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Abstract

Logarithmic asymptotics of the mean process {Sn/n} are investigated in the presence of
heavy-tailed increments. As a consequence, a full large deviations principle for means
is obtained when the hazard function of an increment is regularly varying with index
α ∈ (0, 1). This class includes all stretched exponential distributions. Thus, the previous
research of Gantert et al. (2014) is extended. Furthermore, the presented proofs are more
transparent than the techniques used by Nagaev (1979). In addition, the novel approach
is compatible with other common classes of distributions, e.g. those of lognormal type.
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1. Introduction

Let X be a generic member, called an increment, of the independent and identically dis-
tributed (i.i.d.) sequence (Xi) := (Xi)

∞
i=1 of real-valued random variables defined on (�, F , P).

We set Sn = X1+· · ·+Xn and study the logarithmic asymptotics of P(Sn > an) for a > E(X).
More specifically, the asymptotic behaviour of the quantity

− log P(Sn > an)

g(n)
(1)

is studied in a large class of increment distributions under different choices of the scaling
function g as n → ∞. The function g will be the hazard function

RX(x) = R(x) = − log P(X > x) (2)

or an approximation of R.
Quantity (1) has been extensively studied in the literature. However, the bulk of the research

was focused into two major categories of increments: light-tailed and extremely heavy-tailed.
Recall that X is light-tailed if E(esX) < ∞ for some s > 0 and heavy-tailed otherwise. Between
the distributions with polynomial or heavier tails and light-tailed distributions lies a rich but
relatively little understood set of distributions. They share the following two properties.

I. Members are heavy-tailed.

II. Members have finite moments of all orders, i.e. E((X+)α) < ∞ for all α > 0.
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Large deviations of means 67

In this paper we aim to narrow the research gap between light- and seriously heavy-tailed
distributions. Specifically, we study the asymptotics of the quantity (1) when the increment of
the random walk Sn satisfies requirements I and II.

Perhaps the best known subclass of distributions satisfying I and II is the class of stretched
exponential distributions. A random variable X has a stretched exponential tail if

a1(x)e−b(x)xα ≤ P(X > x) ≤ a2(x)e−b(x)xα

(3)

holds for all large enough x, where α ∈ (0, 1) and a1, a2, b are slowly varying functions
[11], [13]. Furthermore, lognormal and stretched exponential distributions fulfil requirements I
and II. Random walks with increments from these and other distributions were investigated in
[4], [16]–[18]. See also Section 6 of [3] along with its ample references.

In [11], the quantity (1) with stretched exponential increments was studied using the scale
g(x) = b(x)xα . Under mild assumptions, a limit was shown to exist in (1), which gives the
full large deviations principle. In this paper, the previous analysis is extended by showing that
the limit actually exists in a much larger class of distributions. This can be achieved because
the method offers new insight about the interaction between the scale g and the rate function
associated with the large deviations principle of the process {Sn/n}.

To begin, the nontrivial scaling functions for the upper and lower limits of (1) are identified.
As in [8], we call the limiting behaviour nontrivial if there exist at least two separate values of a

in (1) for which the limiting quantity is not 0 or ∞. We show that the hazard function R of (2)
is a nontrivial scale for the upper limit of (1). Somewhat surprisingly, the corresponding lower
limit requires a different scale.

The key ingredient in the required analysis turns out to be the concept of natural scale. Every
heavy-tailed random variable admits a concave, extended regularly varying approximation R

of R. Such a function is called a natural scale. It is important because it produces a nontrivial
lower limit in (1). The existence of natural scale can be used, not only to simplify existing
techniques, but to produce completely new approaches under general, but previously unexplored
assumptions.

Full large deviations principle for means can be obtained if the functions R and R are close
to each other and a limit exists in (1). Specifically, it is the case when R is regularly varying
with index α ∈ (0, 1). This expands the known results for stretched exponential increments.
Finally, a converse result is proven: under general assumptions the existence of a limit in (1)
with scale g = R implies regular variation of R with index α ∈ [0, 1].
1.1. Assumptions and notation

Assumption 1. Basic assumptions.

(i) E((X+)s) < ∞ for all s > 0.

(ii) R(x) = o(x) as x → ∞.

(iii) E(X) = μ = 0.

(iv) X− = max(0, −X) is light-tailed.

Assumptions 1(i) and 1(ii) concern the growth rate of R. In fact, Assumption 1(i) has an
alternative form log x = o(R(x)) as x → ∞. This is an immediate consequence of the
well-known relation

sup{s ≥ 0 : E((X+)s) < ∞} = lim inf
x→∞

R(x)

log x
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68 J. LEHTOMAA

found from, e.g. [5]. Assumption 1(iv) could be relaxed in some occasions if one wanted to
study the left tail of the sum Sn. However, since the results deal with the right tail of Sn,
Assumption 1(iv) is assumed in order to make the assumptions uniform.

The results of [2] are used extensively. Properties of regularly varying functions are recalled
as necessary. Only the following general definitions are explicitly stated.

Definition 1. A positive function f is slowly varying, if f (yx)/f (x) → 1 as x → ∞ for all
y > 0. More generally, a function f is regularly varying with index α ∈ R, denoted f ∈ Rα ,
if f (yx)f (x) → yα as x → ∞ for all y > 0. Following Definition (2.0.6) of [2], a function f

is extended regularly varying if

yd ≤ lim inf
x→∞

f (yx)

f (x)
≤ lim sup

x→∞
f (yx)

f (x)
≤ yc

for all y ≥ 1 and some constants c, d ∈ R.

This paper occasionally uses standard notations f ∼ g, f = o(g), and f = O(g), as defined
in [2]. All asymptotic relations concern the limit x → ∞ or n → ∞ unless otherwise stated,
where x ∈ R and n ∈ N = {1, 2, 3, . . .}. Any property that holds for large enough arguments
means that there exist a number y0 such that the property holds in the set [y0, ∞). Similarly,
we say that a property holds eventually if it holds for large enough arguments. The notation
X := Y means that the definition of X is Y . The positive part is denoted by x+ := max(0, x).
Finally, we set 	x
 := inf{n ∈ Z : x ≤ n} and �x� := sup{n ∈ Z : x ≥ n}.

2. Results

A hazard function corresponding to a heavy-tailed distribution admits a concave approxi-
mation called natural scale. It is a smooth function that approximates R from below in an
asymptotic sense. Related ideas have been previously presented in [7] and [12]. However, the
concavity seems to be the property that truly makes the concept of natural scale operational.

2.1. Preliminary results

A concave function R satisfying Theorem 1(i)–(iv) is called a natural scale of X. Note that
the concept of natural scale does not fix a unique function. A good initial guess for finding
some natural scale in practice is R(x) = − log P(X > x) itself or a dominating component
of R.

The name natural scale comes from connection (6). Since a random variable X is heavy-
tailed if it has no finite exponential moments, it is natural to search for a renormalising function g

such that exponential moments of g(X) are finite again. Clearly, this is possible for any growing
function g that grows slowly enough with respect to R. However, the natural scale is, in a sense,
the fastest growing function that still makes the exponential moments of R(X) finite.

Theorem 1. Let R be the hazard function of X. Suppose that X is heavy-tailed, i.e.

lim inf
x→∞

R(x)

x
= 0. (4)

Then there exists a strictly increasing concave function R : [0, ∞) → [0, ∞) satisfying

(i) R ≥ 0,

(ii) R(0) = 0,

(iii) R(x) = o(x) as x → ∞, and
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(iv) the condition

lim inf
x→∞

R(x)

R(x)
= 1. (5)

Condition (5) is equivalent to

sup{s ≥ 0 : E(esR(X)) < ∞} = 1. (6)

The fact that heavy-tailedness is equivalent with (4) was shown in Theorem 2.6 of [9]. Only
heavy-tailed variables can have a function fulfilling properties (iii) and (iv). Theorem 1 shows
that it is always the case. Properties (i) and (ii) can be obtained by a suitable linear interpolation
if properties (iii) and (iv) hold. Properties (i) and (ii) are nevertheless demanded. They ensure,
with concavity, the subadditivity of R. The fineness of exponential moments in (6) is determined
by the lim inf in (5). The corresponding lim sup does not have a similar effect to integrability.

2.2. Main results

Theorem 2. Suppose that X satisfies Assumptions 1(i)–(iv).
In general

lim sup
n→∞

− log P(Sn > n)

R(n)
= 1. (7)

If R is a natural scale of X such that log x = o(R(x)), then

lim inf
n→∞

− log P(Sn > n)

R(n)
= 1. (8)

Remark 1. Note that natural scales are not involved in (7), although its proof makes extensive
use of their properties. This indicates that the concept of natural scale enables new proof
techniques. The following results concern mainly regularly varying hazard functions with
α ∈ (0, 1). However, Theorem 2 is suitable for other distribution types as well, e.g. for
lognormal distributions.

Remark 2. If R ∼ R, it holds that log P(Sn > n) ∼ log P(X > n) as n → ∞. At the level
of logarithms one large increment dominates the tail behaviour of Sn. This can be viewed as a
manifestation of the principle of a single big jump, which is widely observed in heavy-tailed
systems, see [15].

Remark 3. The result of Theorem 2 is not valid for light-tailed variables or variables that have
an infinite moment of some order. The light-tailed case is covered by Cramér’s theorem, where
the scaling g always needs to be chosen as g(n) = n. If X does not have finite moments of all
orders, but still has expectation, the natural scale can be chosen to be β log x for some β ≥ 1
and large enough x. In this case the right-hand side of (7) and (8) may not be equal to 1, but
changed by a constant depending on β.

Corollary 1. Let a > 0.
Suppose that the assumptions needed to obtain (7) hold. Then

lim sup
n→∞

− log P(Sn > an)

R(n)
≤ lim sup

n→∞
R(an)

R(n)
. (9)

Suppose that the assumptions needed to obtain (8) hold. Then

lim inf
n→∞

− log P(Sn > an)

R(n)
≥ lim inf

n→∞
R(an)

R(n)
. (10)
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In Lemma 1 we show that distributions defined by (3) have a regularly varying hazard
function R. Since Theorem 3 covers regularly varying hazard functions, specifically the case
of stretched exponential distributions is included.

Lemma 1. Suppose that X satisfies (3), i.e. X is a random variable with a stretched exponential
distribution.

Then R ∈ Rα with α ∈ (0, 1), where Rα is defined as in Definition 1

Theorem 3. Suppose that Assumptions 1(iii) and 1(iv) hold, and R ∈ Rα with α ∈ (0, 1) so
that also Assumptions 1(i) and 1(ii) hold. Then

lim
n→∞

− log P(Sn > an)

R(n)
=

{
0 : a < 0,

aα : a ≥ 0.
(11)

Furthermore, the process {Sn/n} satisfies the full large deviations principle with good rate
function

I (x) =
{

∞: x < 0,

xα : x ≥ 0,

and scale R, i.e.

− inf
y∈A◦ I (y) ≤ lim inf

n→∞
log P(Sn/n ∈ A)

R(n)
≤ lim sup

n→∞
log P(Sn/n ∈ A)

R(n)
≤ − inf

y∈cl(A)
I (y)

for all Borel sets A ⊂ R.

In Theorem 3 the rate function I is concave instead of convex on the positive half-line.
This is fundamentally different from what is observed in light-tailed theory. See, e.g. [1] for
other nonstandard rates and [6] and [19] for classical results. In Theorem 4 we give a partial
converse of Theorem 3. Under general assumptions the necessary limit cannot exist unless
the hazard function is regularly varying. If more smoothness is assumed from R, e.g. if it is
almost Weibullian, then the result can be proved in a more straightforward way via estimation
arguments or application of the results of [13].

Theorem 4. Suppose R satisfies Assumptions 1(i)–(iv). Assume further that R ∼ R for some
natural scale R of R. If

lim inf
n→∞

− log P(Sn > an)

R(n)
= lim sup

n→∞
− log P(Sn > an)

R(n)

for all a in some set of positive Lebesgue measure A ⊂ (0, ∞), then R ∈ Rα for some
α ∈ [0, 1].

3. Comments and counterexamples

In Example 1 we demonstrate why the scaling g = R must be used instead of g = R in (8).
In addition, some regularity properties of the central functions are provided.

There exist increasing concave functions which are not regularly varying; see [14, p. 512]
for explicit examples. Since such a function could be a hazard function or a natural scale of a
random variable, the function R may have oscillations that ruin regular variation. Nevertheless,
some degree of regularity is available directly from the definition of the natural scale, namely
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the extended regular variation (ERV) property and subadditivity. By Lemma 4, it is immediate
that, for λ ≥ 1,

1 ≤ lim inf
x→∞

R(λx)

R(x)
≤ lim sup

x→∞
R(λx)

R(x)
≤ λ,

so that R ∈ ERV with d = 0 and c = 1. The subadditivity property R(a + b) ≤ R(a) + R(b)

for a, b ≥ 0 is clear from the definition of concavity and Theorem 1(ii).
The function

g(a) := lim inf
n→∞

R(an)

R(n)
,

where a ≥ 0, is clearly a concave and increasing function. This shows that the concavity of R

induces some regularity to the lower limit of (10).

Example 1. The function R cannot generally replace the function R in (8). To see this, let h1
and h2 be concave, strictly increasing functions such that h2(x) = o(x) and log x = o(h1(x))

as x → ∞. Assume further that hi(0) = 0, i = 1, 2, and

h2(x) > (1 + η)h1(x)

for some η > 0 and all x > 0. Now, one can construct the hazard function R of a random
variable X using the functions h1 and h2 so that

lim inf
n→∞

− log P(Sn > n)

R(n)
< 1. (12)

We define the right tail of X by defining its hazard function R.
First, define the members of the sequence (yn) ⊂ R by setting y1 = 1 and demanding that

h1(yn+1) = h2(yn) for all n ∈ N. The function R is constructed recursively from the sequence
(yn) by setting R(x) = h2(yn), x ∈ [yn, yn+1), n ∈ N. The function R is a hazard function
and fixes the right tail of the random variable X in set [1, ∞). To fix the full distribution of X,
set a single point mass on the negative half-axis so that E(X) = 0. The function R has a jump
at every point of the sequence (yn), which is real-valued. Set zn := 	yn
 to obtain an integer-
valued sequence (zn). Now, for a fixed n, it holds that P(Szn > zn) ≥ P(X > zn − 2)P(X >

2)P(Szn−2 ≥ 0).
Application of the central limit theorem shows that the last factor tends to 1

2 as n → ∞.
Therefore,

lim inf
n→∞

− log P(Sn > n)

R(n)
≤ lim inf

zn→∞
− log P(Szn > zn)

R(zn)

≤ lim inf
zn→∞

− log P(X > zn − 2)

R(zn)

= lim inf
zn→∞

R(zn − 2)

R(zn)
.

The growth rate of h2 on intervals of constant size must diminish to 0 by the assumption that
h2(x) = o(x). For large enough n, inequality R(zn − 2)/R(zn) ≤ h1(zn)/(h2(zn) − 1) holds
and, thus,

lim inf
n→∞

− log P(Sn > n)

R(n)
≤ 1

1 + η
< 1,

which is the claim of (12). This shows that (8) is not generally valid if R is replaced by R.
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Similarly, an arbitrary choice of R cannot be used in the upper limit (7). Different choices
of R may have regions of slow growth ruining the desired asymptotic relation. In conclu-
sion, generally different functions are needed for the upper and lower limits of (7) and (8),
respectively.

4. Proofs

4.1. Proofs of Section 2.1

The following lemma is needed for the proof of Theorem 1.

Lemma 2. Suppose that X is a random variable. Assume further that function h is strictly
increasing, continuous, and h(x) → ∞ as x → ∞.

Then lim infx→∞ R(x)/h(x) = sup{s ≥ 0 : E(esh(X)) < ∞}.
Proof. It is known from [5] that lim infx→∞ RX(x)/x = sup{s ≥ 0 : E(esX) < ∞}. The

claim follows from the previous connection when it is applied to the random variable h(X)

while recalling that h is invertible and continuous. �
Proof of Theorem 1. The existence of a natural scale is proved by explicit construction.

Suppose that (4) holds. We will construct a function h that is piecewise linear and whose slope
is decreasing. The idea is to define h first for xn ∈ aZ

+ and then extend the function to the
continuum using linear interpolation.

Let a, r > 0 be fixed numbers such that r > a. Define the sequence (xn)
∞
n=0 by xn := an.

Next, to give a precise description of the interpolation procedure, we will find a sequence of
slopes (εn)

∞
n=0 such that εn ↓ 0 as n → ∞. This allows us to define the function h by conditions

h(0) = 0 and

h(x) = h(xn) + εn(x − xn) for x ∈ (xn, xn+1], n = 0, 1, 2, . . . ,

where the sequence of slopes (εn)
∞
n=0 is not yet fixed. In order to fix the sequence, set εn =

(h(xn+1) − h(xn))/a.
Now, it remains to define the value of h at points xn. In order to account for the case where

there is no probability mass near the origin, set n0 := inf{n ∈ N : n > 0, R(xn) > 2} and
define h by h(x) = x/xn0 when x ∈ [0, xn0 ] so that h(xn0) = 1. The rest of the function h is
defined inductively.

Suppose that the function h is defined in the interval [0, xn] for some n ≥ n0. Set εn0−1 :=
1/xn0 and define the function g1 by

g1(x) := h(xn) + εn−1(x − xn), x ∈ [xn, xn + r].
The function g1 copies the slope of h from the previous step.

The following rule consisting of two parts is then used to obtain h(xn+1).

• If g1(x) ≤ R(x) for all x ∈ [xn, xn + r), set h(xn+1) := g1(xn+1).

• If g1(x) > R(x) for some x ∈ [xn, xn + r), define

ε̂ := sup{ε > 0 : h(xn) + ε(x − xn) ≤ R(x) for all x ∈ [xn, xn + r]}
and

g2(x) := h(xn) + ε̂(x − xn), x ∈ [xn, xn + r].
The value of function h is then defined as h(xn+1) = g2(xn+1).
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The function h defined as above cannot be bounded from above by any constant. More
specifically, even in the worst case scenario where R is constant in an interval of arbitrary
length, the function h keeps a strictly positive, albeit possibly very small, slope. Since
lim infx→∞ R(x)/x = 0, a linear function of any positive slope below R must eventually
cross with R. This being the case, there always exists a subsequence (xnk

) so that xnk
is close

to R. Since R grows to ∞, the linear interpolation function h must also do the same.
So, it is possible to choose R = h. The function h is concave, since εn ↓ 0 as n → ∞. The

part εn ↓ 0 can be seen from the fact that the function R cannot remain indefinitely above any
linear function of positive slope. Theorems 1(i) and 1(ii) also hold by construction. Since

h(x) ≤ R(x) (13)

for large enough x and εn ↓ 0, Theorem 1(iii) holds. Since εn ↓ 0, it follows that corresponding
to any fixed C > 0 there exists a subsequence (xnk

)∞k=1 such that

|R(xnk
) − h(xnk

)| < C. (14)

Inequality (14) implies Theorem 1(iv).
The equivalence of (5) and (6) follows directly from Lemma 2. �

Remark 4. The proof of Theorem 1 shows that some additional properties can be obtained
for the concave approximation h. Namely, properties (13) and (14). In addition, assuming
log(x) = o(R(x)) in Theorem 2 is not a limiting requirement because such scales can always
be chosen under the made assumptions. For example, one can add any nonnegative concave
function r so that eventually log x ≤ r(x) ≤ R(x), log x = o(r(x)), and r(x) = o(R(x))

to any natural scale h to obtain a suitable function which is a natural scale after scaling and
translation.

4.1.1. Basic properties of natural scales. The following lemma concerns concave functions in
general, but will be used mainly with natural scales.

Lemma 3. Let h : [0, ∞) → [0, ∞) be an increasing concave function with h(0) ≥ 0. Then,
for all x ≥ 0,

h(cx) ≥ ch(x) if 0 < c < 1 and h(cx) ≤ ch(x) if c > 1.

Proof. Assume that x > 0. Suppose first that 0 < c < 1. Using the definition of concavity,
we have

h(cx) = h(cx + (1 − c)0) ≥ ch(x) + (1 − c)h(0) ≥ ch(x),

which proves the first part.
Suppose then that c > 1. Set y := cx. Applying the first part at point y, we obtain

h((1/c)y) ≥ (1/c)h(y) so that h(cx) ≤ ch(x) holds and we are done. �
Lemma 4. Let R be a natural scale. Then

(i) λR(x) ≤ R(λx) for 0 ≤ λ ≤ 1,

(ii) R(λx) ≤ λR(x) for λ ≥ 1,

(iii) R(x + λ) ∼ R(x) as x → ∞ for λ ∈ R.

Proof. (i) and (ii) Apply Lemma 3 to function R.
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(iii) This is standard since R is a subadditive function due to its concavity for λ ≥ 0. The
remaining case where λ < 0 can be reduced to this by setting y = x + λ and considering the
limit y → ∞. �
4.2. General lemmas for the proofs of Section 2.2

The proofs of the upper and lower limits require different techniques. For the convenience
of the reader these estimates are discussed in different sections. The most technical parts are
presented in a series of separate lemmas.

The following lemma proves to be useful for lower estimates concerning probabilities of the
form P(Sn > an).

Lemma 5. Let ξ, ξ1, ξ2 . . . be i.i.d. variables with E(|ξ |2) < ∞ and E(ξ) = 0.
Then there exists a constant c > 0, depending on the fixed number a > 0, such that, for all

n = 2, 3, . . . , it hold that
P(Sn > na) ≥ cP(ξ > na).

Proof. Independence implies P(Sn > na) ≥ P(ξ > na)P(Sn−1 ≥ 0). Now, application
of the central limit theorem yields P(Sn−1 ≥ 0) → 1

2 in the limit n → ∞. Choosing
c := infn∈N P(Sn ≥ 0) proves the claim. �

The following lemma turns out to be of central importance.

Lemma 6. Assume that Assumptions 1(i)–(iv) hold. Suppose that R is a natural scale of X

such that log x = o(R(x)) and 0 < η < 1 is fixed.
Then

E

(
exp

(
(1 − η)

R(n)

n
X

)
1{X≤n}

)
≤ 1 + o

(
R(n)

n

)
, n → ∞,

where 1 is the indicator function.

Proof. Let A := A(n) be a sequence of positive numbers such that A(n) → ∞ and
(R(n)/n)A(n) → 0 as n → ∞. For any A > 0, we write

E

(
exp

(
(1 − η)

R(n)

n
X

)
1{X≤n}

)
= E

(
exp

(
(1 − η)

R(n)

n
X

)
1{X≤A}

)
(15)

+ E

(
exp

(
(1 − η)

R(n)

n
X

)
1{A<X≤n}

)
(16)

and estimate the two terms (15) and (16) separately.
For (15), we use a Taylor expansion and the fact that μ = 0 to obtain

E

(
exp

(
(1 − η)

R(n)

n
X

)
1{X≤A}

)
≤ P(X ≤ A) + o

(
R(n)

n

)
. (17)

For (16), using integration by parts, we have

E

(
exp

(
(1 − η)

R(n)

n
X

)
1{A<X≤n}

)

= exp

(
(1 − η)

R(n)

n
A

)
P(X > A) − exp

(
(1 − η)

R(n)

n
n

)
P(X > n) (18)

+ (1 − η)
R(n)

n

∫ n

A

exp

(
(1 − η)

R(n)

n
y

)
P(X > y) dy. (19)
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The second term of (18) can be omitted and the first term estimated by the inequality

exp

(
(1 − η)

R(n)

n
A

)
P(X > A) ≤ P(X > A) + O

(
R(n)

n

)
AP(X > A). (20)

Note that xP(X > x) → 0 as x → ∞ because X has finite moments of all orders.
Term (19) can be bounded in the following way. We may assume A to be so large that

P(X > y) ≤ exp(−(1 − η/2)R(y)) holds for all y ≥ A. Now,

(1 − η)
R(n)

n

∫ n

A

exp

(
(1 − η)

R(n)

n
y

)
P(X > y) dy

≤ R(n)

n

∫ n

A

exp

(
(1 − η)

(
−R(y) + R(n)

n
y

)
− η

2
R(y)

)
dy.

The concavity of R ensures that R(y) ≥ (R(n)/n)y so that

R(n)

n

∫ n

A

exp

(
(1 − η)

(
−R(y) + R(n)

n
y

)
− η

2
R(y)

)
dy ≤ R(n)

n

∫ n

A

exp

(
−η

2
R(y)

)
dy,

(21)
where the last integral is convergent due to the assumption that log x = o(R(x)).

Combining estimates (17), (20), and (21) ends the proof. �

The following estimation method is widely known. It is recalled here as a lemma for the
reader’s convenience.

Lemma 7. Suppose that ξ, ξ1, ξ2, . . . is an i.i.d. sequence of random variables. Denote Mn :=
max(ξ1, ξ2, . . . , ξn) and Sn : ξ1 + ξ2 + · · · + ξn as usual. Let (an)

∞
n=1, (bn)

∞
n=1, and (cn)

∞
n=1

be sequences of positive numbers.
Then, for any n ∈ N,

P(Sn > bn, Mn ≤ cn) ≤ e−anbn(E(eanξ 1{ξ≤cn)})n.

Proof. Fix n. Since E(eanSn1{Sn>bn,Mn≤cn}) ≥ eanbnP(Sn > bn, Mn ≤ cn), independence
implies the result. �

4.3. Proof of Theorem 2

4.3.1. Lower bound for (8). Somewhat similar approaches of estimation have been used in the
proofs of [13] and [18]. However, the main arguments of the present proof are completely new
and, in particular, more general.

Writing
P(Sn > n) = P(Sn > n, Mn ≤ n) + P(Sn > n, Mn > n

and applying Lemma 1.2.15 of [6], we have

lim sup
n→∞

log P(Sn > n)

R(n)

= max

(
lim sup
n→∞

log P(Sn > n, Mn ≤ n)

R(n)︸ ︷︷ ︸
=:I1

, lim sup
n→∞

log P(Sn > n, Mn > n)

R(n)︸ ︷︷ ︸
=:I2

)
.
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For the quantity I2, it suffices to make the standard estimate

P(Sn > n, Mn > n) ≤ P(Mn > n) ≤ nP(X1 > n)

so that

I2 ≤ lim sup
n→∞

log P(X > n)

R(n)
= −1.

To estimate I1, fix a small η > 0. By the application of Lemma 7 with an = (1−η)R(n)/n,
bn = n, and cn = n, we obtain

P(Sn > n, Mn ≤ n) ≤ exp(−(1 − η)R(n))

(
E

(
exp

(
(1 − η)

R(n)

n
X

)
1{X≤n}

))n

.

So,

I1 ≤ −(1 − η) + lim sup
n→∞

n log(E(exp((1 − η)(R(n)/n)X)1{X≤n}))
R(n)︸ ︷︷ ︸

=:I3

. (22)

It follows from Lemma 6 and the inequality log x ≤ x − 1 for x > 0 that I3 ≤ 0.
Combining the previous results concerning quantities I1 and I2, we obtain

lim sup
n→∞

log P(Sn > n)

R(n)
≤ −(1 − η).

This proves the claim, since the argument can be repeated with an arbitrarily small η > 0.

4.3.2. Lower bound for (7). For the lower bound we need only to find suitable subsequences
of integers, since we are concerned with a lower bound of a limit superior.

Let ε ∈ (0, 1) be so small that (1 + ε)(1 − η) = (1 − η′) < 1 for some η′ ∈ (0, 1). Suppose
that R is a natural scale of X such that log x = o(R(x)). Such a scale can be found by Remark 4.
Equation (5) implies the existence of a sequence (zn) ⊂ N such that zn ↑ ∞,

(1◦) R(zn) ≤ (1 + ε)R(zn) for all n ∈ N, and

(2◦) R(x) ≥ (1 − ε)R(x) for all real x such that x ≥ z1.

Now,

lim sup
n→∞

− log P(Sn > n)

R(n)
≥ lim sup

n→∞
− log P(Szn > zn)

R(zn)
≥ lim inf

n→∞
− log P(Szn > zn)

R(zn)
.

To prove the claim it then suffices to show that there are subsequences that allow

lim sup
n→∞

log P(Szn > zn)

R(zn)
(23)

to be bounded from above by a number arbitrarily close to −1.
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We may rewrite the calculations of Section 4.3.1 until (22) by replacing R with R everywhere.
So, to prove the claim it is enough to show that

lim sup
n→∞

zn log(E(exp((1 − η)(R(zn)/zn)X)1{X≤zn}))
R(zn)

can be estimated from above by an arbitrarily small positive number.
This follows from the choice of sequence (zn) via properties (1◦) and (2◦) and Lemma 6,

since the effect of the light-tailed error from the left tail vanishes if we repeat the argument with
arbitrarily small ε > 0. The deduction shows (23) can be bounded as required thus completing
the proof.

4.3.3. Upper bound for (7) and (8). We prove the upper limits for (7) and (8). The proof is
based on application of Lemma 5 with a = 1. We see that

lim inf
n→∞

log P(Sn > n)

R(n)
≥ lim inf

n→∞
log P(X > n)

R(n)
= −1,

which proves the upper bound of (7).
Next, we show the remaining direction of (8). Let ε > 0. By definition, there is a sequence

(xn) ⊂ N such that R(xn) ≤ (1 + ε)R(xn) for all n. So,

lim inf
n→∞

− log P(Sn > n)

R(n)
≤ lim inf

xn→∞
− log P(Sxn > xn)

R(xn)

≤ (1 + ε) lim inf
xn→∞

− log P(Sxn > xn)

R(xn)

≤ (1 + ε) lim sup
xn→∞

− log P(Sxn > xn)

R(xn)

≤ (1 + ε) lim sup
n→∞

− log P(Sn > n)

R(n)

≤ (1 + ε).

This completes the proof of Theorem 2. �
4.4. Proofs of the remaining results

Proof of Lemma 1. Equation (3) implies that − log a1(x)+b(x)xα ≥ R(x) ≥ − log a2(x)+
b(x)xα . Denote R̂(x) = b(x)xα . Using the basic properties of slowly varying functions, see,
e.g. Proposition 1.3.6 of [2], we obtain R ∼ R̂. Thus, we obtain, for all y > 0, as required,

lim
x→∞

R(yx)

R(x)
= lim

x→∞
R̂(yx)

R̂(x)
= yα. �

Proof of Corollary 1. To show (9), set X̂ := X/a and Ŝn = X̂1 + · · · + X̂n. Clearly, X̂

satisfies Assumptions 1(i)–(iv). In addition,

R
X̂
(n) = − log P

(
X

a
> n

)
= − log P(X > an) = R(an).
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Therefore,

lim sup
n→∞

− log P(Sn > na)

R(n)
= lim sup

n→∞
− log P(Ŝn > n)

R(n)

= lim sup
n→∞

R
X̂
(n)

R(n)

− log P(Ŝn > n)

R
X̂
(n)

≤
(

lim sup
n→∞

R
X̂
(n)

R(n)

)(
lim sup
n→∞

− log P(Ŝn > n)

R
X̂
(n)︸ ︷︷ ︸

=1

)

= lim sup
n→∞

R(an)

R(n)
.

Equation (10) can be proven by analogous arguments. �

The following two observations become useful in the proof of Proposition 3.

Lemma 8. Suppose that Assumptions 1(iii) and 1(iv) hold and let R be regularly varying with
index α ∈ (0, 1). Then

lim sup
n→∞

− log P(Sn > na)

R(n)
= lim sup

n→∞
R(an)

R(n)
= aα.

Proof. Define X̂ as in the proof of Corollary 1. Now,

lim sup
n→∞

− log P(Sn > na)

R(n)
= lim sup

n→∞
− log P(Ŝn > n)

R(n)

= lim sup
n→∞

R
X̂
(n)

R(n)

− log P(Ŝn > n)

R
X̂
(n)

=
(

lim
n→∞

R
X̂
(n)

R(n)

)(
lim sup
n→∞

− log P(Ŝn > n)

R
X̂
(n)

)
= aα. �

Lemma 9. Suppose that R ∈ Rα , where R is a hazard function of a heavy-tailed random
variable X and α ∈ (0, 1).

Then X has a natural scale R such that R ∼ R.

Proof. The proof is based on a classical result concerning regularly varying functions.
Theorem 1.8.3. of [2] states that for f ∈ Rα , where α �= {0, 1, 2, . . .}, there exists a C∞
function g whose derivatives of all orders are monotone and g ∼ f .

Applying this theorem with the choice f = R we see that there exists a smooth function
g ∼ R, whose second derivative g′′ is a monotone function. To prove the claim it suffices to
note that g must be eventually concave. This can be shown by inspecting the possible cases in
a straightforward manner, which proves the claim �

Proof of Theorem 3. In the light of Lemma 8, it suffices to consider the corresponding lower
limit. Let R be a natural scale obtained from Lemma 9 satisfying R ∼ R. Now, using the fact
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that R ∼ R and the lower limit (10), we obtain

lim inf
n→∞

− log P(Sn > an)

R(n)
= lim inf

n→∞
− log P(Sn > an)

R(n)

≥ lim inf
n→∞

R(an)

R(n)

= lim inf
n→∞

R(an)

R(n)

= aα,

which implies (11).
The proof of the large deviation principle is standard from here. It is based on showing the

following inequalities:

lim sup
n→∞

log P(Sn/n ∈ F)

R(n)
≤ − inf

y∈F
I (y) for all closed sets F ⊂ R,

lim inf
n→∞

log P(Sn/n ∈ G)

R(n)
≥ − inf

y∈G
I (y) for all open sets G ⊂ R,

from which the claim easily follows. �
Proof of Theorem 4. Let a ∈ A and denote X̂ := X/a. Now, functions R

X̂
(x) = R(ax)

and R satisfy Assumptions 1(i)–(iv). By Theorem 2 and the assumption that R ∼ R, we deduce

log P(Ŝn > n) ∼ log P(X̂ > n) as n → ∞.

Now, since

lim
n→∞

− log P(Sn > an)

R(n)
= lim

n→∞
R(an)

R(n)

− log P(Ŝn > n)

R(an)

= lim
n→∞

R(an)

R(n)

− log P(X̂ > n)

R
X̂
(n)

= lim
n→∞

R(an)

R(n)
,

it is clear that the quantity R(an)/R(n) has a limit as n → ∞.
The rest of the argument follows from a classical result, Theorem 1.4.3. of [2] in the following

way. First, using the fact that R ∼ R,

R(λn)

R(n)
∼ R(λn)

R(n)
, n → ∞

for any λ ≥ 1. Furthermore, utilising Lemma 4(ii), we obtain

lim
λ↓1

(
lim sup
x→∞

R(λx)

R(x)

)
≤ 1,

which is the only assumption of Theorem 1.4.3 of [2]. It remains to show that

lim
n→∞

R(an)

R(n)
= lim

x→∞
R(ax)

R(x)
, a ∈ A. (24)
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The validity of (24) follows directly by combining Lemma 4(iii) and the fact that R is an
increasing function for which R ∼ R. Namely, using

R(a(	x
 − 1))

R(	x
) ≤ R(ax)

R(x)
≤ R(a	x
)

R(	x
 − 1)
,

we see that

lim
n→∞

R(an)

R(n)
= lim

x→∞
R(ax)

R(x)
, a ∈ A,

which implies (24) via relation R ∼ R. �

Remark 5. The connection (24) has been thoroughly studied in [10]. However, in our case
Lemma 4(iii) is enough for the proof of Theorem 4.
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