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1. A particle executes a random walk over the possible positions x = 0,1,2,..., its
initial position being x = d^O. At the nth step it occupies the position x with
probability pn {x \ d) and is in the state (n, x). The transition from (n, x) to (n + l,y)
has the probability px y given by

where , . . , _

Po,x=Px

If the particle arrives at x = 0, the next step may lead to absorption with probability
m

pa, where pa = 1 — 2 Ps> i-e- the particle is annihilated in this case. If pa = 1, we say
s = 0

that x = 0 is an absorbing barrier. If pt = 1, we say that x = 0 is a reflecting barrier.
If p0 = 1, we say that x = 0 is a retaining barrier.

I t will be seen that when po= 1, pn(01 d) represents the probability of annihilation
(or absorption) in the course of n— 1 steps.

We shall give an expression for pn(x \ d) in the form ofa contour integral. Illustrations
include the gambler's ruin problem, random walk with drift as recently discussed by
Kac(2), and two problems given by Lauwerier (3).

2. We introduce the g.f.

<P(z | <*;*)= itnpn{x\d) ( |*|<1), (2)
n=0

which will be abbreviated to <&x.
A consideration of the transition probabilities leads to

W) = «** (3)
where F0 = (l -pot) d>0 - \K't^x,

Sxd= 1 if x = d,

= 0 if x + d.

I t will be shown that the solution of (3) is

f
2nitJ(KK')j czH(z){e0-z)(z-e~e)'
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where

(i)

H(z) = - k - ') (z + z-i) (A =

Hx(z) =
s = 0

0),

(ii) W(x, d;z) = Hx(z) z*~* -
(iii) t-1 = k + y/(KK')coahd,
(iv) C is a contour enclosing the origin within which WI{zH(z)} has no poles except

possibly z = 0. This is equivalent to requiring H(z) to be free from zeros within
and on C.

For if x > 2,

2\K'j 2m]czH(z)(cosh.d-$(z + z-1))'

i e K'j 2ni)c zH(z) ' ( 5 )

Similarly, the result may be shown to hold for 0 ^ x < 2 . I t remains to show that
Fx((&) = 8xd. Consider the three cases (a) x>m, (b) 0 < x < m, (c) x = 0.

(a) x>m:

since the residue of 2d+a:-m a ^ ^jjg origin is zero.

(6)

But the residue of — „ „ t zd at z = 0 is zero, and
z£T(z)

~d—xJJ (z\ m
9mX = z«-*-i-z*-* 2
zn\z) s=x+i

= z*-*-1 (x = m),

and so FJi

(c)x = O.Here

= Sx>d.

-zd-x)dz
K') 4ni Jc zW)
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In general (iv) of (4) can be taken to mean that the contour C must enclose z = 0 and
exclude any zeros of H(z). In special cases this may be relaxed since

HJz) zd~x - H^z-1) zd+x

may have a factor in common with H(z). Hence we have

where J
where J

=-^j Jn{x,d;z)dz, (6)

= (K\n-\K>)

3. C as the unit circle. The expression (6) still holds when C is taken to be | z | = 1,
provided Jn(x, d; z) has no poles in or on the unit circle except z = 0. If Jn(x, d; z) has
poles at Zj (j = 1, 2, ...,s; z3-=j=O) inside the unit circle, then (6) is replaced by

If s

Pn(x I d) = 1r-\ Jn(x, d; z)dz-% [residue of Jn(z)] , (7)

the summation excluding z = 0. This may be written

[K) ]_n J^^ 3 , . ; (8)
where

= {p0 — k — cos 0 J(KK')) sind</>+pistil (d — 1)0 + ... +pm\msin(d-m)<f>,

= (p0 — k — cos<f> J(KK'))sinx0 + p1Asin(x — l)(/> + ... +px_1A
x~1sin<f> (x> 0),

sm<j> (x = 0).

z = &4.

I t will be observed that >S*(^)/sin ̂  is a trigonometrical polynomial of degree x. Con-
sidered as function, of cos <f>, it is of interest to note these polynomials are related
to those considered by Szego(4)."f" If Jn(x,d; z) has a pole on the unit circle, say at
z = eia, then the integral in (8) is to be taken as the principal value; and similarly for
several such poles.

An expression for the g.f. follows from (4). In the case when [H(z)]-1 has simple poles
at Zj inside the unit circle, we find

\e-*> ' Y(x,d; z,)
e) frzjH'iz,) [ l - ^

If [^(z)]"1 has simple poles on the unit circle, then the only modification in (9) is to
add the contributions resulting from the necessary indentations in the unit circle.

f Szego considers, for example, the polynomials on the interval [—1, +1] orthogonal with
respect to the weight function p(oos <f>), where p(X) is of precise degree e and positive in [—1, + 1].
It may be shown that there is a unique normalized representation of p(cos <j>), namely | h(e'^) j 2 ,
such that h(0) > 0 and h(z) + 0 in | z | < 1.
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4. Duration of the walk and probability of return

4-1. From (7) we have

445

71 = 0

2zJ0(x,d;z)dz 2zJ0(x,d;z)

" * '

Hence if K' > K, noting that Hi j-^A = — pa we see that if pa > 0 then Zj
and so for 0 < a; ̂  dand so for 0 < a; ̂  d

Hence in this case the probability that the particle will revisit the point x is

(\K'-\K)pa

+ 1

For if it visits a given point, that point becomes the starting point of the subsequent
walk, irrespective of its previous history. If x > d, taking account of the pole at z = 0,
we have „ i i i v \ x / ijr>\ m i• v\x-&\

<**Id) = w^wh) \ J ) ) )
For completeness the following further results are noted:

U') HxU K) H\JK) _ IKY , (KY
„( IK'\ \K'J +\K')'(71)

(15)

4-2. The expected number of steps to annihilation is, for K' > K,

= l+pa'£lsp3(0\d)
8 = 0
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The formula (17) gives the expected duration of the game in gambling against an
infinitely rich adversary, the gambler winning at a trial with probability \K, tieing
with probability k, and losing with probability \K, his initial capital being d, and the
stakes a unit of capital per trial. If, however, the gambler is reduced to penury, at the
next trial he may be ruined with probability'^, win the right to spin again with
probability p0, or start again with capital of x units with probability px.

5. Applications
5-1. Chance of ruin in gambling against infinitely rich adversary. Suppose the

gambler's chance of winning at any trial is p = \K, and q = 1 — p = \K' is his chance
of losing. Then the chance of ruin in the course of n games is given by (6) with p0 = 1,

H(z) = 1 -

and »<0\d)- {Pq)Hn+1)(A'"f (*-*-1)*'-1(s
and pn(0 | d) - —^-r- ^ j J c l _ (z + z_X

where C is a contour surrounding the origin but not z = ^{pjq) or z = *J(q/p). Hence
if Q > P> taking C as the unit circle, and thus containing z = J(p/q) we have (subtracting
the residue at z = -J(p/q))

, [2 V(M)3W+1 [q\id f * sin 96 sin # cos"l - y J
If, however, p>q we subtract the residue at z = -J{q/p), and this leads to (18) again
except that the first term is now (q/p)d. (See for example, Uspensky(5), p. 159.)

If the games are equitable, then the probability of ruin in the course of n games is

1 J. I 2 / Z I 2— \
—- - - I 2drf2, (19)

and using | z | = 1 indented at z = 1 as C we find

p~,{0 \ d) = 1—I sincZ^cot (id) cos™ (bdd)
n Jo

cos™+10cfy$, (20)
7TJo s in^

if n and d have the same parity. (See (5), p. 159.)

5-2. Particle with drift in the presence of a reflecting barrier. The boundary conditions
in this case are p0 = 0,p1 = 1, so that H(z) = \z-\K'z*-K.) ^(K'jK) with k = 0. In
(8) we have
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and the residues of J(z) occur at z = ± J(K/K') for K' >K. Writing K' = 2p, K = 2q,
we find

2
q W Jo

where (i) fx(<fi) = cos x<fi — (p — q) sinxcfi cos 0/sin 0,
(ii) q* = q if a; = 0,

= 1 if x > 0,

(iii) # > ? .

Iff JO < <? the first term in (21) is zero for in this case z = ± J(q/p) is outside \z\ = 1.

5-3. (i) Lauwerier(3) discusses the random walk where a particle starts at z = 0 in
the presence of an elastic barrier at z = TO. In our notation the boundary conditions
are p0 = 0, px = 1 and K' = K = 1. Lauwerier does not give an expression for pn(x \ d).

We have H(z) = \z~'L((q—p)z2~ 1), and the zeros z = —T=-—- are outside | z \ = 1 for
0 < q < 1. Hence from (8) we have

1 \*2 f"(psinxdcos

(22)

where QY

= — (x = 0).
2q v '

The expression (22) corresponds to Lauwerier's hn(z) (see (3), p. 298), where TO — Z — x,
the boundary being at z = TO.

(ii) Lauwerier ((3), p. 296) also discusses the random walk with start at z = 0 and
a barrier at z = TO, such that the particle arriving at the barrier may be absorbed with
probability p, or move to TO—1 or TO+1 with probabilities \q = £(1— p). In our
present notation the start is at x = d, K = K' = 1, and at the barrier pa = p,px = |<7-
The expression for pn(x | d) can easily be found by using Kelvin's method of images.
Thus the source at x = d is equivalent to sources \ and \ at + d and — d, and a source
\ at x = d and sink — | at x = — d. The solution to the former is exactly the same as for
a source £ at x = d in the presence of a barrier with properties p0 = p, pt = q = 1 — p,
provided we double the value of the probability at the origin. The latter is equivalent
to an absorbing barrier (as defined by Feller (l)) at x = 0 with a source \ at x = d. Hence

1 f"
pn(x | d) = - sin xd sin dd cos71 ddd

7T J 0

(1\*1 r"(^sin|a; | d cos d + q cos xd sin d) (paiadd cosd + qcosdd Bind) cosn ddd

f The expression (21) differs from that given by Kac(2) for this problem, the cos <j> factor not
appearing in fx(4>)- In correspondence Mr Kac informs me that this was omitted from his article
by a misprint.
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w h e r e g ) - i (**o,,

5-4 Some further special cases are given below:f

(i) pQ=l;K = K'=l:

2 Cn

pn{x\d) = -\ &\
7TJ 0

1 C"
= 1 - - sincfy5cot(£0)cosK0d0 (x = 0). (23)

(ii) Pl=l;K = K'=l:
2* f»

pn(x | d) — — cos x<j> cos d<f> cos™ 0d0. (24)

(iii) In (21) put x — d = x', and let x and d->-oo, and using well-known properties of
oscillatory integrals we have

2n C"
pn(X' | 0) = —qUn+x)pi(n-x) COSX'0 COS™ (f>d<f>. (25)

77 Jo
(iv) po= l-p,Pl=P;lK=p,k = l-2p,$K'=p (0<3><i):

2 f
pja: | d) = - cos (x + J) 0 cos (d + £) 0( 1 - 4p sin2 (^))w d0. (26)

^ J o
(v) p0 = 1 - p , P i = p; \K = %K' =\p,lc=l-p:

2* C71

pn(x | d) = — cosa;9Jcosd0(g'+#cos0)md0. (27)

I am indebted to Dr J. A. Storrow of the Chemical Engineering Department,
Manchester College of Technology, for drawing my attention to a problem similar
to the one considered here.
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