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In rough-wall boundary layers, wall-parallel non-homogeneous mean-flow solutions
exist that lead to so-called dispersive velocity components and dispersive stresses.
They play a significant role in the mean-flow momentum balance near the wall,
but typically disappear in the outer layer. A theoretical framework is presented to
study the decay of dispersive motions in the outer layer. To this end, the problem is
formulated in Fourier space, and a set of governing ordinary differential equations per
mode in wavenumber space is derived by linearizing the Reynolds-averaged Navier–
Stokes equations around a constant background velocity. With further simplifications,
analytically tractable solutions are found consisting of linear combinations of exp(−kz)
and exp(−Kz), with z the wall distance, k the magnitude of the horizontal wavevector
k, and where K(k, Re) is a function of k and the Reynolds number Re. Moreover,
for k→∞ or k1 → 0 (with k1 the stream-wise wavenumber), K → k is found, in
which case solutions consist of a linear combination of exp(−kz) and z exp(−kz),
and are independent of the Reynolds number. These analytical relations are compared
in the limit of k1 = 0 to the rough boundary layer experiments by Vanderwel &
Ganapathisubramani (J. Fluid Mech., vol. 774, 2015, R2) and are in reasonable
agreement for `k/δ 6 0.5, with δ the boundary-layer thickness and `k = 2π/k.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction

When analysing turbulent flow over rough surfaces, flow statistics are often averaged
over wall-parallel planes. The difference between mean flow and horizontally averaged
mean flow yields dispersive velocities, and leads to so-called dispersive or coherent
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stresses in the horizontally averaged mean momentum equations (Raupach & Shaw
1982; Finnigan 2000; Nikora et al. 2007). The effects of the shape and distribution
of surface roughness on turbulent wall-flows is typically assumed to be confined to
the roughness sub-layer where the dispersive motions are dominant and complement
Reynolds shear stresses (Raupach, Antonia & Rajagopalan 1991; Manes et al. 2008).
In this region, the mean flow statistics are complex and three-dimensional, governed
by the complex shape of the roughness itself.

In flows over homogeneous rough surfaces, the roughness sub-layer is typically
found to extend vertically two to five times the representative roughness heights,
which can be the equivalent sandgrain roughness or the maximum roughness height or
a root-mean-square roughness height, depending on the type of roughness (Raupach
et al. 1991; Nikora et al. 2001; Jiménez 2004; Flack, Schultz & Connelly 2007).
When moving away from the wall, the dispersive stress contribution to the total stress
gradually decays, in accordance with the picture of an outer layer that is dominated
by Reynolds stresses. Therefore, beyond this roughness sub-layer, the outer layer of
the flow is usually independent of local details of surface roughness, resulting in a
mean flow that is nearly homogeneous in wall-parallel directions, with flow statistics
that mainly depend on the wall-normal direction (Townsend 1956, 1976; Castro 2007).
However, for rough surfaces with spatial heterogeneities where dominant spanwise
length scales of the roughness distribution are of the order of the outer length scale of
the flow, large secondary motions are excited by the roughness arrangement, and can
penetrate into the outer layer (Nezu & Nakagawa 1984; Wang & Cheng 2005; Barros
& Christensen 2014; Anderson et al. 2015; Vanderwel & Ganapathisubramani 2015;
Kevin et al. 2017; Hwang & Lee 2018; Medjnoun, Vanderwel & Ganapathisubramani
2018). Therefore, dispersive stress can be significant across the entire turbulent layer.

Recent work has shown that the decay of dispersive stresses (or secondary motions)
scales with the spanwise roughness wavelength when the roughness is geometrically
scaled (proportional increase in both roughness height and wavelength) and when the
wavelength increases at fixed roughness height (Chan et al. 2018; Yang & Anderson
2018). Very recently, Morgan & McKeon (2018) analysed the spatial and wave-number
structure of dispersive motions in a boundary layer with periodic roughness elements.
In the current work, a new analytical framework is proposed that allows one to
study this decay of dispersive motions systematically. The paper is organised as
follows. First in § 2, the theory is presented, and approximate solutions for dispersive
motions in the outer layer of a boundary layer are derived. Next, a comparison with
experiments is shown in § 3. Lastly, discussion and conclusions are stated in § 4.

2. Approximate solutions for the dispersive velocity field

2.1. Horizontally averaged Navier–Stokes equations and linearization
Consider an incompressible turbulent boundary layer over a rough wall, with x1, x2

and x3 oriented in the streamwise, spanwise and wall-normal directions, respectively.
Further, u represents the Reynolds-averaged velocity field, with fluctuation u′.
The focus is on rough boundary layers with either periodic roughness elements
or a roughness distribution that is statistically homogeneous in the horizontal
directions, and the horizontally averaged and Reynolds-averaged flow is denoted
with 〈u〉, (U, 0,W). Furthermore, u′′ is introduced, so that u=Ue1 +We3 + u′′.

It is further presumed that the boundary layer is sufficiently developed for the
streamwise evolution of mean velocity components to be negligible, so that the
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time-averaged and horizontally averaged Navier–Stokes equation follows as

W
∂U
∂x3
− ν

∂2U
∂x2

3
+

1
ρ

∂ p∞
∂x1
=−

∂〈u′1u′3〉
∂x3

−
∂〈u′′1u′′3〉
∂x3

, (2.1)

with 〈u′1u′3〉 and 〈u′′1u′′3〉 being the plane-averaged Reynolds stress and dispersive stress,
respectively, p∞ the background pressure, ν the kinematic viscosity, and where the
density ρ is presumed to be constant.

The equations for the dispersive velocity fluctuations u′′ further follow from
subtracting (2.1) from the standard Navier–Stokes equations, yielding

∂u′′i
∂xi
= 0, (2.2)

U
∂u′′i
∂x1
+ u′′j

∂u′′i
∂xj
+ u′′3Γ δi1 =−

1
ρ

∂p′′

∂xi
+
∂〈u′1u′3〉
∂x3

δi1 +
∂〈u′′1u′′3〉
∂x3

δi1 −
∂u′iu′j
∂xj
+ ν

∂2u′′i
∂xjxj

,

(2.3)

with δij the Kronecker delta. Here, terms with products of W and u′′i are considered
as being negligible, and the short-hand notation Γ = ∂U/∂x3 is used.

For u′′ sufficiently small, the dispersive velocity equations can be linearized around
the mean background flow, neglecting all higher-order terms. This leads to

∂u′′i
∂xi
= 0, (2.4)

U
∂u′′i
∂x1
+ u′′3Γ δi1 =−

1
ρ

∂p′′

∂xi
−
∂(u′iu′j)′′

∂xj
+ ν

∂2u′′i
∂xjxj

. (2.5)

In particular, the solution of these equations are investigated in the outer layer, since
we expect u′′ to be small for x3→ δ, with δ the boundary layer thickness.

2.2. Turbulence closure

In order to solve (2.5), a closure is required for the Reynolds stresses R′′ij = (u
′
iu′j)′′.

To this end, first, a simple closure for the background flow is posed. Providing that
conditions for the linearization hold, it is reasonable to assume that the background
corresponds to a standard outer layer solution in the absence of any dispersive terms.
Pertaining to the Reynolds forces, an exact parametrization then corresponds to

Fi ,−
∂

∂xj

(
Rij −

1
3
δijRkk

)
=

∂

∂xj
νe

(
∂ui

∂xj
+
∂ui

∂xj

)
= δi1

∂νeΓ

∂x3
, (2.6)

where as usual, the trace of the Reynolds stress is absorbed in the pressure term,
and the eddy viscosity νe is straightforwardly determined from νe=−〈u′1u′3〉/Γ , using
known experimental, numerical or analytical profiles for Γ and u′1u′3 in the outer layer
of a boundary layer. For later use in § 2.3, the total viscous force is introduced as
Gi , Fi + ∂/∂xj[ν(∂ui/∂xj + ∂ui/∂xj)].

The linearization of the Reynolds forces now follows from the chain rule as

F′′i =
∂

∂xj

[
νe

(
∂u′′i
∂xj
+
∂u′′i
∂xj

)
+ δi1δj3ν

′′

eΓ

]
. (2.7)
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Unfortunately, the dispersive turbulent viscosity ν ′′e is not known. However, when Γ �
1, which is generally true in boundary layers for x3→ δ, the term with ν ′′eΓ disappears.
Alternatively, this result is also obtained by linearizing the Navier–Stokes equations
around a constant background velocity U∞ instead of U. The resulting equations are
the same as (2.5), but with U∞ instead of U and Γ = 0. The linearization in that
case is valid, as long as |U∞ −U| � 1, which again holds for x3→ δ. Thus, for this
particular case, (2.7) with Γ = 0 yields an exact closure of the linearized Reynolds
forces. Finally, it should be noted that the above proposed closure is not exact in terms
of the Reynolds stresses themselves. This closure determines the Reynolds stresses up
to an addition of a divergence-free tensor (see, for example, Deser 1967; Wu, Zhou
& Wu 1996; Jiménez 2016). The latter will have no influence on the Reynolds force,
but will change the individual stress components. In particular, it is well understood
that a classical eddy viscosity model leads to a stress tensor with a zero diagonal
(corresponding to u′1u′1 = u′2u′2 = u′3u′3), which is generally not the case in boundary
layers. Here, this is not an issue, as the Reynolds stresses are not directly needed in
the remainder of this work.

2.3. Representation using Fourier modes
Given periodic roughness elements, the linearized Navier–Stokes equations can be
solved using periodic boundaries in the x1 and x2 directions. Thus, solutions can be
expressed based on a Fourier series. To this end,

u′′i =
∑

k

ũi(k, z) exp(i(k1x1 + k2x2)), (2.8)

p′′ =
∑

k

p̃(k, z) exp(i(k1x1 + k2x2)), (2.9)

etc., are introduced with k= (k1, k2), and z, x3. Furthermore, k1= i2π/Lx, k2= j2π/Ly,
with i, j∈Z, and Lx, Ly the roughness periods in x1 and x2 directions respectively. We
note that in the case of a roughness distribution, which is statistically homogeneous in
horizontal directions (instead of periodic roughness elements), the above Fourier series
can be replaced by Fourier integrals in the horizontal planes, without further affecting
results below. In this case, it is assumed that the largest horizontal length scales
in the roughness distributions are sufficiently small for the streamwise homogeneity
assumption of the dispersive-flow equations (2.2), (2.3) to hold.

Since solving linear equations is the aim, solutions can now be found mode by
mode. To this end, the continuity equation is first eliminated by using ũ3 and ω̃3 =

−ik2ũ1 + ik1ũ2 as independent variables. Thus for (k1, k2) 6= (0, 0),

ũ1 =
ik1

k2

dũ3

dz
+

ik2

k2
ω̃3, (2.10)

ũ2 =
ik2

k2

dũ3

dz
−

ik1

k2
ω̃3, (2.11)

with k= (k2
1 + k2

2)
1/2.

Inserting (2.10) and (2.11) in the linearized momentum equations (2.5), and further
eliminating the pressure, then leads to following set of equations

−k1Uω̃3 + k2ũ3Γ = k2G̃1 − k1G̃2, (2.12)
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k1U
d2ũ3

dz2
− k1ũ3

dΓ
dz
− k1Uk2ũ3 =−k1

dG̃1

dz
− k2

dG̃2

dz
+ ik2G̃3, (2.13)

which constitutes a set of two coupled ordinary differential equations. Finally, using
(2.7) and Γ = 0 in the above equations, using U≈U∞, and some straightforward but
cumbersome algebraic manipulations, leads to

d
dz
νt

dω̃3

dz
− (iU∞k1 + νtk2)ω̃3 = 0 (2.14)

d2

dz2
νt

d2ũ3

dz2
−

d
dz

[
(ik1U∞ + 2k2νt)

dũ3

dz

]
+

(
ik1U∞ + k2νt +

d2νt

dz2

)
k2ũ3 = 0, (2.15)

with νt= ν+ νe the total viscosity. For a classical developing boundary layer, boundary
conditions at z=∞ correspond to ω̃3(∞)= 0, ũ3(∞)= 0 and dũ3/dz|z=∞ = 0. Three
more boundary conditions are required to uniquely determine solutions. They should
be given at a location z which is sufficiently far from the wall for the linearized
equations to hold. These additional conditions are not a priori known, and depend
on the shape of the wall roughness and the nonlinear dynamics of the flow close to
the wall.

2.4. Analytical solutions
Given an outer layer parametrization of νe(z), and appropriate boundary conditions,
(2.14) and (2.15) can be solved. Here, however, the approach is further simplified by
considering a constant eddy viscosity, for which solutions are analytically tractable.
Although this is a rather strong assumption, it is not unreasonable. For instance, using
DNS data by Schlatter & Örlü (2010) for Reθ = 4060, we find that 0.06<νe/(uτδ) <
0.07 for 0.2< z/δ < 0.6, though νe/(uτδ) drops to 0.03 at z/δ = 1.

When νt = ν + νe is constant, (2.14), (2.15) simplify to

d2ω̃3

dz2
− (iU∞k1/νt + k2)ω̃3 = 0, (2.16)

d4ũ3

dz4
− (ik1U∞/νt + 2k2)

d2ũ3

dz2
+ (ik1U∞/νt + k2)k2ũ3 = 0. (2.17)

The first equation has two characteristic roots, i.e. ±K = ±k(1 + iUk1/k2/νt)
1/2, or

elaborated in its real and imaginary parts:

K = k


√√√√1

2

(
1+

(
U∞k1

νtk2

)2
)1/2

+
1
2
+ i

√√√√1
2

(
1+

(
U∞k1

νtk2

)2
)1/2

−
1
2

 . (2.18)

The second equation has four characteristic roots, i.e. ±k and ±K. The root K depends
on U∞k1/(νtk2). Introducing `k , 2π/k, it can be elaborated as

U∞k1

νtk2
=

U∞δ
νt

`k

2πδ

k1

k
=

[√
cf

2
νe

uτδ
+

1
Re

]−1
`k

2πδ

k1

k
, (2.19)

with the Reynolds number Re , U∞δ/ν and cf the skin friction coefficient. For
Re→∞, it is expected that νe/(uτδ)=O(1), so that U∞k1/(νtk2)∼ c−1/2

f (`k/δ)(k1/k).
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FIGURE 1. Overview of the experiments by Vanderwel & Ganapathisubramani (2015).
Left to right: contours of streamwise velocity U/U∞ shown in a spanwise–wall-normal
plane obtained from the different experiments. Roughness elements are aligned in the
streamwise direction and have a different spanwise spacing per experiment. The shape
of the elements is outlined at the bottom of the pictures.

Other interesting limits correspond to k1/k → 0 and `k/δ → 0. In both cases,
U∞k1/(νtk2)→ 0 and K→ k (independent of Reynolds number).

Using the boundary conditions at z = ∞, and presuming U∞k1/k2
6= 0, solutions

correspond to

ω̃3 = A exp(−Kz) and ũ3 = B exp(−kz)+C exp(−Kz), (2.20a,b)

with A, B, C complex numbers that can only be determined if additional boundary
conditions are known. For U∞k1/k2

= 0, K = k, and solutions correspond to

ω̃3 = A exp(−kz) and ũ3 = Bz exp(−kz)+C exp(−kz). (2.21a,b)

Moreover, for the limit of k1/k→ 0 or `k/δ→ 0, (2.20) converges to (2.21).
Finally, we note that for νt = 0, the potential-flow solution is recovered. Inserting

νt = 0 in (2.14), (2.15) leads to ω̃3 = 0, while ũ3 = A exp(−kz). Interestingly, for the
case of spanwise constant roughness (k2= 0) and irrotational flow, Morgan & McKeon
(2018) mention an equivalent solution.

3. Experimental verification

In order to evaluate the relations derived above, experiments by Vanderwel &
Ganapathisubramani (2015) are examined. These experiments consist of a series
of particle image velocimetry (PIV) measurements in rough-wall boundary layers
with Lego-brick roughness elements that are periodically organized with different
spanwise spacings. An overview of the experiment and some mean velocity fields
is shown in figure 1. The roughness structure is such that k1 = 0, while spanwise
spacings of the different experiments correspond to S/δ= 0.3, S/δ= 0.45, S/δ= 0.88,
S/δ = 1.2, S/δ = 1.8, with S the wavelength and δ the boundary layer thickness.
Velocity measurements are obtained in a wall-normal–spanwise plane, which allows
one to fully characterize the dispersive velocity field (given k1 = 0). Full details of
the experiment are found in Vanderwel & Ganapathisubramani (2015).

The PIV measurement planes in the experiments extended approximately 240 mm
in the spanwise direction. The extent of these planes does not exactly correspond to an
integer multiple of the spanwise roughness spacing (i.e. S=32 mm, 48 mm, 96 mm,
128 mm and 192 mm) in the experiments. Therefore, the outer portions of the plane
are truncated, and the velocity and Reynolds stress measurements are resampled in
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FIGURE 2. (a) Total stress as function of wall distance, normalized by dynamic pressure.
(b,c,d) 〈u′′1u′′1〉, 〈u

′′

3u′′3〉, and −〈u′′1u′′3〉 respectively, as function of wall distance. Linetypes
(——, – –, – ·, · · · , –+) correspond to different spacings as labelled.

spanwise direction so that an integer number of spanwise periods and grid points
is retained. Linear interpolation is used for the resampling; keeping the resolution
as close as possible to the original. For the different cases (S/δ = 0.3, 0.45, 0.88,
1.2, 1.8), this yields periods of 7, 4, 2, 1 and 1, respectively. These results are then
averaged in the spanwise direction and used to obtain the dispersive stress fields as a
function of wall-normal direction.

First of all, in figure 2 an overview is provided of the total stresses as a function
of wall distance for the different experiments, as well as of the 〈u′′1u′′1〉, 〈u

′′

3u′′3〉, and
〈u′′1u′′3〉 dispersive stresses. Moreover, based on the maximum of the total stress, the
skin friction coefficients for the various cases are also estimated. Figure 2 shows that
the total stress depends non-monotonously on the spanwise roughness spacing, with
the lowest skin friction at S/δ = 0.3, which increases to a maximum around S/δ =
0.88, and subsequently decreases again when S/δ is further increased to 1.8. Similar
differences in skin friction as a function of the spanwise spacing were, for example,
also observed by Hwang & Lee (2018), Medjnoun et al. (2018).

Further in figure 2(c–d), it is observed that the maximum magnitudes of the
dispersive stresses (observed around z/δ ≈ 0.2) are reasonably correlated with the
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total skin friction, in particular for the cases with S/δ 6 0.88. For wider spacings,
trends are less clear. Differences in dispersive stresses result from processes induced
by the shape and spacing of the roughness elements as well as the flow in the inner
layer of the boundary layer. They essentially serve as a boundary condition for the
outer layer decay relations derived in § 2.

Finally, it is seen in figure 2(c,d) that the dispersive stresses roughly decay
exponentially with increasing wall-normal distance, as suggested by the analysis
in § 2. However, there is no clear single slope to be identified, as the stresses result
from a sum over all the modes present in the flow; each decaying at their own
rate. To this end, the decay should be analysed mode by mode (cf. below). It is
further acknowledged that the decay saturates towards the top of the boundary layer,
as measurement noise starts to play an important role in the very small remaining
dispersive stress components. Exploring this error in detail is beyond the scope of
the current study. However, we obtain a direct estimate of the error by looking at
the free-stream level (at z/δ ≈ 1.1) of the dispersive stresses 〈u′′u′′〉 and 〈w′′w′′〉,
corresponding respectively to 5 × 10−3u2

τ and 10−3u2
τ . At this location, dispersive

stresses are expected to be zero, so that the observed magnitudes correspond to the
respective error levels. It is seen that the error on 〈u′′u′′〉 is larger than that on 〈w′′w′′〉.
This is consistent with the measurement set-up, where w is an in-plane component
that can be estimated directly while u is the out-of-plane component that has to be
reconstructed by combining the displacements observed by the two cameras in the
PIV set-up (Vanderwel & Ganapathisubramani 2015). The ratio of the uncertainty
in the out-of-plane component to the uncertainty of the in-plane components is
approximately 1/ tan θ , where θ is the included half-angle of the cameras (see Prasad
2000 for details). In the set-up of Vanderwel & Ganapathisubramani (2015), θ is
35 degrees, so that the uncertainty ratio between u and w components is 1.43, or
approximately 2 when comparing 〈u′′u′′〉 and 〈w′′w′′〉.

Now turning to the evaluation of the decay of dispersive stresses per mode, a
Fourier transform in the spanwise direction on the dispersive velocity field u′′ is
performed. The decay of the spectra of stream and wall-normal dispersive velocity
components is the focal point, respectively, defined as Suu(k2, z) = u1(k2, z)u∗1(k2, z)
and Sww(k2, z)= u3(k2, z)u∗3(k2, z), where ∗ is used for the complex conjugate. Given
the relations (2.21) and (2.10),

Suu =D1 exp(−2k2z), (3.1)
Sww = exp(−2k2z)(D2 +D3z+D4z2), (3.2)

is expected, where D1–D4 are constants that can, for example, be found by matching
the linear solution to the near-wall nonlinear solution at a location sufficiently far from
the wall.

In figure 3, decay of Suu and Sww is shown as function of wall distance for the
different cases (panels a–e). Results are shown on a semi-log scale, and up to four
modes are shown, corresponding to those modes that contribute most to the 〈u′′1u′′3〉
dispersive stress at z= 0.2δ. For Suu the slopes −2k2 (corresponding to (3.1)) are also
plotted for the different modes, while for Sww least-squares fits of (3.2) over the range
0.2< z/δ < 1.0 are shown. Note that in figure 3(a–c) only two and three modes are
shown, as other contributing modes fall within the noise level of the measurements.
Similar to before, a dynamic range of two to three decades in the spectra is observed,
but for modes with less energy content, the dynamic range can be significantly lower
(see, for example, mode kδ/(2π)= 5.1 in figure 3e). In order to visually illustrate the

862 R5-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1019


On the decay of dispersive motions

100

(a)

(b)

(c)

k∂/2π
� 3.3

k∂/2π
� 2.2
k∂/2π
� 4.4
k∂/2π
� 6.7

k∂/2π
� 0.57
k∂/2π
� 1.1

k∂/2π
� 2.3

k∂/2π
� 0.57
k∂/2π
� 1.1

k∂/2π
� 2.3

k∂/2π
� 2.2
k∂/2π
� 4.4
k∂/2π
� 6.7

k∂/2π
� 6.7

k∂/2π
� 3.3
k∂/2π
� 6.7

10-1

S u
u(

k,
 z/

∂)
/S

uu
(k

, 0
.2

)

S w
w(

k,
 z/

∂)
/S

ww
(k

, 0
.2

)
S w

w(
k,

 z/
∂)

/S
ww

(k
, 0

.2
)

S w
w(

k,
 z/

∂)
/S

ww
(k

, 0
.2

)

10-2

10-3

100

10-1

10-2

10-3

100

10-1

S u
u(

k,
 z/

∂)
/S

uu
(k

, 0
.2

)

10-2

10-3

100

10-1

10-2

10-3

S u
u(

k,
 z/

∂)
/S

uu
(k

, 0
.2

)

0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 0.6 0.8 1.0 1.2

0 0.2 0.4 0.6 0.8 1.0

100

10-1

10-2

10-3

100

10-1

10-2

10-3

0 0.2 0.4 0.6 0.8 1.21.0

0 0.2 0.4 0.6 0.8 1.21.0 0 0.2 0.4 0.6 0.8 1.21.0
z/∂ z/∂

FIGURE 3. For caption see next page.

noise level of the measurements relative to the magnitude of the different modes, a
marker on each mode indicating the level 10−3u2

τ relative to the scaling used for the
modes is included. Note that this represents the estimated error level for Sww, while
the error on Suu is two to five times higher (cf. discussion above).

Looking at figure 3, it is observed that the fits of Sww match the data very well
between z/δ= 0.2 and z/δ= 0.6 for all cases and modes. At higher wall distances, the
measurements are saturated with noise, such that no meaningful comparison can be
performed. Considering the matching of exp(−2k2z) to Suu in figure 3, the picture is
more diverse. For the first two cases (panels a,b), a good agreement is found between
z/δ = 0.2 and z/δ = 0.3 to 0.4. Beyond that, the noise level starts to dominate the
measurements. For the other cases (panels c,d), an adequate matching for higher
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FIGURE 3 (cntd). Decay of Fourier modes of streamwise Suu and normal Sww dispersive
components as function of wall distance z/δ. (a) S/δ= 0.3 (b) S/δ= 0.45; (c) S/δ= 0.88;
(d) S/δ = 1.2; (e) S/δ = 1.8. (——q, – –p, – ·u,· · · f): up to four Fourier modes with
the highest contribution to the dispersive shear component 〈u′′1u′′3〉; line types are ordered
according to the magnitude of the contributing mode. Lines are shifted by half a decade
for visibility. Grey line in streamwise plots: slope corresponding to exp(−2k2z). Grey line
in normal plots: least-squares fit of exp(−2k2z)(D2+D3z+D4z2) to the data in the range
0.2< z< 1.0. (f,p,u,f): markers on the different Fourier modes are inserted at level
10−3u2

τ/Suu(k, 0.2) and 10−3u2
τ/Sww(k, 0.2), respectively.

modes is generally found, i.e. in particular for kδ/(2π)= δ/`k > 2. For lower modes,
the experimental slopes do not correspond well with the analytical slope, and are
typically lower in absolute value.

4. Discussion

Given the strong assumptions made in the development of analytical solutions in
§ 2.4, the correspondence with experiments is good, in particular when considering Sww.
The results for Suu are mixed, and differences could be attributed to nonlinear effects,
the lack of streamwise mean-flow homogeneity, or using Γ = 0 in the linearisation, as
further discussed below.

First, when considering the quality of fits in § 3, nonlinear effects can play a role, in
particular since modes that are poorly predicted tend to occur mainly for S/δ = 0.88,
1.2 and 1.8, which have the strongest dispersive shear stresses relative to the friction
velocity (see figure 2). Values for these spacings correspond, respectively, to 30 %,

862 R5-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1019


On the decay of dispersive motions

18 % and 11 %, versus 9 % and 1 % for S/δ = 0.45, and 0.3. Nevertheless, since
also the former values remain relatively small, and since Sww fits the data reasonably
well, other effects (discussed below) are seemingly more probable. Furthermore,
contributions from u′′u′′, which are much larger relative to the friction velocity (see
figure 2b), do not play a role in the nonlinear equations (2.3) when k1 = 0.

A further assumption in the derivation of (2.14), (2.15) is that the streamwise
evolution of mean velocity components can be neglected in (2.1) and (2.3). For
k1 → 0, this assumption does not hold. Consequently, the limit k1/k→ 0 in (2.18)
is not viable, and only `k/δ→ 0 (and thus, kδ→∞) may be expected to lead to
(2.21). The picture in figure 3 above is consistent with that, showing a good match
between theory and results for δ/`k > 2. This is also in agreement with results from
Vanderwel & Ganapathisubramani (2015) and Hwang & Lee (2018) that show that
the excitation of secondary motions is most effective around a spanwise roughness
spacing of S/δ =O(1), but decreases drastically when S is decreased.

Third, also Γ ≈ 0 and U≈U∞ are strong simplifications in the derivation of (2.14),
(2.15): for example, around z/δ = 0.2, the velocity deficit is already approximately
30 % of the free-stream velocity. Interestingly, for k1/k→ 0, the effect of Γ in (2.13)
disappears, so that (2.15) and solutions for ũ3 remain the same when Γ 6= 0. This is
not the case for (2.13), i.e. Γ 6= 0 leads to an additional term ik2ũ3Γ in (2.14). Thus
related solutions for ω3 and u1 may depend on u3 and Γ . For `k/δ→ 0 (k→∞),
the relative importance of the additional term ik2ũ3Γ decreases in (2.14), since other
terms scale with k2. This remains consistent with observations in § 3, that Suu matches
data better when `k/δ is sufficiently small. It should be noted that for Γ 6= 0, the
dispersive eddy viscosity ν ′′e and the last term on the right-hand side of (2.7) may also
become important; finding exact (linear) expressions for this term is however akin to
the classical turbulence closure problem, and not further considered here.

The current analytical model may shed some further light on the characterization
of roughness length scales in rough boundary layers. Whereas the classical roughness
‘height’ is directly associated with the skin friction drag, the horizontal roughness
length `k dictates how fast dispersive flow perturbations decay in the outer layer,
supporting the notion of spanwise homogeneous outer flow behavior that is
independent of the near-wall flow when `k is sufficiently small. Current findings may
also be of interest for the development of rough-wall stress conditions for simulations,
in particular in situations with multi-scale roughness (for example, prevalent in the
atmospheric boundary layer) in which only part of the roughness is resolved by the
mesh (Anderson & Meneveau 2011).

5. Summary

A framework is presented to study the decay of dispersive stresses in the outer
layer of a rough-wall boundary layer by using a linearization of the Navier–Stokes
equations. By formulating the problem in Fourier space, this leads to two coupled
ordinary differential equations per horizontal wavevector. These equations require
the unperturbed background velocity U(z) and eddy viscosity ν(t) as input, and are
expected to be exact to first order when Γ � 1, as is the case near the top of the
boundary layer. A further approximation that uses Γ = 0, and assumes a constant
eddy viscosity, allows for solutions that are analytically tractable. These solutions were
compared to the experimental data from Vanderwel & Ganapathisubramani (2015),
showing a reasonable agreement with the measurements, given the assumptions that
were made to obtain the analytical model.
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In the future, it will be of interest to investigate more involved solutions of (2.14),
(2.15) using detailed parametrizations of νe(z) in the outer layer of a boundary
layer, or by directly solving the coupled system (2.12), (2.13) using an additional
parametrization of Γ (z) and U(z). In this case, analytically tractable solutions may no
longer exist, but numerical solutions should be obtained without much complication.
In this context, more extensive comparison with data, in particular including also
roughness elements with k1 6= 0, is also relevant.
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