

DWalg
V,λ,w,µ : C[h̄, h̄−1]⊗ Vλ→ C[h̄, h̄−1]⊗ Vwλ, DWalg

V,λ,w,µ := EV,λ
wµ ◦9V,λ

w,µ ◦ (EV,λ
µ )−1.

This morphism is well defined by Lemma 4.4.1(1). We will sometimes extend this

morphism to a morphism of C(h̄)-modules C(h̄)⊗ Vλ→ C(h̄)⊗ Vwλ in the obvious way

(and denote the extension also by DWalg
V,λ,w,µ).

Recall that for µ ∈ t∗ we have defined a morphism P 7→ P(µ) in § 4.3. We denote

similarly the induced morphisms Sh̄ ⊗ Vλ→ C[h̄, h̄−1]⊗ Vλ or Sh̄ ⊗ Vwλ→ C[h̄, h̄−1]⊗
Vwλ.

Lemma 8.3.1. There exists a unique isomorphism of C(h̄)-modules

DWalg
V,λ,w : Qh̄ ⊗ Vλ

∼−→ Qh̄ ⊗ Vwλ

such that for any x ∈ Qh̄ ⊗ Vλ the following property holds: for any µ ∈ X− sufficiently

large such that x(µ) is defined, we have(
DWalg

V,λ,w(x)
)
(wµ) = DWalg

V,λ,w,µ
(
x(µ)

)
(in particular, the left-hand side is defined). This morphism induces an isomorphism of

Qh̄-modules

DWalg
V,λ,w : Qh̄ ⊗ Vλ

∼−→ wQh̄ ⊗ Vwλ.

Proof. This claim is proved in [19, 39]. For later use, let us explain how it can be deduced

from our constructions. Unicity is clear (see e.g. § 4.3). Let us prove existence.

It is enough to treat the case where w = s is the reflection associated with a simple

root α (provided we only require µ ∈ X to satisfy µ(α̌) 6 0, not necessarily to be

antidominant); see in particular (4.4.2). Define the isomorphism of C(h̄)-modules

′DWalg
V,λ,s : Qh̄ ⊗ Vλ

∼−→ Qh̄ ⊗ Vsλ

to be the composition

Qh̄ ⊗ Vλ
κ

alg
V,λ←−−∼ Qh̄ ⊗Sh̄

(
V ⊗M(λ)

)B �
V,λ
s−−→∼ Qh̄ ⊗Sh̄

(
V ⊗M(sλ)

)B

κ
alg
V,sλ−−−→∼ Qh̄ ⊗Sh̄

s(Vsλ⊗Sh̄
) q⊗v⊗p 7→s(q)p⊗v−−−−−−−−−−−→∼ Qh̄ ⊗ Vsλ.

(The fact that the first and third arrows are invertible was proved in the course of the

proof of Theorem 2.2.4; see § 7.4). Then for x ∈ Qh̄ ⊗ Vλ we set

DWalg
V,λ,s(x) =


1

(−α̌)(−α̌+ h̄) · · · (−α̌+ (λ(α̌)− 1)h̄)
· ′DWalg

V,λ,s(x) if λ(α̌) > 0;
(−α̌− h̄)(−α̌− 2h̄) · · · (−α̌+ λ(α̌)h̄) · ′DWalg

V,λ,s(x) if λ(α̌) 6 0

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


Differential operators on G/U and the affine Grassmannian 555

in Qh̄ ⊗ Vsλ. It follows from Proposition 4.5.1 that the morphism DWalg
V,λ,s satisfies our

requirements.

The operators DWalg
V,λ,w form the dynamical Weyl group as considered (in the

non-asymptotic case) in [19, 39] and (in the asymptotic case) in [12].

8.4. Transverse slices and semi-infinite orbits

Recall the definition of Wλ, sλ, and nλ in § 2.6. The following result contains in particular

Lemma 2.6.1. It is essentially proved in [12]; we explain the details for the reader’s

convenience.

Lemma 8.4.1. Let F in PervǦ(O)(Gr) and λ ∈ X.

(1) There exists a canonical isomorphism of graded Sh̄-modules

H q
A(Wλ ∩Tλ, s!λF) ∼=

(
S(F)

)
λ
⊗Sh̄〈nλ〉.

(2) Under the isomorphism of (1) and (2.2.2), the natural morphism

H q
A(Wλ ∩Tλ, s!λF) → H q

A(Tλ, t !λF)

induced by the (closed) inclusion Tλ ∩Wλ ↪→ Tλ identifies with multiplication by

∏
α>0,
(λ,α̌)<0

−λ(α̌)−1∏
j=0

(−α̌+ j h̄)

on
(
S(F)

)
λ
⊗Sh̄.

Proof. There exists a closed subvariety V ⊂ Ǧ(O) isomorphic to a (finite dimensional)

affine space, which is stable under conjugation by A, and which satisfies the following

conditions:

• the morphism V → Grλ, u 7→ u ·λ, is an open embedding;

• the morphism V ×Wλ→ Gr induced by the Ǧ(O)-action on Gr is an open embedding.

Indeed, by NǦ(Ť )-equivariance it is enough to treat the case where λ is dominant. And

in this case one can e.g. take as V the subvariety Jλ considered in [36, Lemme 2.2]. We

will identify V ×Wλ with its image in Gr, and denote it by O.

We have canonical isomorphisms

H q
A(Tλ, t !λF) ∼= H q

A(ı
∗
λ t !λF) ∼= H q

A(({λ} ↪→ O ∩Tλ)∗(O ∩Tλ ↪→ Gr)!F).

Here the first isomorphism follows from [21, Proposition 2.3] (since λ is an attractive

fixed point of A on Tλ), and the second one from the fact that O is open in Gr.
As F is Ǧ(O)-equivariant, there exists a canonical isomorphism

(O ↪→ Gr)∗F ∼= CV [2λ(2ρ̌)]�F(λ) where F(λ) := (Wλ ↪→ Gr)∗F[−2λ(2ρ̌)]. (8.4.2)

As V is smooth of dimension dim(Grλ) = λ(2ρ̌), we also have canonically

F(λ) ∼= (Wλ ↪→ Gr)!F .
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By definition we have

Tλ = {x ∈ Gr | lim
s→∞ 2ρ(s) · x = λ}.

(Here ρ is considered as a cocharacter of Ť .) If follows that we have an isomorphism

O ∩Tλ ∼= (V ∩Tλ)× (Wλ ∩Tλ). (8.4.3)

The variety V ∩Tλ is open in Grλ ∩Tλ, and by [35, Equation (3.6)] we have

Grλ ∩Tλ = Ǔ−(O) ·λ ∼=
∏
α>0,
(λ,α̌)<0

−(λ,α̌)−1∏
k=0

CA(−α̌+ kh̄) (8.4.4)

as A-varieties. In particular, V ∩Tλ is smooth.

Using (8.4.2) we obtain (under the identification (8.4.3)) a canonical isomorphism

(O ∩Tλ ↪→ Gr)!F ∼= CV∩Tλ [2 dim(V ∩Tλ)]� (Wλ ∩Tλ ↪→Wλ)
!F(λ).

We deduce a canonical isomorphism

H q
A(Tλ, t !λF) ∼= H q

A(({λ} ↪→Wλ ∩Tλ)∗s!λF)〈−2 dim(V ∩Tλ)〉.
Again by [21, Proposition 2.3], we have a canonical isomorphism

H q
A(Wλ ∩Tλ, s!λF) ∼= H q

A(({λ} ↪→Wλ ∩Tλ)∗s!λF).
Using the first isomorphism in (2.2.2), we obtain finally an isomorphism

H q
A(s
!
λF) ∼=

(
S(F)

)
λ
⊗Sh̄〈λ(2ρ̌)+ 2 dim(V ∩Tλ)〉.

Now the dimension dim(V ∩Tλ) can be computed using (8.4.4), and (1) follows.

To prove (2) we have to understand the natural morphism

HAq ({λ})→ HAq (V ∩Tλ)〈−2 dim(V ∩Tλ)〉.
However this morphism factorizes as the following composition:

HAq ({λ})→ HAq (Grλ ∩Tλ)〈−2 dim(Grλ ∩Tλ)〉 ∼−→ HAq (V ∩Tλ)〈−2 dim(V ∩Tλ)〉,
where the first morphism is induced by the inclusion {λ} ↪→ Grλ ∩Tλ, and the second

morphism is given by restriction to the open subvariety V ∩Tλ. Now the first morphism

can be computed using (8.4.4) and the reminder in § 6.2, and the result follows.

8.5. Geometric realization of dynamical Weyl groups

Now we are in a position to prove Proposition 2.6.2.

Proof of Proposition 2.6.2. Fix F in PervǦ(O)(Gr), and set V := S(F). Then it is

enough to prove that for any simple root α and any λ ∈ X such that λ(α̌) > 0 the
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following diagram commutes, where the vertical isomorphisms are induced by those of

Lemma 8.4.1(1) and where s := sα:

Qh̄ ⊗Sh̄ H q
A(Wλ ∩Tλ, s!λF)

DWgeom
F ,λ,s //

o
��

Qh̄ ⊗Sh̄ H q
A(Wsλ ∩Tsλ, s!sλF)

o
��

Qh̄ ⊗ Vλ
DWalg

V,λ,s // Qh̄ ⊗ Vsλ.

Consider the isomorphism of C(h̄)-modules

′DWgeom
F ,λ,s : Qh̄ ⊗Sh̄ H q

A(Tλ, t !λF)
∼−→ Qh̄ ⊗Sh̄ H q

A(Tsλ, t !sλF)

defined by the composition

Qh̄ ⊗H q
A(Tλ, t !λF)

(ıλ)!←−−∼ Qh̄ ⊗H q
A(i
!
λF)

4
V,λ
s−−→∼ Qh̄ ⊗ sH q

A(i
!
sλF)

(ısλ)!−−−→∼ Qh̄ ⊗Sh̄
sH q

A(Tsλ, t !sλF)
s⊗1−−→∼ Qh̄ ⊗Sh̄ H q

A(Tsλ, t !sλF).

(Here the first and third arrows are invertible by the localization theorem in equivariant

cohomology.) Using the notation of § 8.3, it follows from Theorems 2.2.4 and 2.5.5 that

the following diagram commutes:

Qh̄ ⊗Sh̄ H q
A(Tλ, t !λF)

′DWgeom
F ,λ,s //

o (2.2.2)
��

Qh̄ ⊗Sh̄ H q
A(Tsλ, t !sλF)

(2.2.2) o
��

Qh̄ ⊗ Vλ
′DWalg

V,λ,s // Qh̄ ⊗ Vsλ.

As explained in the proof of Lemma 8.3.1, for any x ∈ Qh̄ ⊗ Vλ we have

′DWalg
V,λ,s(x) =

(−α̌)(−α̌+ h̄
) · · · (−α̌+ (λ(α̌)− 1)h̄

) ·DWalg
V,λ,s(x)

in Qh̄ ⊗ Vsλ. On the other hand, it follows from Lemma 8.4.1(2) that if we identify the

Qh̄-modules Qh̄ ⊗Sh̄ H q
A(Tλ, t !λF) and Qh̄ ⊗Sh̄ H q

A(Wλ ∩Tλ, s!λF) with Qh̄ ⊗ Vλ, and Qh̄ ⊗Sh̄

H q
A(Tsλ, t !sλF) and Qh̄ ⊗Sh̄ H q

A(Wsλ ∩Tsλ, s!sλF) with Qh̄ ⊗ Vsλ by the isomorphisms of

Lemma 2.2.1(2) and Lemma 8.4.1(1), we have for any x ∈ Qh̄ ⊗ Vλ
′DWgeom

V,λ,s(x) =
(−α̌)(−α̌+ h̄

) · · · (−α̌+ (λ(α̌)− 1)h̄
) ·DWgeom

V,λ,s(x)

in Qh̄ ⊗ Vsλ. The proposition follows.

8.6. Brylinski–Kostant filtration

We have a natural isomorphism of algebras S(g/u) = C[(g/u)∗] so for any ϕ ∈ t∗ there is

a natural surjective algebra morphism

S(g/u)→ C[ϕ+ (g/b)∗] (8.6.1)

associated with the inclusion ϕ+ (g/b)∗ ↪→ (g/u)∗. (Here, as usual we consider ϕ as a

linear form on g trivial on u⊕ u−.)
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Lemma 8.6.2. Let V in Rep(G) and λ ∈ X. For any ϕ ∈ t∗rs, the morphism

Cϕ ⊗S(t)
(
V ⊗S(g/u)⊗C−λ

)B → (
V ⊗C[ϕ+ (g/b)∗]⊗C−λ

)B

induced by (8.6.1) is an isomorphism.

Proof. We have

Cϕ ⊗S(t)
(
V ⊗S(g/u)⊗C−λ

)B ∼= Cϕ ⊗C[t∗rs] C[t∗rs]⊗S(t)
(
V ⊗S(g/u)⊗C−λ

)B

∼= Cϕ ⊗C[t∗rs]
(

V ⊗ (C[t∗rs]⊗S(t) S(g/u)⊗C−λ
))B

(7.2.2)∼= Cϕ ⊗C[t∗rs]
(
V ⊗C[t∗rs]⊗ IndB

T (−λ)
)B

∼= (
V ⊗C−λ⊗C[B/T ])B

.

On the other hand we have ϕ+ (g/b)∗ = B ·ϕ ∼= B/T as a B-variety, and hence there is a

natural isomorphism of B-modules C[ϕ+ (g/b)∗] ∼= C[B/T ]. This implies our claim.

Let us now fix λ ∈ X and F in PervǦ(O)(Gr). To simply notation we set V := S(F).
Recall that for ϕ ∈ t∗ we have defined the filtered vector space Hϕ(i !λF) in § 2.6. On the

other hand, the algebra C[ϕ+ (g/b)∗] is also naturally filtered: the filtration is defined

such that for any ψ ∈ ϕ+ (g/b)∗, the algebra isomorphism C[ϕ+ (g/b)∗] ∼= C[(g/b)∗]
induced by the isomorphism

(g/b)∗ ∼−→ ϕ+ (g/b)∗, f 7→ ψ + f

is an isomorphism of filtered algebras, where the filtration on C[(g/b)∗] is the one induced

by the grading such that the vectors in g/b ⊂ C[(g/b)∗] are in degree 2. Hence we have

an induced filtration on the vector space
(
V ⊗C[ϕ+ (g/b)∗]⊗C−λ

)B
.

Combining Theorem 2.3.1 and Lemma 8.6.2, one obtains the following.

Corollary 8.6.3. For any ϕ ∈ t∗rs, there exists a canonical isomorphism

Hϕ(i !λF) ∼=
(
V ⊗C[ϕ+ (g/b)∗]⊗C−λ

)B
.

This isomorphism is an isomorphism of filtered vector spaces, where the filtration on the

right-hand side is shifted by λ(2ρ̌), i.e. for any j ∈ Z it restricts to an isomorphism

F j

(
Hϕ(i !λF)

) ∼= F j−λ(2ρ̌)
((

V ⊗C[ϕ+ (g/b)∗]⊗C−λ
)B
)
.

Now we are in a position to give a proof of Proposition 2.6.3. In fact, this proposition

is a consequence of Corollary 8.6.3 and the following result (which is essentially proved

in [15]; we reproduce the proof for the reader’s convenience).

Proposition 8.6.4. Let e ∈ u be a sum of non-zero simple root vectors. If ϕ ∈ t∗r {0}
satisfies (ad∗e)(ϕ) = 0, then evaluation at ϕ induces an isomorphism(

V ⊗C[ϕ+ (g/b)∗]⊗C−λ
)B ∼−→ Vλ. (8.6.5)
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For any j ∈ Z, this isomorphism restricts to an isomorphism

F2 j

((
V ⊗C[ϕ+ (g/b)∗]⊗C−λ

)B
)
= F2 j+1

((
V ⊗C[ϕ+ (g/b)∗]⊗C−λ

)B
) ∼−→ FBK

j (Vλ).

Proof. Let us denote morphism (8.6.5) by 3λ. The fact that 3λ is an isomorphism

follows from the proof of Lemma 8.6.2. What remains is to prove that this isomorphism

is compatible with filtrations. Note that 3λ is the restriction to the λ-weight spaces of

the isomorphism of T -modules

3 : (V ⊗C[ϕ+ (g/b)∗])U ∼−→ V

given again by evaluation at ϕ. By construction, the filtration on the left-hand side of

(8.6.5) has jumps only in even degrees, which justifies the equality F2 j = F2 j+1. For j ∈ Z
we set

Ffib
j (Vλ) := 3λ

(
F2 j

(
(V ⊗C[ϕ+ (g/b)∗]⊗C−λ)B)).

Hence what we have to check is that Ffibq coincides with FBKq .

It will be convenient to work in g rather than g∗. Hence we choose a G-equivariant

isomorphism g ∼= g∗; it restricts to a B-equivariant isomorphism (g/u)∗ ∼= b. Let h ∈ b

be the image of ϕ, so we obtain an identification ϕ+ (g/b)∗ ∼= h+ u. Consider the

isomorphisms(
V ⊗C[ϕ+ (g/b)∗]⊗C−λ

)B ∼= (V ⊗C[h+ u]⊗C−λ
)B ∼= HomB(V ∗⊗Cλ,C[h+ u]).

Under this identification, 3λ sends a morphism f : V ∗⊗Cλ→ C[h+ u] to the linear

form on (Vλ)∗ given by ψ 7→ f (ψ ⊗ 1)(h). In fact the image of 3λ( f ) in V is 3( f ), which

can be described as the linear form on V ∗ given by ψ 7→ f (ψ ⊗ 1)(h).
Fix some f ∈ HomB(V ∗⊗Cλ,C[h+ n]), and let v = 3λ( f ) be its image in Vλ (or in

V ). By definition, v is in Ffib
j (Vλ) iff for any x ∈ u and any ψ ∈ V ∗, the polynomial in t

given by

f (ψ ⊗ 1)(h+ t x)

has degree 6 j . Fix ψ ∈ V ∗, and choose x ∈ u such that this degree is maximal. By

density of regular nilpotent elements, one can assume that x is regular. Then there exists

b ∈ B such that x = b · e. (Indeed, it is well known that there exists g ∈ G such that

x = g · e. Then x ∈ g · b; as a regular nilpotent element is contained in only one Borel

subalgebra we deduce that b = g · b, which implies that g ∈ B.) And we have

f (ψ ⊗ 1)(h+ t x) = f (ψ ⊗ 1)(b · (b−1 · h+ te)) = f (b−1 · (ψ ⊗ 1))(b−1 · h+ te).

Now, by [15, Lemma 4.2], the degree of the polynomial on the right-hand side is the same

as the degree of the polynomial f (b−1 · (ψ ⊗ 1))(h+ te). Moreover, we have

f (b−1 · (ψ ⊗ 1))(h+ te) = f (b−1 · (ψ ⊗ 1))(exp(te) · h) = f (exp(−te)b−1 · (ψ ⊗ 1))(h).

Hence, finally, v is in Ffib
j (Vλ) iff for any ψ ∈ V ∗, the polynomial

f (exp(−te) · (ψ ⊗ 1))(h)

has degree 6 j .
Now, the linear form on V ∗ given by ψ 7→ f (exp(−te) · (ψ ⊗ 1))(h) is exp(te) · v. Hence

v is in Ffib
j (Vλ) iff e j+1 · v = 0, i.e. iff v ∈ FBK

j (Vλ).

https://doi.org/10.1017/S1474748014000085 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748014000085


560 V. Ginzburg and S. Riche

8.7. The ordinary cohomology of cofibers

As a consequence of Corollary 2.4.5 we can prove the following result, which is equivalent

to [3, Theorem 8.5.2]. (More precisely, [3, Theorem 8.5.2] also contains a claim about

compatibility with convolution, which can be deduced from Proposition 8.1.5.)

Proposition 8.7.1. For F in PervǦ(O)(Gr) and λ ∈ X+, there exists a canonical

isomorphism of graded vector spaces

H q
(i !λF) ∼=

(
S(F)⊗0(Ñ ,OÑ (λ)

))G〈λ(2ρ̌)〉.
Proof. By the arguments in the proof of Lemma 2.2.1 the forgetful functor induces an

isomorphism

C⊗S(t) H q̌
T
(i !λF)

∼−→ H(i !λF)
(where, in the left-hand side, S(t) acts trivially on C). On the other hand, as observed in

the proof of Lemma 3.6.2, restriction induces an isomorphism

C⊗S(t) 0
(̃
g,Og̃(λ)

) ∼−→ 0
(
Ñ ,OÑ (λ)

)
.

Then the result follows from Corollary 2.4.5, using the fact that the functor of G-fixed

points is exact.

Remark 8.7.2. One can obtain in a similar way a description of H q
C×(i

!
λF) (in the case

where λ is dominant) in terms of asymptotic D-modules on B. We omit the details.

8.8. The equivariant cohomology of spherical perverse sheaves

In this subsection we explain the relation between our description of the equivariant

cohomology of cofibers of spherical perverse sheaves on GrǦ and the description of

the full equivariant cohomology of these perverse sheaves given in [9]. Details (and a

generalization to all reductive groups) will be discussed in a future publication.

From now on, for simplicity we assume that Ǧ is quasi-simple and simply connected, so

G is simple (of adjoint type). The Killing form determines an isomorphism of G-modules

κ : g ∼−→ g∗. Let us choose an element e ∈ u which is a sum of non-zero simple root vectors.

Then e is regular nilpotent, and it can be completed to an sl2-triple (e, ρ̌, f ). (Note that

f is uniquely determined by e, and that the different choices for e are all conjugate under

the adjoint action of T .) We consider the Kostant slice

Σe := κ(e+ g f ) ⊂ g∗.

It is well known that Σe is included in g∗r , and that the (co)adjoint quotient g∗→
g∗/G ∼= t∗/W restricts to an isomorphism Σe

∼−→ t∗/W . We denote by Σ̃e the inverse

image of Σe under the projection π : g̃→ g∗. Then Σ̃e ⊂ g̃r, and the morphism Σ̃e →
Σe is W -equivariant, where W acts on Σ̃e by the restriction of the action on g̃r, and

trivially on Σe. It is also known that the natural morphism g̃→ g∗×t∗/W t∗ restricts to

an isomorphism of algebraic varieties g̃r → g∗r ×t∗/W t∗ (see [23, Remark 4.2.4(i)]). We

deduce that the morphism δ : g̃→ t∗ restricts to an isomorphism Σ̃e
∼−→ t∗.
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Lemma 8.8.1. The projection T ∗X → g̃ admits a canonical section ωe : Σ̃e ↪→ T ∗X over

Σ̃e. This section is independent of the choice of e in the following sense: if t ∈ T then

the following diagram commutes:

Σ̃e
t ·(−)
∼ //

� _

ωe

��

Σ̃t ·e� _
ωt ·e
��

T ∗X t ·(−)
∼ // T ∗X .

The morphism ωe is also W -equivariant, if W acts on (T ∗X )r via the action of § 5.5,

for the choice of simple root vectors given by the components of e on each gα.

Proof. Given a Borel subalgebra b0 ⊂ g with unipotent radical u0, the “universal Cartan

subalgebra” b0/u0 acts on (u0/[u0, u0])∗; under this action (u0/[u0, u0])∗ decomposes

as a direct sum of one-dimensional eigenspaces, and the eigenvalues can be naturally

identified with the negative simple roots under the canonical isomorphism t∗ ∼= (b0/u0)
∗.

Following [24], we denote by O(b0) ⊂ (u0/[u0, u0])∗ the subset of vectors whose component

in each eigenspace is non-zero. We also set B̃ := {(b0, x) | b0 ∈ B, x ∈ O(b0)}. Then our

choice of simple root vectors defines a G-equivariant isomorphism X
∼−→ B̃ sending U/U

to (b, ψ), where ψ := κ( f )|u ∈ O(b).
To define the section we need, given some η ∈ Σe and b0 ∈ B with unipotent radical

u0 such that η|u0 = 0, to define a lift of b0 to X , or equivalently to B̃. However, by [24]

the Borel subalgebras b0 and b are in general relative position. Hence the Killing form

induces a non-degenerate pairing between u and u0, and hence an isomorphism u
∼−→ u∗0.

If we denote by η0 ∈ u∗0 the image of e under this isomorphism, then one can check that

η0 ∈ O(b0), and hence the pair (b0, η0) provides the desired lifting of b0 to B̃.

From now on we fix a choice for e. Let use denote by

i : GrŤ ↪→ GrǦ and t : GrB̌− ↪→ GrǦ

the inclusions. We have GrŤ =
⊔
λ∈X{λ}, and i identifies with

⊔
λ∈X iλ. Similarly one can

identify GrB̌− with
⊔
λ∈X Tλ, and then t with

⊔
λ∈X tλ. Let F be in PervǦ(O)(GrǦ) and

consider the diagram

H q̌
T
(GrB̌− , t !F) H q̌

T
(GrŤ , i !F) �

� //? _oo H q̌
T
(GrǦ ,F).

Here the left-hand morphism is induced by the inclusion GrŤ ↪→ GrB̌− , and the right-hand

morphism is induced by i as in § 2.2. By the localization theorem in equivariant

cohomology, both morphisms become isomorphisms when we extend scalars from S(t)
to its fraction field Q, which provides a canonical isomorphism

Q⊗S(t) H q̌
T
(GrǦ ,F) ∼= Q⊗S(t) H q̌

T
(GrŤ , t !F). (8.8.2)

By Lemma 2.2.1 there exists a canonical isomorphism of S(t)-modules H q̌
T
(t !F) ∼= S(F)⊗

S(t); hence we obtain a canonical isomorphism

Q⊗H q̌
T
(GrǦ ,F)

∼−→ Q⊗ S(F). (8.8.3)
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On the other hand, let V in Rep(G), and consider the diagram

V ⊗S(t)
(
V ⊗C[T ∗X ])G � � //? _oo V ⊗C[Σ̃e].

Here the left-hand morphism is induced by an inverse image with respect to the natural

morphism G× t∗→ T ∗X , and the right-hand morphism is induced by an inverse image

with respect to the morphism ωe : Σ̃e ↪→ T ∗X of Lemma 8.8.1. One can check that both

morphisms in this diagram become isomorphisms when we extend scalars from S(t) to

Q, so we obtain a canonical isomorphism

Q⊗S(t)
(
V ⊗C[Σ̃e]

) ∼−→ Q⊗ V . (8.8.4)

As far as we understand, the isomorphism like our (8.8.2) which is implicitly used

in [9] (see in particular the proof of Theorem 6 in loc. cit.) is the one that we are defining

here. With this interpretation, the “quasi-classical limit” (or “classical analogue”) of [9,

Theorem 6] says the following.

Proposition 8.8.5. Let F be in PervǦ(O)(GrǦ).

The image of H q̌
T
(GrǦ ,F) in Q⊗ S(F) under isomorphism (8.8.3) coincides with

the image of S(F)⊗C[Σ̃e] under isomorphism (8.8.4), which provides a canonical

isomorphism

H q̌
T
(GrǦ ,F) ∼= S(F)⊗C[Σ̃e]. (8.8.6)

Combined with Lemma 2.2.1 and Corollary 2.4.5, this implies that we have the following

commutative diagram:

H q̌
T
(GrB̌− , t !F)

oLem. 2.2.1
��

H q̌
T
(GrŤ , i !F) �

� //? _oo

oCor. 2.4.5
��

H q̌
T
(GrǦ ,F)

o(8.8.6)
��

S(F)⊗S(t)
(
S(F)⊗C[T ∗X ])G � � //? _oo S(F)⊗C[Σ̃e].

Isomorphism (8.8.6) is W -equivariant, where the W -action on the left-hand side is

defined similarly to how the isomorphisms 4F ,λ
w are defined in § 2.5, and the action on

the right-hand side is induced by the W -action on Σ̃e. Hence taking fixed points we obtain

the following result, also proved in [9] (see in particular [loc. cit., Lemma 9]).

Corollary 8.8.7. There exists a canonical isomorphism H q̌
G(O)

(GrǦ ,F) ∼= S(F)⊗C[Σe].

A. Computations in rank 1

In §§ A.1–A.5 we use the notation of Sections 3–5, assuming in addition that G has

semisimple rank 1. We let α be the unique simple root, and set s := sα, e := eα, f := fα.

A.1. Asymptotic universal Verma modules

For any ν ∈ X+, we denote by V ν the corresponding simple G-module. We choose a

basis
(
vνν , v

ν
ν−α, . . . , vνν−ν(α̌)α

)
of V ν such that the following formulas are satisfied for
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k = 0, . . . , ν(α̌):

α̌ · vνν−kα =
(
ν(α̌)− 2k

)
vνν−kα, e · vνν−kα = kvνν−(k−1)α. (A.1.1)

Such a basis exists and is unique up to a constant. We also set vνλ = 0 if λ is not a weight

of V ν . The following commutation relation in the asymptotic enveloping algebra Uh̄(g)

is easily checked by induction:

f ke = e f k − kh̄ · α̌ f k−1− k(k− 1)h̄2 · f k−1. (A.1.2)

Lemma A.1.3. Let ν ∈ X+.

(1) If λ is not a weight of V ν , then
(
V ν ⊗M(λ)

)B = 0.

(2) If k ∈ {0, . . . , ν(α̌)}, the Sh̄-module
(
V ν ⊗M(ν− kα)

)B
is free of rank 1, and

generated by

xνν−kα := vνν ⊗ 1⊗ f k −
(

k
1

)
vνν−α ⊗

(
α̌+ (ν(α̌)− k

)
h̄
)
⊗ f k−1

+
(

k
2

)
· vνν−2α ⊗

(
α̌+ (ν(α̌)− k

)
h̄
)(
α̌+ (ν(α̌)− k− 1

)
h̄
)
⊗ f k−2+ · · ·

+ (−1)k
(

k
k

)
· vνν−kα ⊗

(
α̌+ (ν(α̌)− k

)
h̄
)
· · ·
(
α̌+ (ν(α̌)− 2k+ 1)h̄

)
⊗ 1.

Proof.

(1) follows from the injectivity of κ
alg
V ν ,λ; see Lemma 4.6.4.

(2) We have to decide when an element of the form

vνν−kα ⊗ Pk(h, h̄)⊗ 1+ · · ·+ vνν ⊗ P0(h, h̄)⊗ f k

is annihilated by e ∈ b ⊂ U (b). (Here the action of U (b) is the differential of the

B-action.) However, the image by e of such an element is given by

e · vνν−kα ⊗ Pk ⊗ 1+
k−1∑
i=1

(
e · vνν−iα ⊗ Pi ⊗ f k−i − 1

h̄
vνν−iα ⊗ Pi ⊗ f k−i e

)
− 1

h̄
vνν ⊗ P0⊗ f ke,

i.e. (using (A.1.1) and (A.1.2)) by

kvνν−(k−1)α ⊗ Pk ⊗ 1+
k−1∑
i=1

((
ivνν−(i−1)α ⊗ Pi⊗

f k−i + (k− i)vνν−iα ⊗ Pi
(
α̌+ (ν(α̌)− k− i)h̄

)⊗ f k−i−1
)

+ kvνν ⊗ P0
(
α̌+ (ν(α̌)− k)h̄

)⊗ f k−1.
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Hence the fact that this element is zero amounts to the following equations:

k · Pk = −
(
α̌+ (ν(α̌)− 2k+ 1)h̄

) · Pk−1,
...

i · Pi = −(k− i + 1)
(
α̌+ (ν(α̌)− k− i + 1)h̄

) · Pi−1,
...

P1 = −k
(
α̌+ (ν(α̌)− k)h̄

) · P0.

The result follows.

If λ ∈ X is not a weight of V ν , we set xνλ = 0. We obtain as an immediate consequence

of Lemma A.1.3 the following result.

Corollary A.1.4. For ν ∈ X+ and k ∈ {0, . . . , ν(α̌)}, the image of the morphism

κ
alg
V ν ,ν−kα :

(
V ν ⊗M(ν− kα)

)B → V ν
ν−kα ⊗Sh̄ ∼= Sh̄

is generated by
(
α̌+ (ν(α̌)− k

)
h̄
)
· · ·
(
α̌+ (ν(α̌)− 2k+ 1

)
h̄
)

.

A.2. Operators 8

In this subsection we consider the constructions of Section 3, with the choice of root

vector f . In particular, for ν ∈ X+ and λ ∈ X, we have an isomorphism

8V ν ,λ
s : (V ν ⊗ (λ)Dh̄(X )λ

)G ∼−→ s(V ν ⊗ (sλ)Dh̄(X )sλ
)G
.

Recall that, by the first isomorphism in Lemma 2.4.1, xνλ defines an element

yνλ ∈
(
V ν ⊗ (λ)Dh̄(X )λ

)G
.

Lemma A.2.1. For ν ∈ X+ and λ ∈ X we have

8V ν ,λ
s (yνλ) = yνsλ.

Proof. If λ is not a weight of V ν , then sλ is not either. Hence yνλ = 0 = yνsλ, and the result

is clear.

Now assume that λ = ν− kα for some k ∈ {0, . . . , ν(α̌)}. As 8V ν ,λ
s is an isomorphism

of Sh̄-modules, we know that 8V ν ,λ
s (yνλ) = c · yνsλ for some c ∈ C×, and we have to prove

that c = 1. Let zνλ be the image of yνλ under the composition(
V ν ⊗ (λ)Dh̄(X )λ

)G
↪→ V ν ⊗Dh̄(X )→ V ν ⊗A (X ),

and similarly for zνsλ. Then by definition (see § 3.5) we have (idV ν ⊗Fα)(zνλ) = c · zνsλ.
Since, in the notation of § 3.2, one can take as Gsc a product of SL(2,C) and a torus,

it suffices to prove the claim in the case G = SL(2,C), with B the subgroup of upper
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triangular matrices, T the subgroup of diagonal matrices, and f = ( 0 0
1 0

)
. Let v1, v2 be

the natural basis of C2 and η1, η2 the dual basis. Then the morphism gU 7→ g · v1 induces

an isomorphism G/U
∼−→ C2 r {0}, and Vα = C2, with the symplectic form ω defined by

ω(v1, v2) = 1. Hence we have a canonical isomorphism A (X ) ∼= C[T ∗(C2)] = C[C2×
(C2)∗], and the automorphism Fα can be computed using Example B.2.1 below: it is

defined by

η1 7→ v2, η2 7→ −v1, v1 7→ −η2, v2 7→ η1.

Consider the morphism ev : A (X )→ C given by the evaluation of functions at

(v1, η2) ∈ T ∗(C2). The formulas above imply that ev ◦Fα = ev. Hence to conclude, we

only have to check that

(idV ν ⊗ ev)(zνλ) = (idV ν ⊗ ev)(zνsλ).

However we have

(idV ν ⊗ ev)(zνλ) = vνν ⊗ 1 = (idV ν ⊗ ev)(zνsλ),

which finishes the proof.

A.3. Operators 2

In this subsection we consider the constructions of § 4, with the choice fα := f . In

particular, for ν ∈ X+ and λ ∈ X, we have a morphism

2V ν ,λ
s : Hom(Sh̄ ,Uh̄(g))

(
M(0), V ν ⊗M(λ)

)→ s Hom(Sh̄ ,Uh̄(g))

(
M(0), V ν ⊗M(sλ)

)
.

By Lemma 4.3.1, xνλ defines a morphism of (Sh̄,Uh̄(g))-bimodules

ϕνλ :M(0)→ V ν ⊗M(λ),

which is a generator of the Sh̄-module Hom(Sh̄ ,Uh̄(g))

(
M(0), V ν ⊗M(λ)

)
.

Lemma A.3.1. For ν ∈ X+ and λ ∈ X we have

2V ν ,λ
s (ϕνλ) = ϕνsλ.

Proof. If λ is not a weight of V ν , then sλ is not either. Hence ϕνλ = 0 = ϕνsλ, and the

result is clear.

Now assume that λ = ν− kα for some k ∈ {0, . . . , ν(α̌)}. Then sλ = ν− (ν(α̌)− k)α. By

Lemma A.1.3 we know that2V ν ,ν−kα
s (ϕνν−kα) is a multiple of ϕν

ν−(ν(α̌)−k)α (by an element of

Sh̄). Hence to prove the lemma it is enough to check that the coefficient of vνν ⊗ 1⊗ f ν(α̌)−k

in the element of
(
V ν ⊗M(ν− (ν(α̌)− k)α)

)B
corresponding to 2V ν ,ν−kα

s (ϕνν−kα) is the

same as the coefficient of vνν ⊗ 1⊗ f ν(α̌)−k in xν
ν−(ν(α̌)−k)α, i.e. 1. However this coefficient

can be computed using formula (4.5.4), and the result is 1 as expected. This concludes

the proof.

Corollary A.3.2. For any V in Rep(G) and λ ∈ X we have

s(2V,sλ
s

) ◦2V,λ
s = id

as endomorphisms of Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)
. In particular, each 2

V,λ
s is an

isomorphism.
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Proof. By complete reducibility it is enough to prove the result when V = V ν for some

ν ∈ X+. In this case, by Lemma A.3.1 we have

s(2V ν ,sλ
s

) ◦2V ν ,λ
s (ϕνλ) = ϕνλ,

which proves the claim, since ϕνλ is a generator of Hom(Sh̄ ,Uh̄(g))

(
M(0), V ν ⊗M(λ)

)
over

Sh̄ by Lemma A.1.3.

A.4. Comparison of 2 and 8

Lemma A.4.1. For any V in Rep(G) and λ ∈ X, the following diagram commutes:

(
V ⊗ (λ)Dh̄(X )λ

)G (4.8.1)
∼ //

8
V,λ
s
��

Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(λ)

)
2

V,λ
s
��

s(V ⊗ (sλ)Dh̄(X )sλ
)G (4.8.1)

∼ // s Hom(Sh̄ ,Uh̄(g))

(
M(0), V ⊗M(sλ)

)
.

Proof. By complete reducibility it is enough to prove the lemma when V = V ν for some

ν ∈ X+. In this case it follows from Lemma A.2.1 and Lemma A.3.1.

A.5. Operators σ

If ν ∈ X+ and λ ∈ X, we denote by

zνλ ∈
(
V ν ⊗0(̃g,Og̃(λ))

)G

the image of yνλ under the natural morphism(
V ν ⊗ (λ)Dh̄(X )λ

)G → (
V ν ⊗0(̃g,Og̃(λ))

)G

sending h̄ to 0. These elements can be naturally identified with the ones denoted similarly

in the proof of Lemma A.2.1. By Lemma 3.5.2 and Lemma A.1.3, zνλ is a generator of the

S(t)-module
(
V ν ⊗0(̃g,Og̃(λ))

)G
, and zνλ 6= 0 iff λ is a weight of V ν .

Lemma A.5.1. For ν ∈ X+ and λ ∈ X we have

σ V ν ,λ
s (zνλ) = zνsλ.

Proof. The statement is clear if λ is not a weight of V ν . Now assume that λ = ν− kα
for some k ∈ {0, . . . , ν(α̌)}. As σ V ν ,λ

s is an isomorphism of S(t)-modules we must have

σ
V ν ,λ
s (zνλ) = c · zνsλ for some c ∈ C×. Now recall the commutative diagram (5.2.4). We

have

(idV ν ⊗ evλη0
)(zνλ) = vνν = (idV ν ⊗ evsλ

η0
)(zνsλ).

This proves that c = 1, and finishes the proof.
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Corollary A.5.2. Let V in Rep(G) and λ ∈ X. The following diagram commutes, where

vertical maps are the natural morphisms sending h̄ to 0:(
V ⊗ (λ)Dh̄(X )λ

)G 8
V,λ
s //

��

(
V ⊗ (sλ)Dh̄(X )sλ

)G

��(
V ⊗0(̃g,Og̃(λ))

)G σ
V,λ
s //

(
V ⊗0(̃g,Og̃(sλ))

)G
.

Proof. By complete reducibility it is enough to prove the claim when V = V ν for some

ν ∈ X+. In this case it follows by comparing Lemma A.2.1 and Lemma A.5.1.

A.6. Satake equivalence

From now on we use the notation of § 6–8, assuming in addition that Ǧ has semisimple

rank 1. We denote by α the unique positive coroot of Ǧ. Note that α̌ and h̄ can be

considered either as characters of A = Ť ×C× or as elements of a∗ = t⊕C.

To simplify the statements of the next results we introduce the following notation. For

λ ∈ X and k > 1 we define the A-module

V λ
k := C−α̌−(λ(α̌)+1)h̄ ⊕C−α̌−(λ(α̌)+2)h̄ ⊕ · · ·⊕C−α̌−(λ(α̌)+k)h̄ .

We also set V λ
0 = {0}. Note that dim(V λ

k ) = k, and that there are natural inclusions V λ
k ⊂

V λ
k+1.

Lemma A.6.1. Let λ ∈ X.

(1) Assume that λ(α̌) > 0. For ν ∈ X+ we have isomorphisms of A-varieties

Tλ ∩Grν
Ǧ
∼=


{λ} if ν = λ;

V λ
k r V λ

k−1 if ν = λ+ kα for some k ∈ Z>0;

∅ otherwise.

(2) Assume that λ(α̌) < 0. For ν ∈ X+ we have isomorphisms of A-varieties

Tλ ∩Grν
Ǧ
∼=


V λ
−λ(α̌) if ν = λ+ (−λ(α̌))α;

V λ
k r V λ

k−1 if ν = λ+ kα for some k ∈ Z>−λ(α̌);

∅ otherwise.

Proof. Each connected component of GrǦ is isomorphic to a connected component of

GrPGL(2,C), and the action of ker(α̌) = Z(Ǧ) ⊂ Ť is trivial. Hence it is enough to prove

the isomorphism when Ǧ = PGL(2,C). In this case we can identify X with Z through

µ 7→ µ(α̌), so ν and λ can be considered as integers.

The first case: even weights. Write λ = 2` with ` ∈ Z. Then λ is the class of the matrix z` 0

0 z−`

 ,
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and Tλ is given by the classes of matrices of the form

M(Q) =
 z` 0

Q(z) z−`


where Q(z) ∈ z−`−1C[z−1]. If Q(z) = 0, then this point is in Grλ. Otherwise, write Q(z) =
az−m + · · · , where a 6= 0, m > `, and “· · · ” means terms of degree between −m+ 1 and

−`− 1. Assume first that m+ ` > 0. (This condition is always satisfied when ` > 0. Note

also that it implies that m > 0.) Then we have z` 0

Q(z) z−`

 ·
 zm−` R(z)

−zm Q(z) 0

 =
 1 zm+`R(z)

0 1

 ·
 zm 0

0 z−m


where R(z) ∈ O is the inverse to zm Q(z). This equality implies that M(Q) ∈ Gr2m .

If ` < 0, then we also have to consider the case where ` < m < −`. However, in this

case M(Q) is in Ǧ(O) ·λ = Grλ+(−λ(α̌))α
Ǧ

. This settles the first case.

The second case: odd weights. Write λ = 2`+ 1 with ` ∈ Z. Then λ is the class of the

matrix  z`+1 0

0 z−`

 ,
and Tλ is given by the classes of matrices of the form

N (Q) =
 z`+1 0

Q(z) z−`


where Q(z) ∈ x−`−1C[z−1]. If Q(z) = 0, then this point is in Grλ. Otherwise, write as

above Q(z) = az−m + · · · , where a 6= 0 and m > `. We have the following equality: z`+1 0

Q(z) z−`

 ·
 zm−` R(z)

−zm Q(z) 0

 =
 1 z`+m+1 R(z)

0 1

 ·
 zm+1 0

0 z−m


where as above R(z) ∈ O is the inverse to zm Q(z). This equality implies that N (Q) ∈
Gr2m+1 if `+m+ 1 > 0.

If ` < 0 and `+m+ 1 < 0, then N (Q) is in Ǧ(O) ·λ = Grλ+(−λ(α̌))α. This settles the

second case, and finishes the proof.

The following result is a direct consequence of Lemma A.6.1. It is stated without proof

in [9, 12].

Corollary A.6.2. Let ν ∈ X+.
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(1) If λ ∈ X is not of the form ν− kα for some k ∈ {0, . . . , ν(α̌)}, then Tλ ∩Grν
Ǧ
= ∅.

(2) If k ∈ {0, . . . , ν(α̌)} and λ = ν− kα, then there exists an isomorphism of A-varieties

Tλ ∩Grν
Ǧ
∼= V ν−kα

k

sending λ to 0.

By the constructions of § 6.1 we have a dual group G (which is also of semisimple rank 1)

and a maximal torus T ⊂ G such that X = X∗(T ). If ν ∈ X+, we set ICν := IC
(
Grν

Ǧ
,CGrν

Ǧ

)
.

Corollary A.6.3. For ν ∈ X+ and k ∈ {0, . . . , ν(α̌)}, the image of the morphism

κ
top
ICν ,ν−kα : H

q
A(i
!
ν−kαICν)→

(
SǦ(ICν)

)
ν−kα ⊗Sh̄ ∼= Sh̄

is generated by
(
α̌+ (ν(α̌)− k

)
h̄
)
· · ·
(
α̌+ (ν(α̌)− 2k+ 1

)
h̄
)

.

Proof. It is well known that Grν
Ǧ

is rationally smooth. This implies that

ICν ∼= CGrν
Ǧ
[ν(α̌)] ∼= DGrν

Ǧ
[−ν(α̌)].

We deduce isomorphisms

H q
A(i
!
ν−kαICν) ∼= HAq−ν(α̌)({λ}), H q

A(t
!
ν−kαICν) ∼= HAq−ν(α̌)+2k(Tν−kα ∩Grν

Ǧ
),

and the morphism H q
A(i
!
ν−kαICν)→ H q

A(t
!
ν−kαICν) identifies with the morphism

HAq−ν(α̌)({λ})→ HAq−ν(α̌)+2k(Tν−kα ∩Grν
Ǧ
)

given by the proper push-forward in the equivariant Borel–Moore homology. Hence

we deduce the result from the description of Tν−kα ∩Grν
Ǧ

in Corollary A.6.2 and the

considerations on equivariant (co)homology in § 6.2.

A.7. Proof of Theorem 2.2.4 for Ǧ

By semisimplicity of the category PervǦ(O)(Gr), it is enough to prove the theorem when

F = ICν for some ν ∈ X+. Then V ν := SǦ(ICν) is the G-module with highest weight ν.

Comparing Corollary A.1.4 and Corollary A.6.3 we observe that the images of κ
top
ICν ,λ and

κ
alg
V ν ,λ do indeed coincide, which implies the existence of the isomorphism ζICν ,λ.

A.8. The root vector and the Mirković–Vilonen basis

We denote by e ∈ gα the vector constructed in § 6.5.

Let ν ∈ X+ and k ∈ {0, . . . , ν(α̌)}. Let V ν := SǦ(ICν), a simple G-module with highest

weight ν. As in the proof of Corollary A.6.3, we have canonical isomorphisms

V ν
ν−kα

(6.1.2)∼= Hν(α̌)−2k(t !ν−kαICν) ∼= HA
0 (Tν−kα ∩Grν

Ǧ
).

The right-hand side is one-dimensional, and has a canonical generator, namely the

fundamental class [Tν−kα ∩Grν
Ǧ
]. We denote by vνν−kα ∈ V ν

ν−kα the vector corresponding

to this generator.
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Remark A.8.1. Be aware that the basis that we consider here is not the same as the

one used in [9, § 5.2] or in [12, § 2.2], but rather the basis which is dual in the sense of

Poincaré duality.

The following lemma is a special case of [5, Théorème 2].

Lemma A.8.2. For any ν ∈ X+ and k ∈ {0, . . . , ν(α̌)} we have

e · vνν−kα = kvνν−(k−1)α.

It follows from this lemma that, for the choice of root vector e ∈ gα, the basis just

constructed satisfies conditions (A.1.1). Hence we can use the results and notation of

§§ A.1–A.5 for this choice.

We can now give a more precise version of Theorem 2.2.4 for Ǧ. As in the proof of

Corollary A.6.3 there exists a canonical isomorphism

H q
A(i
!
ν−kαICν) ∼= HAq−ν(α̌)({λ}).

The right-hand side has a canonical generator, namely the unique element

cνν−kα ∈ Hν(α̌)A (i !ν−kαICν)

whose image in Hν(α̌)(i !ν−kαICν) ∼= H0({λ}) is the fundamental class [{λ}]. Then (see § 6.2)

we have

ζICν ,ν−kα(xνν−kα) = cνν−kα. (A.8.3)

A.9. Proof of Theorem 2.5.5 for Ǧ

We have already proved in Lemma A.4.1 that the operators 8 and 2 match under the

natural isomorphisms. Hence we only have to compare them with operators 4. Moreover,

it is enough to prove the theorem in the case F = ICν for some ν ∈ X+. By construction

(see § 2.5), we have 4ICν ,ν−kα
s (cνν−kα) = cν

ν−(ν(α̌)−k)α. Hence the claim follows from (A.8.3)

and Lemma A.2.1 or Lemma A.3.1.

B. The Fourier transform for differential operators

In this appendix we briefly explain how to adapt some classical constructions of Fourier

transform for D-modules (see e.g. [16]) to the asymptotic setting.

B.1. The partial Fourier transform

Let X be a smooth complex algebraic variety, and let p : E → X be a rank r algebraic

vector bundle. Let p̌ : E∗→ X be the dual vector bundle, and let E := E ×X E∗ be the

total space of the direct sum E ⊕ E∗, a vector bundle on X of rank 2r . The canonical

pairing of E and E∗ gives a regular function f : E ×X E∗→ C. We define a connection

∇ : OE→ �1
E by ∇ = d − df. This connection is flat and makes P = (OE,∇) a holonomic

left DE-module, with irregular singularities. Explicitly, we have P = DE/J where J ⊂
DE is the left ideal generated by the elements ξ − ξ(f) for all vector fields ξ on E.
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(Note that this ideal is the annihilator of the function exp ◦f on E, the classical kernel for

the Fourier transform.)

Now, let ε : E = E ×X E∗ ↪→ E × E∗ be the natural closed embedding and let ε∗P be a

direct image of the D-module P. Thus, ε∗P is a holonomic left DE×E∗-module supported

on the subvariety E. Write KY for the canonical bundle on a smooth variety Y and let

Q := (OE � p̌∗KX )⊗OE×E∗ ε∗P.
The sheaf Q has the structure of a module of the algebra

DE �
(

p̌∗KX ⊗OE∗ DE∗ ⊗OE∗ p̌∗K−1
X
)
,

and this module has a canonical section 1Q ∈ Q that corresponds to the section 1 modJ ∈
DE/J . Furthermore, a local computation shows that Q is a rank 1 free module (with

generator 1Q) over the ring DE � 1, as well as over the ring 1�
(

p̌∗KX ⊗DE∗ ⊗ p̌∗K−1
X
)
.

Let p : E→ X be the natural projection. Then p∗Q is a rank 1 free module both over

p∗DE and over KX ⊗OX p̌∗DE∗ ⊗OX K−1
X , with a canonical generator 1p∗Q. Therefore,

there is a uniquely determined morphism F : p∗DE → KX ⊗ p̌∗DE∗ ⊗K−1
X such that

one has u · 1p∗Q = F(u) · 1p∗Q. It is immediately checked that this morphism is an

anti-isomorphism of rings, i.e. it induces a ring isomomorphism

p∗DE
∼−→ (KX ⊗OX p̌∗DE∗ ⊗OX K−1

X )op. (B.1.1)

On the other hand, we have KE∗ = p̌∗(det(E)⊗OX KX ), where det(E) denotes the sheaf

of sections of the line bundle ∧r E on X . Hence, using the well-known isomorphism D
op
E∗
∼=

KE∗ ⊗OE∗ DE∗ ⊗OE∗ K
−1
E∗ , we compute(

KX ⊗OX p̌∗DE∗ ⊗OX K−1
X
)op ∼= K−1

X ⊗OX p̌∗(Dop
E∗)⊗OX KX

∼= K−1
X ⊗OX p̌∗

(
KE∗ ⊗OE∗ DE∗ ⊗OE∗ K

−1
E∗
)⊗OX KX

∼= det(E)⊗OX p̌∗DE∗ ⊗OX det(E)−1.

Thus, from (B.1.1) we deduce a canonical isomorphism of sheaves of algebras on X ,

called the Fourier isomorphism:

F : p∗DE
∼−→ det(E)⊗OX ( p̌∗DE∗)⊗OX det(E)−1.

Now, in a Rees algebra setting, we define Jh̄ to be the left ideal of Dh̄,E generated by

the elements ξ − ξ(f) for all vector fields ξ on E, viewed as degree 2 homogeneous elements

of the graded algebra Dh̄,E. (Here we use the notational conventions of § 2.4. Note that

the ideal Jh̄ is the annihilator of the “function” exp( 1
h̄ f), considered as an element of

some completion of OX [h̄, h̄−1].) We put Ph̄ := Dh̄,E/Jh̄ , a Dh̄,E-module. Note that the

ideal Jh̄ is not homogeneous, so the module Ph̄ has no natural grading.

Under the specialization h̄ = 0, we have Dh̄,E/(h̄) = (pE)∗OT ∗E, where pE : T ∗E→ E

is the cotangent bundle. The differential of the function f gives a section df : E→ T ∗E.

The image of this section is a smooth closed Lagrangian subvariety 3 ⊂ T ∗E, so the sheaf

(pE)∗O3 has a natural structure of a (pE)∗OT ∗E-module. Then, it follows from definitions

that the projection Dh̄,E � Ph̄ induces an isomorphism of (pE)∗OT ∗E-modules:

Ph̄/(h̄) ∼= (pE)∗O3.

We also consider the cotangent bundle q : T ∗(E × E∗)→ E × E∗ and let T ∗(E × E∗)|E
denote the total space of the restriction of the cotangent bundle to E ⊂ E × E∗, a closed
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subvariety. One has a natural diagram

T ∗E × T ∗(E∗) T ∗(E × E∗) T ∗(E × E∗)|E? _εoo pr // // T ∗E.
Here, the isomorphism on the left involves a sign and the map pr on the right is a smooth

morphism.

The following result is easily verified by a local computation.

Lemma B.1.2. The variety Z := ε(pr−1(3)) is a smooth Lagrangian subvariety of T ∗(E ×
E∗). Furthermore, this subvariety is the graph of an isomorphism T ∗E ∼→ T ∗(E∗), of

algebraic varieties over X .

To proceed further we observe that, for any smooth variety Y , the sheaf KY [h̄] has a

canonical right Dh̄,Y -action such that a vector field ξ ∈ TY acts on KY by β 7→ −h̄ · Lξβ,

where Lξ stands for the Lie derivative. We write Kh̄
Y for the resulting right Dh̄,Y -module.

Then, one has a canonical isomorphism

D
op
h̄,Y
∼= Kh̄

Y ⊗OY [h̄]Dh̄,Y ⊗OY [h̄] (K
h̄
Y )
−1.

Note that this isomorphism specializes at h̄ = 0 to the identity map (pE)∗OT ∗Y →
(pE)∗OT ∗Y .

Next, mimicking the corresponding constructions for D-modules, one can define a direct

image ε∗Ph̄ , a left Dh̄,E×E∗ -module. Further, we put Qh̄ := (OE � p̌∗Kh̄
X )⊗OE×E∗ [h̄] ε∗Ph̄ .

Then, one checks that there is a natural isomorphism

Qh̄/(h̄) ∼= q∗OZ ,

of q∗OT ∗(E×E∗)-modules. Furthermore, repeating earlier constructions, one obtains a

canonical isomorphism

Fh̄ : p∗Dh̄,E
∼−→ det(E)[h̄]⊗OX [h̄] ( p̌∗Dh̄,E∗)⊗OX [h̄] det(E)−1[h̄]. (B.1.3)

This is an isomorphism of sheaves of C[h̄]-algebras on X . This isomorphism does not

respect the natural gradings on each side in (B.1.3) unless r = 0 and it specializes, at
h̄ = 0, to the isomorphism p∗OT ∗E

∼→ p̌∗OT ∗(E∗) that results from Lemma B.1.2.

The above isomorphism can be described locally as follows. Let U ⊂ X be an open

subvariety over which E is trivializable, and let us choose an isomorphism of vector

bundles E|U ∼= Cr ×U . Then for i = 1, . . . , r we have a function xi on E|U given by the

projection on the ith copy of C, and the corresponding vector fields ∂xi , so we have an

isomorphism of sheaves of C[h̄]-algebras(
p∗Dh̄,E

)
|U ∼= Dh̄,U ⊗C[h̄]

(
C〈xi , ∂xi 〉/[∂xi , xi ] = h̄

)
. (B.1.4)

(Here i runs over {1, . . . , r}.) Our isomorphism E|U ∼= Cr ×U also defines a canonical

section τ of det(E) over U , the dual section τ∨ of det(E)−1, and an isomorphism (E∗)|U ∼=
Cr ×U , so we obtain functions ξ1, . . . , ξr and vector fields ∂ξ1 , . . . , ∂ξr on (E∗)|U , and an

isomorphism (
p∗Dh̄,E∗

)
|U ∼= Dh̄,U ⊗C[h̄]

(
C〈ξi , ∂ξi 〉/[∂ξi , ξi ] = h̄

)
. (B.1.5)

Then using isomorphisms (B.1.4) and (B.1.5), the restriction of isomorphism (B.1.3) to

U can be described as follows: it sends any P ∈ Dh̄,U to τ ⊗ P ⊗ τ∨, xi to τ ⊗−∂ξi ⊗ τ∨,

and ∂xi to τ ⊗ ξi ⊗ τ∨.
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B.2. The “symplectic” partial Fourier transform

Now we assume that E is a symplectic vector bundle with symplectic form ω over a

smooth complex algebraic variety X . Then we have an isomorphism of vector bundles

E
∼−→ E∗, v 7→ ω(v,−)

over X , and hence an induced isomorphism p∗Dh̄,E ∼= p̌∗Dh̄,E∗ . Moreover, ω defines a

trivialization of det(E). Hence isomorphism (B.1.3) provides an automorphism of p∗Dh̄,E .

We denote the induced automorphism by

FE : Dh̄(E)
∼−→ Dh̄(E).

One can easily check that FE is equivariant under the natural action of the group of

symplectic automorphisms of E , and that we have FE ◦FE = idDh̄(E).

Example B.2.1. If X = pt, then E is simply a symplectic vector space. For instance,

assume that E = C2 = Cv1⊕Cv2, equipped with the symplectic form such that

ω(v1, v2) = 1. Let (η1, η2) be the basis of E∗ dual to (v1, v2). Then Dh̄(E) is generated by

η1, η2 (considered as functions on E) and v1, v2 (considered as vector fields on E), and

FE is defined by

η1 7→ v2, η2 7→ −v1, v1 7→ −η2, v2 7→ η1.

The following result (which can easily be checked using local trivializations) is used in

§ 3.4.

Lemma B.2.2. Let f ∈ C[X ] be an invertible function, which we consider as a function on

E via the projection E → X . Then the automorphism of Dh̄(E) given by D 7→ f −1 · D · f
commutes with FE .
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35. I. Mirković and K. Vilonen, Geometric Langlands duality and representations of

algebraic groups over commutative rings, Ann. of Math. 166 (2007), 95–143.
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