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We solve the free boundary problem for the dynamics of a cylindrical, axisymmetric vis-

coelastic filament stretching in a gravity-driven extensional flow for the Upper Convected

Maxwell and Oldroyd-B constitutive models. Assuming the axial stress in the filament has

a spatial dependence provides the simplest coupling of viscoelastic effects to the motion of

the filament, and yields a closed system of ODEs with an exact solution for the stretch

rate and filament thickness satisfied by both constitutive models. This viscoelastic solution,

which is a generalization of the exact solution for Newtonian filaments, converges to the

Newtonian power-law scaling as t → ∞. Based on the exact solution, we identify two regimes

of dynamical behavior called the weakly- and strongly-viscoelastic limits. We compare the

viscoelastic solution to measurements of the thinning filament that forms behind a falling

drop for several semi-dilute (strongly-viscoelastic) polymer solutions. We find the exact solu-

tion correctly predicts the time-dependence of the filament diameter in all of the experiments.

As t → ∞, observations of the filament thickness follow the Newtonian scaling 1/
√
t. The

transition from viscoelastic to Newtonian scaling in the filament thickness is coupled to a

stretch-to-coil transition of the polymer molecules.

1 Introduction

The fall of a fluid droplet from a faucet under the influence of gravity is an everyday

occurrence in kitchen sinks, and has recently received attention due to a series of related

experimental studies [37, 43, 54, 30, 7, 21, 25] and mathematical analyses [43, 7, 12, 41,

14, 42, 36, 4, 13, 35, 51, 53, 22] (see the review by Eggers [15]). While many studies have

focused on the singularity occurring when the drop pinches off [37, 30, 7, 21, 41, 14, 36, 53],

less attention has been paid to the long filament that is drawn out by the falling drop

[22, 15, 27]. Herein, we derive an exact solution for the time-dependent stretch rate

and filament thickness for a cylindrical, axisymmetric viscoelastic filament stretching in

a gravity-driven extensional flow, and compare our predictions to measurements of the

thinning filament that forms behind a falling drop.

† Current address: Department of Mathematics, Bucknell University, Lewisburg, PA, 17837,

USA.
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Figure 1. Evolution of a Newtonian drop of 80:20 glycerol/water falling in air from its formation

to pinch-off and the formation of a satellite drop. The size of each image is 0.66 × 1.94 cm2. The

relative times of each image are (a) 0ms, (b) 14ms, (c) 20.8 ms, (d) 22.2ms, (e) 23.5ms, (f) 25ms,

(g) 33 ms.

Figure 2. Evolution of a viscoelastic drop of 0.078% xanthan gum in 80:20 glycerol/water falling

in air. The size of each image is 1.21 × 4.82 cm2. The relative times of each image are (a) 0ms,

(b) 815 ms, (c) 988 ms, (d) 1453 ms, (e) 1492 ms. The length of the drop (extending past the edge of

the image) is approximately 1 m just before pinch-off at a time between frames (c) and (d).

Experiments illustrating the evolution of a droplet and the formation of this filament

are shown in Figure 1 for a Newtonian fluid, and in Figure 2 for the same fluid with

a small amount of the polymer xanthan gum added, causing it to have non-Newtonian

behavior. Large differences in length and time scales are caused by this small change in

the fluid composition. At the time of pinch-off, the filament length for the Newtonian

solvent is 1.4 cm compared to approximately 1 m for the polymer solution, given the

same experimental conditions [44]. In other experimental settings, as the fluid elasticity
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was increased by increasing the polymer concentration or molecular weight, the rate

of filament thinning decreased [2], the time to filament breakup increased [3], and the

breakup length of jets increased [33, 9]. These observations each illustrate the ability of

viscoelasticity to enhance the stability of filaments to capillary breakup. Understanding

the motion and instabilities of liquid filaments and the consequences of non-Newtonian

effects is important for the control of flow processes where applications include the

manufacturing of fiber-optic cable (fiber drawing) and synthetic fibers, such as kevlar and

lycra (fiber-spinning).

Modeling a liquid filament that is being stretched by a constant acceleration (or constant

body force) is a challenging free boundary problem. Several studies have focused on the

slender body limit, which reduces the dynamics to one dimension [43, 14, 42, 36, 4, 13, 35].

Similarity solutions describing the nonlinear motion of a Newtonian filament close to

the pinch region were found by Papageorgiou [36] for Stokes flow; by Eggers [14], who

included inertial effects; and by Zhang & Lister [53], who considered pinch-off of a viscous

thread surrounded by another viscous fluid. Recently, significant progress has been made

in numerical simulations of the fully nonlinear, transient Navier-Stokes system solved

in two dimensions, using a finite element method by Wilkes et al. [51]. Their numerical

model predicts both the length of a drop, measured from the orifice to the end of the

drop, at breakup and the volume of the primary drop (e.g. the larger drop in Figure 1(g))

for a range of parameters.

Frankel & Weihs [17, 18] found an exact solution for the motion of a cylindrical,

axisymmetric jet and considered its linear stability within the Navier–Stokes equations.

Henderson et al. [22] applied this solution to the filament drawn out behind a falling drop

and conducted a related stability analysis to obtain a prediction concerning the filament’s

breakup. The flow field for the exact solution is purely extensional with a stretch rate that

is a decreasing function of time,

ε̇(t) =
1

t+ t0
, (1.1)

and the filament radius follows

h(t) =
h0√

1 + t/t0
, (1.2)

where t0 is a positive constant and h0> 0 is the initial radius. This prediction for filament

thickness was verified by the experiments of Henderson et al. [22] for Newtonian fluids

with various values of viscosity and surface tension. In this paper, we will generalize this

result for two types of linear viscoelastic models.

The dynamics of viscoelastic fluids are more complicated than that of Newtonian fluids

since elastic (memory) and normal (forces perpendicular to the flow direction) effects can

influence the flow, and the fluid properties themselves can vary with gradients in the flow.

In extensional flows, the extensional viscosity is of importance [33, 9]; for Newtonian fluids,

it is three times the dynamic shear viscosity [49]. For viscoelastic fluids that strain-harden,

the extensional viscosity can be up to 1000 times larger than the shear viscosity [47].

To account for these different “non-Newtonian” behaviors, numerous constitutive models

have been developed for viscoelastic fluids, see Joseph [26] and Bird et al. [5]. Numerical
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studies have focused on the enhanced stability of viscoelastic filaments and jets. In their

investigation of a model for a stretching viscoelastic filament, Markovich & Renardy

[32] showed that elasticity acts to stabilize the filament against surface tension effects,

delaying its eventual breakup. And in numerical studies on the breakup of viscoelastic

jets, Renardy showed an Oldroyd-B fluid, which develops infinite extensional stress at a

finite stretch rate, never breaks, while a Giesekus fluid, whose extensional stress remains

bounded for all stretch rates, breaks up in finite time [38].

Analytic studies of the flow in an Oldroyd-B liquid bridge predict that the radius

decreases exponentially in time when capillary and elastic forces are balanced, and inertial

and viscous effects are ignored; these assumptions are applied in the long time limit [8, 10].

In this regime, the stretch rate of the flow is constant and the filament radius follows

h(t) = h0exp(−t/(3De)), where the Deborah number is the ratio of the relaxation time

and a characteristic flow time. Similar results were found by Entov & Hinch [16], who

considered the extensional flow of a FENE fluid with a spectrum of relaxation times. By

balancing capillary and elastic forces at intermediate times, they predict the stretch rate

approaches a constant and the filament radius decays quasi-exponentially in time. The

exponential thinning of viscoelastic filaments has been observed in various experimental

and numerical settings [2, 3, 10], e.g. the thinning of a viscoelastic filament connected

between large perturbations (known as ‘beads-on-a-string’) where the mass of the filament

decreases as fluid drains into the beads [10].

To examine the effects of viscoelasticity on filament dynamics, we extend the results of

Frankel & Weihs [17, 18] and Henderson et al. [22] to a viscoelastic filament. In § 2, we

present an analytic formulation for the extensional flow of a cylindrical, axisymmetric fil-

ament falling under gravity through a quiescent fluid of negligible viscosity. Our approach

provides a framework in which the known exact Newtonian solution can be generalized to

various viscoelastic constitutive models using a condition for the existence of cylindrical

solutions. We show that by assuming a power series expansion for the stress, the original

free boundary problem, consisting of a system of partial differential equations (PDEs) and

boundary conditions, is reduced to a system of coupled ordinary differential equations

(ODEs) for the Upper Convected Maxwell and Oldroyd-B constitutive models. In this

analysis, we allow inertial, viscous, elastic, gravitational and capillary forces to balance.

The dependence of the unknowns on these forces is determined by the reduction of the

free boundary problem to the system of ODEs under the constraints of an extensional

flow in a cylindrical geometry.

An exact solution for any viscoelastic flow is unusual, yet for the Upper Convected

Maxwell and Oldroyd-B constitutive models, this approach yields an analytic solution for

the motion of the filament [45], as described in § 3. This new solution allows us to analyze

the effects of viscoelasticity on the filament motion; in particular, we distinguish between

the weakly- and strongly-viscoelastic limits as we study the transient and long-time limits.

In § 4, we compare this analytic solution to experimental measurements of the thinning

filament that forms behind a falling drop for several semi-dilute (strongly-viscoelastic)

polymer solutions. Our solution predicts the time dependence of the filament radius which

is in agreement with measurements. As t → ∞ both the solution and the observations show

the filament thickness scales as 1/
√
t, which is the scaling for a Newtonian fluid as in (1.2).

This transition in the time dependence, from viscoelastic to Newtonian scaling, provides
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insight as to how the molecular dynamics couple to the filament’s motion [23, 6, 11, 28]

as explained in § 4.

2 Formulation of the free boundary problem

Using the boundary value problem for the motion of an axisymmetric, cylindrical liquid

filament stretching in a purely extensional flow, we derive a necessary condition for an

exact solution to exist. This condition may be applied to either Newtonian or non-

Newtonian fluids by introducing an appropriate constitutive relation, thereby closing the

system of equations for the free boundary problem. The known exact Newtonian solution

follows immediately from this condition [22]. Using the existence condition, we reduce

the free boundary problem for the viscoelastic Upper Convected Maxwell and Oldroyd-B

models to systems of coupled ODEs.

2.1 Governing equations

The governing equations for an incompressible fluid are the conservation of linear mo-

mentum and continuity equations

ρ

[
∂u

∂t
+ (u · ∇)u

]
= ∇ · T − ∇p− ρg, (2.1)

∇ · u = 0, (2.2)

where ρ is the density, u is the velocity, T is the symmetric extra stress tensor, p is the

pressure, and g = gêz is gravity with êz directed upwards. For an axisymmetric flow (uθ ≡ 0,

∂θ(·) ≡ 0) the momentum equations in the r̂, θ̂ and ẑ directions are:

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

+
1

ρ

∂p

∂r
=

1

ρ

(
∂Trr

∂r
+
Trr

r
+

∂Trz
∂z

− Tθθ

r

)
, (2.3 a)

0 =
∂Trθ
∂r

+
2Trθ
r

+
∂Tθz
∂z

, (2.3 b)

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

+
1

ρ

∂p

∂z
=

1

ρ

(
∂Trz
∂r

+
Trz

r
+

∂Tzz

∂z

)
− g, (2.3 c)

in which the unknown functions depend on r, z, and t. We consider axisymmetric motions

of a filament possessing an extensional velocity field

u ≡ (ur, uθ, uz) =
(
− 1

2
ε̇(t)r, 0, ε̇(t)z + v(t)

)
, (2.4)

where ε̇(t) is the stretch rate and v(t) is an additional uniform velocity necessitated by

the presence of gravity [22]. We note that (2.4) satisfies the continuity equation (2.2). The

symmetric part of the velocity gradient tensor, D= (∇u+∇uT )/2 for this extensional flow

is diagonal with

Drr = − 1
2
ε̇=Dθθ, Dzz = ε̇. (2.5)

The relationship between the stress field T and the flow field is prescribed by a

constitutive model. Equations (2.3) can be simplified further, if the constitutive model
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under consideration is materially frame indifferent [39], that is, the stress is invariant

under a change of coordinate system and under translations and rotations of fluid

elements [5]. Following Renardy [39], the stress field associated with an extensional

velocity field in rectangular coordinates1 is diagonal, which means the stress is shear free

[39]. Under the Jacobian transformation from rectangular to cylindrical coordinates, we

can conclude that Trz = 0 and Tθz = 0 provided the stress is materially frame indifferent;

this will be true of the constitutive models considered here. Given the second result,

it follows from the azimuthal momentum equation (2.3 b) that Trθ = 0, otherwise Trθ
diverges along the filament axis (r= 0), which is unphysical. Therefore, the stress field is

diagonal in cylindrical coordinates, so that hereafter

T=


Trr 0 0

0 Tθθ 0

0 0 Tzz


 . (2.6)

The generalized form of the constitutive relations we consider is given by the materially

frame indifferent Oldroyd-B model. The Oldroyd-B model is one of the simplest non-

Newtonian models derivable from a simplified molecular theory [31]. The model, which

includes stress contributions from the Newtonian solvent (viscous stress) and the polymer

molecules (elastic relaxation), is given by

T + λ
d̂T

d̂t
= 2η

(
D + λr

d̂D

d̂t

)
, (2.7)

where η > 0 is the constant dynamic shear viscosity, λ> 0 is the elastic relaxation time,

λr > 0 is the retardation time and the tensor derivative d̂/d̂t is the upper convected

derivative [31, 5]

d̂X

d̂t
=

(
∂

∂t
+ u · ∇

)
X − ∇uT · X − X · ∇u. (2.8)

This model does not have shear-thinning or thickening effects. However, it does develop

infinite extensional stresses, and thus infinite extensional viscosity, in steady extensional

flow as the stretch rate approaches ε̇= 1/2λ [5, 39]. We will also consider two models that

are simplifications of (2.7): (i) a Newtonian fluid (λ= 0 and λr = 0), and (ii) an Upper

Convected Maxwell fluid (λr = 0).

The boundary of the liquid filament is a free surface, which we denote by r= h(z, t), as

shown in Figure 3. The fluid surrounding the filament is assumed to be at rest and have

negligible viscosity. At the interface, r= h, there are three boundary conditions (simplified

for an axisymmetric flow):

(i) the kinematic condition,

∂th+ uz∂zh= ur, (2.9 a)

1 u ≡ (ux, uy, uz) =
(

− 1
2
ε̇x, − 1

2
ε̇y, ε̇z + v

)
.
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g

r = h(z, t)

r

z

Figure 3. Schematic of an axisymmetric cylindrical liquid filament.

(ii) the normal stress condition,

p− Trr − 2Trz∂zh+ Tzz(∂zh)
2

1 + (∂zh)2
= γ

(
1

h
√

1 + (∂zh)2
− ∂zzh

(1 + (∂zh)2)3/2

)
+ pamb, (2.9 b)

where γ is the surface tension and pamb is the constant pressure of the ambient fluid, and

(iii) the tangential stress condition,

(Trr − Tzz) ∂zh+ Trz
(
1 − (∂zh)

2
)

= 0. (2.9 c)

We assume that the filament is cylindrical,

∂zh= 0 → h= h(t). (2.10)

In Figure 2 for times between frames a–d, this assumption applies to large portions of the

filament behind the falling drop. Under this assumption and using the extensional flow

(2.4), the kinematic condition reduces to

dh

dt
= − ε̇h

2
, (2.11)

the normal stress condition reduces to

p(h, z, t) − Trr(h, z, t) =
γ

h
+ pamb, (2.12)

and the tangential stress condition yields

Trz(h, z, t) = 0. (2.13)

Note that (2.13) is consistent with the earlier result on the form of the stress tensor (2.6).
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The governing equations (2.2)–(2.3) along with the boundary conditions (2.11)–(2.13)

define the free boundary problem for a cylindrical filament (2.10) of a general fluid in

an axisymmetric extensional flow (2.4). The constitutive model (2.7) we consider restricts

the problem to a Newtonian, Upper Convected Maxwell, or Oldroyd-B fluid, depending

on the choices of λ and λr . A solution to this free boundary problem consists of the

velocity field u (given in terms of ε̇ and v), pressure field p, extra stress field T, and

filament radius h; the solution includes inertial, viscous, gravitational, capillary and elastic

(if λ�0) effects.

2.2 Simplification of the free boundary problem

Before incorporating a particular constitutive relation, we first develop a general condition,

using (2.4), (2.3 c), (2.10) and (2.12), that must be satisfied for a solution to exist to this

free boundary problem. This condition is independent of the material properties of the

fluid, therefore, it applies to any fluid model.

We begin by considering the normal stress condition (2.12) at the interface. Since h is

independent of z, this condition can be written as

∂

∂z
[p(h, z, t) − Trr(h, z, t)] = 0, (2.14)

which does not depend on the surface tension γ. Substituting the velocity field (2.4) into

the axial momentum equation (2.3 c) we obtain

z

(
dε̇

dt
+ ε̇2

)
+
dv

dt
+ vε̇+

1

ρ

∂p

∂z
=

1

ρ

∂Tzz

∂z
− g, (2.15)

which is valid for 0 � r� h. Substituting ∂p/∂z from (2.15) into (2.14) leads to the condition

−ρz
(
dε̇

dt
+ ε̇2

)
− ρ

(
dv

dt
+ vε̇+ g

)
+

∂Tzz

∂z
− ∂Trr

∂z
= 0, (2.16)

at the filament interface. This equation, when coupled with the appropriate constitutive

model, provides a general condition for the existence of solutions.

Before proceeding, we note that the pressure can also be determined from the free

boundary problem. We begin by substituting the velocity field (2.4) into the radial

momentum equation (2.3 a) to obtain an expression for the pressure gradient

∂p

∂r
=
ρr

2

(
dε̇

dt
− ε̇2

2

)
+

(
∂Trr

∂r
+
Trr

r
− Tθθ

r

)
.

Integrating with respect to r leads to an equation for the pressure

p(r, z, t) =
ρr2

4

(
dε̇

dt
− ε̇2

2

)
+ Trr(r, z, t) − Trr(0, z, t) +

∫ r

0

(
Trr

r̃
− Tθθ

r̃

)
dr̃ + p(0, z, t).

(2.17)

To find the pressure along the filament axis, p(0, z, t), we substitute the pressure from

(2.17) into ∂p/∂z in (2.15), and integrate with respect to z. Substituting the expression for
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p(0, z, t) back into (2.17) leads to

p(r, z, t) =
ρr2

4

(
dε̇

dt
− ε̇2

2

)
− ρz2

2

(
dε̇

dt
+ ε̇2

)
− ρz

(
dv

dt
+ vε̇+ g

)

+

∫ z

0

∂Tzz

∂z̃
dz̃ + G(r, t) + p(0, 0, t), (2.18)

where several of the z-independent stress terms are combined into the function

G(r, t) =

∫ r

0

(
1

r̃

∂

∂r̃
(r̃Trr(r̃, 0, t)) − Tθθ

r̃
(r̃, 0, t)

)
dr̃. (2.19)

We use this expression to find the pressure associated with the exact solution for various

constitutive models.

To summarize, (2.16) represents a reduced form of the free boundary problem that

is restricted to the filament interface and is the existence condition that needs to be

satisfied by any fluid model. Next, we make simplifying assumptions on the stress field to

differentiate between Newtonian and viscoelastic filament dynamics. These assumptions

set the stage to reduce the free boundary problem for a viscoelastic fluid to a coupled

system of ODEs.

2.3 Assumptions on the stress field

Evidence from experiments suggests that the motion of Newtonian and viscoelastic

filaments are vastly different [33, 9, 20, 44, 2, 3] – see Figures 1 and 2. To reflect

the change in the filament behavior for a viscoelastic fluid, one would expect the time

dependence of the flow field, given by ε̇(t), to be different than in the Newtonian case.

The dependence of the interfacial motion h(t) on ε̇(t) in the kinematic condition (2.11)

motivates this observation and leads us to the following conclusion: To obtain solutions

for more general classes of constitutive models that are distinct from the Newtonian solution

requires introducing z-dependence in at least one of the stress components Trr or Tzz. This

follows immediately from the existence condition (2.16), since the stress of a Newtonian

fluid is spatially homogeneous. We expect the dominant stress in an extensional flow of a

cylindrical filament to be in the axial direction. Thus we look for solutions of Tzz with a

power series expansion of the form

Tzz(h, z, t) =

∞∑
n=0

cn(t)z
n, (2.20)

and we impose

∂Trr

∂z
(h, z, t) = 0. (2.21)

In the Newtonian case, cn = 0 for n� 1 and (2.21) is true. Substituting (2.20) and (2.21)

into the existence condition (2.16) yields

− ρz

(
dε̇

dt
+ ε̇2

)
− ρ

(
dv

dt
+ vε̇+ g

)
+

∞∑
n=1

ncnz
n−1 = 0. (2.22)
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Collecting terms in powers of z results in the following set of ordinary differential

equations:

z0 : −ρ
(
dv

dt
+ vε̇+ g

)
+ c1 = 0, (2.23 a)

z1 : −ρ
(
dε̇

dt
+ ε̇2

)
+ 2c2 = 0, (2.23 b)

zn−1 : ncn = 0, for n� 3. (2.23 c)

Since cn = 0 for n� 3, only a quadratic expansion for Tzz is needed to modify the time

dependence of the flow via ε̇(t) and v(t). For convenience we re-write the expansion of Tzz

as

Tzz(h, z, t) =
1

2
a(t)z2 + b(t)z + c(t). (2.24)

This expression provides the simplest coupling of a viscoelastic model to the dynamics of

an axisymmetric, cylindrical filament through (2.16).

The complete solution of the free boundary problem includes the stress and pressure

fields. Solving for the stress field explicitly inside the filament (0 � r < h) with either the

Upper Convected Maxwell or Oldroyd-B models is non-trivial since these models (2.7)

are linear partial differential equations that require boundary and initial conditions. The

situation is simpler for a Newtonian fluid, where the stress depends only on time. Since it

is not clear what the appropriate boundary conditions are in the viscoelastic case, we make

the following assumptions to provide the simplest connection between the Newtonian and

viscoelastic cases, namely:

• The axial stress Tzz does not vary radially, thus by continuity (2.24) is valid for 0 � r� h.

• The radial and azimuthal stress, Trr and Tθθ , do not vary in r or z.

Given that Trr and Tθθ are independent of r implies that Trr =Tθθ , otherwise the pressure

is unbounded (see (2.18) and (2.19)). These simplifying assumptions are consistent with

the above analysis and are needed only to estimate the stress and pressure fields.

2.4 Newtonian fluid

Here we review the known exact solution for a Newtonian filament [22] by using the

existence condition (2.16). The constitutive law for a Newtonian fluid is the simplest

symmetric relation between the stress field and gradients in the flow, namely

T= 2ηD. (2.25)

For the extensional flow (2.4), this model yields T diagonal and spatially uniform with

Trr = −ηε̇=Tθθ and Tzz = 2ηε̇. This is a trivial case of (2.24) with a= b= 0 and c(t) = 2ηε̇(t).

Substituting Trr and Tzz into (2.16), then collecting terms in powers of z results in two

coupled ODEs:

dε̇

dt
+ ε̇2 = 0, (2.26 a)

dv

dt
+ vε̇= −g. (2.26 b)
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These can be solved exactly, with solutions

ε̇(t) =
1

t+ t0
and v(t) = −g

2
(t+ t0) +

z0

t+ t0
, (2.27)

where t0 = ε̇(0)−1 and z0 = v(0)t0 + 1
2
gt20, and thus the velocity components (2.4) are

ur = − r

2(t+ t0)
and uz =

z + z0

t+ t0
− g

2
(t+ t0), (2.28)

which satisfy the continuity equation, ∇ · u= ∂r(rur)/r + ∂z(uz) = 0. Using the kinematic

condition (2.11), we find the filament interface is given by

h(t) =
h(0)√
1 + t/t0

. (2.29)

The pressure is found using (2.18) and (2.19) along with the normal stress condition (2.12)

resulting in

p(r, t) =
3

8
ρ
h2 − r2

(t+ t0)2
− η

t+ t0
+
γ

h
+ pamb, (2.30)

which is independent of z. This solution is valid for viscous (η > 0) or inviscid (η= 0)

fluids, with or without surface tension (γ), and with or without gravity (g). The case with

g= 0 is the exact solution found by Frankel & Weihs [17]. The case with g > 0 is the

exact solution found by Henderson et al. [22] in the present notation where, in particular,

our t0 is their t∗. The solution with g > 0 has a simple interpretation when viewed in

Lagrangian coordinates, that is, it describes the free fall of a liquid filament in a uniform

gravitational field [22]. Further, Henderson et al. showed that: (i) (2.29) predicts well their

observations of the thinning filament drawn out by drops of viscous, Newtonian fluids,

and (ii) criterion developed from a linear stability analysis of this exact solution correctly

predict the manner in which the filament breaks up in experiments [22].

It is worth noting that the functional forms of the stretch rate and filament radius

depend only on the inertia of the flow (see (2.26 a) and (2.11)), and are monotonically

decreasing functions of time.

As an aside, although this exact solution was not derived in the slender body limit, it

does satisfy the slender body equations for a Newtonian fluid jet [12, 15]:

∂(h2)

∂t
+

∂(h2uz)

∂z
= 0, (2.31 a)

∂uz
∂t

+ uz
∂uz
∂z

= − γ

ρh2

∂h

∂z
+

3η

ρh2

∂

∂z

(
h2 ∂uz

∂z

)
− g. (2.31 b)

Next we specialize our analysis of the motion of a cylindrical filament in an axisymmetric

extensional flow to the Upper Convected Maxwell and Oldroyd-B constitutive models,

highlighting similarities in the solutions of these two viscoelastic models.
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2.5 Upper convected Maxwell fluid

Here we consider the consequences of the existence condition (2.16) when the axial stress

component is quadratic in z as discussed in § 2.2 and § 2.3, for an Upper Convected

Maxwell fluid. The Upper Convected Maxwell (UCM) constitutive model is given by

T + λ
d̂T

d̂t
= 2ηD, (2.32)

where λ is the relaxation time and the tensor derivative is described by (2.8).

Using (2.32) and (2.8) with the extensional field (2.4) results in an axial stress that obeys

Tzz + λ

(
∂Tzz

∂t
+ (̇εz + v)

∂Tzz

∂z
− 2ε̇Tzz

)
= 2ηε̇. (2.33)

Substituting the quadratic expansion for Tzz (2.24) into the conditional statement (2.16)

and the constitutive law (2.33) yields

−ρz
(
dε̇

dt
+ ε̇2

)
− ρ

(
dv

dt
+ vε̇+ g

)
+ az + b= 0, (2.34)

and

λ

[
1

2

da

dt
z2 +

db

dt
z +

dc

dt
+ (̇εz + v)(az + b) − 2ε̇

(a
2
z2 + bz + c

)]
+
a

2
z2 + bz + c= 2ηε̇.

(2.35)

Collecting terms in powers of z results in a set of five coupled ODEs:

dε̇

dt
+ ε̇2 =

1

ρ
a, (2.36 a)

dv

dt
+ v ε̇ =

1

ρ
b− g, (2.36 b)

λ
da

dt
+ a = 0, (2.36 c)

λ
db

dt
+ (1 − λε̇) b = −λav, (2.36 d)

λ
dc

dt
+ (1 − 2λε̇) c = 2ηε̇− λbv. (2.36 e)

Solutions of this system of equations define the velocity field and axial stress. The pressure,

which is computed using (2.12), (2.18) and (2.19), is given by

p(r, t) =
ρ

4
(h2 − r2)

(
3ε̇2

2
− a

ρ

)
+ Trr(t) +

γ

h
+ pamb, (2.37)

where the radial stress, defined by (2.32) and (2.8) with the extensional field (2.4), satisfies

λ
dTrr

dt
+ (1 + λε̇)Trr = − ηε̇. (2.38)

https://doi.org/10.1017/S0956792504005789 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792504005789


Exact solution for a viscoelastic flow 691

The solution for an axisymmetric Upper Convected Maxwell filament stretching in a

gravitational field requires solving the coupled system of ODEs given by (2.36), (2.38) and

(2.11).

2.6 Oldroyd-B fluid

Here we consider the consequences of the existence condition and the quadratic axial

stress for an Oldroyd-B fluid, and highlight similarities with the UCM case. The Oldroyd-

B constitutive model, given by

T + λ
d̂T

d̂t
= 2η

(
D + λr

d̂D

d̂t

)
(2.39)

and the tensor derivative (2.8), is a generalization of the UCM model in which the

additional term, 2ηλr(d̂D/d̂t), arises from stresses in the solvent [31].

Using (2.39) and (2.8) with the extensional field (2.4) results in an axial stress that obeys

Tzz + λ

(
∂Tzz

∂t
+ (̇εz + v)

∂Tzz

∂z
− 2ε̇Tzz

)
= 2η

(
ε̇+ λr

(
dε̇

dt
− 2ε̇2

))
. (2.40)

Substituting the quadratic expansion for Tzz (2.24) into the existence condition (2.16) and

the constitutive law (2.40) yields (2.34) and

λ

[
1

2

da

dt
z2 +

db

dt
z +

dc

dt
+ (̇εz + v)(az + b) − 2ε̇

(a
2
z2 + bz + c

)]

+
a

2
z2 + bz + c= 2η

[
ε̇+ λr

(
dε̇

dt
− 2ε̇2

)]
. (2.41)

Collecting terms in powers of z results in five coupled ODEs:

dε̇

dt
+ ε̇2 =

1

ρ
a, (2.42 a)

dv

dt
+ vε̇ =

1

ρ
b− g, (2.42 b)

λ
da

dt
+ a = 0, (2.42 c)

λ
db

dt
+ (1 − λε̇) b = −λav, (2.42 d)

λ
dc

dt
+ (1 − 2λε̇) c = 2η

(
ε̇+

λr

ρ
a− 3λrε̇

2

)
− λbv. (2.42 e)

The radial stress, defined by (2.39) and (2.8) with the extensional field (2.4), satisfies

λ
dTrr

dt
+ (1 + λε̇)Trr = −η

(
ε̇+

λr

ρ
a

)
. (2.42 f)

Note that if λr = 0, then the Oldroyd-B model reduces to the UCM model equations (2.36)

and (2.38). Further, if λ= 0, then a= b= 0 and c= 2ηε̇, which is the Newtonian model for
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stress. The system of equations for the UCM and Oldroyd-B models are generalizations

of the Newtonian model equations solved by Frankel & Weihs with g= 0 [17], and

Henderson et al. with g�0 [22].

This system of ODEs differs from (2.36) and (2.38) for the UCM model only in

the equations for c (2.42 e) and Trr (2.42 f). This difference arises from the additional

solvent stress in (2.7), which contributes only time-dependent effects. As a consequence,

the general solutions for the stretch rate ε̇, the axial velocity component v (and thus the

velocity field u), and the stress coefficients, a and b, are identical for these two constitutive

models. In addition, the solution of the filament thickness h, which depends on ε̇ (2.11),

is also shared by these two models. Differences arise in the stress component Tzz via

coefficient c, and in the pressure field by Trr (see (2.37)).

To summarize, we have reduced the free boundary problems for the Upper Convected

Maxwell and Oldroyd-B fluids to two coupled systems of ODEs. In the next section, we

nondimensionalize the more general Oldroyd-B system of equations, and determine exact

solutions for the nondimensional forms of a, ε̇ and h. We also discuss limiting forms of

the viscoelastic solution and show that it is a generalization of the known Newtonian

solution.

3 Analysis of the model

Since the governing equations for the Oldroyd-B filament (2.42) include the Newtonian

and UCM models as special cases, we will focus our analysis on this system. In particular,

questions of interest will center on describing the influence of elasticity.

Consider the limit of short elastic time scales, λ→ 0. For the limit λ→ 0 with time fixed,

equations (2.42 c, 2.42 d ) trivially yield a= b= 0. Consequently, for times long compared

with λ, the stress becomes homogeneous in space and the filament stretch rate and

velocity are given by the Newtonian model (2.26 a, 2.26 b). From (2.42 e), the stress is

c= 2ηε̇(1 − 3λrε̇) and converges to the Newtonian stress as ε̇→ 0 for t→ ∞. This simple

very-long time solution can be viewed as the outer solution of system (2.42) as λ→ 0. To

analyze the nature of the viscoelastic characteristics of the fluid filament, we will carefully

examine the short-time behavior of the solutions, when time scales with λ; this scaling

effectively defines an inner solution or initial layer.

3.1 Non-dimensional equations

We non-dimensionalize the Oldroyd-B filament equations using the scalings

τ=
t

λ
, E= λε̇, V =

v

gλ
, H =

h

h0
, (3.1 a)

A=
a

a0
, B=

b

ρg
, C =

λ

η
c, T̄rr =

λ

η
Trr, (3.1 b)

where a0, h0 are the initial values of the quadratic axial stress coefficient and the filament

radius, respectively. In particular, we use the elastic relaxation time λ to set the time scale

and gravitational acceleration to set the length (L= gλ2) and velocity (U= gλ) scales. This
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choice results in the non-dimensional form of equations (2.42) and (2.11)

dE

dτ
+ E2 = 1

4
δ2A, (3.2 a)

dV

dτ
+ VE=B − 1, (3.2 b)

dA

dτ
+ A= 0, (3.2 c)

dB

dτ
+ (1 − E)B= − 1

4
δ2AV , (3.2 d)

dC

dτ
+ (1 − 2E)C = 2E + ω( 1

2
δ2A− 6E2) − ψBV , (3.2 e)

dT̄rr

dτ
+ (1 + E) T̄rr = −

(
E + 1

4
δ2ωA

)
, (3.2 f)

dH

dτ
= − 1

2
EH. (3.2 g)

The nondimensional system depends on three dimensionless parameters: (i) the Deborah

number,

δ= 2λ
√
a0/ρ= De, (3.3)

which compares the relaxation time of the fluid to a characteristic stretch rate ε̇c =
√
a0/ρ

that depends on the initial axial stress; (ii) the Bond number,

ψ=
ρg2λ3

η
=

Re

Fr2
= Bo, (3.4)

where the Reynolds number Re= ρUL/η, compares inertial to viscous effects, and the

Froude number Fr =U/
√
gL, compares the velocity scale with the speed of shallow-water

gravity waves [12]; and (iii) the ratio of retardation to relaxation times

ω=
λr

λ
. (3.5)

Given our choice of scalings Fr = 1, and ψ is simply the Reynolds number. Under these

scalings, the initial conditions take the form

E(0) =E0, V (0) =V0, A(0) = 1, B(0) =B0, C(0) =C0, (3.6 a)

H(0) = 1, T̄rr(0) = T̄rr0. (3.6 b)

To facilitate comparison with the Newtonian solution (2.27) and (2.29) it is also convenient

for us to define an initial time-offset parameter in terms of the reciprocal of the initial

stretch rate,

τ0 =
1

E0
> 0. (3.7)
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3.2 Exact solution for filament thickness and stretch rate

We begin by finding a closed-form solution for A(τ), E(τ) and H(τ) which are decoupled

from the equations for V , B and C in (3.2). The solution of (3.2 c) subject to the initial

condition A(0) = 1 is

A(τ) = e−τ. (3.8)

Subsequently, the equation for the stretch rate (3.2 a) reduces to a Riccati equation [24, 45]

dE

dτ
= −E2 + 1

4
δ2e−τ. (3.9)

Using the standard change of variables E(τ) =W ′(τ)/W (τ) [24], (3.9) can be transformed

into the second order ODE:

d2W

dτ2
− 1

4
δ2e−τW = 0. (3.10)

Another change of variables, ζ= δe−τ/2 transforms (3.10) into

ζ2 d
2Ŵ

dζ2
+ ζ

dŴ

dζ
− ζ2Ŵ = 0, (3.11)

which is a modified Bessel equation of zero order [24, 1] with the general solution

Ŵ (ζ) = d1I0(ζ)+ d2K0(ζ), where I0 and K0 are the modified Bessel functions of zero order

and d1 and d2 are arbitrary constants. Consequently, we can write E= (ζ) in closed form

as

Ê= (ζ) = −ζ

2

(
αI1(ζ) −K1(ζ)

αI0(ζ) +K0(ζ)

)
, (3.12)

where I1 and K1 are the modified Bessel functions of first order. Then, from E(τ) =

Ê(δe−τ/2), the exact solution for the stretch rate is given by

E(τ) = −δe−τ/2

2

(
αI1(δe

−τ/2) −K1(δe
−τ/2)

αI0(δe−τ/2)+K0(δe−τ/2)

)
, (3.13)

where the constant α is chosen to satisfy the initial condition E(0) =E0 and is given by

α=
δ K1(δ) − 2E0K0(δ)

δ I1(δ) + 2E0I0(δ)
. (3.14)

Further, using the kinematic condition (3.2 g) we can obtain the closed form solution for

the filament radius,

H(τ) =

(
αI0(δ) +K0(δ)

αI0(δe−τ/2)+K0(δe−τ/2)

)1/2

, (3.15)

with H(0) = 1. In § 4, we compare this prediction for the time-dependence of the filament

interface to measurements of the radius of a thinning filament drawn out by a falling

drop. Equation (3.15) also lets us write the Hencky strain, the integral of the stretch rate
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[5], as ∫ τ

0

E(s) ds= −2 lnH(τ) = ln

(
αI0(δe

−τ/2)+K0(δe
−τ/2)

αI0(δ) +K0(δ)

)
. (3.16)

The functional forms of the stretch rate and filament radius for the UCM and Oldroyd-

B models are determined by a balance of inertial and elastic effects (see (3.2 a) and

(3.2 g)). This is different than other analyses that consider a balance between capillary

and elastic forces which lead to exponential filament thinning and a constant stretch

rate [16, 8, 10].

In principle, given the exact solutions (3.8, 3.13, 3.15), one could attempt to directly solve

the remaining equations for V , B, C , and T̄rr. However, given the somewhat complicated

form of (3.13), we do not seek the remaining closed-form analytic solutions. Instead of

computing numerical solutions, we will re-examine the system (3.2) and the partial exact

solution in different limiting regimes to better understand its structure and the qualitative

dynamical behaviors that occur for viscoelastic fluid filaments. Of particular interest will

be the comparison of the dynamics of viscoelastic versus Newtonian fluid filaments. For

this comparison, we re-write the Newtonian solution from § 2.4 in non-dimensional form

using the scalings (3.1),

ENewt(τ) =
1

τ+ τ0
, VNewt(τ) = −1

2
(τ+ τ0) +

Z0

τ+ τ0
, (3.17 a)

ANewt ≡ 0, BNewt ≡ 0, CNewt(τ) =
2

τ+ τ0
, (3.17 b)

HNewt(τ) =
1√

1 + τ/τ0
, (3.17 c)

where the constants τ0> 0 and Z0 =V0τ0 + 1
2
τ20 correspond to the initial conditions (3.6 a),

and the initial condition for the stress must satisfy C0 = 2E0> 0 in order to be consistent

with (2.25).

In their dimensional forms, the Newtonian and viscoelastic solutions for the filament

radius are independent of the fluid viscosity and surface tension; the viscoelastic solution

does depend on the fluid elasticity and density through the parameter δ. We show how

these two solutions are related through limits of the Deborah number δ and by examining

the dynamics for both long and short times.

3.3 Long-time behavior

As briefly described at the opening of § 3, for long times the solutions of the filament

equations converge to the Newtonian solution if the elastic effects are weak. We will now

show that this is the case for all values of δ.

To see that solutions of (3.2) converge to (3.17) as τ→ ∞, consider the evolution of

infinitesimal linear perturbations on the leading order terms in (3.17 a, b),

E(τ) =
1

τ
+ εẼ(τ), V (τ) = − 1

2
τ+ εṼ (τ), A(τ) = εÃ(τ), B(τ) = εB̃(τ), C(τ) =

2

τ
+ εC̃(τ).

(3.18)
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For τ→ ∞, these perturbations satisfy the linearized version of (3.2),

dẼ

dτ
= −2

τ
Ẽ +

δ2

4
Ã,

dṼ

dτ
=
τ

2
Ẽ − 1

τ
Ṽ + B̃, (3.19 a)

dÃ

dτ
= −Ã, dB̃

dτ
= −

(
1 − 1

τ

)
B̃ +

δ2

8
τÃ, (3.19 b)

dC̃

dτ
= −

(
1 − 2

τ

)
C̃ + 2

(
1 + 2 − 6ω

τ

)
Ẽ +

ωδ2

2
Ã+

ψ

2
τB̃. (3.19 c)

To leading order for τ→ ∞, the general solution of this system is



Ã

B̃

C̃

Ẽ

Ṽ


 ∼



dA




1
1
8
δ2τ2

1
32
ψδ2τ4

− 1
4
δ2

− 1
8
δ2τ2




+ dB




0

τ
1
2
ψτ3

0

−τ


 + dC




0

0

τ2

0

0






e−τ + dE




0

0

2τ−2

τ−2

1
2


 + dV




0

0

0

0

τ−1


 ,

(3.20)

where the d-coefficients are constants corresponding to independent conditions for each

of the perturbation modes. Notice that there are no growing perturbation modes; the

first three modes have exponential decay. In fact all of the perturbation modes have

sub-dominant contributions relative to the leading order Newtonian terms (3.18).

Consequently, linearized analysis suggests that all solutions of (3.2) converge to (3.17)

as τ→ ∞ for all δ. It is notable that while the time scale ratio ω appears in (3.19),

the leading order solution for τ→ ∞ is independent of ω. Recalling that for ω= 0 the

Oldroyd-B equations (2.42) reduce to the UCM equations (2.36, 2.38), we can conclude

that the influence of the retardation timescale is a higher order effect [50] and the relative

difference between the UCM and Oldroyd-B models of filaments is negligible for long

times.

The last two modes in (3.20), due to perturbations in the stretch rate and velocity,

have algebraic decay for τ→ ∞ and yield next-order contributions to C,E, V in (3.18).

These are not “true” instabilities; they correspond to infinitesimal perturbations within the

continuous family of Newtonian solutions (3.17a,b), parametrized by τ0, Z0. In particular

for dE = −τ∞/ε, where τ∞ is a constant and dV =Z∞/ε for some Z∞, equations (3.18)

correspond to expansions for τ→ ∞ of

E(τ) ∼ 1

τ+ τ∞
, C(τ) ∼ 2

τ+ τ∞
, V (τ) ∼ −1

2
(τ+ τ∞) +

Z∞
τ+ τ∞

. (3.21)

In comparing (3.21) with the corresponding solutions in (3.17), we note the difference

is that the constants describing the initial conditions τ0, Z0 have been replaced by other

constants, τ∞, Z∞. That is, with respect to the long-time behavior of the solution, the

cumulative influence of the viscoelastic effects on the underlying Newtonian solution is to

modify the effective initial conditions. Such effects are common in the long time asymptotic

behavior of many mathematical systems with continuous families of attracting solutions,

for example the calculation of optimal similarity solutions for diffusion equations [52].

In general, it may not be possible to find a “connection formula” between the initial
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data, parameterized by τ0, Z0 and the long-time asymptotics, given by τ∞, Z∞. However,

the existence of the exact solution (3.13) makes this process straightforward for this

problem.

3.4 The weakly-viscoelastic limit

For δ→ 0, we show that the viscoelastic solution of (3.2) is comparable to a Newtonian

solution of the form (3.21) for all times. We call this the weakly-viscoelastic limit.

From (3.21)1, we observe that τ∞ can be obtained from the limit

τ∞ = lim
τ→∞

(
1

E(τ)
− τ

)
. (3.22)

Using (3.13) for E(τ) yields an explicit “connection formula” τ∞ = τ∞(τ0, δ). This expres-

sion is a rather complicated combination of Bessel functions, but for the moment we

only consider its expansion in the limit δ→ 0 with a finite, positive initial stretch rate,

τ0 =E−1
0 =O(1), corresponding to the limit of weak viscoelastic effects,

τ∞ = τ0 −
[
1

2
+
τ0

2
+
τ20
4

]
δ2 +

[
5

64
+

5τ0
32

+
5τ20
32

+
τ30
16

]
δ4 − O(δ6). (3.23)

We note that for δ= 0 we recover τ∞ = τ0, that is, the value corresponding to the initial

stretch rate for the Newtonian solution (3.17 a)1. For δ
 1, (3.23) implies that τ∞ is less

than τ0 and is a decreasing function of δ. The implication of this result is that very weak

viscoelastic effects yield an apparent increase in the initial stretch rate E(0) =E∞, for

δ→ 0,

E∞ ≡ 1

τ∞
∼ E0 +

1 + 2E0 + 2E2
0

4
δ2 +

6 + 22E0 + 27E2
0 + 16E3

0

64
δ4, (3.24)

relative to that of a Newtonian filament.

Using comparison theorems for first order ODEs, the Newtonian solutions based on

τ∞, τ0 yield upper and lower bounds on the stretch rate E(τ) for all times (see Figure 4),

1

τ+ τ0
�E(τ) �

1

τ+ τ∞
. (3.25)

A direct consequence of (3.21)1 used in the kinematic condition (3.2 g) is that the

long-time evolution of the filament thickness also follows the Newtonian behavior for

τ→ ∞,

H(τ) ∼ H∞

|1 + τ/τ∞|1/2
, (3.26)

where the constant H∞ gives the expected initial filament thickness at τ= 0 based on the

long-time asymptotics for a comparable Newtonian fluid filament. We have written (3.26)

in a slightly different form than (3.17 c) in order to ensure that the filament thickness

is always real-valued for all values of τ∞; we will see that τ∞ < 0 can occur in the

next section. The parameter τ∞ has a directly observable physical interpretation for the

dynamics of the filament. That is, |τ∞| represents a time-delay before the thinning of the
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Figure 4. The stretch rate E(τ) from (3.13) (solid) and the Newtonian upper/lower bounds based

on τ∞ (dot-dashed) and τ0 (dashed) in the weakly-viscoelastic case with δ= 1/2, see (3.25).

10−2
10−2

10−2

1 102

H

τ

Increasing |τ∞|

1

Figure 5. Delay of the onset of the asymptotic power-law thinning behavior of H(τ) with

increasing |τ∞| with τ∞ > 0 for the weakly-viscoelastic case.

filament approaches a scaling law, H =O(τ−1/2) for τ� |τ∞|. This behavior is most clearly

exhibited on a log-log graph, as shown in Figure 5.

In general, the value of the H∞ parameter can be obtained from the limit

H∞ = lim
τ→∞

H(τ)

√
τ

|τ∞| . (3.27)

Using (3.22) for τ∞ and the exact solution (3.15) for H(τ), we obtain H∞ in terms of δ

and τ0. Expanding the resulting expression for δ→ 0 and τ0 =O(1) yields

H∞ = 1 +

(
2 + τ0

8τ0

)
δ2 +

(
8τ20 + 15τ0 + 12

128τ20

)
δ4 + O(δ6). (3.28)
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Figure 6. H(τ) (solid) and the Newtonian estimates based on τ∞ (dot-dashed) and τ0 (dashed) in

the weakly-viscoelastic case with δ= 1/2.

Using τ0 = 1/E0, this result can be written in terms of the initial stretch rate in the

general form

H∞ ∼
∑
n=0

Pn(E0)δ
2n δ→ 0, (3.29)

where the Pn(E0) are n-th order polynomials in E0 with all positive coefficients. This

result suggests that the influence of viscoelastic effects in the weakly-viscoelastic limit is

to yield an apparent increase in the filament thickness relative to that expected from a

Newtonian filament, H∞ � 1. From (3.25) and comparison theorems applied to (3.2 g ), it

can be shown that (3.26) and (3.17 c) are both upper bounds for H(τ) for all time, with

(3.17 c) giving a tighter bound for short times and H(τ) converging to (3.26) for long times

(see Figure 6).

3.5 Transient behavior and the strongly-viscoelasticlimit

Having established that the long-time dynamics approaches Newtonian behavior, we

examine what influence the viscoelastic models can yield for short to moderate times.

Here we explore the possible qualitative changes from Newtonian behavior that can

occur due to transient viscoelastic effects. For the weakly-viscoelastic case, with δ→ 0, we

showed that such transient effects produced small changes to the initial conditions for

E(0) (3.24) and H(0) (3.28). Now, we will describe the strongly-viscoelastic regime, where

the transient effects would have to come from unphysical initial conditions.

For a Newtonian filament the stretch rate is monotone decreasing (3.17 a)1 for all times.

In contrast, for viscoelastic filaments, we see from (3.9) that for Deborah numbers that

are large compared to the initial stretch rate, E(τ) will initially be increasing if

E0<
δ

2
. (3.30)

More generally from (3.9), E(τ) will be increasing so long as E(τ)< 1
2
δe−τ/2. In terms
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of ζ= δe−τ/2, the time τmax when the maximum of E(τ) occurs can be found by solving

the transcendental equation Ê (ζmax) = ζmax/2, or equivalently in terms of (δ, E0) using

(3.12),

K1(ζmax) − αI1(ζmax) =K0(ζmax) + αI0(ζmax). (3.31)

Instead of pursuing a direct solution of (3.31), to gain further insight into the short-

time behavior we consider a perturbation expansion of the solution of (3.9) in the limit

suggested by (3.30), that is, for sufficiently large δ.

Let δ→ ∞ with E= δE, then (3.9) becomes the singularly perturbed equation

1

δ

dE
dτ

= −E2 +
1

4
e−τ, (3.32)

where E(0)< 1/2 to satisfy (3.30). Consequently, we can obtain an expansion of (3.13)

valid for O(1) times by solving a series of algebraic problems for the outer solution of

(3.32) as δ→ ∞ with E(τ) = E0(τ) + δ−1E1(τ) + δ−2E2(τ) + · · · . This yields the stretch rate

as

E(τ) ∼ δ

2
e−τ/2 +

1

4
− δ−1

16
eτ/2 +

δ−2

16
eτ δ→ ∞. (3.33)

Notice that the maximum stretch rate is O(δ) and that this intermediate behavior is

independent of the initial conditions. This solution is equivalent to an expansion of the

exact solution (3.12) for ζ→ ∞. In terms of τ, (3.33) is valid for 0<τ
O(ln δ), for longer

times, there is a transition to Newtonian behavior, (3.21)1.

For shorter times, to connect to the initial conditions, we rescale time by τ= T/δ in

(3.32) to obtain an inner problem for the initial layer as δ→ ∞,

dE
dT + E2 =

1

4
e−T/δ ∼ 1

4

(
1 − 1

δ
T +

1

2δ2
T2 + O(δ−3)

)
. (3.34)

Writing a regular perturbation expansion for the solution of this equation, E(T) = E0(T)+

δ−1E1(T) + · · · , we obtain the leading order inner solution, valid on 0 � τ
O(δ−1) as

E(τ) ∼ δ

2

(
δ + 2E0 − (δ − 2E0)e

−δτ

δ + 2E0 + (δ − 2E0)e−δτ

)
. (3.35)

By examining the forms of the initial layer (3.35) and the intermediate time solution

(3.33), we conclude that τmax =O(δ−1) and Emax � δ/2, for large δ, as shown in Figure 7.

In turning our focus to behavior for large δ, we note that the expansions for τ∞ (3.23)

and H∞ (3.28) for δ→ 0 are not valid for δ→ ∞. From (3.23) we see that when τ0 = δ2/2

that τ∞ ≈ 0 suggesting an unphysical infinite initial stretch rate, E∞ = 1/τ∞. Hence, we

re-examine the definitions of τ∞ (3.22) and H∞ (3.27) in the strongly-viscoelastic limit, for

large δ. Figure 8 shows τ∞ and H∞ for a fixed value of the initial stretch rate, E0 = 1, over a

finite range of values for δ. Observe that for small values of δ, below a certain critical value

δ∗, we obtain results consistent with the expansions for the effective initial conditions in

the previous section, that is τ∞ > 0 and H∞ > 1. This is the weakly-viscoelastic or “nearly-

Newtonian” regime. As δ→ δ∗, τ∞ → 0 and H∞ is singular of the form O(|δ − δ∗|−1/2).

For δ >δ∗, having a negative value for τ∞ means that (3.21) and (3.26) become singular
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Long-time solution
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86420
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Figure 7. The asymptotic structure of E(τ) (3.13) via short (3.35), intermediate (3.33), and

long-time (3.21)1 (with τ∞ < 0) asymptotic solutions for the strongly-viscoelastic case with δ= 5.
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Figure 8. For fixed E0 = 1, τ∞ (left) and H∞ (right) plotted as a function of the Deborah number

δ with δ∗ ≈ 1.056 for E0 = 1 separating weakly- and strongly-viscoelastic regimes.

at some finite positive time (at τ= |τ∞|). This behavior is unphysical and does not occur

in solutions of the viscoelastic model equations (3.2). This suggests that the long-time

asymptotic behaviors given by (3.21) and (3.26) can only be applied for times τ>−τ∞.

For earlier times, the transient dynamics of the viscoelastic filament are not comparable

to any Newtonian behavior. This is in contrast with the weakly-viscoelastic case, where

the solution of (3.2) could be compared with the Newtonian behavior given by (3.21) for

all times τ� 0. Consequently, we call the case with τ∞ < 0 the strongly-viscoelastic case.

We define the borderline between the weakly- and strongly-viscoelastic cases in terms

of the condition that the apparent initial stretch rate E∞ diverges, or equivalently that

τ∞(E0, δ) = 0. This condition defines the critical initial stretch rate E0 =E∗
0 (δ). From (3.23)

with τ0 = 1/E0, we find that for δ→ 0,

E∗
0 (δ) ∼ 2

δ2
. (3.36)

For large δ this suggests that the critical E0 is small; to test the limits of validity of this

criterion, we examine the limit of τ∞ (3.22) for E0 → 0 (equivalently for τ0 → ∞). Enforcing
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δ∗ ≈ 1.4949

E0 ∼ 2/δ2∗

Strongly-viscoelastic τ∞ < 0

Weakly-viscoelastic τ∞ > 0

δ

E0

10110−110−2

106

103

1

10−3
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Figure 9. The dividing line between the weakly- and strongly-viscoelastic regimes. The solid dots

correspond to conditions for the experiments described in § 4.

τ∞ = 0 to leading order as τ0 → ∞ yields the equation for δ,

ln

(
2

δ

)
− γ +

K1(δ)

I1(δ)
= 0, (3.37)

where γ ≈ 0.577215 is the Euler–Mascheroni constant. This equation has a single real

root for δ, which must be obtained numerically,

δ∗ ≈ 1.494894878 · · ·. (3.38)

There are no solutions of τ∞ = 0 for δ >δ∗. The conclusion is that for δ >δ∗ all filament

dynamics are strongly-viscoelastic, for any E0 (see Figure 9); for δ <δ∗ a solution of (3.2)

can fall in either regime, depending on its initial value for the stretch rate. For increasing

δ, (3.27) yields an exponential thinning of the effective filament thickness,

H∞ ∼
(

2π

δ ln2 δ

)1/4

e−δ/2, δ→ ∞. (3.39)

While H∞ depends on E0 only in higher-order terms as δ→ ∞, for cases of practical

interest, with δ=O(1), these terms may be needed to obtain sufficiently accurate values

of (3.27).

Apart from the applicability-in-time of the Newtonian estimate (3.21), the importance of

this dividing line between the weakly- and strongly-viscoelastic regimes is the qualitative

differences that accompany it. For weakly-viscoelastic cases, as δ increases, |τ∞| decreases

(see Figure 8(a)), consequently Figure 5 suggests that increasing viscoelastic effects actually

decreases the time-delay before power-law thinning occurs. In contrast, for the strongly-

viscoelastic case, as δ increases, then |τ∞| increases (see Figure 8(a)) and the time-delay

increases with viscoelastic effects – this is the behavior that is more expected. Delayed

filament thinning has been observed experimentally by Amarouchene et al. [2] and by
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Anna & McKinley [3]. In experiments with drops, Amarouchene et al. [2] found the

delay in the thinning filament increased for higher polymer concentration and higher

molecular weight, corresponding to an increase in the fluid elasticity. At least in terms of

this property of the solutions, the τ∞ = 0 criterion serves to separate qualitatively opposite

trends between nearly-Newtonian and strongly-viscoelastic fluid filaments.

3.6 Effects of viscoelasticity on the stress

Here we examine the effects of viscoelasticity on the stress, and highlight differences

between the UCM and Oldroyd-B models. To isolate viscoelastic effects, we consider the

trace of the stress tensor, tr(T) =Tzz + 2Trr, which using the expansion for the axial stress

(2.24), can be written as

tr(T(z, t)) =
1

2
az2 + bz + c+ 2Trr. (3.40)

For a Newtonian filament, this reduces to tr(T) = 0 + 0 + 2ηε̇+ 2(−ηε̇) ≡ 0. In fact, (3.40)

is identically zero for all incompressible Newtonian flows, since for Newtonian fluids

the stress is proportional to D (2.25) and the trace of D yields the continuity equation

(2.2). Consequently, (3.40) gives a measure of the “excess stress” due to viscoelasticity.

Nondimensionalizing (3.40) by Σ= λ tr(T)/η and Z = z/(gλ2) we obtain

Σ(Z, τ) =
ψδ2

8
A(τ)Z2 + ψB(τ)Z + C(τ) + 2T̄rr(τ). (3.41)

To evaluate the excess stress, we expand B, C, and T̄rr in the weakly-viscoelastic limit

δ → 0. Given the coupled form of the viscoelastic model equations (3.2), we also expand

the stretch rate using (3.13) and V (τ). As δ → 0, we obtain

E(τ) ∼ 1

τ+ τ0
+ δ2

(
1 + (1 + τ0)

2

4(τ+ τ0)2
−

[
1

4
+

1

2(τ+ τ0)
+

1

2(τ+ τ0)2

]
e−τ

)
+ O(δ4), (3.42 a)

V (τ) ∼ V0τ0

τ+ τ0
− τ+ τ0

2
+

1

2

τ0
2

τ+ τ0
+

B0

τ+ τ0

(
τ0

2 + 2τ0 + 2

τ0

)

− B0

τ+ τ0

(
τ2 + 2τ+ 2

τ0
+ 2τ+ 2 + τ0

)
e−τ + O(δ2), (3.42 b)

A(τ) = e−τ, B(τ) ∼ B0(τ+ τ0)

τ0
e−τ + O(δ2), (3.42 c)

C(τ) ∼
[

2ω

τ+ τ0
+ (ω− 1)[1 + τ+ τ0 + (τ+ τ0)

2 e−(τ+τ0) E1(−(τ+ τ0))] + O(e−τ)

]
+O(δ2),

(3.42 d)

T̄rr(τ) ∼ − 1

τ+ τ0
+

(1 + T̄rr0 τ0)

τ+ τ0
e−τ + O(δ2), (3.42 e)

where E1 is the exponential integral function [1], and we report only the algebraic terms

of C . The only dependence on ψ, representing the influence of gravitational, elastic and

viscous effects, in (3.42) occurs in exponentially small terms in C . The form of C is
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complicated, however in the asymptotic limit τ → ∞, this expansion simplifies to

C(τ) ∼ 2

τ+ τ0
+

6(1 − ω)

(τ+ τ0)2
. (3.43)

Observe that to leading order, this agrees with the result for the Newtonian filament

C = 2E. Note that all of the spatially dependent terms in the excess stress (3.41) decay

exponentially in time. In the limit τ → ∞,

Σ(τ) ∼ 6(1 − ω)

(τ+ τ0)2
. (3.44)

Assuming 0 �ω� 1 [31], the excess stress is largest when ω= 0, corresponding to the

UCM model, and zero when ω= 1, corresponding to “Newtonian-like” behavior. Thus at

long times, the effect of the additional solvent stress in the Oldroyd-B model (ω= λr/λ�0

in (2.39)) is to decrease the effective viscoelastic stress. This behavior is controlled by the

axial stress term C(τ).

Next considering intermediate times, we know the axial stress depends principally upon

C(τ) after some transient period since A and B exponentially decay. Figure 10 shows a

comparison of numerical solutions of C(τ) for the UCM (ω= 0) (solid) and Oldroyd-

B (dashed) models using (3.2) where we see the UCM stress bounds from above the

Oldroyd-B stress. This behavior can be understood by writing the evolution equation for

C(τ) in the form,

dC

dτ
= −(1 − 2E)C + 2E − ψBV + 2ω

(
dE

dτ
− 2E2

)
. (3.45)

In § 3.5 it was shown that E is a decreasing function after some transient period. Con-

sequently after this transient period

2ω

(
dE

dτ
− 2E2

)
< 0. (3.46)

Therefore, given the same initial data, the stress from the UCM model (ω= 0) is larger

than the Oldroyd-B model (ω> 0) after a transient period.

Figure 10 shows a typical solution where C(τ) attains a maximum before monotonically

decreasing. In experiments, Sridhar et al. observed a similar transient increase then relax-

ational decay in the stress for polymer solutions in an elongational flow [48]. Asymptotic

and numerical studies of a simple model for an extending viscoelastic filament attached to

a mass by Keiller, show qualitatively similar buildup then decay of the elastic stress [27].

This behavior can be understood by considering the polymer’s response to an extensional

flow, as studied in numerical simulations by Hinch [23]. Initially, the molecules stretch

due to sufficiently high strain rates, which results in a buildup in the axial stress. The peak

in the stress occurs approximately at the time the molecules undergo a stretch-to-coil

transition (τ ≈ 1/Etr = 2 in Figure 10), so that at longer times the molecules relax from

their stretched state and the stress decays. In contrast, the axial stress of a Newtonian

filament decays monotonically as 1/τ due to viscous effects. Thus, we attribute the initial
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Figure 10. The axial stress coefficient C(τ) for the UCM (ω= 0) (solid) and Oldroyd-B (ω= 1/2)

(dashed) models from numerical solution of (3.2) with E0 = 1, V0 = −1, B0 = 1, C0 = 5, ψ= 1/2, and

δ= 1/2.

increase of the stress to elastic effects, and the decay of the stress to a “Newtonian-like”

spatially uniform field to coiling of the polymer molecules with viscous effects dominant.

4 Comparison with experiment

When a drop falls from its source it draws out a filament that attaches it to the source.

Examples are shown in Figure 1 for a Newtonian fluid, and in Figure 2 for a viscoelastic

fluid. The dynamics of this filament, from its initial formation to pinch-off, depend strongly

on the fluid properties.

In the experiment shown in Figure 1, the filament is nearly cylindrical over a brief

time interval (between frames (a) and (c)). Eventually the filament loses its uniformity

and tapers down at its connections to the drop and orifice, as shown in frame (c). Within

a few milliseconds pinch-off occurs, first at the filament’s connection to the drop (frame

(e)), then at its connection to the orifice (frame (f)), and the free filament that remains

collapses to form one satellite drop (frame (g)).

The fluid shown in Figure 2 is the same as that shown in Figure 1, with a small amount

of polymer added. Given nearly the same experimental conditions, we observe strikingly

different behavior. The Newtonian solvent drop pinches-off in tens of milliseconds, while

the drop with the polymer solution takes over one second to pinch-off. The drop length

at the time of pinch-off is also very different; 1.4 cm for the Newtonian solvent versus

approximately 1 m for the polymer solution [44]. As in the Newtonian case, the viscoelastic

filament is nearly cylindrical over some time period, between frames (a) and (d). After

pinch-off of the main drop, the filament that remains sways, while elastically retracting

back into the orifice, as shown in frames (d) and (e). It is the viscoelastic properties of

the polymer fluid which account for these different and interesting dynamics [25, 2, 44].

Henderson et al. [22] considered the exact solution for a Newtonian stretching filament

as a model for the thinning of the finite filament attached to a falling drop. In an

experimental study with a series of (Newtonian) silicone oils, they showed the Newtonian

solution (2.29) correctly predicted the temporal scaling of the thinning filament during

the time when the filament is cylindrical [22]. Here we consider the exact solution for the
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filament radius H(τ) (3.15), derived for the UCM and Oldroyd-B constitutive equations,

as a model for the thinning of the filament attached to a falling drop of viscoelastic fluid.

We compare this exact solution to experimental measurements of the changing filament

interface for several semi-dilute polymer solutions.

4.1 Experimental fluids and apparatus

We conducted nine experiments with solutions of the polymer xanthan gum [40] at two

different concentrations (0.078% and 0.156% by weight), mixed in 80:20 glycerol/water

with and without the salt, potassium chloride KCl (0 - 0.047% by weight) [44]. The

surface tension of these fluids was measured at room temperature using a Fisher model

21 tensiomat, and varied by 1% from γ= 67.4 dyne/cm. The fluid density varied by

less than 1% from ρ= 1.28 g/cm3. Xanthan gum is a high molecular weight (≈ 5 × 106),

water-soluble, anionic polysaccharide produced by the bacterium Xanthomonas Campestris

[34]. The xanthan gum2 and KCl were gently mixed in distilled de-ionized water until the

solution was homogeneous. Glycerol was next added, and the solution was mixed for up

to 24 hours, and allowed to sit for another day before use.

Measurements of the shear rheology for these xanthan gum solutions indicate the

relaxation time and shear viscosity increase with increasing polymer concentration, and

decrease with increasing salt concentration [44, 45, 46]. These fluids are also known to

shear-thin (the shear viscosity decreases with increasing shear rate) and strain-harden

[45, 46, 29, 19]. The zero-shear viscosity and relaxation time of 0.16% xanthan gum mixed

in 80:20 glycerol/water (with no salt) at 25◦C is η0 � 500 P and λ� 40 s [46]; these values

represent an upper bound for the fluids considered here.

The experimental apparatus that produced the drops was similar to those used previ-

ously [22]. The fluid flow was driven by gravity from a 32 cm3 plastic (Lucite) reservoir,

which was open to the atmosphere, into a tube of length 2.5 cm, through a needle valve,

which controlled the flow rate, and finally through a lower tube of length 6.6 cm with inner

and outer radii of 1.54 and 2.17 mm. The 0.63-mm-wide edge of the orifice was machined

flat to allow for a reproducible contact line at the orifice/fluid/air interface. In all of the

experiments the period of the drops was about 30 s/drop. The experimental apparatus

was set on a vibration isolated table and enclosed in a box to reduce air currents. Images

and video sequences of the drops were obtained using a Kodak Ektapro 1012 EM Motion

Analyzer; details of the illumination used in these experiments can be found in [22].

The spatial resolution of the images was 21 µm/pixel and the temporal resolution in the

experiments ranged between 1000–3000 images/s.

4.2 Experimental results

Here we compare the exact solution H(τ) (3.15) to the radius of the thinning filament

attached to a falling drop. In the experiments, we measured the diameter, 2h, of the

filament at a fixed z location during the time before the drop pinched-off and while

∂h/∂z ≈ 0, that is, while the filament was cylindrical. This corresponds to the interval

between frames (a)–(d) in Figure 2. Using a nonlinear curve-fitting program, we determine

2 Vanzan NF, provided by R. T. Vanderbilt Co. (Norwalk, CT).
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Figure 11. Comparison of the exact solution for the filament radius H(τ) (solid line) with meas-

urements (pluses) for: 0.078% xanthan gum (x.g.) and 0% KCl (Expts. 1,2), 0.078% x.g. and

0.024% KCl (Expts. 3,4), 0.078% x.g. and 0.047% KCl (Expts. 5,6,7), 0.156% x.g. and 0.024% KCl

(Expts. 8,9).

the best fit of the raw data (without resolution bars) for the changing filament radius to

the dimensional form of H(τ) (3.15). There are three fitting parameters: a(0), ε̇(0), and

λ, (a fourth parameter h(0) is determined from measurements). For convenience we fit

the data to the parameters λ, δ (which is a composition of a(0) and λ) and α (which is

a composition of a(0), λ, and ε̇(0)) under the restriction that α satisfies (3.14). Figure 11

shows the results for nine experiments where the data are denoted by pluses and the fit

by the solid line; the corresponding concentrations of xanthan gum and KCl, and the

fitted parameter values for δ, λ, and ε̇(0) are reported in Table 1. We report δ, λ, and ε̇(0)

since they are most useful for interpreting the results. In all of the experiments, the exact

solution models well the thinning of the liquid filament over all time.

The relaxation time determined from fitting to (3.15) is on the order of tens of

milliseconds in all of the experiments, with an average value of 26.4 ms. In contrast,

the relaxation time of these fluids measured in shear rheology is on the order of tens

of seconds. There appears to be no correlation between the fitted relaxation time and

the polymer or salt concentrations, as observed in shear rheology measurements. For

each experiment, there is a small range of allowable relaxation times on the order of

tens of milliseconds accounting for the experimental resolution; though this range is not

large enough to account for the difference with the shear rheology measurements. We

thus conclude, when measured in extension, the relaxation time of these fluids is nearly

constant.
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Table 1. The fitted parameters comparing the exact solution H(τ) (3.15) and the asymptotic

solution (3.26) to experimental data. The fluids are solutions of xanthan gum and KCl mixed

in 80:20 glycerol/water

Expt. No. [X.G.] (%) [KCl] (%) δ λ (s) ε̇(0) (s−1) H∞ τ∞

1 0.078 0 1.83 0.032 55.5 0.41 −1.20

2 0.078 0 1.34 0.031 64.0 0.65 −0.59

3 0.078 0.024 4.64 0.043 75.1 0.06 −2.84

4 0.078 0.024 1.49 0.020 127.3 0.41 −0.83

5 0.078 0.047 1.10 0.022 91.4 1.40 −0.15

6 0.078 0.047 2.54 0.028 64.8 0.68 −0.39

7 0.078 0.047 1.99 0.027 69.2 0.44 −0.90

8 0.156 0.024 4.28 0.025 52.0 0.08 −2.50

9 0.156 0.024 1.67 0.010 71.1 1.32 −0.74

The exact solution (3.15) for the extensional flow of a viscoelastic fluid provides a single

analytic function that connects the effects of the initial stress Tzz along the filament to

the eventual approach to the Newtonian scaling. The Deborah number δ represents the

balance of this stress through the characteristic stretch rate
√
a0/ρ relative to λ. During a

transient period, the fluid filament is strongly viscoelastic if either E0>δ
2/2 or δ >δ∗ as

explained in § 3.5. This criterion is satisfied for all of the experiments, as shown in Figure 9,

where the parameters from the experiments are denoted by solid dots. This explains why

H(τ) does not scale as τ−1/2 initially in the experiments, as shown in Figure 11. In the

weakly viscoelastic case (E0<δ
2/2), the filament should behave “Newtonian-like” for all

time. We did not study the weakly viscoelastic limit in our experiments, and instead leave

this for a future study.

After a transient period, the exact solution for the filament radius transitions to

“Newtonian-like” behavior, as explained in § 3.3. We examine more closely this transition

and the long-time behavior of the filament motion in Figure 12. The data from Experi-

ment 1 for the nondimensional filament radius H(τ) vs. nondimensional time are shown in

Figure 12(a) (pluses) and the solid line is a fit using (3.15) with δ= 1.83, λ= 3.2 × 10−2 s,

and ε̇(0) = 55.5 s−1. The fluid is 0.078% xanthan gum in 80:20 glycerol/water, the same

fluid as that shown in Figure 2. The log-log plot of the data shows that after a transient

period (τ� 2), the filament radius decays as τ−1/2 (dot-dashed); this scaling is consistent

with the asymptotic behavior of H(τ) (3.26) for τ>−τ∞ denoted by the dashed line. Fit-

ting the portion of the data set that is predicted by (3.22) to be in the “Newtonian-like”

regime to (3.26), we find H∞ = 0.41 and τ∞ = −1.20; these values are consistent with the

predictions given by (3.22) and (3.27). The values of H∞ and τ∞ for all of the experiments

are reported in Table 1.

From a physical standpoint, the observed transition in H from non-Newtonian behavior

to Newtonian scaling can be understood in terms of the response of the polymer molecules

to the stretch rate. It is well known that viscoelastic effects delay the breakup of filaments

and jets [32, 38], where the stabilization is attributed to the polymer’s resistance to

extensional deformations comparable to 1/2λ [23, 6, 11]. In terms of nondimensional
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Figure 12. (a) Comparison of the exact solution for H(τ) (solid) with measurements (pluses)

for 0.078% xanthan gum and 0% KCl (Expt. 1) showing the asymptotic scaling τ−1/2 (see text);

(b) the calculated E(τ) (solid) determined from the fit for H(τ) to Expt. 1, showing the asymptotic

scaling τ−1 (dot-dashed) and the transition stretch rate Etr = 1
2

(dashed); (c) comparison of exact

solution for H(τ) (solid) with measurements (pluses) for 0.156% xanthan gum and 0.024% KCl

(Expt. 8), and (d) the calculated E(τ) determined from the fit for H(τ) to Expt. 8 (solid), Ecr = δ/2

(dot-dashed), and the transition stretch rate Etr = 1
2

(dashed).

quantities, if the stretch rate of the flow exceeds 1/2, then the polymer molecules stretch

from their coiled state, while below this critical value the molecules relax back to a

coiled configuration; Etr ≈ 1/2 corresponds to the stretch-coil transition of the polymer

molecules [23, 11, 28].

Figure 12(b) shows that the calculated value of E (solid line), determined from the

fitted parameters of Experiment 1 for H , monotonically decreases. This behavior is

expected since E0 = 1.78>δ/2 (3.30). The dashed line Etr = 1/2 in Figure 12(b) represents

the transition from polymer stretching (E >Etr) to relaxing (E <Etr). Comparison of

Figures 12(a) and (b) show that this transition corresponds roughly to the beginning of

the τ−1/2 scaling for the filament radius (τ ∼ 2). Thus, at small times the delayed thinning

of the filament is an elastic effect caused by the stretched polymer molecules, while at

larger times the molecules relax and the fluid behavior is “Newtonian-like”.

While monotonic decreasing of the stretch rate was common in the experiments, we

did observe one case where the stretch rate increased over a transient period, as shown

in Figure 12. The fluid is 0.156% xanthan gum and 0.024% KCl in 80:20 glycerol/water

(Experiment 8). Figure 12(c) shows measurements of the filament radius (pluses), the

nonlinear fit of the data to (3.15) (solid line), and the approach to the asymptotic

“Newtonian-like” behavior (3.26) (dashed line). Figure 12(d) shows the corresponding
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stretch rate (solid line) determined from the fitted parameters for H(τ) to Experiment 8.

Since E0<δ/2 (dot-dashed), the stretch rate initially increases, as explained in § 3.5. This

is a transient effect, so that eventually the stretch rate decreases and dips below the

stretch-to-coil transition stretch rate (dashed).

5 Conclusions

We have developed an analytic formulation for the free boundary problem of a spatially

uniform filament stretching in a gravity-driven purely extensional flow and have provided

a condition that must be satisfied for axisymmetric solutions to exist. This approach can

be applied to Newtonian or viscoelastic fluids by introducing an appropriate constitutive

model, in particular, we obtain the known exact solution for a Newtonian filament [22].

For more complex constitutive models, if one assumes a power series expansion for the

stress field, the free boundary problem can be simplified to a coupled system of ODEs. For

the Upper Convected Maxwell and Oldroyd-B models we have found an exact solution

describing the stretch rate and filament thickness which converges to the Newtonian

scaling as t → ∞. Based on the exact solution, we identify two regimes of dynamical

behavior called the weakly- and strongly-viscoelastic limits. For the weakly-viscoelastic

case, corresponding to low Deborah numbers, the dynamics are comparable to Newtonian

behavior for all times and yield an effective increase in the filament thickness relative

to a Newtonian fluid. In the strongly-viscoelastic case, initial transient dynamics are not

comparable to Newtonian behavior and the effective filament thickness decreases with

increasing Deborah number. Furthermore, in the weakly- (strongly-) viscoelastic limit, as

elasticity increases the time-delay before the solution converges to the Newtonian scaling

decreases (increases). The viscoelastic solution correctly predicts the time-dependence

of the changing filament radius in measurements with semi-dilute (strongly-viscoelastic)

polymer solutions. As t → ∞, observations of the filament thickness follow the Newtonian

scaling 1/
√
t. The transition from viscoelastic to Newtonian scaling in the filament

thickness is coupled to a stretch-to-coil transition of the polymer molecules. We do not

address the stability of the viscoelastic solution to spatial perturbations, instead leaving

this for a future investigation. In principle, the analytic approach presented here could be

extended to other constitutive models, including those that are nonlinear in stress.
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