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PRINCIPAL RADICAL SYSTEMS, LEFSCHETZ PROPERTIES,
AND PERFECTION OF SPECHT IDEALS OF

TWO-ROWED PARTITIONS

CHRIS MCDANIEL and JUNZO WATANABE

Abstract. We show that the Specht ideal of a two-rowed partition is perfect

over an arbitrary field, provided that the characteristic is either zero or bounded

below by the size of the second row of the partition, and we show this lower

bound is tight. We also establish perfection and other properties of certain

variants of Specht ideals, and find a surprising connection to the weak Lefschetz

property. Our results, in particular, give a self-contained proof of Cohen–

Macaulayness of certain h-equals sets, a result previously obtained by Etingof–

Gorsky–Losev over the complex numbers using rational Cherednik algebras.

§1. Introduction

Fix an integer m, let F be any field, and let R = F[x1, . . . ,xm] be the polynomial ring

with its standard grading, and equipped with the usual action of the symmetric group

Sm by permuting the variables. For any partition λ � m, the Specht module V (λ) over

F is the F-vector space generated by the Specht polynomials of λ which are indexed by

the set of tableaux T on the Young diagram of λ. If F has characteristic zero, then the

Specht modules form a complete list of irreducible Sm-representations, highlighting their

importance in representation theory. In this paper, we take the point of view of commutative

algebra, and study the ideals generated by Specht modules called Specht ideals.

Specifically, we show that for partitions with two parts λ= (λ1,λ2) (or Young diagrams

with two rows), the associated Specht ideal is radical and, if the characteristic of F is zero

or sufficiently large, perfect. Our results are stated in terms of commutative algebra, but

they can be interpreted geometrically as follows:

Proposition 1.1. Fix a field F with char(F) = p≥ 0, and fix a positive integer m. For

each integer h satisfying 1≤ h≤m, define the h-equals set Xm,h ⊂ F
m as the union of Sm

translates of the linear subspace cut out by the h−1 linear equations x1 = · · ·= xh, that is,

Xm,h =
⋃

σ∈Sm

σ.{(x1, . . . ,xm) ∈ F
m | x1 = · · ·= xh} .

Assume that 2h≥m+2.

1. If p= 0 or p≥m−h+1, then Xm,h is Cohen–Macaulay.1

2. If m≥ 2p+2, then Xm,m−p is not Cohen–Macaulay.

Over the field F = C, Proposition 1.1(1) was obtained by Etingof–Gorsky–Losev

[1, Prop. 3.11], using deep results from the representation theory of rational Cherednik

algebras. Our proof of Proposition 1.1 is more elementary in that it uses only basic results
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PERFECTION OF SPECHT IDEALS 691

from commutative algebra, which we hope will appeal to those uninitiated with rational

Cherednik algebras. We emphasize, however, that our elementary proof is not easy.

The study of Specht ideals seems to have been initiated by Yanagawa in his recent paper

[17], although they have appeared implicitly in the earlier works of others [1, 2, 4, 9]. In

particular, the connection between the h-equals set in Proposition 1.1 and Specht ideals,

as first observed by Li–Li [9] and rediscovered later by Yanagawa [17], is as follows: Setting

m= n+1 and h= n+1−k, if Im,h ⊂R is the ideal cutting out the h-equals set Xm,h, and

if 2h≥m+2, then we have

Im,h =
⋂

σ∈Sm

σ.(x1−x2, . . . ,x1−xh) =
√
a(n+1,k+1,k+1), (1)

where a(n+1,k+1,k+1) is the Specht ideal associated to the two-rowed partition λ =

(n−k,k+1). In his paper [17], Yanagawa proves that two-rowed Specht ideals are radical

by an ingenious but complicated argument. He then invokes the Etingof–Gorsky–Losev

result [1, Prop. 3.11] to prove that the Specht ideal a(n+1,k+1,k+1) (although he used

different notation) is perfect if the field has characteristic zero. The present paper grew out

of an attempt to understand and simplify Yanagawa’s arguments and to find an elementary

proof of the Etingof–Gorsky–Losev result in the two-rowed case. As the reader will surmise,

the distinguishing feature of Specht ideals of two-rowed partitions is that their minimal

generators are square-free, a fact which exploits throughout this paper.

Recall that an ideal I ⊂R in a Noetherian ring is called perfect if its grade is equal to its

homological (or projective) dimension. In a polynomial ring R, a homogeneous ideal I ⊂R

is perfect if and only if its quotient R/I is Cohen–Macaulay. The following is one of the

main results of this paper, and is the algebraic analogue of Proposition 1.1.

Theorem 1.2. Let F be any field of characteristic p ≥ 0, and fix positive integers n,k

satisfying n≥ 2k+1.

1. If p= 0 or p≥ k+1, then the Specht ideal a(n+1,k+1,k+1) is perfect.

2. If n≥ 2p+1, then the Specht ideal a(n+1,p+1,p+1) is not perfect.

In his paper [17], Yanagawa has conjectured that the Specht ideal a(n+1,k+1,k+1)

is perfect in characteristic p if and only if p = 0 or p ≥ k+1. Theorem 1.2 proves one

implication and part of the other one in Yanagawa’s conjecture.

Our proof of Theorem 1.2 is inspired by the seminal paper of Hochster–Eagon [6], in

which they proved perfection of generic determinantal ideals using what they termed a

principal radical system. Our method, which might be more aptly described as a principal

perfect system, is based on the following elementary facts from commutative algebra:

Lemma 1.3. Let I ⊂ R be a homogeneous ideal, and let x ∈ R \ I be a homogeneous

polynomial of positive degree.

1. If (I : x) = I and I+(x) is perfect, then I is also perfect.

2. If (I : x) �= I and I+(x) are both perfect of the same grade, then I is also perfect of that

grade.

Lemma 1.4. Suppose that ideals I,J ⊂ R are homogeneous ideals, both perfect of the

same grade g and suppose that I +J has grade g+1. Then I ∩J is perfect if and only if

I+J is perfect.
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692 C. MCDANIEL AND J. WATANABE

Our strategy then is to start with the two-parameter family of Specht ideals a(n+

1,k+1,k+1), and use the constructions in Lemmas 1.3 and 1.4 to obtain new families

of ideals until we arrive at one which is evidently perfect, for example, by induction on

one of the parameters. Shown below are the new two-parameter families we construct,

labeled a(n,k,k+1), I(n,k), and J(n,k), together with a schematic diagram indicating the

implications in our argument, where “I ⇒ J” means “perfection of I implies perfection of

J” and “I ⇒ J ⇐K” means “perfection of I and K implies perfection of J”:

a(n+1,k+1,k+1) a(n,k,k+1)
Lem. 1.3�� I(n,k)

Lem. 1.4�� J(n,k)
Lem. 1.4��

a(n,k,k)

Lem. 1.4

�����������������

���������������
I(n−1,k−1)

Lem. 1.3

��������������

������������

We remark that Lemma 1.3 is true almost verbatim if “perfect” is replaced by “radical,”

illustrating the close relationship between these two properties (see Lemma 4.1). In fact,

before we show that the Specht ideals are perfect we must first show that they are radical.

More generally, in order to apply Lemma 1.4 to an ideal a = I ∩ J we must know the

ideals I and J, and these come from knowing a primary decomposition for a. Finding such

decompositions forms the technical heart of this paper; see Theorems 1.6 and 1.8(3). We

give a more detailed description of our method and these ideals listed above, together with

the other results of this paper below.

Taking I = a(n+1,k+1,k+1) and x= xn+1 in Lemma 1.3, it is easy to show that (I :

x) = I, and, with a little more work, that I+(x) = a(n,k,k+1)+(xn+1) where a(n,k,k+1)

is the ideal generated by square-free products of Specht polynomials of type λ= (n−k,k)

with a linear monomial in the variables x1, . . . ,xn. Generalizing, we introduce, for integers

0≤ k ≤ d≤ n−k, the d-shifted Specht ideal a(n,k,d) generated by square-free products of

Specht polynomials of type λ= (n−k,k) and square-free monomials of degree d−k.

These shifted Specht ideals interpolate between Specht ideals a(n,k,k) in case d = k,

and square-free monomial ideals in case k = 0, where a(n,0,d) = (x1, . . . ,xn)
〈d〉 is the ideal

generated by all square-free monomials of fixed degree d.2 Our first step in understanding

these shifted Specht ideals is to find a minimal generating set. Just as minimal generators

for the Specht ideal are indexed by standard Young tableaux on λ, we show that minimal

generators for the shifted Specht ideal are indexed by standard Young tableaux on a shifted

version of λ.

Theorem 1.5. A minimal generating set for the shifted Specht ideal a(n,k,d) is formed

by the shifted Specht polynomials FT (d) indexed by standard tableaux T on the d-shifted

shape of λ= (n−k,k) obtained from Young diagram of λ by moving the last n−k−d boxes

on the top row to the first n−k−d boxes on the bottom row, that is,

λ(d) =

︸ ︷︷ ︸
n−k−d

d︷ ︸︸ ︷
.

2 The ideals (x1, . . . ,xn)
〈d〉 should not be confused with symbolic powers, which are not discussed in this

paper.
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The linear span of the shifted Specht polynomials FT (d), T ∈ Tab(λ(d)) forms an Sn-

representation V (n,k,d) that we call a shifted Specht module.3 We prove that our d -shifted

Specht ideals satisfy the following decomposition formula, which is crucial in our quest for

perfection, and which holds if and only if our shifted Specht ideals are radical.

Theorem 1.6. For any integers k,d satisfying 1≤ k < d≤ n−k, we have

a(n,k,d) = a(n,k,d−1)∩ (x1, . . . ,xn)
〈d〉 = a(n,k,k)∩ (x1, . . . ,xn)

〈d〉. (2)

Yanagawa [17] has proved Theorem 1.6 in the special case d = k+ 1 using a clever

argument, which is described in further detail below. As it turns out, his argument goes

through verbatim to prove Theorem 1.6 in the general case, and is in fact simplified by

Theorem 1.5. It follows directly from Theorem 1.6 that our shifted Specht ideals are radical.

Theorem 1.7. Fix integers k,d satisfying 0 ≤ k ≤ d ≤ n− k. Then the shifted Specht

ideal a(n,k,d) is radical.

Perfection of shifted Specht ideals is more difficult to prove, and in fact, most shifted

Specht ideals are not perfect. Indeed Theorem 1.6 implies that the shifted Specht ideal

a(n,k,d) does not have pure height and hence cannot be perfect if d �= k,k+1. To show that

the shifted Specht ideal a(n,k,k+1) = a(n,k,k)∩ (x1, . . . ,xn)
〈k+1〉 is perfect, we appeal to

Lemma 1.4 and introduce the Specht-monomial ideal I(n,k) = a(n,k,k)+(x1, . . . ,xn)
〈k+1〉.

While the Specht-monomial ideal is not radical in general, it does satisfy a decomposition

formula similar to (2), but it depends on the field characteristic. We were pleased to discover

that this dependence on field characteristic is the same one imposed by the weak Lefschetz

property of certain monomial complete intersection algebras. This is summarized in the

following, which can be considered the other main result of this paper.

Theorem 1.8. Let F be a field with char(F) = p≥ 0, and let n and k be positive integers

satisfying n≥ 2k+1. The following are equivalent:

1. p= 0 or p≥ k+1.

2. The quadratic monomial complete intersection

C =
F[x1, . . . ,x2k]

(x2
1, . . . ,x

2
2k)

, (3)

has the weak Lefschetz property.

3. The Specht-monomial ideal I(n,k) satisfies the decomposition

I(n,k) =I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
, (4)

where yi = xn−xi for 1≤ i≤ n−1.

4. The Specht-monomial ideal I(n,k) is perfect.

We shall break Theorem 1.8 into three equivalences (1) ⇔ (a) for a = 2,3,4. The

equivalence (1) ⇔ (2) follows from a general result of Kustin–Vraciu [8], and we shall not

prove it here; but we use it! Using Equation (4), which essentially amounts to computing a

primary decomposition of the Specht-monomial ideal, in conjunction with Lemma 1.4 leads

3 This is evidently the skew representation of Sn associated to λ(d) (see Remark 3.8).
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to yet another family of ideals, which remain unnamed:

J(n,k) = I(n−1,k−1)+(y1, . . . ,yn−1)
〈k〉+(x2

n).

Finally, in order to prove equivalence (1) ⇔ (4) in Theorem 1.8, and hence also Theorem

1.2, we apply Lemma 1.3 to show that the ideal J(n,k) is perfect.

Some further remarks on the connection to the weak Lefschetz property are in order

here. Since (shifted) Specht polynomials are square-free they are identified with elements

of the algebra A = F[x1, . . . ,xn]/(x
2
1, . . . ,x

2
n), which carries an sl2-representation, in which

the raising operator is multiplication by the sum of variables, and the lowering operator is

the corresponding linear partial differential operator. Moreover, surjectivity of this lowering

operator in degree k is equivalent to equality of the kernel of that lowering operator with

the Specht module V (n,k,k), which is in turn equivalent to the weak Lefschetz property

of C in (3). Surjectivity of the lowering operator on A is key to proving decomposition

(4), and in fact reveals a hidden property of the Specht-monomial ideal: in small positive

characteristic, that is, 0 < p < k+1 the ideal I(n,k) has an embedded prime divisor, a

phenomenon which does not occur for the Specht ideals.

The most technically difficult parts of our arguments are the decompositions in Theorem

1.6 and Theorem 1.8(3). As it turns out, the two proofs we give are strikingly similar, and

are both based on that clever argument of Yanagawa mentioned above. This argument, in

general terms, runs as follows: To prove that an ideal I satisfies a decomposition formula

of the form I = I ′∩J where J is a monomial ideal, first show that the intersection I ′∩J

can be generated by products of minimal generators of I ′ with monomials (not necessarily

from J ), with the additional property that if a sum of such products is in I ′∩J then each

of the summands is also in I ′ ∩J (perhaps we should call such I an I ′-monomial ideal).

Next fix a monomial m and split the minimal generators V (I ′) into two parts say V (I ′) =

Vm(I ′)⊕V m(I ′), determined by whether or not m appears in their monomial expansion

or not. In our situation, one can show that if m is not in the support of ν ∈ V m(I ′), then

m · ν ∈ I, and, with more effort, one can also show that if ν ∈ Vm and m · ν ∈ I ′ ∩J then

m · ν ∈ I. We highlight this argument here because it seems important in the theory of

two-rowed Specht ideals.

This paper is organized as follows. In §2, we define Specht polynomials, shifted Specht

polynomials, and the modules and ideals they generate. We then prove Theorem 1.5 and

compute the dimensions of our shifted Specht modules (Theorems 2.2 and 2.9, respectively).

In §3, we draw out the connection between Lefschetz properties and Specht modules,

decompose the shifted Specht module into its irreducible representations, and derive

other useful consequences. In §4, we prove Theorems 1.7 and 1.6 (Theorems 4.4 and

4.3, respectively). Finally, in §5, we prove Theorems 1.8 and 1.2 (Theorems 5.5 and 5.6,

respectively).

§2. Shifted Specht polynomials, modules, and ideals

Fix a positive integer n, a field F, and let R = F[x1, . . . ,xn] be the standard graded

polynomial ring in n-variables, equipped with the usual action of Sn which permutes the

variables. A partition of n, denoted λ � n is a sequence of nonincreasing integers which sum

to n, that is, λ= (λ1, . . . ,λr) where λ1 ≥ ·· · ≥ λr and
∑r

i=1λi = n. The Young diagram of λ

is a left-justified array of boxes with r -rows and λi boxes in each row, and a filling of those
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boxes with distinct numbers 1, . . .n is called a tableau of shape λ; the set of all tableaux of

shape λ will be written as Tab(λ). To each tableau T ∈ Tab(λ) of shape λ we associate a

polynomial FT ∈R as follows.

First for any subset S ⊂ {1, . . . ,n}, define the S -Vandermonde polynomial

ΔS =
∏

i<j∈S

(xi−xj)

with the convention that if |S| < 2 then ΔS = 1. Then for any tableau T of shape λ with

columns C1, . . . ,Cλ1 , define its Specht polynomial by

FT =

λ1∏
i=1

ΔCi .

The F-linear span of Specht polynomials over Tab(λ) is an Sn-representation called the

Specht module, which we denote V (λ), that is,

V (λ) = 〈FT | T ∈ Tab(λ)〉= spF(FT | T ∈ Tab(λ));

it is well known, in the case char(F) = 0, that V (λ) is irreducible, and conversely that every

irreducible Sn-representation is isomorphic to V (λ) for some λ � n, for example, [14]. The

Specht ideal of λ is the ideal in R generated by V (λ), that is,

a(λ) = V (λ) ·R= (FT | T ∈ Tab(λ)) .

In his paper [17, Conj. 2.9], Yanagawa has formulated the following conjecture:

Conjecture 2.1 ([17]). Over any field F, and for any partition λ, the Specht ideal a(λ)

is radical.

This conjecture has been proved for partitions of the form λ = (n− k,1, . . . ,1) by

Yanagawa–Watanabe [16], and for partitions of the form λ= (n−k,k) and λ= (d,d,1) by

Yanagawa [17]. However, even in these simple cases, Yanagawa’s proof that a(λ) is radical

is by no means easy. This paper grew out of an attempt to understand and perhaps simplify

Yanagawa’s proof in the case of two rowed partitions λ= (n−k,k), which we discuss next.

Fix an integer k satisfying 1 ≤ k ≤ n− k, and let λ = (n− k,k) be the corresponding

partition, which we regard as a left-justified two-rowed Young diagram with n−k boxes in

the first row and k boxes in the second. For each integer d satisfying 1 ≤ k ≤ d ≤ n− k,

define the d -shifted shape λ(d) to be the Young diagram obtained by moving the righter-

most n−d−k boxes on the first row to the left of the first boxes in the second row:

λ=

n−k︷ ︸︸ ︷
→

︸ ︷︷ ︸
n−k−d

d︷ ︸︸ ︷
= λ(d).

Note that λ(k) is λ rotated by 180◦.

A tableau T on shape λ(d) is a labeling of the boxes of the Young diagram of λ(d) with

the numbers {1, . . . ,n} used exactly once; we say that T is standard if the rows are increasing

from left to right, and the columns are increasing from top to bottom. The set of tableaux

on λ(d) we denote by Tab(n,k,d), and the set of standard tableaux by STab(n,k,d).
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Given a tableau T ∈ Tab(n,k,d) on the d -shifted shape λ(d), such as

T =
i1 · · · ik ik+1 · · · id

id+1 · · · in−k j1 · · · jk
(5)

define the associated d -shifted Specht polynomial to be the homogeneous polynomial of

degree d by

FT (d) = (xi1 −xj1) · · ·(xik −xjk) ·xik+1
· · ·xid .

Note that if d= k, then we recover the usual Specht polynomial:

FT (k) = (xi1 −xj1) · · ·(xik −xjk);

for the usual Specht polynomials we shall sometimes use the alternative notation FT or

F k
T if we want to keep track of its degree. We allow k = 0, and in this case a tableau

S ∈ Tab(n,0,d) has the form

S =
i1 · · · id

id+1 · · · in−k j1 · · · jk
(6)

and its associated shifted Specht polynomial is the monomial

MS = xi1 · · ·xid ,

which we sometimes write as Md
S to remember degree.

The d-shifted Specht module of λ= (n−k,k), denoted by V (n,k,d), is defined to be the

F-linear span of the d -shifted Specht polynomials, that is,

V (n,k,d) = 〈FT (d) | T ∈ Tab(n,k,d)〉 ;

like the Specht module, it is also an Sn-representation, although it is not irreducible for

d > k (cf. §3). The d-shifted Specht ideal of λ= (n−k,k), denoted by a(n,k,d), is the ideal

in R generated by the shifted Specht module, that is,

a(n,k,d) = V (n,k,d) ·R= (FT (d) | T ∈ Tab(n,k,d)) .

The remainder of the section is devoted to finding a basis for the shifted Specht module

V (n,k,d) and to computing its dimension.

2.1 Basis of a shifted Specht module

Theorem 2.2. A basis for the d-shifted Specht module V (n,k,d), and hence a minimal

generating set of the ideal a(n,k,d), are indexed by the standard tableaux on the d-shifted

shape λ(d), that is,

{FT (d) | T ∈ STab(λ(d))} .

The proof of Theorem 2.2 comes in two steps, which we state as Lemmas.

Lemma 2.3. The set {FT (d)|T ∈ STab(n,k,d)} is linearly independent.

Proof. By induction on n ≥ 2. The base case, where n = 2 and k = d = n− k = 1 is

trivial. For the inductive step, we assume that for every choice of k′ and d′ satisfying
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1 ≤ k′ ≤ d′ ≤ (n− 1)−k′, the set {FT ′(d′)|T ′ ∈ STab(n−1,k′,d′)} is linearly independent.

Fix any integers 1≤ k ≤ d≤ n−k and suppose we have a dependence relation∑
T∈STab(n,k,d)

cTFT (d) = 0. (7)

Note that for every d -standard tableau T ∈ STab(n,k,d) as in (5), we must have either

n = id or n = jk; let Id ⊂ STab(n,k,d) denote the set of d -standard tableaux with n = id
and let Jd ⊂ STab(n,k,d) be the ones with n = jk. Let π : R→ S = F[x1, . . . ,xn−1] be the

projection sending xn to 0, and note that for every T ∈ Id we have π(FT (d)) = 0. Moreover,

for every T ∈ Jd, we have π(FT (d)) = FT ′(d) where

T ′ =
i1 · · · ik−1 ik ik+1 · · · id

id+1 · · · in−k j1 · · · jk−1

We see that T ′ ∈ STab(n− 1,k− 1,d), hence the induction hypothesis applies. Note that

since the map Jd → STab(n−1,k−1,d), sending T �→ T ′ is one-to-one, and since

π

⎛
⎝ ∑

T∈STab(n,k,d)=Id�Jd

cTFT (d)

⎞
⎠=

∑
T∈Jd

cTFT ′(d) = 0,

we deduce, by the induction hypothesis, that cT = 0 for all T ∈ Jd. Then our dependence

relation (7) becomes

∑
T∈Id

cTFT (d) = 0 = xn ·
(∑

T∈Id

cTFT ′′(d)

)
,

where

T ′′ =
i1 · · · ik ik+1 · · · id−1

id+1 · · · in−k j1 · · · jk

In this case, we see that T ′′ ∈ STab(n− 1,k,d− 1), and again our induction hypothesis

applies. Since the map Id → STab(n−1,k,d−1) sending T �→ T ′′ is one-to-one, and since∑
T∈Id

cTFT ′′(d) = 0,

the induction hypothesis implies that cT = 0 for every T ∈ Id too, and therefore the

dependence relation (7) must be trivial.

To see that the d -standard polynomials span V (n,k,d) is a little more work. We follow

the general method described in [14, Sec. 2.6]. For T as in (5) and any index 1 ≤ a ≤ n,

define a-composition vector to be the integer vector with n−k components defined by

γa(T ) = (γa
1 (T ), . . . ,γ

a
n−k(T )), where γa

b (T ) = #{c ∈ colb(T ) | c≤ a} .

Note that for a two rowed partition λ = (n− k,k) the a-composition vector has entries

0, 1, or 2. Define the composition series for T to be the n-tuple of composition vectors

γ(T ) = (γ1(T ), . . . ,γn(T )); we regard γ(T ) as a matrix whose columns are the composition
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vectors of T. Given two vectors v = (v1, . . . ,vn−k) and w = (w1, . . . ,wn−k), we say that w

dominates v, and write v �w, if v1+ · · ·+ vp ≤ w1+ · · ·+wp for all 1 ≤ p ≤ n− k. Finally

given two tableaux T,T ′ ∈Tab(λ(d)), we say that T ′ dominates T, and write T �T ′, if every

composition vector of T ′ dominates the corresponding composition vector of T, that is,

T �T ′ ⇔ γa(T )�γa(T ′), ∀ 1≤ a≤ n.

This composition-dominance order is a partial order on the set of tableaux Tab(λ(d)).

Moreover, it is clear that the largest tableau is the one that fills the columns in order from

left to right. For example, if n = 5, k = 1, and d = 3 the largest tableau (with increasing

columns) is the standard tableau

T =
2 4 5

1 3

with composition series

γ(T ) =

⎛
⎜⎜⎝

1 1 1 1 1

0 1 2 2 2

0 0 0 1 1

0 0 0 0 1

⎞
⎟⎟⎠ .

Note that if T and T ′ have the same columns (possibly in different orders) then they

have the same composition series, and they also have the same shifted Specht polynomials

(up to sign), that is, γ(T ) = γ(T ′) and FT (d) =±FT ′(d). The following lemma is useful for

telling when one tableau dominates another.

Lemma 2.4. If 1≤ a < b≤ n and a appears in a column to the right of b, then

T � (a,b) ·T,

where (a,b) ·T is the tableau obtained from T by transposing a and b.

Proof. Note that for 1 ≤ i ≤ a− 1 and for b ≤ i ≤ n we have γi(T ) = γi((a,b) · T ).
Assume then that a ≤ i ≤ b− 1, and suppose that a and b belong to columns r and q

in T, respectively. Then

γi((a,b) ·T ) = γi(T )
with rth part decreased by 1

and qth part increased by 1,

and since we are assuming that q < r, it follows that γi(T ) � γi((a,b) ·T ), and the result

follows.

We are now in a position to show the standard shifted Specht polynomials span the

shifted Specht module.

Lemma 2.5. The set {FT (d)|T ∈ STab(n,k,d)} spans V (n,k,d).

Proof. We show by downward induction on the composition-dominance order on

Tab(λ(d)) that for every T ∈ Tab(λ(d)), FT (d) can be written as a linear combination

of shifted Specht polynomials associated to d -standard tableaux. For the base case, note,

as above, that the largest tableau of shifted shape λ(d) is already standard. Inductively,

fix a shifted tableau T ∈ Tab(λ(d)) as in (5), and assume that for every tableau T ′ that
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dominates T, FT ′(d) can be written as a linear combination of shifted Specht polynomials

corresponding to standard tableaux. We may assume that the columns of T are increasing.

If T has no row descents, then T must be standard and we are done. Otherwise T has some

row descent, say between the ath and a+1st column. There are several cases to consider

and we claim that in all cases we can write FT (d) as a linear combination

FT (d) =
∑
T�T ′

cT ′FT ′(d).

Case 1: 1≤ a≤ n−k−d−1. Set b= d+a; in this case, we can merely swap ib and ib+1

without affecting FT (d); in other words setting T ′ = (ib, ib+1) ·T we have

FT (d) = FT ′(d),

and since T �(ib, ib+1) ·T , it follows from our inductive hypothesis that FT (d) can be written

as a linear combination of d -standard Specht polynomials on the shifted shape λ(d).

Case 2: a= n−k−d. Then we have

T =
i1 · · · ik ik+1 · · · id

id+1 · · · in−k j1 · · · jk

and we have the descent in−k > j1 > i1. Then by Lemma 2.4, we see that

T �T ′ = (in−k, j1) ·T and T �T ′′ = (i1, in−k) ·T.

Moreover, one can easily check that

FT (d) = FT ′(d)−FT ′′(d) =G
(
(xi1 −xin−k

)− (xj1 −xin−k
)
)
,

and inductive hypothesis applies.

Case 3: n−k−d+1≤ a≤ n−d−1. Set b= a−n+k+d so we have

T =
i1 · · · ib ib+1 · · · ik ik+1 · · · id

id+1 · · · in−k j1 · · · jb jb+1 · · · jk

Sub-Case 3a: ib+1 < ib < jb. Then

T �T ′ = (ib+1, jb) ·T and T �T ′′ = (ib+1, ib) ·T,

and again one can easily check that

FT (d) = FT ′(d)+FT ′′(d) =G ·
(
(xib −xib+1

)(xjb −xjb+1
)+(xib+1

−xjb)(xib −xjb+1
)
)
,

and our inductive hypothesis applies.

Sub-Case 3b: ib < ib+1 < jb+1 < jb. Then

T �T ′ = (ib+1, jb) ·T and T �T ′′ = (jb+1, jb) ·T,

and again one can easily check that

FT (d) = FT ′(d)+FT ′′(d) =G ·
(
(xib −xib+1

)(xjb −xjb+1
)+(xib −xjb+1

)(xib+1
−xjb)

)
,

and our inductive hypothesis applies.
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Case 4: a= n−d. Then

T =
i1 · · · ik ik+1 · · · id

id+1 · · · in−k j1 · · · jk

and we have the descent jk > ik > ik+1. Then by Lemma 2.4, we have

T �T ′ = (ik+1, ik) ·T and T �T ′′ = (ik+1, jk) ·T.

and again one can check that

FT (d) = FT ′(d)+FT ′′(d) =G
(
xik

(
xik+1

−xjk

)
+xjk

(
xik −xik+1

))
,

to which the inductive hypothesis once again implies.

Case 5: n−d+1≤ a≤ n−k−1. In this case, set b= a− (n−k−d) so that we have

T =
i1 · · · ik ik+1 · · · ib ib+1 · · · id

id+1 · · · in−k j1 · · · jk

with the descent ib > ib+1. Hence by Lemma 2.4, we have

T �T ′ = (ib+1, ib) ·T,

and in this case we clearly have

FT (d) = FT ′(d),

to which the induction hypothesis applies again.

Therefore, in all cases, we have shown that FT (d) is a linear combination of shifted Specht

polynomials indexed by tableaux on the shifted shape λ(d) which dominate T. Therefore,

by induction, the d -standard shifted Specht polynomials

{FT (d)|T ∈ STab(λ(d))} ,

must span V (n,k,d).

Proof of Theorem 2.2. By Lemma 2.3, the polynomials in the set

{FT (d) | T ∈ STab(λ(d))} ,

are linearly independent, and by Lemma 2.5, they generate the shifted Specht module

V (n,k,d), and hence they must form a basis.

Example 2.6. Let n = 5, k = 1, and d = 3. There are 9 standard tableau of shifted

shape λ(3) where λ= (4,1):

2 4 5

1 3

2 3 5

1 4

2 3 4

1 5

1 4 5

2 3

1 3 5

2 4

1 3 4

2 5

1 2 5

3 4

1 2 4

3 5

1 2 3

4 5
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Hence a minimal generating set for the ideal a(5,1,3), and a basis for the representation

V (5,1,3), is given by⎧⎨
⎩
(x2−x3)x4x5, (x2−x4)x3x5, (x2−x5)x3x4,

(x1−x3)x4x5, (x1−x4)x3x5, (x1−x5)x3x4,

(x1−x4)x2x5, (x1−x5)x2x4, (x1−x5)x2x3

⎫⎬
⎭ .

The utility of Theorem 2.2 is that it can transform set maps on the set of standard

tableau STab(λ(d)) to linear maps on the shifted Specht module V (n,k,d), and sometimes

the shifted Specht ideal a(n,k,d). The following useful corollaries illustrate this point.

We say that an index i, 1≤ i≤ n is in the support of tableau T ∈Tab(n,k,d), and write

i ∈ supp(T ), if i appears in or to the right of a column with more than one row, that is, if

T =
i1 · · · ik ik+1 · · · id

id+1 · · · in−k j1 · · · jk

then supp(T ) = {i1, j1, · · · , ik, jk, ik+1, . . . , id}. Note every standard tableau T ∈ STab(n,k,k)

has n in its support; in fact it must have the form

T =
i1 · · · ik−1 ik

ik+1 · · · in−k j1 · · · jk−1 n

We get a standard tableau T ′ ∈ STab(n−1,k−1,k) from T by deleting the box containing

n, that is,

T ′ =
i1 · · · ik−1 ik

ik+1 · · · in−k j1 · · · jk−1

Since this map is obviously a bijection it extends to a linear isomorphism

V (n,k,k)→ V (n−1,k−1,k).

In fact it can be extended to an isomorphism of Specht ideals using a linear change of

coordinates: Define the variables y1, . . . ,yn by the formula

yi =

{
xn−xi, if 1≤ i≤ n−1,

xn, if i= n,

and let Φ: R→R be the change of coordinates map Φ(xi) = yi.

Corollary 2.7. Fix integers k,n satisfying 1 ≤ k ≤ n−k. Then ring isomorphism Φ

maps the Specht ideal in n-variables isomorphically onto the shifted Specht ideal in n− 1-

variables:

a(n,k,k)∼=Φ(a(n,k,k)) = a(n−1,k−1,k).

In fact, in adding the principal ideal (xn), this isomorphism becomes equality:

a(n,k,k)+(xn) = a(n−1,k−1,k)+(xn).
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Proof. With T ∈ STab(n,k,k) and T ′ ∈ STab(n−1,k−1,k) as above, we compute

FT =
k∏

t=1

(xit −xjt) =
k−1∏
t=1

(xit −xjt) · (xik −xn) =
k−1∏
t=1

(yjt −yit) · (−yik) = (−1)k ·Φ(FT ′) ,

and hence by Theorem 2.2, the first statement follows. To see the second statement note

that the ring automorphism Φ: R→R becomes the negative identity map on the quotient

Φ̄ =−I : R/(xn)→R/(xn), and hence

a(n,k,k)+(xn) = a(n−1,k−1,k)+(xn),

which is the second statement.

Fix an integerm satisfying 0≤m≤ d, and define the subset STabm(n,k,d)⊂ STab(n,k,d)

consisting of standard tableaux which contain {1, . . . ,m} in its support. A standard tableau

T ∈ STabm(n,k,d) necessarily has the form

T =
1 · · · m m+1 · · · k k+1 · · · d

id+1 · · · in−k j1 · · · jm jm+1 · · · jk

and we define its image tableau as the one obtained by removing the boxes containing the

numbers 1, . . . ,m:

T ′ =
m+1 · · · k k+1 · · · d

id+1 · · · in−k j1 · · · jm jm+1 · · · jk

Note that T ′ ∈ STab([n]m,k−m,d−m) where [n]m means the tableaux are filled with

numbers {m+1, . . . ,n} exactly once, and our convention is to count k−m as zero if k ≤m.

The map of sets STabm(n,k,d) � T �→ T ′ ∈ STab([n]m,k−m,d−m) is evidently one-to-one

and onto, and by Theorem 2.2, it induces a bijective linear map of Specht modules, which

is the key to some of the main technical arguments in this paper.

Corollary 2.8. The induced linear map

Vm(n,k,d) �� V ([n]m,k−m,d−m)

FT (d)
� �� FT ′(d−m)

,

is bijective.

2.2 Dimension of a shifted Specht module

Using Theorem 2.2, we can compute the dimension of the shifted Specht module

V (n,k,d).

Theorem 2.9. For integers n,k,d satisfying 1≤ k ≤ d≤ n−k, the number of standard

tableaux on the shifted shape λ(d) or equivalently the dimension of the shifted Specht module

V (n,k,d) is

dimF(V (n,k,d)) =

(
n

d

)
−
(

n

k−1

)
.

https://doi.org/10.1017/nmj.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.17


PERFECTION OF SPECHT IDEALS 703

Proof. We prove the formula by induction on n, the base case n= 1 (k = 0, d= 1) being

trivial. For the inductive step, assume that the formula holds for n−1, that is,

dimF (V (n−1, j,e)) =

(
n−1

e

)
−
(
n−1

j

)
,

for all integers j,e satisfying 1≤ j ≤ e≤ n−1− j. Then fix integers k,d satisfying 1≤ k ≤
d ≤ n−k. If d > k, then by removing the box containing n, we get a bijection of indexing

sets STab(n,k,d)→ STab(n−1,k,d−1)�STab(n−1,k−1,d), and hence we find that

dimF (V (n,k,d)) = dimF (V (n−1,k,d−1))+dimF (V (n−1,k−1,d))

=

((
n−1

d−1

)
−
(
n−1

k−1

))
+

((
n−1

d

)
−
(
n−1

k−2

))

=

(
n

d

)
−
(

n

k−1

)
,

where the last equality is Pascal’s identity. If d= k, then by Corollary 2.7, we have

dimF (V (n,k,k)) = dimF (V (n−1,k−1,k)) =

(
n−1

k

)
−
(
n−1

k−2

)

=

((
n−1

k

)
+

(
n−1

k−1

)
−
(
n−1

k−1

)
−
(
n−1

k−2

))
=

(
n

k

)
−
(

n

k−1

)
,

again by Pascal’s identity.

§3. Lefschetz propoerties

Let E ⊂ R be the graded vector subspace spanned by square-free monomials in the

variables x1, . . . ,xn. It will be convenient to identify E with a quotient of R as well,

specifically the Artinian monomial complete intersection

A=
F[x1, . . . ,xn]

(x2
1, . . . ,x

2
n)

.

Define the following linear operators on A: The raising operator is multiplication by the

sum of variables:

L=×(x1+ · · ·+xn) : A→A[1],

the lowering operator is the partial derivative map corresponding to the sum of variables:

D =
∂

∂x1
+ · · ·+ ∂

∂xn
: A→A[−1],

and the semi-simple operator :

H : A→A, H(a) = (n−2k) ·a, ∀ a ∈Ak.

Lemma 3.1. The operators {D,L,H} forms an sl2-triple on E ∼=A, that is, they satisfy

the commutator relations:

[D,L] =H, [H,D] = 2D, [H,L] =−2L.

https://doi.org/10.1017/nmj.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.17


704 C. MCDANIEL AND J. WATANABE

Proof. Since D, L, and H are linear, it suffices to check the relations on monomials, and

by symmetry it suffices to check only the single square-free monomial μ= x1 · · ·xi. We have

D ◦L(m) =D

⎛
⎝ n∑

j=i+1

x1 · · ·xixj

⎞
⎠

=

n∑
j=i+1

D(x1 · · ·xi ·xj) =

n∑
j=i+1

(
x1 · · ·xi+

i∑
k=1

x1 · · · x̂k · · ·xi ·xj

)

= (n− i) ·m+
n∑

j=i+1

i∑
k=1

x1 · · · x̂k · · ·xixj , (8)

L◦D(m) = L

(
i∑

k=1

x1 · · · x̂k · · ·xi

)

=
i∑

k=1

(L(x1 · · · x̂k · · ·xi)) =
i∑

k=1

⎛
⎝x1 · · ·xi+

n∑
j=i+1

x1 · · · x̂k · · ·xi ·xj

⎞
⎠

= i ·m+

i∑
k=1

n∑
j=i+1

x1 · · · x̂k · · ·xi ·xj . (9)

Substracting (8) and (9) yields [D,L](m) = D ◦L(m)−L ◦D(m) = (n− 2i) ·m = H(m),

and hence verifies the relation [D,L] = H. Verifications of the other two relations are

straightforward and left to the reader.

For each 0≤ i≤ n, define the ith-primitive subspace Pi ⊂Ai by

Pi = ker(D)∩Ai = {α ∈Ai | D(α) = 0} .

It follows from Lemma 3.1 that for any positive integer m and for any α ∈ Pk, we have

D (Lm(α)) =m · (n−2k+1−m) ·Lm−1(α).

Also note that for any Specht polynomial FT ∈ V (n,k,k)⊂Ak, we have

D (FT ) = 0.

In particular, we have a chain of containments

V (n,k,k)⊆ Pk ⊆ ker(Ln−2k+1)∩Ak.

Lemma 3.2. Equality V (n,k,k) = Pk holds if and only if the derivative map, that is,

the lowering operator

D : Ak →Ak−1

is surjective.

Proof. Assume that V (n,k,k) = Pk. Then by Theorem 2.9, we have

dim(Pk) =

(
n

k

)
−
(

n

k−1

)
= dim(Ak)−dim(Ak−1).
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Let Ik−1 = D(Ak) be the image of the derivative map. By linear algebra dim(Ik−1) +

dim(Pk) = dim(Ak) hence dim(Ik−1) − dim(Ak−1) = 0, hence the derivative map is

surjective. Conversely, if D : Ak → Ak−1 is surjective, then dim(Ik−1) = dim(Ak−1), hence

dim(Pk) = dim(Ak)−dim(Ak−1) = dim(V (n,k,k)). Since V (n,k,k)⊆Pk, and they have the

same dimension, this containment must be equality.

As we shall see, surjectivity of the derivative map in Lemma 3.2 is dictated by the weak

Lefschetz property.

3.1 Weak Lefschetz property

For an arbitrary graded Artinian algebra C =R/I, we say that C has the weak Lefschetz

property if there is a linear form 
 ∈ C1 such that the multiplication maps

×
 : Ci−1 → Ci (10)

have maximum rank for every degree i≥ 0; in this case, we call 
 a weak Lefschetz element

for C. If C has a symmetric and unimodal Hilbert function with socle degree d, then 
 ∈C1

is Lefschetz if and only if the multiplication maps (10) are injective for 1≤ i≤
⌊
d+1
2

⌋
and

surjective for
⌊
d+3
2

⌋
≤ i ≤ d. If C is Gorenstein, then it suffices only to check that (10)

is injective in degrees 1 ≤ i ≤
⌊
d+1
2

⌋
. In fact, one can show that if C is Gorenstein with

the standard grading and if the multiplication map (10) is injective for some i0, then it is

injective for all i ≤ i0. Moreover, if the ideal I is generated by monomials then C is weak

Lefschetz if and only if x1+ · · ·+xn ∈ C1 is a weak Lefschetz element. For more details,

especially regarding these last two facts, see [11, Props. 2.1 and 2.2] or [15, Prop. 2.5].

In our situation, A is a standard graded Artinian Gorenstein algebra with unimodal

Hilbert function and cut out by a monomial ideal. In fact, in our situation, the matrix

for the multiplication map L : Ak−1 → Ak in the monomial basis is the transpose of the

derivative map D : Ak → Ak−1. Therefore, we see that A has the weak Lefschetz property

if and only if the derivative maps

D : Ak →Ak−1

are surjective for all 1 ≤ k ≤
⌊
n+1
2

⌋
. The following result is due to Kustin–Vraciu [8], and

we refer the reader there for a proof. As usual, p= char(F)≥ 0.

Lemma 3.3. The monomial complete intersection A has the weak Lefschetz property if

and only if p= 0 or p≥
⌊
n+3
2

⌋
.

From Lemma 3.3, we derive the following useful result.

Lemma 3.4. Fix any integer k satisfying 2k ≤ n. Then the following are equivalent:

1. p= 0 or p≥ k+1.

2. The derivative maps D : Ai →Ai−1 are surjective for all 1≤ i≤ k.

3. The derivative map D : Ak →Ak−1 is surjective.

Proof. (1) ⇒ (2). Assume that p = 0 or p ≥ k+1. For each index j, 2k ≤ j ≤ n, define

the nested chain of monomial complete intersections

C2k ⊂ ·· · ⊂ Cn, where Cj =
F[x1, . . . ,xj ]

(x2
1, . . . ,x

2
j)

.
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By Lemma 3.3, the first monomial complete intersection C2k has the weak Lefschetz

property, and in particular the derivative map

DC2k
: (C2k)i → (C2k)i−1 ,

is surjective for all 1 ≤ i ≤ k. Inductively for j > 2k, note that for each 0 ≤ i ≤ k, we have

direct sum decomposition of graded vector spaces

(Cj)i
∼= (Cj−1)i⊕xj · (Cj−1)i−1 ,

and in particular the derivative map in degree k decomposes into block triangular form

DCj : (Cj)i → (Cj)i−1

=

⎛
⎜⎜⎝

DCj−1 : (Cj−1)i → (Cj−1)i−1 I : (Cj−1)i−1 → (Cj−1)i−1

0 DCj−1 : (Cj−1)i−1 → (Cj−1)i−2

⎞
⎟⎟⎠ .

Since the maps

DCj−1 : (Cj−1)i → (Cj−1)i−1

is surjective for all 1≤ i≤ k, it follows that the maps

DCj : (Cj)i → (Cj)i−1

is also surjective for all 1 ≤ i ≤ k. In particular, this argument shows that the derivative

maps D : Ai →Ai−1 must be surjective for all 1≤ i≤ k as well.

(2) ⇒ (3) Obvious.

(3) ⇒ (1) Assume that 0< p< k+1. Then setting i= p≤ k, we claim that D : Ap : Ap−1

cannot be surjective. Indeed, set α ∈Ap to be the pth-elementary symmetric polynomial in

the first 2p−1≤ n−1 variables:

α= ep(x1, . . . ,x2p−1) ∈Ap.

Note first that over a field of characteristic p, we have

D(α) = p · ep−1(x1, . . . ,x2p−1)≡ 0.

On the other hand, we have

α(1, . . . ,1) =

(
2p−1

p

)
=

(2p−1) · · ·(p+1)

(p−1)!
�= 0.

This shows that α∈Pp =ker(D)∩Ap, but α �∈ V (n,p,p) (since every polynomial in V (n,p,p)

necessarily vanishes at any point in which at least p+1-entries are equal). Therefore, by

Lemma 3.2, D : Ap → Ap−1 is not surjective, and hence by [11, Prop. 2.1], D : Ak → Ak−1

cannot be surjective either.

We can also derive a useful result on specialization of Specht modules.
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Lemma 3.5. Assume that p= 0 or p≥ k+1, fix j satisfying 2k ≤ j ≤ n, and set

B =
F[x1, . . . ,xj ]

(x2
1, . . . ,x

2
j)

.

Then

V (j,k,k) = V (n,k,k)∩Bk.

Proof. Containment V (j,k,k) ⊆ V (n,k,k)∩Bk is clear. For the reverse containment,

suppose that α ∈ V (n,k,k)∩Bk. The key observation here is that the restriction of the

derivative map on A, call it DA, to the subspace B ⊂ A is the same as DB. Since α ∈
V (n,k,k) ⊆ PA,k = ker(DA)∩Ak, it follows that DA(α) = 0, and hence also DB(α) = 0.

This means that α ∈ PB,k. From the proof of Lemma 3.4, we deduce that DB : Bk →Bk−1

is surjective, which by Lemma 3.2 implies that α ∈ V (j,k,k), as desired.

As we shall see, the weak Lefschetz property, or lack thereof, can be used to detect

embedded primary components of our Specht-monomial ideals. Next, we shall use the

strong Lefschetz property to decompose our shifted Specht modules into irreducible Sn-

representations.

3.2 Strong Lefschetz property

The pair (A,L) is strong Lefschetz if the restriction of Li to the graded components of

A always has maximal rank, or equivalently if

Ln−2k : Ak →An−k

are isomorphisms for all 0≤ k ≤
⌊
n
2

⌋
. One can show that we have containment

V (n,k,d)⊆ ker
(
Ln−k−d+1

)
∩Ak.

Lemma 3.6. Let p= char(F). The following are equivalent.

1. p= 0 or p≥ n+1,

2. The pair (A,L) is strong Lefschetz.

3. For all integers 0≤ k ≤ d≤ n−k, the shifted Specht modules V (n,k,d)⊂A satisfy

V (n,k,d) =
d⊕

i=k

Ld−i(Pi) = ker
(
Ln−k−d+1

)
∩Ad.

Proof. (1) ⇒ (2). This is due to Ikeda; see [5, Prop. 3.66].

(2) ⇒ (1). Note that if p ≤ n, then we must have Lp = 0, and (A,L) cannot be strong

Lefschetz.

(2) ⇒ (3). If (A,L) is strong Lefschetz then the map

Ln−k−d+1 : Ad →An−k+1,

must have maximal rank, and hence we must have

dim(ker(Ln−k−d+1)∩Ad) = dim(Ad)−dim(An−k+1) =

(
n

d

)
−
(

n

k−1

)
= dim(V (n,k,d)).
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But since we already have containment V (n,k,d)⊆ ker(Ln−k−d+1)∩Ad it must be equality.

It follows that Pi = ker(Ln−2i+1)∩Ai, and hence we have the containment

d⊕
i=k

Ld−i(Pi)⊆ ker(Ln−k−d+1)∩Ad.

Since (A,L) is strong Lefschetz it follows that for each i, Ld−i(Pi)∼= Pi, and hence a simple

dimension count reveals this containment must also be equality.

(3) ⇒ (2). Assume (3) holds, and assume that (2) does not. Fix integer k satisfying

1≤ k ≤
⌊
n
2

⌋
and suppose that α ∈ ker(Ln−2k)∩Ak. Then certainly α ∈ ker(An−2k+1)∩Ak

hence α ∈ Pk by (3). But also according to (3) we have

An−k = V (n,0,n−k) =
n−k⊕
i=0

Ln−k−i(Pi).

On the other hand, if Ln−2k(α) = 0, then dim(Ln−2k(Pk))< Pk, and hence we must have

dim(An−k) =
n−k∑
i=0

dim
(
Ln−k−i(Pi)

)
<

n−k∑
i=0

Pi =

(
n

k

)
,

which is a contradiction. Therefore, (2) must hold after all.

If any one of the conditions in Lemma 3.6 is satisfied, one can show that Ld−i(Pi) ∼=
Pi

∼= V (n,k,k), and hence in this case, we get a decomposition of the shifted Specht module

V (n,k,d) into irreducible Sn-representations.

Corollary 3.7. Let p = char(F), and assume that p = 0 or p ≥ n+ 1. Then the

primitive decomposition of the shifted Specht module is a decomposition into irreducible

Sn-representations:

V (n,k,d)∼=
d⊕

i=k

Ld−i(Pi)∼=
d⊕

i=k

V (n,i, i)[d− i].

Here, a basis for the irreducible component Ld−i(Pi) is

{ed−i(T
c) ·FT | T ∈ Tab(n,i, i)} ,

where ed−i(T
c) is the (d− i)th elementary symmetric polynomial in the variables which are

not in the support of T.

Remark 3.8. In characteristic p = 0, the Littlewood–Richardson rule implies that

the skew representation of Sn associated to the skew diagram λ(d) has the same Sn-

decomposition as in Corollary 3.7, for example (see [7, Th. 5.5]). Hence in this case, it follows

that our shifted Specht module V (n,k,d) is isomorphic to the skew representation of Sn

associated to the skew shape λ(d). We thank the referee for pointing out this connection.

§4. Radical of shifted Specht ideals

Our main idea is principal radical systems, based on the following basic facts from

commutative algebra:

Lemma 4.1. Let I ⊂ R be a homogeneous ideal and x ∈ R \ I be any homogeneous

polynomial of positive degree satisfying (I : x) = (I : x2).
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1. If (I : x) = I and if I+(x) is radical, then I is radical too.

2. If (I : x) �= I and if (I : x) and I+(x) are both radical, then I is radical too.

Proof. Note that I ⊂ I+(x) and if I+(x) is radical we also have
√
I ⊂ I+(x).

Hence, for g ∈
√
I, we can find a ∈ I and b ∈ R such that g = a+xb. Since g ∈

√
I, there

is some integer N for which gN ∈ I, and we have gN = a′+xNbN for some other a′ ∈ I.

Therefore, xNbN ∈ I and hence bN ∈ (I :xN )= (I :x) and therefore, b∈
√
(I : x). If (I :x) �= I

and (I : x) is radical, then xb ∈ I and hence g ∈ I, and we are done. If (I : x) = I, then

b ∈
√
I, and hence we can find a1 ∈ I and b1 ∈ R for which b = a1 + xb1. Looking back

to g, we have g = (a+xa1)+x2b1. Repeating this procedure a number m-times will yield

g = (a+xa1+x2a2+ · · ·+xmam)+xm+1bm, which implies that

g ∈
∞⋂

m=1

I+(xm).

Since x is homogeneous, it follows that
⋂∞

m=1 I+(xm) = I, and the result follows.

An easy application of principal radical systems is the ideal (x1, . . . ,xn)
〈d〉 generated by

square-free monomials of degree d.

Lemma 4.2. For each integer d satisfying 1≤ d≤ n the square-free monomial ideal

(x1, . . . ,xn)
〈d〉

is radical.

Proof. By induction on n≥ 1, the base case being trivial. For the inductive step, assume

that (x1, . . . ,xn−1)
(e) is radical for all 1≤ e≤ n−1, and fix an integer d satisfying 1≤ d≤ n.

Set I =(x1, . . . ,xn)
〈d〉 and x=xn. If d=n then I =(x1 · · ·xn) is principal, and clearly radical,

hence we may assume that 1≤ d≤ n−1. Then we have

(I : x) = (x1, . . . ,xn−1)
〈d−1〉, and I+(x) = (x1, . . . ,xn−1)

〈d〉+(xn),

which are both radical by the induction hypothesis. Also note that (I : x2) = (I : x) since I

is generated by square-free monomials. It therefore follows from Lemma 4.1 that the ideal

I = (x1, . . . ,xn)
〈d〉 is radical.

Applying principal radical systems to Specht ideals requires the following decomposition

of shifted Specht ideals, and is key to the further results of this paper. This is Theorem 1.6

from §1.
Theorem 4.3 (Theorem 1.6). For any integers k,d satisfying 0 ≤ k < d ≤ n− k, we

have

a(n,k,d) = a(n,k,d−1)∩ (x1, . . . ,xn)
〈d〉 = a(n,k,k)∩ (x1, . . . ,xn)

〈d〉. (11)

Before embarking on the proof of Theorem 4.3, we show how to use Theorem 4.3 and

principal radical systems to show that shifted Specht ideals are radical. This is Theorem

1.7 from §1.
Theorem 4.4 (Theorem 1.7). For any integers k,d satisfying 0 ≤ k ≤ d ≤ n− k, the

shifted Specht ideal a(n,k,d) is radical.
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4.1 Shifted Specht ideals are radical

Proof of Theorem 4.4. Assuming that Theorem 4.3 holds, we prove Theorem 4.4 by

induction on n≥ 2. For the base case n= 2, the only possibilities for integers k,d are k = 0

and d= 1,2 and k = 1= d. In the case k = 0, we have a(2,0,d) = (x1,x2)
〈d〉 which is radical

by Lemma 4.5. In the case, k = d= 1 we have a(2,1,1) = ((x1−x2)) is prime, and therefore

radical. For the inductive step, assume that a(n−1, j,e) is radical for all integers satisfying

0 ≤ j ≤ e ≤ n−1− j. Fix integers k,d satisfying 1 ≤ k ≤ d ≤ n−k. First, we argue for the

case d= k. Let I = a(n,k,k) and x= xn. Then by Corollary 2.7 it follows that we have

I+(x) = a(n,k,k)+(xn) = a(n−1,k−1,k)+(xn).

By induction hypothesis, a(n−1,k−1,k) is radical, and since its generators are polynomials

which are independent of xn, it follows that the sum I+(x) is radical. Also using the change

of coordinates map Φ: xi �→ yi in Corollary 2.7 we find that

Φ(I : x) = (Φ(I) : Φ(xn)) = (a(n−1,k−1,k) : xn) = a(n−1,k−1,k) = Φ(I) ,

from which it follows that (I : x) = I. Therefore, it follows from Lemma 4.1 that I = a(n,k,k)

itself must be radical.

For d > k, we appeal again to Theorem 4.3:

a(n,k,d) = a(n,k,d−1)∩ (x1, . . . ,xn)
〈d〉 = a(n,k,k)∩ (x1, . . . ,xn)

〈d〉.

Since a(n,k,k) is radical, and (x1, . . . ,xn)
〈d〉 is radical, it follows that a(n,k,d) is radical

too.

4.2 Decomposition of shifted Specht ideals

The proof of Theorem 4.3 comes in three steps, each of which we state as a lemma. First

some notation: For any exponent vector a = (a1, . . . ,an) ∈ N
n, we denote the associated

monomial by xa = xa1
1 · · ·xan

n , and its radical by
√
xa =

∏
ai>0xi.

Lemma 4.5. The ideal a(n,k,d− 1)∩ (x1, . . . ,xn)
〈d〉 is generated by products of mono-

mials and polynomials in the shifted Specht module V (n,k,d−1). In fact, if the sum of any

monomials times forms in V (n,k,d−1) lies in the intersection a(n,k,d−1)∩(x1, . . . ,xn)
〈d〉,

then so do each of its summands.

Proof. It is not difficult to see that every polynomial P ∈ a(n,k,d−1) decomposes into

a sum of terms of the form

P =
∑
a∈Nn

xa · νa,

where νa ∈ V (n,k,d− 1). We want to show that if P ∈ (x1, . . . ,xn)
〈d〉, then each of its

summands are too, that is, xa · νa ∈ (x1, . . . ,xn)
〈d〉 for all a ∈ N

n. Suppose by way of

contradiction that for some a∈N
n and some νa ∈ V (n,k,d−1) that xa ·νa /∈ (x1, . . . ,xn)

〈d〉.

Since (x1, . . . ,xn)
〈d〉 is a monomial ideal, there must be some monomial xb which appears

in the monomial expansion of xa · νa such that xb /∈ (x1, . . . ,xn)
〈d〉. Define the weight of

monomial xb as wt(xb) =#{bi > 0}. Since (x1, . . . ,xn)
〈d〉 consists of all monomials of weight

at least d, it follows that wt(xb)≤ d−1. On the other hand, since νa is a linear combination

of shifted Specht polynomials of type λ(d), it follows that every monomial in the monomial
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expansion of νa also has weight d−1. This implies that wt(xb) = d−1, and therefore that

xb

√
xb

= xa.

In particular, we see that the monomial xb is unique to the term xa · νa, and hence must

occur with the same coefficient in the monomial expansion of xa · νa as it does in the

monomial expansion of P =
∑

a∈Nn xa ·νa. Therefore P /∈ (x1, . . . ,xn)
〈d〉, as desired.

Lemma 4.5 tells us that it suffices to check Equation (11) in Theorem 4.3 on products of

monomials with V (n,k,d−1). So we want to show that for each ν ∈ V (n,k,d−1) and for

each a ∈ N
n the following implication holds:

xa ·ν ∈ (x1, . . . ,xn)
〈d〉 ⇒ xa ·ν ∈ a(n,k,d).

Note that since (x1, . . . ,xn)
〈d〉 is generated by square-free monomials, we have

xa ·ν ∈ (x1, . . . ,xn)
〈d〉 ⇔

√
xa ·ν ∈ (x1, . . . ,xn)

〈d〉.

In particular, we may assume without loss of generality that our monomials xa are

square-free. For any polynomial F ∈ R define its support to be the set of square-free

monomials which divide some nonzero monomial term of F. For example, given a tableau

T ∈Tab(n,k,d), the support of the shifted Specht polynomial FT (d−1) is the set of square-

free monomials indexed by subsets of numbers in the support of T, no two of which lie in

the same column of T.

Lemma 4.6. For each T ∈ Tab(n,k,d), if xa /∈ supp(FT (d− 1)) then xa ·FT (d− 1) ∈
a(n,k,d).

Proof. If there is a variable xi ∈ supp(xa) which is not in supp(FT (d− 1)), then

certainly xa ·FT (d− 1) ∈ a(n,k,d). Otherwise, there must be two indices i �= j such that

xi,xj ∈ supp(xa) and i, j in the same column of T. Choose any index r �= i, j such that

xr /∈ supp(FT (d−1)), which exists since 0≤ k ≤ d−1< d≤ n−k, and let (i,r),(j,r) ∈Sn

be the transpositions swapping i,r and j,r, respectively. Then we have

FT (d−1) = F(i,r).T (d−1)+F(j,r).T (d−1),

and since xi ·F(i,r).T (d−1),xj ·F(j,r).T (d−1) ∈ a(n,k,d), it follows that

xa ·FT (d−1) ∈ a(n,k,d),

as desired.

Finally, we must show what happens with square-free monomials which do lie in the

support of the shifted Specht polynomials. Here, we use symmetry to make the further

reduction that our square-free monomial is initial, that is,

xa = xm = x1 · · ·xm, for some 1≤m≤ d−1.

Setting V m(n,k,d−1)⊂ V (n,k,d−1) to be the span of shifted Specht polynomials indexed

by standard tableaux T ∈ STab(n,k,d−1) for which {1, . . . ,m} �⊂ supp(T ). Then the shifted

Specht module decomposes into a direct sum

V (n,k,d−1) = Vm(n,k,d−1)⊕V m(n,k,d−1),
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and Lemma 4.6 says xm · ν ∈ a(n,k,d) for every ν ∈ V m(n,k,d− 1). Recall the bijective

linear map

φ : V (n,k,d−1) �� V ([n]m,k−m,d−m),

FT (d)
� �� FT ′(d),

where

T =
1 · · · m im+1 · · · ik ik+1 · · · id−1

id · · · in−k j1 · · · jm jm+1 · · · jk
(12)

and

T ′ =
im+1 · · · ik ik+1 · · · id−1

id · · · in−k j1 · · · jm jm+1 · · · jk
(13)

Lemma 4.7. Fix ν ∈ Vm(n,k,d− 1). If xm · ν ∈ (x1, . . . ,xn)
〈d〉 then ν = 0, and hence

xm ·ν ∈ a(n,k,d).

Proof. We observe that

xm · (ν−xm ·ν′) ∈ (x1, . . . ,xn)
〈d〉,

where ν′ ∈ V ([n]m,k−m,d− 1−m) is the image of ν in the map above. Indeed note

that for each standard tableau T ∈ STabm(n,k,d− 1) as in (12), the support of the

difference FT (d− 1)−xm ·FT ′(d− 1−m) does not contain the monomial xm, hence the

product xm ·(FT (d)−xm ·FT ′(d−1−m))∈ (x1, . . . ,xn)
〈d〉. Hence, if xm ·ν ∈ (x1, . . . ,xn)

〈d〉,

it follows that (xm)
2 · ν′ ∈ (x1, . . . ,xn)

〈d〉, and hence that ν′ ∈
(
(x1, . . . ,xn)

〈d〉 : xm
)
=

(xm+1, . . . ,xn)
(d−m). For degree reasons this implies that ν′ = 0, and hence by Corollary

2.8, ν = 0 as well.

Proof of Theorem 4.3. The containment a(n,k,d)⊂ a(n,k,d−1)∩(x1, . . . ,xn)
〈d〉 is clear.

For the reverse containment, Lemma 4.5 implies that it suffices to check it on products of

monomials with polynomials in V (n,k,d−1). Since (x1, . . . ,xn)
〈d〉 is generated by square-

free monomials we may assume that our monomials are square-free, and by symmetry, we

may assume that our monomial has the form xm = x1 · · ·xm for some integer 1 ≤ m ≤ d.

Then as above we have

V (n,k,d−1) = Vm(n,k,d−1)⊕V m(n,k,d−1),

and by Lemma 4.7, xm ·ν ∈ a(n,k,d) if ν ∈ Vm(n,k,d−1). Furthermore, Lemma 4.6 implies

that for ν ∈ V m(n,k,d−1) if xm ·ν ∈ (x1, . . . ,xn)
〈d〉 then xm ·ν ∈ a(n,k,d), and the result

follows.

§5. Perfection of Specht and Specht-monomial ideals

Recall that an ideal I ⊂R in a commutative ring has projective dimension s if a minimal

resolution of R/I as an R-module has length s. Its grade is the length g of a maximal

R-sequence contained in I, or equivalently the smallest integer g for which the Ext group
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ExtgR(R/I,R) is nonzero. We say that the ideal I ⊂R is perfect if its projective dimension is

equal to its grade. In our case, where R is polynomial (hence Cohen–Macaulay), the grade

of an ideal is equal to its height, and by the Auslander–Buchsbaum formula, I is perfect

if and only if the quotient R/I is Cohen–Macaulay. For more details on these matters we

refer the reader to [10].

As in §4, the main idea here is to use principal radical systems.

Lemma 5.1. Let I ⊂R be any homogeneous ideal and let x ∈R\I be any homogeneous

polynomial of positive degree. Then

1. if (I : x) = I and if I+(x) is perfect, then I is perfect too.

2. if (I : x) �= I and if (I : x) and I +(x) are both perfect of the same grade g, then I is

perfect of that same grade too.

Proof. Item (1) is well known, and can be found in any commutative algebra text, for

example, [10, Th. 17.3]. For (2), we use the long exact sequence for Ext-modules associated

with the short exact sequence of R-modules

0 �� R/(I : x)
×x

�� R/I �� R/I+(x) �� 0.

As in §4, we give an easy application of principal radical systems to the ideal

(x1, . . . ,xn)
〈d〉 generated by square-free monomials of degree d.

Lemma 5.2. For every integer d satisfying 1≤ d≤ n the square-free monomial ideal

(x1, . . . ,xn)
〈d〉

is perfect4 of grade n−d+1.

Proof. By induction on n, where the base case n = 1 is trivial. For the induction step,

assume that (x1, . . . ,xn−1)
〈e〉 is perfect of grade (n−1)− e+1 for every 1≤ e≤ n−1, and

fix an integer d satisfying 1≤ d≤ n. Set I = (x1, . . . ,xn)
〈d〉 and x= xn. Then we have

(I : x) =(x1, . . . ,xn−1)
〈d−1〉 I+(x) = (x1, . . . ,xn−1)

〈d〉+(xn),

which are both perfect of the same grade n−d+1 by our induction hypothesis. It follows

from Lemma 5.1 that I = (x1, . . . ,xn)
〈d〉 is perfect of grade n−d+1 too.

It is trickier to apply Lemma 5.1 to shifted Specht ideals. For one thing, not all shifted

Specht ideals are perfect. Indeed, Theorem 4.3 gives the decomposition

a(n,k,d) = a(n,k,k)∩ (x1, . . . ,xn)
〈d〉.

Individually, the grades (=heights) of the ideals a(n,k,k) and (x1, . . . ,xn)
〈d〉 are g = n−k

and g = n−d+1, respectively. In particular, we see that if d > k+1, then the two ideals

a(n,k,k) and (x1, . . . ,xn)
〈d〉 have mixed heights, and in particular, the shifted Specht ideal

a(n,k,d) cannot be perfect. For d= k+1, we must show that the intersection is perfect:

a(n,k,k+1) = a(n,k,k)∩ (x1, . . . ,xn)
〈d〉.

4 Alternatively, one could also appeal to Reisner’s theorem [13] here, since (x1, . . . ,xn)
〈d〉 is the Stanley–

Reisner ideal of the d−1 skeleton of an n−1 simplex.
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To this end, we appeal to the following basic fact, which appears in the paper [6] by

Hochster–Eagon, and we refer the reader there for its proof.

Lemma 5.3 ([6, Prop. 18]). Suppose that I,J ⊂ R are two perfect ideals of the same

grade g, and assume that I+J has grade g+1. Then I+J is perfect if and only if I ∩J is

perfect.

In the spirit of Lemma 5.3, we study the following sum of ideals, which plays a key role

in this paper.

Definition 5.4. Fix an integer k satisfying 1≤ k < k+1≤ n−k, and define the Specht-

monomial ideal for the pair (k,n) to be the sum of ideals

I(n,k) = a(n,k,k)+(x1, . . . ,xn)
〈k+1〉. (14)

It turns out that perfection of Specht-monomial ideals depends on the characteristic

of the field F. What is perhaps surprising is that this dependence on characteristic is

the same as the dependence on characteristic of the weak Lefschetz property of certain

Artinian monomial complete intersections. This is captured in the following result which is

Theorem 1.8 from §1. Recall our notational conventions: we denote by (z1, . . . , zm)
〈q〉

the

ideal generated by square-free monomials in the variables z1, . . . , zm of degree q.

Theorem 5.5 (Theorem 1.8). Let p=char(F)≥ 0 and fix positive integers n,k satisfying

n≥ 2k+1. Then the following conditions are equivalent.

1. p= 0 or p≥ k+1.

2. The quadratic monomial complete intersection

C =
F[x1, . . . ,x2k]

(x2
1, . . . ,x

2
2k)

has the weak Lefschetz property.

3. The Specht monomial ideal I(n,k) satisfies

I(n,k) =I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
, (15)

where yi = xn−xi for 1≤ i≤ n−1.

4. The Specht-monomial ideal I(n,k) is perfect.

As in §1, we shall break the proof into three parts, one for each equivalence (1) ⇔ (a)

and refer to it as Theorem 5.5(a) for a = 2,3,4. Recall that Theorem 5.5(2) follows from a

result of Kustin–Vraciu [8], and we do not prove it here; see §3, particularly Lemmas 3.3

and 3.4. Hence to prove Theorem 5.5, it suffices to prove the two equivalences Theorems

5.5(3) and 5.5(4). Theorem 5.5(3) is the key technical result of this section, and it yields a

primary decomposition of the Specht-monomial ideal. We use it to prove Theorem 5.5(4),

which we shall then use in turn to prove the following result which is Theorem 1.2 from §1.

Theorem 5.6 (Theorem 1.2). Let p=char(F)≥ 0 and fix positive integers n,k satisfying

n≥ 2k+1.

1. If p= 0 or p≥ k+1, then the Specht ideal a(n+1,k+1,k+1) is perfect.

2. If n≥ 2p+1, then the Specht ideal a(n+1,p+1,p+1) is not perfect.
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The proof of Theorem 5.5(3) is given at the end. The next subsection is devoted to the

proof of Theorem 5.5(4), assuming the truth of Theorem 5.5(3).

5.1 Specht-monomial ideals are perfect

Assuming that Theorem 5.5(3) holds, we prove Theorem 5.5(4), focusing first on the

implication (1) ⇒ (2) first. Assuming that p= 0 or p≥ k+1, Theorem 5.5(3) says that for

all 1≤ k < k+1≤ n−k the Specht-monomial ideal satisfies (15):

I(n,k) = I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
.

We need the following Lemma, which tells us how to go between x -variables and y-

variables, and provides a direct link to Lefschetz properties from §3.

Lemma 5.7. Let P j(x1, . . . ,xn−1) be any square-free polynomial of degree j in the

variables x1, . . . ,xn−1. Then modulo the principal ideal (x2
n) we have

P j(x1, . . . ,xn−1)≡(−1)j
(
P j(y1, . . . ,yn−1)−xn ·D

(
P j(y1, . . . ,yn−1

))
mod (x2

n),

where D is the linear partial differentiation operator D =
∂

∂y1
+ · · ·+ ∂

∂yn−1
. In particular,

if α = α(x1, . . . ,xn−1) ∈ V (n−1,k−1,k−1) is a linear combination of Specht polynomials

then

α(x1, . . . ,xn−1) = (−1)k−1 ·α(y1, . . . ,yn−1).

Proof. By linearity of D it suffices to assume that P j is a square-free monomial, and by

symmetry, we may assume is P j(x1, . . . ,xn−1) = x1 · · ·xj . Then we have

P j(x1, . . . ,xn−1) = x1 · · ·xj = (xn−y1) · · ·(xn−yj)

= x2
n · (stuff)+(−1)j−1 ·xn

(
j∑

i=1

y1 · · · ŷi · · ·yj

)
+(−1)j ·y1 · · ·yj

(where ŷ means omission)

= (−1)j (y1 · · ·yj −xnD (y1 · · ·yj))+x2
n · (stuff)

≡ (−1)j
(
P j(y1, . . . ,yn−1)−xnD

(
P j(y1, . . . ,yn−1)

))
mod (x2

n),

as claimed. The second statement follows from the first since D(α) = 0.

Next, for each pair of positive integers n,k satisfying n≥ 2k+1 let us form the new ideal

J(n,k) = I(n−1,k−1)+(y1, . . . ,yn−1)
〈k〉+(x2

n). (16)

Lemma 5.8. Assume that p= 0 or p≥ k+1. Then the ideal J(n,k) satisfies

J(n,k)+(xn) = I(n−1,k−1)+(xn), and (J(n,k) : xn) = (x1, . . . ,xn−1)
〈k−1〉+(xn).

Proof. We have

J(n,k)+(xn) = I(n−1,k−1)+(y1, . . . ,yn−1)
〈k〉+(x2

n)+(xn)

= a(n−1,k−1,k−1)+(x1, . . . ,xn−1)
〈k〉+(y1, . . . ,yn−1)

〈k〉+(xn)

= a(n−1,k−1,k−1)+(x1, . . . ,xn−1)
〈k〉+(xn)

= I(n−1,k−1)+(xn).
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For the other equality, note first that containment (J(n,k) : xn) ⊇ (x1, . . . ,xn−1)
〈k−1〉 +

(xn) = (y1, . . . ,yn−1)
〈k−1〉 + (xn) follows from Lemma 5.7. Indeed identifying the

space of square-free polynomials with the monomial complete intersection B =

F[x1, . . . ,xn−1]/(y
2
1, . . . ,y

2
n−1), Lemma 3.4 implies that the derivative map D : Bk →Bk−1 is

surjective, and hence for any square-free monomial of degree k−1 in variables y1, . . . ,yn−1,

say P = y1 · · ·yk−1, we know by Lemma 3.4 there is square-free polynomial of degree k for

which

D(Q(y1, . . . ,yn−1)) = P (y1, . . . ,yn−1) = y1 · · ·yk−1.

Then Lemma 5.7 implies that

P ·xn = y1 · · ·yk−1 ·xn = xn ·D (Q(y1, . . . ,yn−1))

≡Q(x1, . . . ,xn−1)±Q(y1, . . . ,yn−1) mod (x2
n).

Since Q(x1, . . . ,xn−1) ∈ I(n−1,k−1) and Q(y1, . . . ,yn−1) ∈ (y1, . . . ,yn−1)
〈k〉, it follows that

xn ·P = xn ·D(Q(y1, . . . ,yn−1)) ∈ J(n,k), and hence P = y1 · · ·yk−1 ∈ (J(n,k) : xn). For the

reverse containment, fix G ∈ (J(n,k) : xn). Then for each S ∈ STab(n−1,0,k) there exists

polynomials dS ∈R for which

xnG−
∑

S∈STab(n−1,0,k)

dSMS ∈ I(n−1,k−1)+(x2
n),

where MS = MS(y1, . . . ,yn−1) ∈ (y1, . . . ,yn−1)
〈k〉 are square-free monomials of degree k in

the y-variables. By Lemma 5.7, we have for each S ∈ STab(n−1,0,k)

MS(y1, . . . ,yn−1)≡± (MS(x1, . . . ,xn−1)−xnD(MS(x1, . . . ,xn−1))) mod (x2
n),

and since MS(x1, . . . ,xn−1) ∈ (x1, . . . ,xn−1)
〈k〉 ⊂ I(n−1,k−1), we see that

xnG−
∑

S∈STab(n−1,0,k)

dSMS(y1, . . . ,yn−1)≡ xnG−
∑

S∈STab(n−1,0,k)

dSxnD(MS(y1, . . . ,yn−1))

≡ 0 mod I(n−1,k−1)+(x2
n).

Since xn is a nonzero divisor for I(n−1,k−1), it follows that

G−
∑

S∈STab(n−1,0,k)

dSD(MS(x1, . . . ,xn−1)) ∈ I(n−1,k−1)

+(xn)⊂ (x1, . . . ,xn−1)
〈k−1〉+(xn),

and since D(MS(x1, . . . ,xn−1))∈ (x1, . . . ,xn−1)
〈k−1〉 for all S ∈ STab(n−1,0,k), we see also

that G ∈ (x1, . . . ,xn−1)
〈k−1〉+(xn), as desired.

We are now in a position to prove implication (1) ⇒ (2) in Theorem 5.5(4).

Proof of (1) ⇒ (2) in Theorem 5.5(4). Assume that p = 0 or p ≥ k+1. We prove by

induction on n≥ 3 for each integer k satisfying 1≤ k < k+1≤ n−k then the ideal I(n,k) is

perfect. The base case is n=3 where the only possible k value is k=1. Here, the assumption

on p is vacuous, and we have

I(3,1) =a(3,1,1)+(x1,x2,x3)
〈2〉 = (x1−x3,x2−x3,x1x2,x1x3,x2x3).
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Note that F[x1,x2,x3]/I(3,1)∼= F[z]/(z2) is Cohen–Macaulay, which implies that I(3,1) is

perfect of grade n−k+1 = 3.

For the inductive step, assume that I(n− 1, j) is perfect for all integers j satisfying

1 ≤ j < j+1 ≤ n− 1− j. Fix k satisfying 1 ≤ k < k+1 ≤ n− k, and consider the Specht-

monomial ideal

I(n,k) = a(n,k,k)+(x1, . . . ,xn)
〈k+1〉.

Consider the sum J(n,k) as in (16), that is,

J(n,k) = I(n−1,k−1)+(y1, . . . ,yn−1)
〈k〉+(x2

n).

Note that I(n−1,k−1) is perfect by the induction hypothesis. Also (y1, . . . ,yn−1)
〈k〉+(x2

n) is

perfect since (y1, . . . ,yn−1)
〈k〉 is perfect (by Lemma 5.2), and x2

n is (y1, . . . ,yn−1)
〈k〉-regular.

Therefore, by Lemma 5.3, I(n,k) is perfect if and only if J(n,k) is perfect. But according to

Lemma 5.8 J(n,k)+ (xn) = I(n−1,k−1)+(xn) and (J(n,k) : xn) = (x1, . . . ,xn−1)
〈k−1〉+

(xn) which are both perfect of the same grade g = n−k+2, and hence by Lemma 5.2, it

follows that J(n,k) is also perfect (of grade g = n− k+2). Thus it follows that I(n,k) is

perfect completing the induction step, and hence the proof.

Next, we prove the reverse implication (2) ⇒ (1) in Theorem 5.5(4) which also requires

a bit of a set up. First note that Theorem 5.5(3) implies that if p = 0 or p ≥ k+1, then

I(n,k) has the following irredundant primary decomposition:

I(n,k) = a(n,k,k)+(x1, . . . ,xn)
〈k+1〉 =

⋂
σ∈Sn

σ.
(
x1−x2, . . . ,x1−xn−k+1,x

2
1

)︸ ︷︷ ︸
Qσ

. (17)

Note that for σ = e, we have Qe = a(n−k+1,1,1)+ (x1, . . . ,xn−k+1)
〈2〉; in particular, Qe

contains all quadratic forms in the variables x1, . . . ,xn−k+1.

Lemma 5.9. Over any field F, and for any positive integers n,k satisfying n ≥ 2k+1,

if I(n,k) is perfect then I(n,k) must satisfy the decomposition (17).

Proof. Assume that I(n,k) is perfect, and consider the intersection of primary ideals as

in (17), that is,

I ′(n,k) =
⋂

σ∈Sn

Qσ,

with minimal associated prime divisors given by

Pσ =
√

Qσ = σ.(x1, . . . ,xn−k+1) .

We would like to show that I(n,k) = I ′(n,k). Note first that they have the same radical:√
I ′(n,k) =

⋂
σ∈Sn

Pσ = (x1, . . . ,xn)
〈k〉 =

√
I(n,k). (18)

For the last equality, the containment I(n,k) ⊆ (x1, . . . ,xn)
〈k〉 is clear, and the other

containment follows from the containment:

x2
i1 · · ·x

2
ik
= xi1 · · ·xik ·FT +

(
stuff in (x1, . . . ,xn)

〈k+1〉
)
∈ I(n,k),
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where

T =
i1 · · · ik

ik+1 · · · in−k j1 · · · jk

It follows that {Pσ | σ ∈Sn} is a complete list of minimal prime divisors of I(n,k), which

implies Equation (18).

Set I ′ = I ′(n,k) and I = I(n,k). Suppose that a primary decomposition of I is given by

I = U1∩ · · · ∩Um. Since I is perfect, all of its associated prime divisors must be minimal,

and hence the primary components must be indexed by the symmetric group and we can

write

I =
⋂

σ∈Sn

Uσ,

where
√
Uσ = Pσ. Fix σ ∈Sn, and set U =Uσ, P = Pσ, and Q=Qσ. We want to show that

Uσ = Qσ. Let RP be the polynomial ring R = F[x1, . . . ,xn] localized at the prime ideal P.

By a theorem of Nagata [12, Th. 8.7] we have

U = IRP ∩R and Q= JRP ∩R.

We prove that in the local ring RP , the ideals are equal IRP = JRP . Certainly because

of the containment I ⊆ J , we have also IRP ⊆ JRP . In the other direction, we observe

that JRP = QRP . Without loss of generality we may assume that σ = e, and Q = (x1−
x2, . . . ,x1−xn−k+1,x

2
1). For each pair 1 ≤ r < s ≤ n− k+1 we may choose 1 ≤ i1 < · · · <

ik−1 ≤ n−k+1 such that r,s /∈ {i1, . . . , ik−1} and setting ji = n−k+1+ i define the tableau

T =
i1 · · · ik−1 r

ik+1 · · · in−k j1 · · · jk−1 s

Then in the local ring RP the Specht polynomial FT ∈ I has the form FT = u · (xr −xs)

where u ∈RP is a unit. Also consider the monomial

MS = xn−k+2 · · ·xn ·xr ·xs ∈ (x1, . . . ,xn)
〈k〉 ⊂ I.

Then in the local ring RP it has the form M =w ·xr ·xs where w ∈RP is a unit. Therefore,

the generators of QRP satisfy (xr−xs)∈ IRP and xr ·xs ∈ IRP it follows that QRP ⊂ IRP

and hence that JRP ⊂ IRP , as desired.

In particular Lemma 5.9 implies that if the Specht-monomial ideal I(n,k) is not perfect

then it must have an embedded prime divisor. On the other hand, note that the Specht

ideal a(n+1,k+1,k+1) cannot have embedded prime divisors since it is always radical.

This indicates that detecting imperfection in Specht ideals is more subtle than in Specht-

monomial ideals, and offers some excuse for the disparity between the statements of

Theorems 5.5(4) and 5.6. We are now in a position to prove the other implication of

Theorem 5.5(4).
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Proof of (2) ⇒ (1) in Theorem 5.5(4). Assume that p satisfies 0< p < k+1. We show

that I(n,k) is not perfect by showing it does not satisfy Decomposition (17), or equivalently

that

a(n,k,k)+(x1, . . . ,xn)
〈k+1〉︸ ︷︷ ︸

I(n,k)

�= a(n−1,k−1,k−1)+(x1, . . . ,xn−1)
〈k〉︸ ︷︷ ︸

I(n−1,k−1)

∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
. (19)

We identify the space of square-free x -monomials with the monomial complete intersection

B = F[x1, . . . ,xn−1]/(x
2
1, . . . ,x

2
n−1) and D =DB = ∂

∂x1
+ · · ·+ ∂

∂xn−1
the associated lowering

operator. From our assumptions on p, Lemma 3.4 implies that the derivative map

D : Bk →Bk−1 is not surjective, and hence (by Lemma 3.2), V (n−1,k,k) = ker(D)∩Bk. In

particular, there must exist a square-free polynomial of degree k, say f = f(x1, . . . ,xn−1) ∈
(x1, . . . ,xn−1)

〈k〉 with the property that D(f) = 0 but f /∈ V (n−1,k,k). Since D(f) = 0, we

deduce from Lemma 5.7 that

f(x1, . . . ,xn−1)≡ f(y1, . . . ,yn−1)≡ 0 mod (y1, . . . ,yn−1)
〈k〉+(x2

n).

Therefore, f ∈ I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
. On the other hand, since f /∈ V (n−

1,k,k) it follows from Lemma 3.5 that f /∈ V (n,k,k) either, and it follows that f /∈ I(n,k).

This shows that Inequality (19) holds, and hence by Lemma 5.9, the Specht-monomial ideal

I(n,k) is not perfect.

5.2 Specht ideals are perfect

We are now in a position to prove Theorem 5.6.

Proof of Theorem 5.6. First assume that p = 0 or p ≥ k+1. We prove by induction on

n≥ 3 that for each integer k satisfying 1≤ k < k+1≤ n−k, and each i satisfying 1≤ i≤ k

the Specht ideal a(n+1, i+1, i+1) is perfect. First, recall that Corollary 2.7 says the change

of coordinates map Φ gives a ring isomorphism

a(n+1, i+1, i+1)∼= a(n,i, i+1) = a(n,i, i)∩ (x1, . . . ,xn)
〈i+1〉,

where the second equality follows from Theorem 4.3.

For the base case n= 3 and the only possible k = 1 gives

a(4,2,2)∼= a(3,1,2) = a(3,1,1)∩ (x1,x2,x3)
〈2〉.

Note that a(3,1,1) and (x1,x2,x3)
〈2〉 are both perfect of grade g = 2 Also note that the

Specht-monomial ideal I(3,1) = a(3,1,1)+(x1,x2,x3)
〈2〉 has grade g+1= 3 and its quotient

F[x1,x2,x3]

I(3,1)
∼= F[z]

(z2)

is Cohen–Macaulay. Therefore, I(3,1) is perfect and hence by Lemma 5.3, so is a(4,2,2).

For the inductive step, assume that a(n,i, i) is perfect for every 1≤ i≤ k. We have

a(n+1, i+1, i+1)∼= a(n,i, i)∩ (x1, . . . ,xn)
〈i+1〉.
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Also note that since 1 ≤ i < i+1 ≤ k+1 ≤ n−k ≤ n− i, Theorem 5.5(4) implies that the

Specht-monomial ideal

I(n,i) = a(n,i, i)+(x1, . . . ,xn)
〈i+1〉

is perfect of grade g+1 = n− i+1. Since a(n,i, i) and (x1, . . . ,xn)
〈i+1〉 are both perfect

of grade g = n− i. Then it follows from Lemma 5.3 that a(n+1, i+1, i+1) ∼= a(n,i, i)∩
(x1, . . . ,xn)

〈i+1〉 is also perfect. This proves implication (1).

For (2), assume that n≥ 2p+1. By (1), we see that a(n,p,p) is perfect. Also (x1, . . . ,xn)
〈p〉

is perfect by Lemma 5.2. Therefore, by Lemma 5.3, it follows that the Specht ideal a(n+

1,p+1,p+1) and the Specht-monomial ideal I(n,p) are perfect or not, alike. But Theorem

5.5(4) implies that the Specht-monomial ideal

I(n,p) = a(n,p,p)+(x1, . . . ,xn)
〈p+1〉

is not perfect, and hence the Specht-monomial ideal a(n+1,p+1,p+1) is not perfect either.

Conjecture 5.10. If p= char(F) and n,k are positive integers satisfying 0< p< k+1

and n≥ 2k+1, then the Specht ideal a(n+1,k+1,k+1) is not perfect.

Conjecture 5.10 is true for p = k by Theorem 5.6(2), but, as of the writing of this

manuscript, it remains open for 0 < p < k. Conjecture 5.10 together with Theorem 5.6

establish the following conjecture of Yanagawa [17, Conj. 5.5]:

Conjecture 5.11 [17]. Fix a field F with p = charF and fix positive integers n,k

satisfying n≥ 2k+1. Then the following are equivalent:

1. p≥ 0 or p≥ k+1.

2. The Specht ideal a(n+1,k+1,k+1) is perfect.

Example 5.12. Taking p=2, Theorem 5.6 says that a(n+1,3,3) is not perfect for every

n≥ 5, a result also obtained by Yanagawa [17, Th. 5.3]. For example if n= 5, then a(6,3,3)

is not perfect, and one obstruction to perfection is the elementary symmetric polynomial

α= e2(x1, . . . ,x4) which lies in the intersection

e2(x1, . . . ,x4) ∈a(4,1,1)∩
(
(y1, . . . ,y4)

〈2〉+(x2
5)
)
=

⋂
σ∈S5

σ.(x1−x2,x1−x3,x1−x4,x
2
1),

but e2(x1, . . . ,x4) /∈ I(5,2). This indicates that the Specht-monomial ideal I(5,2) must

have an embedded prime divisor in characteristic p = 3, which does not appear in higher

characteristics. Macaulay2 [3] reveals that the primary decomposition of I(5,2) over the

field F= Z/2Z is

I(5,2) =
⋂

σ∈S5

σ.(x1−x2,x1−x3,x1−x4,x
2
1)∩Q,

where Q is primary and satisfies (x2
1, . . . ,x

2
5) ⊆ Q; in particular the maximal ideal m =

(x1, . . . ,x5) is an associated prime divisor of the Specht-monomial ideal I(5,2) = a(5,2,2)+

(x1, . . . ,x5)
〈3〉 in characteristic p = 2. Since a(5,2,2) and (x1, . . . ,x5)

〈3〉 are both perfect

of grade g = 3 in characteristic p = 2 (and all characteristics), we deduce that a(6,3,3) ∼=
a(5,2,3) = a(5,2,2)∩ (x1, . . . ,x5)

〈3〉 is also not perfect by Lemma 5.3.

Similarly, for p = 3, Theorem 5.6 implies that a(n+1,4,4) is not perfect for n ≥ 7 in

characteristic p = 3. For example if n = 7 then a(8,4,4) is not perfect, and, as in the
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previous case, one can see that the Specht-monomial ideal I(7,3) has an extra primary

component that contains all the squared variables. Conjecture 5.10 would imply that, for

example, a(n+1,5,5) is not perfect for all n ≥ 9 in characteristic p = 3. Computations in

Macaulay2 [3] show that a(10,5,5) is indeed not perfect, supporting this claim.

5.3 Decomposition of Specht-monomial ideals

The proof of Theorem 5.5(3) is surprisingly similar to that of Theorem 4.3, and it too

comes by way of several lemmas. We want to show that for every 1≤ k < k+1≤ n−k the

Specht-monomial ideal I(n,k) = a(n,k,k)+(x1, . . . ,xn)
〈k+1〉 satisfies

I(n,k) = I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
.

Of course there is an assumption about characteristic here, but we will not assume it yet,

and try to point out exactly where we need it.

Lemma 5.13. Assume that 1≤ k < k+1≤ n−k. Then

I(n,k)⊆ I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
.

Proof. Certainly, we have that a(n,k,k)⊂ a(n−1,k,k)⊂ a(n−1,k−1,k−1), and also

(x1, . . .xn)
〈k+1〉 ⊂ (x1, . . . ,xn−1)

〈k〉, hence I(n,k)⊂ I(n−1,k−1) (if k= 1, we should regard

I(n−1,0) as R). It remains to see why I(n,k)⊂ (y1, . . . ,yn−1)
〈k〉+(x2

n). For T ∈ STab(n,k,k)

we have

F k
T (x1, . . . ,xn) = (xi1 −xj1) · · ·(xik −xn)

= (yj1 −yi1) · · ·(yjk−1
−yik−1

) · (−yi) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n).

For S ∈ STab(n,0,k+1), if xn ∈ supp(Mk+1
S ) then Mk+1

S = xn ·Mk
S′ for S′ ∈ STab(n−1,0,k)

and by Lemma 5.7, we have

Mk
S′(x1, . . . ,xn−1) =Mk

S′(y1, . . . ,yn−1)+xn ·D(Mk
S′(y1, . . . ,yn−1)) mod (y1, . . . ,yn−1)

〈k〉.

It follows that Mk+1
S = xn ·Mk

S′ ∈ (y1, . . . ,yn−1)
〈k〉 + (x2

n). If xn /∈ supp(Mk+1
S ), then

it is obvious that Mk+1
S ∈ (y1, . . . ,yn−1)

〈k〉 + (x2
n). Hence I(n,k) ⊆ I(n − 1,k − 1) ∩(

(y1, . . . ,yn−1)
〈k〉+(x2

n)
)
, as desired.

We have added a superscript to our notation for the shifted Specht polynomials to help

the reader remember degrees. The other containment

I(n,k)⊇ I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)

(20)

is harder to prove.

Note that the ideal I(n− 1,k− 1) is generated in degrees k− 1 and k by the following

subspaces of forms:

V = V (n−1,k−1,k−1) =
〈
F k−1
T | T ∈ STab(n−1,k−1,k−1)

〉
U = U(n−1,k−1,k)

=
〈
xnF

k−1
T | T ∈ STab(n−1,k−1,k−1)

〉
+
〈
Mk

S | S ∈ STab(n−1,0,k)
〉

= xn ·V (n−1,k−1,k−1)+V (n−1,0,k).
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Wemake some preliminary observations, but first some notation. Denote by N
n(m) the set of

exponent vectors of degree, that is, a= (a1, . . . ,an) with a1+ · · ·+an =m. A monomial in the

y-variables (resp., the x -variables) will be denoted by ya = ya1
1 · · ·yan

n (resp. xa = xa1
1 · · ·xan

n ),

and its radical is the square-free monomial
√
ya =

∏
ai>0 yi. We also define the weight of a

monomial to be wt(ya) = #{ai > 0}, the number of nonzero entries in its exponent vector.

Lemma 5.14. With U and V as above, we have

1. xn ·V ⊆ U ,

2. xn ·U ⊆ I(n,k), and

3. for every P ∈ I(n−1,k−1), and for all exponent vectors a∈N
n−1(m) and b∈N

n−1(m−
1), there exists elements νa ∈ V and μb ∈ U such that

P ≡
∑

a∈Nn−1(m)

yaνa+
∑

b∈Nn−1(m−1)

ybμb mod I(n,k). (21)

Proof. (1) is obvious from the definitions. For (2), note that for S ∈ STab(n−1,0,k−1),

xn ·Mk
S ∈ V (n,0,k+1)⊂ I(n,k). Also for T ∈ STab(n−1,k−1,k−1) and for index 1≤ i≤

n−1 such that i /∈ supp(T ), which exists because n−1≥ 2k > 2(k−1), we have

x2
n ·F k−1

T = xn(xn−xi) ·F k−1
T +xnxi ·F k−1

T ,

and since (xn−xi) ·F k−1
T ∈ V (n,k,k) and xnxi ·F k−1

T ∈ V (n,0,k+1), it follows that x2
n ·

F k−1
T ∈ I(n,k), and (2) follows. Finally fix a homogeneous polynomial P ∈ I(n− 1,k−

1). Then for each T ∈ STab(n− 1,k− 1,k− 1) and each S ∈ STab(n− 1,0,k), there exist

polynomials, which we may take in the y-variables, gT (y) of degree m and hS(y) of degree

m−1 for which

P =
∑

T∈STab(n−1,k−1,k−1)

gT (y) ·F k−1
T +

∑
S∈STab(n−1,0,k)

hS(y) ·MS .

Writing gT (y) = g0T (y1, . . . ,yn−1) + xng
1
T (y1, . . . ,yn−1) + x2

ng
2
T (y) and also hS(y) =

h0
S(y1, . . . ,yn−1)+xnh

1
S(y), it follows from (2) that x2

ng
2
T (y) ·F k−1

T ∈ I(n,k), xnh
1
S(y) ·Mk

S ∈
I(n,k), and also that xng

1
T (y1, . . . ,yn−1) ·F k−1

T ∈ U . Then taking monomial expansions,

reversing orders of summations, and grouping like monomial terms, we get

P ≡
∑

T∈STab(n−1,k−1,k−1)

∑
a∈Nn−1(m)

c0T (a)y
a ·F k−1

T

+
∑

T∈STab(n−1,k−1,k−1)

∑
b∈Nn(m−1)

c1T (b)y
b ·xnF

k−1
T

+
∑

S∈STab(n−1,0,k)

∑
b∈Nn(m−1)

d0S(b)y
b ·MS

=
∑

a∈Nn(m)

ya ·

⎛
⎝ ∑

T∈STab(n−1,k−1,k−1)

c0T (a)F
k−1
T

⎞
⎠+

∑
b∈Nn−1(m−1)

yb

·

⎛
⎝ ∑

T∈STab(n−1,k−1,k−1)

c1T (b)F
k−1
T +

∑
S∈STab(n−1,0,k)

d0S(b)M
k
S

⎞
⎠ mod I(n,k),

and (3) follows.
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The following Lemma is analogous to Lemma 4.5 in §4.

Lemma 5.15. If P ∈ I(n− 1,k− 1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
is expressed as in (21),

then each of its monomial summands must lie in (y1, . . . ,yn−1)
〈k〉 + (x2

n) is too, that is,

ya ·μa ∈ (y1, . . . ,yn−1)
〈k〉 +(x2

n) and yb · νb ∈ (y1, . . . ,yn−1)
〈k〉 +(x2

n) for all a ∈ N
n−1(m)

and b ∈ N
n−1(m−1).

Proof. By Lemma 5.14, we may write

P =
∑

a∈Nn−1(m)

yaνa

︸ ︷︷ ︸
P1

+
∑

b∈Nn−1(m−1)

ybμb

︸ ︷︷ ︸
P2

+P3

for some νa ∈V , some μb ∈U , and some P3 ∈ I(n,k). Next note that if P ∈ (y1, . . . ,yn−1)
〈k〉+

(x2
n) then both P1 ∈ (y1, . . . ,yn−1)

〈k〉+(x2
n) and P2 ∈ (y1, . . . ,yn−1)

〈k〉+(x2
n). Indeed, note

that in their respective y-monomial expansions, those monomials in P1 are all independent

of yn, whereas all monomials in the y-monomial expansion of P2 are either divisible by

yn = xn, or in (y1, . . . ,yn−1)
〈k〉+(x2

n) already, by Lemma 5.7.

For the monomial products in P1 we assume by way of contradiction that ya · νa /∈
(y1, . . . ,yn−1)

〈k〉+(x2
n) for some a ∈N

n−1. Then since (y1, . . . ,yn−1)
〈k〉+(x2

n) is a monomial

ideal, it follows that in the y-monomial expansion of yaνa, there must be some monomial say

yd which is not in (y1, . . . ,yn−1)
〈k〉+(x2

n). Since yaνa is independent of xn, so is yd. Since

(y1, . . . ,yn−1)
〈k〉 consists of all y-monomials of weight at least k, it follows that wt(yd) ≤

k− 1. On the other hand, every y-monomial in the monomial expansion of νa has weight

equal to k−1, hence it follows that wt(yd) = k−1. But then we can deduce, as in the proof

of Lemma 4.5, that

yd√
yd

= ya,

and hence the exponent vector d uniquely determines the exponent vector a. This implies

that yd occurs with the same coefficient in the monomial expansion of the term yaνa as it

does in the entire sum

P1 =
∑

a∈Nn−1(m)

yaνa,

contradicting the fact that P1 ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n). The argument for P2 is similar.

Lemma 5.15 says that to check the containment

I(n,k)⊇ I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
,

it suffices to check on products of monomials and forms in either V or U, that is, for any

a,b ∈ N
n−1 and for any ν ∈ V and any μ ∈ U

yaν ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n)⇒ yaν ∈ I(n,k), (22)

ybμ ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n)⇒ ybμ ∈ I(n,k). (23)

The next lemma verifies implications (22) and (23) in the special case where a,b= 0. This

seems to be where we need our assumptions on p.
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Lemma 5.16. Fix ν ∈ V (n − 1,k − 1,k − 1) and μ ∈ U(n − 1,k − 1,k). If ν ∈
(y1, . . . ,yn−1)

〈k〉+(x2
n) then ν = 0. If p = 0 or p ≥ k+1 and if μ ∈ (y1, . . . ,yn−1)

〈k〉+(x2
n)

then μ ∈ a(n,k,k)⊂ I(n,k).

Proof. The first statement for ν is obvious for degree reasons. For the second statement,

we can write μ = μ(x1, . . . ,xn) = xnα+ β for polynomials α = α(x1, . . . ,xn−1) ∈ Vx(n−
1,k−1,k−1) and β = β(x1, . . . ,xn−1) ∈ Vx(n−1,0,k). Here, it is important to distinguish

between polynomials in x -variables and those in the y-variables, hence we adopt the notation

Vx(m,j,j) and Vy(m,j,j) to denote the F-span of Specht polynomials in the x -variables

and y-variables, respectively; note that if m≤ n−1 these two subspaces coincide.

Consider inclusions of monomial complete intersections, B ⊂A defined in the y-variables

by:

B =
F[y1, . . . ,yn−1]

(y21, . . . ,y
2
n−1)

↪→A=
F[y1, . . . ,yn]

(y21, . . . ,y
2
n)

,

and let LB,DB,HB, and LA,DA,HA be their respective raising, lowering, and semi-simple

operators, respectively, as in §3. Then since p= 0 or p≥ k+1, Lemma 3.4 implies that the

lowering maps for B and A,

DB : Bk →Bk−1, and DA : Ak →Ak−1

are both surjective, which by Lemma 3.2 is equivalent to their primitive subspaces PB,k =

ker(DB)∩Bk and PA,k = ker(DA)∩Ak satisfying

PB,k = Vy(n−1,k,k), and PA,k = Vy(n,k,k).

We identify B (resp. A) with the subspace spanned by square-free monomials in variables

y1, . . . ,yn−1 (resp. y1, . . . ,yn).

Then if μ= xnα(x1, . . . ,xn−1)+β(x1, . . . ,xn−1) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n), by Lemma 5.7,

we have

μ≡(−1)k−1xn (α(y1, . . . ,yn−1)+DB(β(y1, . . . ,yn−1)))≡ 0 mod (y1, . . . ,yn−1)
〈k〉+(x2

n),

(24)

(note that DB(α(y1, . . . ,yn−1)) = 0 and β(y1, . . . ,yn−1) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n) automati-

cally). Dividing by xn in (24), we see that

α(y1, . . . ,yn−1)+DB(β(y1, . . . ,yn−1)) ∈ ((y1, . . . ,yn−1)
〈k〉+x2

n) : xn = (y1, . . . ,yn−1)
〈k〉+(xn),

which, for degree reasons, implies that

α(y1, . . . ,yn−1)+DB(β(y1, . . . ,yn−1)) = 0.

Therefore, βy = β(y1, . . . ,yn−1) ∈ Bk is a square-free polynomial in y1, . . . ,yn−1 such that

DB(βy) =−αy ∈ V (n−1,k−1,k−1) = PB,k−1. Applying the commutator relation

[DB,LB] =HB,

to αy = α(y1, . . . ,yn−1), we find that

DB ◦LB (αy) =H (αy) = (n−1−2(k−1)) ·αy,
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which implies that

μB(y1, . . . ,yn−1) := LB (αy)+(n−2k+1) ·βy ∈ PB,k = Vy(n−1,k,k). (25)

Note that Equation (25) also implies that μB := μB(x1, . . . ,xn−1) ∈ Vx(n−1,k,k). We can

also apply the commutator relations for those operators on A. Note that the restriction of

DA =DB +∂/∂yn to B is DB, and that by Lemma 3.5, we have

Vy(n−1,k,k) = Vy(n,k,k)∩Bk.

It follows that DA(βy) = DB(βy) = −αy ∈ Vy(n− 1,k− 1,k− 1) ⊂ Vy(n,k− 1,k− 1), and

hence applying the commutator relation

[DA,LA] =HA,

to DA(βy) =−αy we also find that

μA(y1, . . . ,yn−1,yn) := LA(αy)+(n−2k+2) ·βy ∈ PA,k = Vy(n,k,k), (26)

and hence μA = μA(x1, . . . ,xn) ∈ Vx(n,k,k). Noting that LA = LB +xn we see that adding

μ to μB yields μA, that is,

(xnα+β)︸ ︷︷ ︸
μ

+((x1+ · · ·+xn−1) ·α+(n−2k+1)β)︸ ︷︷ ︸
μB

= (x1+ · · ·+xn) ·α+(n−2k+2)β︸ ︷︷ ︸
μA

.

It follows from (25) and (26) that μ = xn ·α+ β = μA − μB ∈ Vx(n,k,k) = V (n,k,k) ⊂
a(n,k,k), as claimed.

Next, we check containment (20) for monomials which are not contained in the support

of ν and μ. The following Lemma is analogous to Lemma 4.6 in §4. Recall that the support
of the (shifted) Specht polynomial for T is the set of square-free monomials indexed by

subsets of numbers in the support of T, no two of which lie in the same column of T.

Lemma 5.17. Fix tableaux T ∈ STab(n− 1,k− 1,k− 1) and S ∈ STab(n− 1,0,k), and

exponent vectors a,b ∈ N
n−1.

1. If
√
xa �∈ supp(F k−1

T ) then ya ·F k−1
T ∈ a(n,k,k)⊂ I(n,k).

2. If
√
xb /∈ supp(Mk

S) then yb ·Mk
S ∈ (x1, . . . ,xn)

〈k+1〉 ⊂ I(n,k).

Proof. For (1) assume
√
xa /∈ supp(F k−1

T ). If some variable xi ∈ supp(ya) but xi /∈
supp(F k−1

T ), then clearly

ya ·F k−1
T = ya′ ·yi ·F k−1

T = ya′ · (xn−xi) ·F k−1
T ∈ V (n,k,k).

We may therefore assume that every variable of xa lies in the support of F k−1
T . But since√

xa /∈ supp(F k−1
T ) there must be two distinct indices i, j for which yi,yj ∈ supp(ya) and

i, j lie in the same column in T. Choose any index r �= i, j such that xr /∈ supp(F k−1
T )–

presumably there is such an r since we are assuming that k+1≤ n−k–and let (i,r),(j,r)∈
Sn be the transpositions swapping i,r and j,r, respectively. Then we have

ya ·F k−1
T = ya ·

(
F k−1
(i,r).T +F k−1

(j,r).T

)
,

and since xi /∈ supp(F k−1
(i,r).T ), we must have

ya ·F k−1
(i,r).T = ya′ ·yi ·F k−1

(i,r).T = ya′ · (xn−xi) ·F k−1
(i,r).T ∈ a(n,k,k)⊂ I(n,k),
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and similarly for F k−1
(j,r).T . This proves that y

a ·F k−1
T ∈ I(n,k). Item (2) is easier and left to

the reader.

Finally, we need to check what containment (20) for monomials which are contained in

the support of ν or μ. Since the ideal (y1, . . . ,yn−1)
〈k〉+(x2

n) is generated by square-free

monomials in (y1, . . . ,yn−1) and the monomial x2
n, it suffices to prove implications (22) and

(23) for square free ya. Also, by symmetry, it will suffice to assume that ya = ym = y1 · · ·ym.

As in Corollary 2.8, we define the subset of standard tableau on a shape λ as those which

contain the set of integers {1, . . . ,m} in their support, denoted by STabm(λ) ⊂ STab(λ),

and define the subspaces

Vm = Vm(n−1,k−1,k−1) =
〈
F k−1
T | T ∈ STabm(n−1,k−1,k−1)

〉
,

Um = Um(n−1,k−1,k)

=
〈
xnF

k−1
T | T ∈ STabm(n−1,k−1,k−1)

〉
+
〈
Mk

S | S ∈ STabm(n−1,0,k)
〉
.

We also define their complimentary subspaces

V m = V m(n−1,k−1,k−1)

=
〈
F k−1
T | T ∈ STab(n−1,k−1,k−1)\STabm(n−1,k−1,k−1)

〉
,

Um = Um(n−1,k−1,k)

=
〈
xnF

k−1
T | T ∈ STab(n−1,k−1,k−1)\STabm(n−1,k−1,k−1)

〉
,

+
〈
Mk

S | S ∈ STab(n−1,0,k)\STabm(n−1,0,k)
〉
.

Then we have vector space decompositions V = Vm⊕V m and U = Um+Um, and Lemma

5.17 implies that ym ·α ∈ I(n,k) for α ∈ V m �Um. Hence, it only remains to check α ∈
Vm�Um. As in Corollary 2.8, we have the following bijective map of vector spaces:

Vm(n−1,k−1,k−1) �� V ([n−1]m,k−1−m,k−1−m),

F k−1
T

� �� F k−1−m
T ′ ,

where

T =
1 · · · m im+1 · · · ik

ik+1 · · · in−k j1 · · · jm jm+1 · · · jk
(27)

and

T ′ =
im+1 · · · ik

ik+1 · · · in−k j1 · · · jm jm+1 · · · jk
(28)

We also have the (possibly noninjective) linear map

Um(n−1,k−1,k−1) �� U([n−1]m,k−1−m,k−m),

xnF
k−1
T

� �� xnF
k−1−m
T ′ ,

Mk
S
� �� Mk−m

S′ ,
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where T ∈ STabm(n− 1,k − 1,k − 1) and T ′ ∈ STab([n− 1]m,k − 1−m,k − 1−m) are

the tableau in (27) and (28), respectively, and where where S ∈ STab(n− 1,0,k) and

S′STab([n−1]m,0,k−m) are given by

S =
1 · · · m im+1 · · · ik

ik+1 · · · in−k

(29)

and

S′ =
im+1 · · · ik

ik+1 · · · in−k

(30)

The following two lemmas are useful.

Lemma 5.18. For any β ∈ V ([n−m],k−m,k−m) where [n−m] = {m+1, . . . ,n}, we
have

(xm)
2 ·β ∈ I(n,k).

Proof. Fix a tableau T ′ ∈ STab([n−m],k−m,k−m) as in (28) and let T ∈ STabm(n−
1,k−1,k−1) be the corresponding tableau as in (27). Then it suffices to show that we have

(xm)
2 ·F k−m

T ′ = x2
1 · · ·x2

m ·F k−m
T ′ ∈ I(n,k) = a(n,k,k)+(x1, . . . ,xn)

〈k+1〉.

On the other hand, we clearly have

x1 · · ·xm ·F k
T = x2

1 · · ·x2
m ·F k−m

T ′ +
(
stuff in (x1, . . . ,xn)

〈k+1〉
)
∈ a(n,k,k)

and the result follows.

Lemma 5.19. Fix elements ν ∈ Vm(n−1,k−1,k−1) and μ∈Um(n−1,k−1,k), and let

ν′ ∈ V ([n−1]m,k−1−m,k−1−m) and μ′ ∈ U([n−1]m,k−1−m,k−m) their respective

images under the maps above. Then we have

1. ym (ν− (−1)mymν′) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n),

2. ym (μ− (−1)mymμ′) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n),

3. xm (μ−xmμ′) ∈ I(n,k), and

4. ym ·μ− (−1)mxm ·μ ∈ I(n,k).

Proof. For (1) note that it suffices to see that for T ∈ STabm(n− 1,k− 1,k− 1) and

T ′ ∈ STab([n−1]m,k−1−m,k−1−m) as in (27) and (28), we have

ym
(
F k−1
T − (−1)mym ·F k−1

T ′
)
∈ (y1, . . . ,yn−1)

〈k〉+(x2
n).

By Lemma 5.7, we have F k−1
T,y = F k−1

T (y1, . . . ,yn−1) = (−1)k−1 ·F k−1
T (x1, . . . ,xn−1) = F k−1

T

and F k−1−m
T ′,y = (−1)k−1−m ·F k−1

T ′ . Since the difference F k−1
T,y −ym ·F k−1

T ′,y is a combination

of y-monomials which do not contain ym in their support, it follows that the product

ym
(
F k−1
T − (−1)mym ·F k−1

T ′
)
∈ (y1, . . . ,yn−1)

〈k〉+(x2
n).
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For (2), write μ= xn ·α+β where α ∈ Vm(n−1,k−1,k−1) and β ∈ Vm(n−1,0,k). By

(1) we know that

ym (xn ·α− (−1)mxn ·α′) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n),

hence, it suffices to take μ= β =Mk
S ∈ Vm(n−1,0,k) and show that

ym
(
Mk

S − (−1)mymMk−m
S′

)
∈ (y1, . . . ,yn−1)

〈k〉+(x2
n),

for S ∈ STabm(n−1,0,k) and S′ ∈ STab([n−1]m,0,k−m) as in (29) and (30). In this case,

we have

Mk
S = x1 · · ·xm ·Mk−m

S′ ,

and Lemma 5.7 implies that the difference satisfies

Mk
S − (−1)mym ·Mk−m

S′

= (−1)kMk
S,y+(−1)k−1xnD(Mk

S,y)

− (−1)mym
(
(−1)k−mMk−m

S′,y +(−1)k−1−mxnD(Mk−m
S′,y )

)
mod (x2

n)

= (−1)k−1xn ·
(
D(Mk

S,y)−ym ·D(Mk−m
S′ )

)
mod (x2

n)

= (−1)k−1xn ·
(

m∑
i=1

y1 · · · ŷi · · ·ym ·Mk−m
S′,y

)
mod (x2

n).

Therefore, it follows that the product satisfies

ym
(
Mk

S − (−1)mym ·Mk−m
S′

)
∈ (y1, . . . ,yn−1)

〈k〉+(x2
n).

For (3), we write μ = xnα+β where α ∈ Vm(n− 1,k− 1,k− 1) and β ∈ Vm(n− 1,0,k),

and also μ′ = xnα
′+β′. Then we have

xm (xnα−xmxnα
′) ∈ (x1, . . . ,xn)

〈k+1〉 ⊂ I(n,k),

and also

xm (β−xmβ′) = 0 ∈ I(n,k),

and the result follows.

For (4), note that

ym− (−1)mxm = (xn−x1) · · ·(xn−xm)− (−1)mx1 · · ·xm = xn (stuff) ,

and since xn ·μ ∈ I(n,k) by Lemma 5.14, the result follows.

The following is an analogue of Lemma 4.7 in §4.

Lemma 5.20. If ym · ν ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n) for some ν ∈ Vm, then ν = 0, and in

particular, ym ·ν ∈ I(n,k). If p= 0 or p≥ k+1, then if ym ·μ ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n) for

some μ ∈ Um, then ym ·μ ∈ I(n,k).

Proof. First assume that for some ν ∈ Vm we have ym · ν ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n). By

Lemma 5.19(1), we have

ym (ν−ym ·ν′) ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n),
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and it follows also that

(ym)
2 ·ν′ ∈ (y1, . . . ,yn−1)

〈k〉+(x2
n).

Therefore, we have

ν′ ∈
(
(y1, . . . ,yn−1)

〈k〉+(x2
n) : (y

m)
2
)
=
(
(y1, . . . ,yn−1)

〈k〉+(x2
n) : y

m
)

= (ym+1, . . . ,yn−1)
k−m+(x2

n),

and hence that ν′ ∈ V ([n− 1]m,k− 1−m,k− 1−m)∩ ((ym+1, . . . ,yn−1)
(k−m)

+ (x2
n). By

Lemma 5.16, it follows that ν′ =0, and therefore also ν =0, which proves the first statement.

Next, assume that p = 0 or p ≥ k+1, and assume that for some μ = μ(x1, . . . ,xn−1) ∈
Um, we have ym ·μ ∈ (y1, . . . ,yn−1)

〈k〉+(x2
n). Then by Lemma 5.19(2), we must also have

(ym)
2
μ′ ∈ (y1, . . . ,yn−1)

〈k〉+(x2
n), and hence also we must have

μ′ ∈
(
(y1, . . . ,yn−1)

〈k〉+(x2
n) : (y

m)
2
)
=
(
(y1, . . . ,yn−1)

〈k〉+(x2
n) : y

m
)

= (ym+1, . . . ,yn−1)
k−m+(x2

n).

Therefore, we have μ′ ∈ U([n− 1]m,k− 1−m,k−m)∩ (ym+1, . . . ,yn−1)
k−m+(x2

n), and it

follows from Lemma 5.16 that μ′ ∈ V ([n]m,k,k). Therefore, by Lemma 5.18, it follows that

(xm)
2 ·μ′ ∈ I(n,k). Then by Lemma 5.19(3), we must also have xm ·μ ∈ I(n,k), and from

Lemma 5.19(4) it follows that ym ·μ ∈ I(n,k), as desired.

Finally, we are in a position to prove Theorem 5.5(3):

Proof of Theorem 5.5(3). Assume that p= 0 or p≥ k+1. By Lemma 5.13, we have

I(n,k)⊆ I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
.

For the reverse containment, Lemma 5.15 implies that we only have to check on products

of monomials in (y1, . . . ,yn−1) and forms in the subspaces V = V (n− 1,k− 1,k− 1) and

U = U(n−1,k−1,k). Since (y1, . . . ,yn−1)
〈k〉+(x2

n) is generated by square-free monomials

in (y1, . . . ,yn−1) it follows that we may assume our monomials are square-free, and by

symmetry, we may assume that our monomial is ym = y1 · · ·ym. Write V = Vm⊕V m and

U =Um+Um as above. Then Lemma 5.17 implies that ym ·α∈ I(n,k) for any α∈ V m�Um.

Also if β ∈ Vm�Um, then Lemma 5.20 implies that if ym ·β ∈ (y1, . . . ,yn−1)
〈k〉+(x2

n), then

ym ·β ∈ I(n,k), and the result follows.

Conversely, assume that 0 < p < k+1. Then as in the proof of Theorem 5.5(4) and in

particular (19), we have I(n,k) �= I(n−1,k−1)∩
(
(y1, . . . ,yn−1)

〈k〉+(x2
n)
)
.
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[11] J. Migliore, R. Miró-Roig, and U. Nagel, Monomial ideals, almost complete intersections and the weak

Lefschetz property, Trans. Amer. Math. Soc. 363 (2011), 229–257.
[12] M. Nagata, Local Rings, Interscience Publishers, New York, 1962.
[13] G. A. Reisner, Cohen–Macaulay quotients of polynomial rings, Adv. Math. 21 (1976), 30–49.
[14] B. Sagan, The Symmetric Group Representations, Combinatorial Algorithms, and Symmetric Functions,

2nd ed. , Grad. Texts in Math. 203, Springer, New York–Heidelberg, 2001.
[15] J. Watanabe, “The Dilworth number of Artinian rings and finite posets with rank function” in

Commutative Algebra and Combinatorics, Kyoto, 1985 , (eds. M. Nagata and H. Matsumura), Adv.
Stud. Pure Math. 11, North-Holland, Amsterdam; Kinokuniya, 1987, 303–312.

[16] J. Watanabe and K. Yanagawa, Vandermonde determinantal ideals, Math. Scand. 125 (2019), no. 2,
179–184.

[17] K. Yanagawa, When is a Specht ideal Cohen–Macaulay? J. Commut. Algebra, to appear.

Chris McDaniel

Department of Mathematics, Endicott College, 376 Hale Street, Beverly, MA 01915,USA
cmcdanie@endicott.edu

Junzo Watanabe

Department of Mathematics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
watanabe.junzo@tokai-u.jp

https://doi.org/10.1017/nmj.2021.17 Published online by Cambridge University Press

mailto:cmcdanie@endicott.edu
mailto:watanabe.junzo@tokai-u.jp
https://doi.org/10.1017/nmj.2021.17

	1 Introduction
	2 Shifted Specht polynomials, modules, and ideals
	2.1 Basis of a shifted Specht module
	2.2 Dimension of a shifted Specht module

	3 Lefschetz propoerties
	3.1 Weak Lefschetz property
	3.2 Strong Lefschetz property

	4 Radical of shifted Specht ideals
	4.1 Shifted Specht ideals are radical
	4.2 Decomposition of shifted Specht ideals

	5 Perfection of Specht and Specht-monomial ideals
	5.1 Specht-monomial ideals are perfect
	5.2 Specht ideals are perfect
	5.3 Decomposition of Specht-monomial ideals


