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Abstract

This paper considers ergodic, continuous-time Markov chains {X(t)}t∈(−∞,∞) on Z
+ =

{0, 1, . . .}. For an arbitrarily fixed N ∈ Z
+, we study the conditional stationary distri-

bution π (N) given the Markov chain being in {0, 1, . . . , N}. We first characterize π (N)
via systems of linear inequalities and identify simplices that contain π (N), by examin-
ing the (N + 1) × (N + 1) northwest corner block of the infinitesimal generator Q and
the subset of the first N + 1 states whose members are directly reachable from at least
one state in {N + 1, N + 2, . . .}. These results are closely related to the augmented trun-
cation approximation (ATA), and we provide some practical implications for the ATA.
Next we consider an extension of the above results, using the (K + 1) × (K + 1) (K > N)
northwest corner block of Q and the subset of the first K + 1 states whose members are
directly reachable from at least one state in {K + 1, K + 2, . . .}. Furthermore, we intro-
duce new state transition structures called (K, N)-skip-free sets, using which we obtain
the minimum convex polytope that contains π (N).

Keywords: Markov chains; countably infinite state space; conditional stationary distri-
bution; linear inequalities; convex polytopes; augmented truncation approximation
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1. Introduction

We consider a time-homogeneous, continuous-time Markov chain {X(t)}t∈(−∞,∞) on a
countably infinite state space Z

+ = {0, 1, . . . }. Let qi,j (i, j ∈ Z
+, i �= j) denote the transition

rate from state i to state j. The infinitesimal generator Q of the Markov chain {X(t)}t∈(−∞,∞) is
then given by

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q0 q0,1 q0,2 q0,3 . . .

q1,0 −q1 q1,2 q1,3 . . .

q2,0 q2,1 −q2 q2,3 . . .

q3,0 q3,1 q3,2 −q3 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where
qi =

∑
j∈Z+
j �=i

qi,j, i ∈ Z
+.

We assume that qi < ∞ (i ∈ Z
+) and {X(t)}t∈(−∞,∞) is stationary and ergodic. We then define

π as the stationary distribution of {X(t)}t∈(−∞,∞):

π = (π0 π1 π2 . . . ),

where πi = P(X(0) = i) (i ∈ Z
+). Note that π is determined uniquely by

πQ = 0, πe = 1, (1.1)

where e denotes a column vector of the appropriate dimension whose elements are all equal to
one.

In general, it is hard to obtain the stationary distribution of the Markov chain {X(t)}t∈(−∞,∞)
because there are infinitely many unknowns πi (i ∈ Z

+) in (1.1). In the past, this problem has
been tackled mainly by two approaches: the augmented truncation approximation [4, 7, 12, 16]
and the matrix-analytic method [6, 10, 11]. In the augmented truncation approximation, we
choose a sufficiently large N ∈ Z

+ and partition Z
+ into a finite subset ZN

0 and its complement
Z

∞
N+1, where Z�

m (m, � ∈Z
+) and Z

∞
m (m ∈ Z

+) are defined as

Z
�
m =

{{m, m + 1, . . . , �}, m ≤ �,

∅, m > �,
Z

∞
m = {m, m + 1, . . . }, m ∈Z

+.

We also partition the stationary distribution π in conformance with the partition of the state
space:

π =
( Z

N
0 Z

∞
N+1

π (1)(N) π (2)(N)
)

. (1.2)

We then construct a finite-state Markov chain on Z
N
0 , using the (N + 1) × (N + 1) northwest

corner block Q(1,1)(N) of the infinitesimal generator Q. This finite-state Markov chain on Z
N
0

can be regarded as an approximation to the original Markov chain on Z
+. Specifically, we con-

struct an infinitesimal generator Q(1,1)(N) + QA(N) of a Markov chain on Z
N
0 , where QA(N)

is an augmentation matrix such that QA(N) ≥ O and
[
Q(1,1)(N) + QA(N)

]
e = 0. Usually,

[Q(1,1)(N) + QA(N)] is assumed to be irreducible. Let π(N) (N ∈Z
+) denote the conditional

stationary distribution given X(0) ∈Z
N
0 :

π (N) = (π0(N) π1(N) · · · πN(N)),

where πi(N) = P(X(0) = i | X(0) ∈ Z
N
0 ) (i ∈ Z

N
0 ). By definition, we have

π (N) = π (1)(N)

π (1)(N)e
, (1.3)

where π (1)(N) is given in (1.2). In the augmented truncation approximation, an approximation
π trunc(N) to π(N) is determined by π trunc(N)[Q(1,1)(N) + QA(N)] = 0 and π trunc(N)e = 1. We
then adopt π approx,N = (π trunc(N) 0) as an approximation to the stationary distribution π of
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the original Markov chain. Under some technical conditions, π approx,N is known to converge
to π as N goes to infinity [4, 12]. Therefore, π approx,N will be a good approximation if N is
sufficiently large.

On the other hand, the matrix-analytic method utilizes structures of Markov chains which
appear often in applications. Specifically, the standard matrix-analytic method is applicable to
block-structured Markov chains with the following features: the state space Z

+ can be par-
titioned into finite and disjoint subsets Lm (m ∈Z

+), called levels, in such a way that direct
transitions between levels are skip-free in one direction (or both). In particular, Markov chains
are called M/G/1-type if transitions between levels are skip-free to the left [11], and they are
called G/M/1-type if transitions between levels are skip-free to the right [10]. If transitions
between levels are skip-free in both directions, they are called quasi-birth-and-death processes
[1, 10]. In the matrix-analytic method, the exact computation of the stationary distribution is
targeted.

In both of the above-mentioned approaches, the (conditional) stationary distribution is
characterized by systems of linear equations. By contrast, this paper studies the conditional
stationary distribution π (N) (N ∈Z

+) via systems of linear inequalities. It is known that the
boundary vector in block-structured Markov chains of level-dependent M/G/1 type can be
obtained by the solution of an infinite number of inequalities; based on this, computational
algorithms for the conditional stationary distribution π(N) have been developed in [5, 15].

The purpose of this paper is to characterize the conditional stationary distribution π (N) via
systems of linear inequalities, without assuming any regular structures. In other words, we will
attempt to find minimum regions on the first orthant {x ∈R

N+1; x ≥ 0} of RN+1 which contain
π (N). Specifically, we first consider π (N) based only on the (N + 1) × (N + 1) northwest cor-
ner block Q(1,1)(N) of the infinitesimal generator Q, and we obtain a system of N + 1 linear
inequalities that π (N) satisfies. It immediately follows that π (N) lies in an N-simplex P(N)
on the first orthant of R

N+1, where vertices of P(N) are determined only by Q(1,1)(N). As
we will see, the derivation of these results is absurdly simple. Nonetheless, the N + 1 vertices
of the N-simplex P(N) (i.e., N + 1 linearly independent probability vectors that span P(N))
are essential for π (N); in any ergodic, continuous-time Markov chain with Q(1,1)(N), π(N)
can be expressed as a convex combination of those vertices. We also provide a probabilistic
interpretation of this result.

Next we consider the case that a subset

J (N) = {j ∈Z
N
0 ; qi,j > 0 for some i ∈ Z

∞
N+1} (1.4)

of ZN
0 is available, as well as Q(1,1)(N). Note that J (N) can be regarded as a kind of structural

information, because it is the subset of states in Z
N
0 which are directly reachable from at least

one state in Z
∞
N+1. We show that the role of J (N) is to eliminate redundant vertices of P(N),

and we obtain a (|J (N)| − 1)-simplex P+(N) whose relative interior contains π(N), where for
any set X , |X | stands for the cardinality of X . In other words, when J (N) is available, π(N)
is given by a convex combination of |J (N)| vertices of P+(N) with positive weights. These
results are closely related to the augmented truncation approximation (ATA), and we provide
some practical implications for it. In particular, the linear ATA has the same degree of freedom
as the general ATA does, and J (N) is useful in choosing an augmentation matrix in the linear
ATA.

Next we consider an extension of the above results, using state transitions in peripheral
states of ZN

0 . Specifically, for a fixed K (K > N), we obtain an N-simplex P̃(K, N) (⊆P(N))
that contains π(N), which is determined only by the (K + 1) × (K + 1) northwest corner block
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Q(1,1)(K) of Q. Furthermore, when both Q(1,1)(K) and J (K) are available, we show that
redundant vertices of P̃(K, N) can be eliminated.

The common feature of all of the above results is that we characterize π(N) by specifying
simplices on the first orthant of R

N+1 which contain π (N). In order to refine these results
further, we consider general convex polytopes, using Q(1,1)(K) and J (K). For this purpose, we
introduce a new structure called (K, N)-skip-free sets, and using them, we obtain the minimum
convex polytope that contains π (N), under the condition that only Q(1,1)(K) and J (K) are
available.

The rest of this paper is organized as follows. In Section 2, we obtain simplices that con-
tain π (N), based on Q(1,1)(N) (and J (N)). We also provide some practical implications for the
augmented truncation approximation. In Section 3, we extend the result in the preceding sec-
tion, using state transitions in peripheral states. In Section 4, we introduce skip-free sets and
obtain the minimum convex polytope that contains π(N). Finally, some concluding remarks
are provided in Section 5.

2. The characterization of π (N) by linear inequalities: fundamental results

In this section, we characterize the conditional stationary distribution π (N) via systems of
linear inequalities, based on the (N + 1) × (N + 1) northwest corner block of the infinitesimal
generator Q.

2.1. Preliminaries

We will construct a convex polytope P , by considering the intersection of a polyhedral
convex cone C on the first orthant {x ∈R

N+1; x ≥ 0} of RN+1 and a hyperplane containing all
probability vectors in R

N+1. As we will see, C and P take the following forms:

C = {x ∈R
N+1; xA ≥ 0, xB = 0},

P = C ∩ {x ∈R
N+1; xe = 1} = {x ∈R

N+1; xA ≥ 0, xB = 0, xe = 1}, (2.1)

where A and B denote appropriate matrices with N + 1 rows. Note that we allow B = O, and
in that case, we can ignore the constraint xB = 0 in (2.1). In general, a convex polytope P can
also be represented by a set of convex combinations of vertices of P . Specifically, by using an
appropriate nonnegative matrix C with N + 1 columns such that Ce = e, P in (2.1) can also be
represented as

P = {x ∈R
N+1; x = αC, α ≥ 0, αe = 1}.

Note that C is composed of 1 × (N + 1) probability vectors ci (i = 0, 1, . . . , M) that span P . If
the M vectors c1 − c0, c2 − c0, . . ., cM − c0 are linearly independent,P is called an M-simplex.
Let ri P denote the relative interior of the convex polytope P :

riP = {x ∈R
N+1; xA > 0, xB = 0, xe = 1} (2.2)

= {x ∈R
N+1; x = αC, α > 0, αe = 1}.

2.2. Characterization of π (N) in terms of Q(1,1)(N)

In this subsection, we assume that for an arbitrarily fixed N ∈Z
+, the stationary distribution

π of an ergodic, continuous-time Markov chain {X(t)}t∈(−∞,∞) is partitioned as in (1.2) and
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the infinitesimal generator Q is partitioned as follows:

Q =
⎛⎝

Z
N
0 Z

∞
N+1

Z
N
0 Q(1,1)(N) Q(1,2)(N)

Z
∞
N+1 Q(2,1)(N) Q(2,2)(N)

⎞⎠. (2.3)

We define M(Q(1,1)(N)) as the collection of ergodic, continuous-time Markov chains on Z
+

whose infinitesimal generators have the specific (N + 1) × (N + 1) northwest corner block
Q(1,1)(N).

We first characterize the conditional stationary distribution π (N) of Markov chains in
M(Q(1,1)(N)). Owing to the ergodicity, Q(1,1)(N) is nonsingular whether it is irreducible or
not. We then define H(N) as

H(N) = (− Q(1,1)(N))−1. (2.4)

By definition, H(N) ≥ O and H(N)e > 0. Let H(N) denote an (N + 1) × (N + 1) matrix
obtained by normalizing each row of H(N) in such a way that H(N)e = e:

H(N) = diag−1(H(N)e)H(N),

where for any (n + 1)-dimensional vector x, diag(x) denotes an (n + 1)-dimensional diagonal
matrix whose ith diagonal element is given by the ith element [x]i of x. We also define �(n)
(n ∈Z

+) as the set of all (n + 1)-dimensional probability vectors:

�(n) = {α ∈R
n+1; α ≥ 0, αe = 1}, n ∈Z

+. (2.5)

Theorem 2.1. For any Markov chain in M(Q(1,1)(N)), we have

π(N) ∈P(N), N ∈Z
+, (2.6)

where P(N) (N ∈Z
+) denotes an N-simplex on the first orthant of RN+1 which is given by

P(N) = {x ∈R
N+1; x(− Q(1,1)(N)) ≥ 0, xe = 1} (2.7)

= {
x ∈R

N+1; x = αH(N), α ∈ �(N)
}
. (2.8)

Proof. The starting point of the proof is the global balance equations (1.1) for π (1)(N):

π (1)(N)Q(1,1)(N) + π (2)(N)Q(2,1)(N) = 0. (2.9)

It then follows from (1.3) and (2.9) that

π (N)(− Q(1,1)(N)) = π (2)(N)

π (1)(N)e
· Q(2,1)(N). (2.10)

Because π (2)(N)/π (1)(N)e > 0 and Q(2,1)(N) ≥ O, π (N) satisfies

π (N)(− Q(1,1)(N)) ≥ 0, π(N)e = 1,
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from which (2.6) with (2.7) follows.
Next, we show the equivalence between (2.7) and (2.8). We rewrite (2.7) as

{x ∈R
N+1; x(− Q(1,1)(N)) ≥ 0, xe = 1}

= {x ∈R
N+1; x(− Q(1,1)(N)) = y, y ≥ 0, xe = 1}

= {x ∈R
N+1; x = yH(N), y ≥ 0, xe = 1}

= {x ∈R
N+1; x = ydiag(H(N)e)H(N), y ≥ 0, xe = 1}.

Let α = ydiag(H(N)e). Since x = αH(N), we have xe = αe. Furthermore, if y ≥ 0, we have
α = ydiag(H(N)e) ≥ 0 and vice versa, since H(N)e > 0. We thus have

{x ∈R
N+1; x = ydiag(H(N)e)H(N), y ≥ 0, xe = 1}

= {x ∈R
N+1; x = αH(N), α ≥ 0, αe = 1}. (2.11)

Because H(N) is composed of N + 1 linearly independent probability vectors, P(N) is an N-
simplex on the first orthant of RN+1. �

Theorem 2.1 implies that the conditional stationary distribution π (N) of any Markov chain
in M(Q(1,1)(N)) is given by a convex combination of row vectors of H(N); i.e., there exists
α∗(N) such that

π (N) = α∗(N)H(N), α∗(N) ∈ �(N). (2.12)

Remark 2.1. Since H(N) is nonsingular, there is a one-to-one correspondence between π(N)
and α∗(N), i.e., α∗(N) = π (N)(− Q(1,1)(N))diag(H(N)e). Consequently, obtaining the condi-
tional stationary distribution π (N) in an ergodic, continuous-time Markov chain is equivalent
to obtaining the nonnegative weight vector α∗(N).

The following corollary can be used to evaluate the accuracy of an approximation to π(N).

Corollary 2.1. For an arbitrary probability vector x ∈ �(N), we have

‖x − π (N)‖1 ≤ max
i∈ZN

0

‖x − hi(N)‖1, (2.13)

where ‖ · ‖1 stands for the �1 norm and hi(N) (i ∈ Z
N
0 ) denotes the ith row vector of H(N).

Furthermore, if x ∈P(N), we have

max
i∈ZN

0

‖x − hi(N)‖1 ≤ max
i,j∈ZN

0

‖hj(N) − hi(N)‖1, x ∈P(N). (2.14)

Proof. (2.13) immediately follows from Theorem 2.1 and the convexity of P(N).
Furthermore, if x ∈P(N), there exists a probability vector β = (β0 β1 · · · βN) ∈ �(N) such
that

‖x − hi(N)‖1 = ‖
∑
j∈ZN

0

βj
(
hj(N) − hi(N)

)‖1 ≤
∑
j∈ZN

0

βj‖hj(N) − hi(N)‖1,

from which (2.14) follows. �
We now provide a probabilistic interpretation of (2.12). We partition the state space Z

+
into Z

N
0 and Z

∞
N+1 and regard {X(t)}t∈(−∞,∞) as an alternating Markov renewal process. For an

integer n, let T(1)
n (resp. T(2)

n ) denote the nth time instant at which {X(t)}t∈(−∞,∞) enters into
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Z
N
0 from Z

∞
N+1 (resp. into Z

∞
N+1 from Z

N
0 ), where we assume T(1)

n < T(2)
n < T(1)

n+1 without loss
of generality. We define I(t) (t ∈ (− ∞, ∞)) as the state at the last renewal epoch before time
t, i.e.,

I(t) =
{

X(T(1)
n ), T(1)

n ≤ t < T(2)
n ,

X(T(2)
n ), T(2)

n ≤ t < T(1)
n+1.

We then consider the joint process {(X(t), I(t))}t∈(−∞,∞), which is assumed to be stationary.

Corollary 2.2. For any Markov chain {X(t)}t∈(−∞,∞) in M(Q(1,1)(N)), the (i,j)th (i, j ∈ Z
N
0 )

element of H(N) is given by

[H(N)]i,j = P(X(0) = j | I(0) = i), i, j ∈Z
N
0 , (2.15)

and the ith (i ∈ Z
N
0 ) element of α∗(N) is given by

[α∗(N)]i = P(I(0) = i | X(0) ∈Z
N
0 ). (2.16)

We thus interpret (2.12) as

[π(N)]j =
∑
i∈ZN

0

P(I(0) = i | X(0) ∈Z
N
0 ) · P(X(0) = j | I(0) = i), j ∈ Z

N
0 . (2.17)

The proof of Corollary 2.2 is given in Appendix A. Note that for a given Q(1,1)(N), P(N)
in Theorem 2.1 may not be tight in M(Q(1,1)(N)). For example, P(N) may include x ∈R

N+1

such that [x]i = 0 for some i ∈Z
N
0 , whereas π (N) > 0 since Markov chains in M(Q(1,1)(N))

are ergodic. In the next subsection, we eliminate redundancy in P(N) using the structural
information J (N) in (1.4).

2.3. Characterization of π (N) in terms of Q(1,1)(N) and J (N)

For specific Q(1,1)(N) andJ (N), we defineM(Q(1,1)(N),J (N)) as the collection of ergodic,
continuous-time Markov chains on Z

+ whose infinitesimal generators have Q(1,1)(N) and
J (N). By definition,

M(Q(1,1)(N)) =
⋃

J (N)∈2Z
N
0 \{∅}

M(Q(1,1)(N),J (N)).

Note here that M(Q(1,1)(N),J (N)) may be empty for some pairs of Q(1,1)(N) and J (N). For
example, if Q(1,1)(N) is a diagonal matrix, M(Q(1,1)(N),J (N)) = ∅ unless J (N) =Z

N
0 , owing

to ergodicity. In the rest of this subsection, we assume that if M(Q(1,1)(N),J (N)) �= ∅, then
J (N) = {0, 1, . . . , |J (N)| − 1} without loss of generality.

If J (N) �= Z
N
0 , we partition Q(1,1)(N) and Q(2,1)(N) in (2.3) into two matrices:

(
Q(1,1)(N)

Q(2,1)(N)

)
=

⎛⎜⎝
J (N) Z

N
0 \J (N)

Z
N
0 Q(1,1)

+ (N) Q(1,1)
0 (N)

Z
∞
N+1 Q(2,1)

+ (N) O

⎞⎟⎠. (2.18)
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Equation (2.10) is then rewritten as

π (N) ·
( J (N) Z

N
0 \J (N)

−Q(1,1)
+ (N) −Q(1,1)

0 (N)

)
=
( J (N) Z

N
0 \J (N)

π (2)(N)

π (1)(N)e
· Q(2,1)

+ (N) 0

)
. (2.19)

We define �+(N) as

�+(N) = {
α ∈R

N+1; α ≥ 0, αe = 1, [α]i = 0 (i ∈Z
N
0 \J (N))

}
. (2.20)

Theorem 2.2. Suppose M(Q(1,1)(N),J (N)) �= ∅. For any Markov chain in
M(Q(1,1)(N),J (N)), we have

π(N) ∈ ri P+(N), N ∈Z
+, (2.21)

where P+(N) (N ∈ Z
+) denotes a (|J (N)| − 1)-simplex on the first orthant of RN+1 which is

given by P+(N) =P(N) if J (N) =Z
N
0 , and by

P+(N) = {
x ∈R

N+1; x(− Q(1,1)
+ (N)) ≥ 0, x(− Q(1,1)

0 (N)) = 0, xe = 1
}

(2.22)

= {
x ∈R

N+1; x = αH(N), α ∈ �+(N)
}

(2.23)

otherwise.

Proof. If J (N) =Z
N
0 , we have π (2)(N)Q(2,1)(N) > 0 since π (2)(N) > 0. Theorem 2.2 for

J (N) =Z
N
0 then follows from (2.2), (2.10), and Theorem 2.1. On the other hand, if J (N) �=

Z
N
0 , then π (2)(N)Q(2,1)

+ (N) > 0. In this case, (2.21) with (2.22) follows from (2.2) and (2.19).
The equivalence between (2.22) and (2.23) forJ (N) �=Z

N
0 can be shown in a way similar to the

proof of Theorem 2.1, as shown in Appendix B. Since H(N) is nonnegative and nonsingular,
P+(N) is a (|J (N)| − 1)-simplex on the first orthant of RN+1. �

By definition, we have �+(N) ⊆ �(N), and therefore

P+(N) ⊆P(N), (2.24)

where P+(N) =P(N) iff J (N) =Z
N
0 . Theorem 2.2 indicates the importance of the structural

information J (N) about direct transitions from Z
∞
N+1 to Z

N
0 . For example, if J (N) is a single-

ton for a certain N, say, J (N) = {i} (i ∈Z
N
0 ), π (N) is given by the ith row vector of H(N), as

pointed out in [16, Corollary 3]. Numerical algorithms for block-structured Markov chains of
level-dependent M/G/1-type in [5, 15] also utilize (2.21) with (2.22) implicitly.

The corollary below follows from Theorem 2.2; its proof is omitted because it is almost the
same as that of Corollary 2.1.

Corollary 2.3. Suppose M(Q(1,1)(N),J (N)) �= ∅. For an arbitrary probability vector x ∈
�(N), we have

‖x − π(N)‖1 ≤ max
i∈J (N)

‖x − hi(N)‖1.

Furthermore, if x ∈P+(N), we have

max
i∈J (N)

‖x − hi(N)‖1 ≤ max
i,j∈J (N)

‖hj(N) − hi(N)‖1, x ∈P+(N).
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Example 2.1. Consider an ergodic, level-dependent MX/M/1 queue with disasters, whose
infinitesimal generator Q takes the following form:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q0 q0,1 q0,2 q0,3 q0,4 q0,5 . . .

q1,0 −q1 q1,2 q1,3 q1,4 q1,5 . . .

q2,0 q2,1 −q2 q2,3 q2,4 q2,5 . . .

q3,0 0 q3,2 −q3 q3,4 q3,5 . . .

q4,0 0 0 q4,3 −q4 q4,5 . . .

q5,0 0 0 0 q5,4 −q5 . . .

...
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where qi,0 > 0 and qi,i−1 > 0 (i ∈Z
+ \ {0}). We then have

J (N) = {0, N},
because the state immediately after a downward transition from state i (i ≥ N + 1) is either
state 0 or state i − 1. It then follows that

�+(N) = {(
α0 0 0 · · · 0 1 − α0

)∈R
N+1; α0 ∈ [0, 1]

}
,

and
π(N) ∈ riP+(N) = {

x ∈R
N+1; x = α0h0(N) + (1 − α0)hN(N), α0 ∈ (0, 1)

}
.

Note here that hi(N) (i ∈ Z
N
0 ) can be obtained by (i) solving xi(− Q(1,1)(N)) = ei(N) for xi ∈

R
N+1 and (ii) letting hi(N) = xi/xie, where ei(N) ∈R

N+1 denotes a 1 × (N + 1) unit vector
whose ith element is equal to one. The simplest way to obtain an approximation πapprox(N) ∈
ri P+(N) to π (N) might be to solve x(− Q(1,1)) = β0e0(N) + (1 − β0)eN(N) for an arbitrary
β0 ∈ (0, 1) and let πapprox(N) = x/xe.

We now show that P+(N) is tight in M(Q(1,1)(N),J (N)).

Lemma 2.1. If M(Q(1,1)(N),J (N)) �= ∅ and x ∈ ri P+(N), we have x > 0.

Proof. We assume [x]j∗ = 0 for some j∗ ∈ Z
N
0 and derive a contradiction. Since x =

α(x)H(N) for some α(x) ∈ ri �+(N), [x]j∗ = 0 is equivalent to [α(x)H(N)]j∗ = 0 for some
α(x) ∈ ri �+(N). This implies that [H(N)]i,j∗ = 0 for all i ∈J (N) since [α(x)]i > 0 for all
i ∈J (N) and H(N) ≥ O. It then follows from (2.15) that P(X(0) = j∗ | I(0) ∈J (N)) = 0 for any
Markov chain in M(Q(1,1)(N),J (N)). Furthermore, P(I(0) ∈Z

N
0 \J (N)) = 0 and P(X(0) =

j∗ | I(0) ∈ Z
∞
N+1) = 0 by definition. We thus have

P(X(0) = j∗) = P(I(0) ∈J (N))P(X(0) = j∗ | I(0) ∈J (N))

+ P(I(0) ∈Z
∞
N+1)P(X(0) = j∗ | I(0) ∈ Z

∞
N+1)

= 0,

for any Markov chain in M(Q(1,1)(N),J (N)), which contradicts the ergodicity. �
Theorem 2.3. Suppose M(Q(1,1)(N),J (N)) �= ∅. For any x ∈ ri P+(N), there exists a Markov
chain in M(Q(1,1)(N),J (N)) whose π (N) is given by x.
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Proof. It follows from (2.24) that if x ∈ ri P+(N), we have x ∈P(N), i.e., x(− Q(1,1)(N)) ≥ 0
and xe = 1. Note also that x(− Q(1,1)(N)) �= 0, because if x(− Q(1,1)(N)) = 0 held, we would
have x = 0 · (− Q(1,1)(N))−1 = 0, which contradicts xe = 1. We then define ζ (x) as

ζ (x) = x(− Q(1,1)(N))

x(− Q(1,1)(N))e
. (2.25)

It is easy to see that ζ (x) ∈ ri �+(N) for x ∈ ri P+(N). For an arbitrarily chosen x ∈ ri P+(N),
we consider a Markov chain whose infinitesimal generator Q is given by

Q =
⎛⎝

Z
N
0 Z

∞
N+1

Z
N
0 Q(1,1)(N) Q(1,2)(N)

Z
∞
N+1 (− Q(2,2)(N))eζ (x) Q(2,2)(N)

⎞⎠. (2.26)

The global balance equations are then given by

π (1)(N)Q(1,1)(N) + π (2)(N)(− Q(2,2)(N))eζ (x) = 0, (2.27)

π (1)(N)Q(1,2)(N) + π (2)(N)Q(2,2)(N) = 0. (2.28)

From (2.25) and (2.27), we observe that the special form of Q(2,1)(N) = (− Q(2,2)(N))eζ (x)
ensures π (1)(N) = c1x for some positive constant c1. We now set

Q(1,2)(N) = (− Q(1,1)(N))ez, Q(2,2)(N) = −I, (2.29)

where z denotes a 1 × ∞ positive probability vector. Equation (2.28) is then reduced to

π (1)(N)(− Q(1,1)(N))ez − π (2)(N) = 0, (2.30)

which indicates that (2.29) ensures π (2)(N) = c2z > 0 for some positive constant c2. In fact,
solving (2.27) and (2.30) with π (1)(N)e + π (2)(N)e = 1, we obtain

π = (
π (1)(N) π (2)(N)

)= 1

1 + x(− Q(1,1)(N))e

(
x x(− Q(1,1)(N))e · z

)
> 0.

We thus conclude that the Markov chain with the infinitesimal generator Q defined by (2.26)
and (2.29) is a member of M(Q(1,1)(N),J (N)) and it has π (N) = x. �
Example 2.2. (Example 2.1 continued.) Consider Q in Example 2.1 of Section 2.3. Theorem
2.2 implies that there exists α0 = α∗

0 ∈ (0, 1) such that π (N) = α∗
0h0(N) + (1 − α∗

0 )hN(N). As
stated in Theorem 2.3, however, ri P+(N) is tight in M(Q(1,1)(N),J (N)). Therefore, we
cannot identify the exact α∗

0 ∈ (0, 1) if only Q(1,1)(N) and J (N) = {0, N} are available.

2.4. Implications for the augmented truncation approximation

We provide some practical implications of the results in Sections 2.2 and 2.3 for the aug-
mented truncation approximation (ATA). As mentioned in Section 1, an ATA solution π trunc(N)
to π(N) is obtained by

π trunc(N)[Q(1,1)(N) + QA(N)] = 0, π trunc(N)e = 1, (2.31)
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where QA(N) denotes an augmentation matrix, i.e., an (N + 1) × (N + 1) nonnegative matrix
satisfying QA(N)e = (− Q(1,1)(N))e. The central topic in the literature on the ATA is the con-
vergence of π approx,N = (π trunc(N) 0) to the stationary distribution π as N goes to infinity.
Note that our interest is different from this; that is to say, we are interested in what kind of
QA(N) is reasonable for a given N.

Although QA(N) is usually chosen in such a way that [Q(1,1)(N) + QA(N)] is irreducible, we
allow reducible [Q(1,1)(N) + QA(N)] as well. Note that the error bound for the approximation
π approx,N = (π trunc(N) 0) to the stationary distribution π is given by

2P(X(0) > N) ≤ ‖π approx,N − π‖1 ≤ εtrunc(N) + 2P(X(0) > N)

(see [5]), where εtrunc(N) denotes an upper bound of ‖π trunc(N) − π (N)‖1:

‖π trunc(N) − π(N)‖1 ≤ εtrunc(N).

It is clear that P(X(0) > N) is a decreasing function of N and that for a given N, π approx,N

will be the best approximation to π when π trunc(N) = π(N) (i.e., εtrunc(N) = 0) [16]. In what
follows, we first consider Markov chains in M(Q(1,1)(N)) and discuss some implications of
our results in Section 2.2 for the ATA.

We define T (N) as the set of all possible ATA solutions satisfying (2.31):

T (N) = {
x ∈R

N+1; x
[
Q(1,1)(N) + QA(N)

]= 0, xe = 1, QA(N) ∈A(N)
}
,

where A(N) denotes the set of all possible augmentation matrices,

A(N) = {
X ∈R

(N+1)×(N+1); X ≥ O, Xe = (− Q(1,1)(N))e
}
.

In the literature, the ATA is called linear if the rank of QA(N) is equal to one [2]. We then
define TL(N) as the set of all possible approximations obtained by the linear ATA:

TL(N) = {
x ∈R

N+1; x
[
Q(1,1)(N) + QA(N)

]= 0, xe = 1, QA(N) ∈AL(N)
}
,

where AL(N) denotes the set of all possible linear augmentation matrices,

AL(N) = {
X ∈R

(N+1)×(N+1); X = (− Q(1,1)(N))eζ , ζ ∈ �(N)
}
.

Recall that �(N) is the set of all 1 × (N + 1) probability vectors, which is defined in (2.5).

Lemma 2.2. For any Markov chain in M(Q(1,1)(N)), we have

T (N) = TL(N) =P(N), N ∈ Z
+,

where P(N) is given by (2.8).

The proof of Lemma 2.2 is given in Appendix C. Lemma 2.2 implies the following.

Implication 2.1. In view of Remark 2.1, we can consider that the ATA attempts to find
an approximation to the weight vector α∗(N) for H(N) in (2.12) by setting the augmentation
matrix QA(N) appropriately. In this sense, the linear ATA has the same degree of freedom as
the general ATA does.

We thus restrict our attention to the linear ATA with QA(N) = (− Q(1,1)(N))eζ , where ζ ∈
�(N). In this case, (2.31) is reduced to

π trunc(N; ζ )[Q(1,1)(N) + (− Q(1,1)(N))eζ ] = 0, π trunc(N; ζ )e = 1. (2.32)
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Note here that π trunc(N; ζ ) in (2.32) is closely related to π (N) in a Markov chain with the
infinitesimal generator Q in (2.26). Specifically, using the cut-flow balance equation

π (1)(N)(− Q(1,1)(N))e = π (2)(N)(− Q(2,2)(N))e,

we can rewrite (2.27) to be

π (1)(N)
[
Q(1,1)(N) + (− Q(1,1)(N))eζ (x)

]= 0.

We thus have π trunc(N; ζ ) = π (N) = x ∈P(N) if we set ζ = ζ (x) in (2.32).
Implication 2.2. The linear ATA solution π trunc(N; ζ ) for a specific ζ is identical to π(N)

in an ergodic Markov chain whose infinitesimal generator takes the following form:

Q =
⎛⎝

Z
N
0 Z

∞
N+1

Z
N
0 Q(1,1)(N) Q(1,2)(N)

Z
∞
N+1 (− Q(2,2)(N)e)ζ Q(2,2)(N)

⎞⎠.

Since π trunc(N; ζ ) ∈ TL(N) =P(N), it follows from Theorem 2.1 that

π trunc(N; ζ ) = α(N; ζ )H(N) (2.33)

for some α(N; ζ ) ∈ �(N). Recall that there is a one-to-one correspondence between
π trunc(N; ζ ) and α(N; ζ ), as stated in Remark 2.1. Note also that there are one-to-one
correspondences between ζ and α(N; ζ ),

α(N; ζ ) = ζdiag(H(N)e)

ζdiag(H(N)e)e
, ζ = α(N; ζ )diag−1(H(N)e)

α(N; ζ )diag−1(H(N)e)e
, (2.34)

and between π trunc(N; ζ ) and ζ ,

π trunc(N; ζ ) = ζH(N)

ζH(N)e
, ζ = π trunc(N; ζ )(− Q(1,1)(N))

π trunc(N; ζ )(− Q(1,1)(N))e
.

From (2.33), we also observe that π trunc(N; ζ ) is given by a convex combination of the row
vectors hi(N) (i ∈ Z

N
0 ) of H(N) with the nonnegative weight vector α(N; ζ ). It then follows

from (2.13) that

‖π trunc(N; ζ ) − π(N)‖1 ≤ max
i∈ZN

0

‖π trunc(N; ζ ) − hi(N)‖1. (2.35)

This error bound tempts us to set α(N; ζ ) in such a way that π trunc(N; ζ ) is located at the center
of the P(N) spanned by the hi(N) (i ∈Z

N
0 ). For example, if we set α(N; ζ ) = eT/(N + 1), where

T stands for the transpose operator, then π trunc(N; ζ ) is given by the center of gravity of P(N).
Note here that (2.33) is equivalent to π trunc(N; ζ )(− Q(1,1)(N)) = α(N; ζ )diag−1(H(N)e).

Implication 2.3 If we have a desirable α(N; ζ ) rather than ζ itself, π trunc(N; ζ ) for such an
α(N; ζ ) can be computed as follows:

(i) We first obtain η(N) := H(N)e by solving (− Q(1,1)(N))η(N) = e.

(ii) We then obtain π trunc(N; ζ ) by solving

π trunc(N; ζ )(− Q(1,1)(N)) = α(N; ζ )diag−1(η(N)).
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In the above procedure, we have to solve two systems of linear equations with −Q(1,1)(N).
Therefore, relative to the procedure for solving (2.32) directly for a specific ζ , the compu-
tational cost increases by (N + 1)2 in terms of the number of multiplications/divisions, if we
utilize the LU decomposition. This increase can be regarded as the cost of specifying the weight
vector α(N; ζ ) directly, instead of specifying ζ .

Next we consider Markov chains in M(Q(1,1)(N),J (N)), where the structural information
J (N) is assumed to be available. It follows from (2.34) that for all i ∈Z

N
0 ,

[α(N; ζ )]i = 0 ⇔ [ζ ]i = 0. (2.36)

We then define T +
L (N) as the set of all possible approximations obtained by the linear ATA

when J (N) is available:

T +
L (N) = {

x ∈R
N+1; x

[
Q(1,1)(N) + (− Q(1,1)(N))eζ

]= 0, xe = 1, ζ ∈ �+(N)
}
,

where �+(N) is given by (2.20). By definition, we have T +
L (N) ⊆ TL(N).

Lemma 2.3. Suppose M(Q(1,1)(N),J (N)) �= ∅. For any Markov chain in
M(Q(1,1)(N),J (N)), we have

T +
L (N) =P+(N), N ∈ Z

+,

where P+(N) is given by (2.23).

The proof of Lemma 2.3 is given in Appendix D. We thus have π (N) ∈ ri T +
L (N) from

Theorem 2.2. It also follows from (2.36) that if [ζ ]i > 0 for some i ∈ Z
N
0 \J (N), we have

π trunc(N; ζ ) /∈P+(N), because the hj(N) (j ∈Z
N
0 ) are linearly independent. Moreover, it

follows from Corollary 2.3 that

‖π trunc(N; ζ ) − π(N)‖1 ≤ max
i∈J (N)

‖π trunc(N; ζ ) − hi(N)‖1, ζ ∈ �+(N), (2.37)

which is tighter than (2.35). In summary, we have the following.
Implication 2.4. If the structural information J (N) is available, it is natural that we should

choose ζ from ri �+(N) in obtaining a linear ATA solution, where �+(N) is given by (2.20).
For example, we may choose ζ whose ith (i ∈ Z

N
0 ) element is given by 1/|J (N)| if i ∈J (N)

and by 0 otherwise.
Implication 2.4 indicates that the last-column augmentation ζ = (0 0 · · · 0 1), which is one

of the common augmentation strategies in the literature, may not be effective unless J (N) =
{N}, because if J (N) �= {N}, we have ζ = (0 0 · · · 0 1) �∈ ri �+(N) and therefore π trunc(N; ζ ) �∈
ri P+(N), while π(N) ∈ ri P+(N).

Example 2.3. (Example 2.1 continued.) Consider Q in Example 2.1 of Section 2.3. Since
J (N) = {0, N}, we may set ζ = (ζ0 0 0 · · · 0 1 − ζ0) ∈ ri �+(N) for an arbitrary ζ0 ∈ (0, 1).
The ATA solution π trunc(N; ζ ) is then obtained by solving

π trunc(N; ζ )[Q(1,1)(N) + (− Q(1,1)(N))eζ ] = 0

with π trunc(N; ζ )e = 1. If we are concerned with the error bound in (2.37), we first compute
hi (i = 0, N) by the procedure described in Example 2.1 and then adopt (h0 + hN)/2 as the
ATA solution (or alternatively, we perform the procedure in Implication 2.3 with α(N; ζ ) =
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(1/2 0 0 · · · 0 1/2)). Note that this choice yields the minimum error bound of (2.37) in this
specific example, which is half the error bound of the last-column augmentation.

Remark 2.2. As shown in (A.1), we have

ζ ∗ = π (2)(N)Q(2,1)(N)

π (2)(N)Q(2,1)(N)e
,

which satisfies π (N)[Q(1,1)(N) + (− Q(1,1)(N))eζ ∗] = 0. Therefore, in order to obtain a good
one-point approximation to the conditional stationary distribution π(N), we need some infor-
mation about π (2)(N), as in the Iterative Aggregation/Disaggregation methods for finite-state
Markov chains [13, 14].

3. Extensions using state transitions in peripheral states

In this section, we consider extensions of the results in Sections 2.2 and 2.3 by using the
(K + 1) × (K + 1) northwest corner block of the infinitesimal generator Q, where K > N. For
this purpose, we partition π and Q as follows:

(3.1)

Note here that from (1.2) and (2.3),

π (1)(K, N) = π (1)(N), π (3)(K, N) = π (2)(K),

Q(1,1)(K, N) = Q(1,1)(N), Q(3,3)(K, N) = Q(2,2)(K).

In order to utilize the results in the preceding section, we consider the censored Markov
chain {X̃(t)}t∈(−∞,∞) obtained by observing the Markov chain {X(t)}t∈(−∞,∞) only when X(t) ∈
Z

N
0 ∪Z

∞
K+1. The infinitesimal generator of {X̃(t)}t∈(−∞,∞) is then given by

Q̃(K, N) =
⎛⎝

Z
N
0 Z

∞
K+1

Z
N
0 Q̃

(1,1)
(K, N) Q̃

(1,3)
(K, N)

Z
∞
K+1 Q̃

(3,1)
(K, N) Q̃

(3,3)
(K, N)

⎞⎠, (3.2)

where for i, j = 1, 3,

Q̃
(i,j)

(K, N) = Q(i,j)(K, N) + Q(i,2)(K, N)(− Q(2,2)(K, N))−1Q(2,j)(K, N). (3.3)
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In particular, we have

Q̃
(1,1)

(K, N) = Q(1,1)(N)(I − R(K, N)), (3.4)

where

R(K, N) = (− Q(1,1)(N))−1Q(1,2)(K, N)(− Q(2,2)(K, N))−1Q(2,1)(K, N). (3.5)

Note that (I − R(K, N)) in (3.4) is nonsingular because Q̃
(1,1)

(K, N) and Q(1,1)(N) are
nonsingular.

Clearly, Theorem 2.1 is applicable to the censored Markov chain {X̃(t)}t∈(−∞,∞) on Z
N
0 ∪

Z
∞
K+1. Note also that the conditional stationary distribution of {X̃(t)}t∈(−∞,∞) given X̃(0) ∈Z

N
0

is identical to π(N). We define �̃(K, N) (K > N) as

�̃(K, N) = {
α ∈R

N+1; α = βdiag−1(H̃(K, N)e)(I − R(K, N))−1diag(H(N)e),

β ∈ �(N)
}
, (3.6)

where
H̃(K, N) = (− Q̃

(1,1)
(K, N))−1. (3.7)

Remark 3.1. It can be verified that H̃(K, N) is identical to the (N + 1) × (N + 1) northwest
corner block of the (K + 1) × (K + 1) matrix H(K) = (− Q(1,1)(K))−1.

For a specific (K + 1) × (K + 1) northwest corner block Q(1,1)(K), we define M(Q(1,1)(K))
as the collection of ergodic, continuous-time Markov chains on Z

+ whose infinitesimal
generators have Q(1,1)(K).

Theorem 3.1. For any Markov chain in M(Q(1,1)(K)), we have

π (N) ∈ P̃(K, N), K, N ∈Z
+, K > N,

where P̃(K, N) denotes an N-simplex on the first orthant of RN+1 which is given by

P̃(K, N) = {
x ∈R

N+1; x(− Q(1,1)(N))(I − R(K, N)) ≥ 0, xe = 1
}

(3.8)

= {x ∈R
N+1; x = αH(N), α ∈ �̃(K, N)}, (3.9)

with R(K, N) as in (3.5).

Proof. Associated with H̃(K, N) in (3.7), we define H̃(K, N) as

H̃(K, N) = diag−1(H̃(K, N)e)H̃(K, N). (3.10)

Applying Theorem 2.1 to (3.2), we obtain π (N) ∈ P̂(K, N), where P̂(K, N) has two equivalent
expressions:

P̂(K, N) = {
x ∈R

N+1; x(− Q̃
(1,1)

(K, N)) ≥ 0, xe = 1
}

= {
x ∈R

N+1; x = βH̃(K, N), β ∈ �(N)
}
. (3.11)

Because of (3.4), P̃(K, N) in (3.8) is identical to P̂(K, N).
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Next, we show the equivalence between (3.9) and (3.11). It follows from (3.4) and (3.7) that

H̃(K, N) = (− Q̃
(1,1)

(K, N))−1 = (I − R(K, N))−1(− Q(1,1)(N))−1

= (I − R(K, N))−1H(N). (3.12)

Therefore, for an arbitrary β ∈ �(N), we have from (3.10) and (3.12) that

βH̃(K, N) = βdiag−1(H̃(K, N)e)(I − R(K, N))−1H(N)

= βdiag−1(H̃(K, N)e)(I − R(K, N))−1diag(H(N)e)H(N)

= αH(N), (3.13)

where
α = βdiag−1(H̃(K, N)e)(I − R(K, N))−1diag(H(N)e), (3.14)

which shows the equivalence between (3.9) and (3.11). We thus conclude that

P̃(K, N) = P̂(K, N). (3.15)

P̃(K, N) is an N-simplex on the first orthant of R
N+1 because of the nonsingularity of

H̃(K, N) ≥ O, (3.11), and (3.15). �
Corollary 3.1. �̃(K, N) in (3.6) is a subset of �(N):

�̃(K, N) ⊆ �(N), N, K ∈ Z
+, N < K. (3.16)

Furthermore,
�̃(K2, N) ⊆ �̃(K1, N), N, K1, K2 ∈Z

+, N < K1 < K2, (3.17)

and therefore
P̃(K2, N) ⊆ P̃(K1, N) ⊆P(N), (3.18)

where P(N) is as given in Theorem 2.1.

The proof of Corollary 3.1 is given in Appendix E.
Next, we consider an extension of the results in Section 2.3. For specific (K + 1) × (K + 1)

northwest corner block Q(1,1)(K) and the structural information J (K) (K > N), we define
M(Q(1,1)(K),J (K)) as the collection of ergodic, continuous-time Markov chains on Z

+ whose
infinitesimal generators have Q(1,1)(K) and J (K). For Markov chains in M(Q(1,1)(K),J (K)),
we define J̃ (K, N) (K > N) as the set of states in Z

N
0 which are reachable from some states in

Z
∞
K+1 either directly or only via some states in Z

K
N+1:

J̃ (K, N) = {j ∈Z
N
0 ; [eTQ̃

(3,1)
(K, N)]j > 0}. (3.19)

Note here that J̃ (K, N) �= ∅ because of the ergodicity. Note also that J̃ (K, N) is determined
completely by Q(1,1)(K) and J (K), because from (1.4), (3.1), and (3.3),

J (K) = {j ∈Z
N
0 ;

[
eTQ(3,1)(K, N)

]
j > 0} ∪ {j ∈Z

K
N+1;

[
eTQ(3,2)(K, N)

]
j > 0},

Q̃
(3,1)

(K, N) = Q(3,1)(K, N) + Q(3,2)(K, N) · (− Q(2,2)(K, N))−1Q(2,1)(K, N).
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Furthermore, by definition,
J̃ (K, N) ⊆J (N), (3.20)

and states in J (N) \ J̃ (K, N), if any, can be reached from Z
∞
K+1 only after visiting some states

in J̃ (K, N).

Example 3.1. (Example 2.1 continued.) Consider Q in Example 2.1 of Section 2.3. By
definition, J (K) = {0, K} and J̃ (K, N) = {0, N} =J (N).

Without loss of generality, we assume J̃ (K, N) = {0, 1, . . . , |J̃ (K, N)| − 1}. We then

partition Q̃
(1,1)

(K, N) in (3.2) into two matrices,

Q̃
(1,1)

(K, N) =
( J̃ (K,N) Z

N
0 \J̃ (K,N)

Q̃
(1,1)
+ (K, N) Q̃

(1,1)
0 (K, N)

)
, (3.21)

and define �̃+(K, N) as

�̃+(K, N) = {
α ∈R

N+1; α = βdiag−1(H̃(K, N)e)(I − R(K, N))−1diag(H(N)e),

β ∈ �(N), [β]i = 0 (i ∈Z
N
0 \ J̃ (K, N))

}
. (3.22)

Theorem 3.2. Suppose M(Q(1,1)(K),J (K)) �= ∅. For any Markov chain in
M(Q(1,1)(K),J (K)) (K > N), we have

π (N) ∈ ri P̃+(K, N), K, N ∈Z
+, K > N, (3.23)

where P̃+(K, N) denotes a (|J̃ (K, N)| − 1)-simplex on the first orthant of R
N+1 which is

given by P̃(K, N) if J̃ (K, N) =Z
N
0 , and by

P̃+(K, N) = {
x ∈R

N+1; x(− Q̃
(1,1)
+ (K, N)) ≥ 0,

x(− Q̃
(1,1)
0 (K, N)) = 0, xe = 1

}
(3.24)

= {
x ∈R

N+1; x = αH(N), α ∈ �̃+(K, N)
}

(3.25)

otherwise.

Proof. If J̃ (K, N) =Z
N
0 , Theorem 3.2 can be shown in the same way as Theorem 2.2

for J (N) =Z
N
0 . We thus assume that J̃ (K, N) �= Z

N
0 . Applying Theorem 2.2 to the censored

Markov chain with infinitesimal generator Q̃(K, N) in (3.2) with partition (3.21), we obtain
(3.23) with (3.24), where (3.24) can also be expressed as follows:

P̃+(K, N) ={
x ∈R

N+1; x = βH̃(K, N),

β ∈ �(N), [β]i = 0 (i ∈Z
N
0 \ J̃ (K, N))

}
, (3.26)

where H̃(K, N) is given by (3.10). Equation (3.25) now follows from (3.13) and (3.26). Since

H̃(K, N) is nonnegative and nonsingular, (3.26) implies that P̃+(K, N) is a (|J̃ (K, N)| − 1)-
simplex on the first orthant of RN+1. �

By definition,
�̃+(K, N) ⊆ �̃(K, N), (3.27)
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where �̃(K, N) is given by (3.6). We thus have

P̃+(K, N) ⊆ P̃(K, N), (3.28)

where P̃(K, N) is given in Theorem 3.1.

Corollary 3.2. �̃+(K, N) in (3.22) is a subset of �+(N) in (2.20):

�̃+(K, N) ⊆ �+(N). (3.29)

Furthermore,

�̃+(K2, N) ⊆ �̃+(K1, N), N, K1, K2 ∈ Z
+, N < K1 < K2, (3.30)

and therefore

P̃+(K2, N) ⊆ P̃+(K1, N) ⊆P+(N). (3.31)

The proof of Corollary 3.2 is given in Appendix F. Since P̃(K, N) in Theorem 3.1 and
P̃+(K, N) in Theorem 3.2 are compact, Corollaries 3.1 and 3.2 suggest that those simplices
converge to certain sets as K goes to infinity. In fact, we have the following proposition.

Proposition 3.1. ([8, Theorem 2.3]) In any ergodic, continuous-time Markov chain
{X(t)}t∈(−∞,∞) on Z

+,

lim
K→∞ H̃(K, N) = eπ (N), N ∈ Z

+.

The corollary below follows immediately from (3.11), (3.15), (3.18), (3.26), (3.28), (3.31),
and Proposition 3.1.

Corollary 3.3. In any ergodic, continuous-time Markov chain {X(t); t ≥ 0} on Z
+,

∞⋂
K=N+1

P̃(K, N) = lim
K→∞ P̃(K, N) = {π(N)}, N ∈Z

+,

and
∞⋂

K=N+1

P̃+(K, N) = lim
K→∞ P̃+(K, N) = {π (N)}, N ∈ Z

+.

Since ri P̃+(K, N) ⊆ P̃+(K, N), ri P̃+(K, N) also converges to {π(N)} as K goes to infin-
ity. Note here that ri P̃+(K, N) may not be tight in M(Q(1,1)(K),J (K)) for a finite K. For
example, we consider M(Q(1,1)(N + 1),J (N + 1)), where K = N + 1, J (N + 1) = {N + 1},
and qN+1,j > 0 for all j ∈Z

N
0 . We then have J̃ (N + 1, N) =Z

N
0 , and therefore P̃+(N + 1, N)

is an N-simplex spanned by (N + 1) row vectors of H̃(N + 1, N), as shown in the proof of
Theorem 3.2. On the other hand, it follows from Theorem 2.2 that P+(N + 1) is given by a
singleton with the (N + 1)th row vector hN+1(N + 1) of H(N + 1). In other words, all Markov
chains in M(Q(1,1)(N + 1), {N + 1}) have the same π (N) (i.e. the normalized vector of the
first N + 1 elements of hN+1(N + 1)), so that ri P̃+(N + 1, N) is not tight. In the next sec-
tion, we find the minimum convex polytope that contains π (N), in the sense that it is tight in
M(Q(1,1)(K),J (K)).
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4. Minimum convex polytopes for M(Q(1,1)(K),J (K))

In this section, we consider minimum convex polytopes that contain π (N) for Markov
chains in M(Q(1,1)(K),J (K)). The outline of our approach can be summarized as follows.
For convenience, we partition H(K) = (− Q(1,1)(K))−1 and π (K) as follows:

H(K) = ( Z
N
0 Z

K
N+1

H(∗,1)(K; N) H(∗,2)(K; N)
)
, (4.1)

π(K) = ( Z
N
0 Z

K
N+1

π (1)(K; N) π (2)(K; N)
)
.

Since π(K) ∈ ri P+(K) by Theorem 2.2, π (N) = π (1)(K; N)/π (1)(K; N)e is given by a convex
combination of normalized row vectors of H(∗,1)(K; N) corresponding to J (K).

Note here that in all sample paths of the first passage from Z
∞
K+1 to Z

N
0 , {X(t)}t∈(−∞,∞)

must visit at least one state in J (K). In view of this fact, we first introduce (K,N)-skip-free
sets. Roughly speaking, a (K, N)-skip-free set X is a proper subset of Z

K
0 such that in all

sample paths of the first passage from Z
∞
K+1 to Z

K
0 , {X(t)}t∈(−∞,∞) must visit at least one state

in X . We then show in Theorem 4.1 that π (N) = π (1)(K; N)/π (1)(K; N)e is given by a convex
combination of normalized row vectors of H(∗,1)(K; N) corresponding to members of X .

To find the minimum convex polytopes that contain π (N), we introduce a partial order
among (K, N)-skip-free sets, considering the first passage time from Z

∞
K+1 to them. We then

show the inclusion relation among convex polytopes associated with (K, N)-skip-free sets
in Lemma 4.1. Finally, in Theorem 4.2, we find the smallest (K, N)-skip-free set and the
corresponding minimum convex polytope, which is shown to be tight in M(Q(1,1)(K),J (K)).

4.1. (K, N)-skip-free sets

For an arbitrary non-empty subset B of Z+, we define F(B) as the first passage time to B:

F(B) = inf{t ≥ 0; X(t) ∈B}, B ⊆Z
+.

Definition 4.1. ((K, N)-skip-free set.) For arbitrarily fixed K, N ∈Z
+ (K > N), consider a

Markov chain {X(t)}t∈(−∞,∞) in M(Q(1,1)(K),J (K)). We refer to a subset X of ZK
0 as a (K, N)-

skip-free set if {X(t)}t∈(−∞,∞) starting from any state in Z
∞
K+1 must visit X by the first passage

time to Z
N
0 , i.e.,

P(X(t) ∈X for some t ∈ (0, F(ZN
0 )] | X(0) ∈Z

∞
K+1) = 1.

In particular, a (K, N)-skip-free set X is called proper if for any proper subset Y of X ,

P(X(t) ∈Y for some t ∈ (0, F(ZN
0 )] | X(0) ∈Z

∞
K+1) < 1.

Let S(K, N) denote the family of all (K, N)-skip-free sets and S∗(K, N) the family of all
proper (K, N)-skip-free sets.

Remark 4.1. By definition,

(i) (K, N)-skip-free sets are determined only by Q(1,1)(K) and J (K),

(ii) S∗(K, N) ⊆ S(K, N),
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(iii) J (K) ∈ S(K, N) and J̃ (K, N) ∈ S∗(K, N), where J̃ (K, N) is given by (3.19), and

(iv) J (K) ∩Z
N
0 ⊆X for all X ∈ S(K, N).

We can provide an equivalent definition of (K, N)-skip-free sets by considering a directed
graph associated with Q(1,1)(K) and J (K). Specifically, for arbitrarily fixed K, N ∈Z

+
(K > N), we define the directed graph

G(K, N) = (V(K, N), E(K, N)), (4.2)

where V(K, N) and E(K, N) denote sets of nodes and arcs defined as

V(K, N) = {s, t} ∪Z
K
0 ,

E(K, N) = {(s, j); j ∈J (K)} ∪ {(i, t); i ∈ Z
N
0 }

∪ {(i, j); i ∈Z
K
N+1, j ∈Z

K
0 , qi,j > 0}.

Node s represents the set of states in Z
∞
K+1, and node t is a virtual terminal node for the first

passage to Z
N
0 . It is readily seen from Definition 4.1 that a subset X of ZK

0 is a (K, N)-skip-free
set iff X is an (s,t)-node cut in G(K, N), and that X is proper iff it is a minimal (s, t)-node cut.

For a given G(K, N), nodes in Z
K
0 can be classified into two classes, depending on whether

they appear on the way of at least one path from node s to node t. That is,

Z
K
0 =N+(K, N) ∪N0(K, N), N+(K, N) ∩N0(K, N) = ∅,

where nodes in N+(K, N) are reachable from node s and each of them has at least one path to
node t. Note here that N0(K, N) =Z

K
0 \N+(K, N) is given by

N0(K, N) =N (1)
0 (K, N) ∪N (2)

0 (K, N) ∪N (3)
0 (K, N),

where N (�)
0 (K, N) (� = 1, 2, 3) are defined as follows:

N (1)
0 (K, N) =Z

N
0 \ J̃ (K, N) = {i ∈ Z

N
0 ; P(X(F(ZN

0 )) = i | X(0) ∈Z
∞
K+1) = 0},

N (2)
0 (K, N) = {i ∈Z

K
N+1;

P(X(t) ∈Z
∞
N+1 for all t ∈ (0, F({i})] | X(0) ∈ Z

∞
K+1) = 0},

N (3)
0 (K, N) = {i ∈Z

K
N+1; P(X(t) ∈Z

K
N+1 for all t ∈ (0, F(ZN

0 )] | X(0) = i) = 0}.

Roughly speaking, states in N (1)
0 (K, N) ⊆Z

N
0 and states in N (2)

0 (K, N) ⊆Z
K
N+1 can be reached

from any states in Z
∞
K+1 only after visiting J̃ (K, N) ⊆Z

N
0 . On the other hand, states in

N (3)
0 (K, N) ∈Z

K
N+1 have no paths to J̃ (K, N) without visiting Z

∞
K+1.

By definition, X ∩N0(K, N) = ∅ if X ∈ S∗(K, N), whereas there may exist X ∈ S(K, N)
such that X ∩N0(K, N) �= ∅. As we will see, all states in N0(K, N) can be excluded from
consideration when we study π (N) for Markov chains in M(Q(1,1)(K),J (K)).

Before considering minimum convex polytopes for Markov chains in M(Q(1,1)(K),J (K)),
we provide a remark on (K, N)-skip-free sets. Note that (K, N)-skip-free sets can be regarded
as a natural extension of levels with the skip-free-to-the-left property in Markov chains of
M/G/1-type. Suppose a Markov chain {X(t)}t∈(−∞,∞) is of M/G/1-type; i.e., its state space Z

+
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is partitioned into disjoint levels {Lm; m ∈ Z
+}, and transitions between two levels are skip-free

to the left. We now consider the first passage time from LK+1 to LN (K > N). It then follows
that each level Lm (m = N, N + 1, . . . , K) can be regarded as a (K̂, N̂)-skip-free set, where K̂
and N̂ denote the total number of states in

⋃K
m=0 Lm and

⋃N
m=0 Lm. One of the most notable

differences between (K, N)-skip-free sets and levels with the skip-free-to-the-left property is
that (K, N)-skip-free sets are not disjoint, while levels are disjoint.

Example 4.1. (Example 2.1 continued.) Consider Q in Example 2.1 of Section 2.3. S∗(K, N)
is given by

S∗(K, N) = {{0, k}; k ∈ Z
K
N

}
.

4.2. Minimum convex polytopes

We consider convex polytopes associated with (K, N)-skip-free sets. We partition H(K) =
(− Q(1,1)(K))−1 into two matrices as in (4.1). Note here that

[H(∗,1)(K; N)e]i = 0, i ∈N (3)
0 (K, N), (4.3)

and [H(∗,1)(K; N)e]i > 0 for all i ∈Z
K
0 \N (3)

0 (K, N). For any (K + 1)-dimensional vector x, we
define diag∗(x) as a (K + 1)-dimensional diagonal matrix whose ith (i ∈Z

K
0 ) diagonal element

is given by

[diag∗(x)]i,i =
⎧⎨⎩

1

[x]i
, [x]i �= 0,

0, otherwise.

We then define �(K, N; B) (K, N ∈Z
+, K > N, B ⊆Z

K
0 ) as

�(K, N; B) = {
α ∈R

N+1; α = βU(K, N), β ∈ �(K),

[β]i ≥ 0 (i ∈B), [β]i = 0 (i ∈Z
K
0 \ B)},

where �(n) (n ∈ Z
+) is defined in (2.5) and U(K, N) is given by

U(K, N) = diag∗(H(∗,1)(K; N)e)

(
I

(− Q(2,2)(K, N))−1Q(2,1)(K, N)

)
· (I − R(K, N))−1diag(H(N)e).

Moreover, for X ∈ S(K, N), we define X ∗ as

X ∗ =X \N0(K, N).

Note that
X ∗ ∈ S(K, N) if X ∈ S(K, N), X ∗ =X if X ∈ S∗(K, N). (4.4)

We then have the following theorem, whose proof is given in Appendix G.

Theorem 4.1. Suppose M(Q(1,1)(K),J (K)) �= ∅. For any Markov chain in M(Q(1,1)(K),
J (K)), we have for X ∈ S(K, N) (K > N) that

π(N) ∈P+(K, N; X ∗),
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where P+(K, N; X ∗) denotes a convex polytope on the first orthant of RN+1 which is given by

P+(K, N; X ∗) = {
x ∈R

N+1;
[
(x y)(− Q(1,1)(K))]i ≥ 0 (i ∈X ∗),[

(x y)(− Q(1,1)(K))]i = 0 (i ∈ Z
K
0 \X ∗),

xe = 1, y ≥ 0
}

(4.5)

= {x ∈R
N+1; x = αH(N), α ∈ �(K, N; X ∗)}. (4.6)

In particular,
π (N) ∈ ri P+(K, N; X ∗) if X ∗ ∈ S∗(K, N).

Remark 4.2. Consider two (K, N)-skip-free sets XA,XB ∈ S(K, N). If XA ⊆XB, we have
X ∗

A ⊆X ∗
B by definition. Therefore, it follows from (4.5) that P+(K, N; X ∗

A ) ⊆P+(K, N; X ∗
B )

if XA ⊆XB.

Lemma 4.1. For Markov chains in M(Q(1,1)(K),J (K)) with XA,XB ∈ S(K, N), we consider
the first passage times F(X ∗

A ), F(X ∗
B ), and F(ZN

0 ). If the statements

F(X ∗
A ) ≤ F(X ∗

B ) given that X(0) ∈Z
∞
K+1

and
F(X ∗

B ) ≤ F(ZN
0 ) given that X(0) ∈X ∗

A , (4.7)

hold sample-path-wise, we have

P(K, N; X ∗
A ) ⊆P(K, N; X ∗

B ).

The proof of Lemma 4.1 is given in Appendix H. By definition, J̃ (K, N) ∈ S∗(K, N), and
P+(K, N; J̃ (K, N)) is identical to P̃+(K, N) in (3.24). Recall that J̃ (K, N) ⊆Z

N
0 . Therefore,

for any X ∈ S(K, N), F(X ) ≤ F(J̃ (K, N)) holds sample-path-wise, given X(0) ∈Z
∞
K+1. On the

other hand, J (K) ∈ S(K, N), and each state in J (K) is reachable from some states in Z
∞
K+1 by

direct transitions. Note here that

J ∗(K) =J (K) \N0(K, N) =J (K) \N (3)
0 (K, N). (4.8)

We thus have F(J ∗(K)) ≤ F(X ∗) sample-path-wise, given X(0) ∈ Z
∞
K+1. The corollary below

follows from Theorem 4.1 and the above observations.

Corollary 4.1. Among (K, N)-skip-free sets, J̃ (K, N) in (3.19) gives a maximum convex
polytope, i.e.,

P+(K, N; X ∗) ⊆P+(K, N; J̃ (K, N)), X ∈ S(K, N).

On the other hand, among (K, N)-skip-free sets, J ∗(K) gives a minimum convex polytope, i.e.,

P+(K, N; J ∗(K)) ⊆P+(K, N; X ∗), X ∈ S(K, N).

Note here that J ∗(K) is not proper in general. We thus consider a proper (K, N)-skip-free
set that gives the minimum convex polytope P+(K, N; J ∗(K)). Specifically, we introduce a
subset D(K, N) of J (K), which is generated by the following procedure.
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Procedure 4.1. ([9].)

(i) We obtain a directed graph G∗(K, N) from G(K, N) in (4.2) by removing all incoming
edges to nodes in J (K).

(ii) We then find the subset D(K, N) of nodes in J (K) from which node t is reachable in
G∗(K, N).

Note that Step (ii) can be performed with O(K) operations, by considering reverse paths
from node t to node s in the graph G∗(K, N).

Lemma 4.2. ([9].) Suppose M(Q(1,1)(K),J (K)) �= ∅. For any Markov chain in
M(Q(1,1)(K),J (K)) (K > N), we have D(K, N) ∈ S∗(K, N). Furthermore, D(K, N) ⊆X for
all X ⊆J (K) such that X ∈ S(K, N).

The proof of Lemma 4.2 is given in Appendix I.

Lemma 4.3. Suppose M(Q(1,1)(K),J (K)) �= ∅. For any Markov chain in M(Q(1,1)(K),
J (K)) (K > N), we have

P+(K, N; D(K, N)) =P+(K, N; J ∗(K)), K, N ∈Z
+, K > N,

where J ∗(K) is given by (4.8).

Proof. Since D(K, N) ∈ S∗(K, N), we have D∗(K, N) =D(K, N) from (4.4). It then follows
from Remark 4.2 and D(K, N) ⊆J (K) that

P+(K, N; D(K, N)) =P+(K, N; D∗(K, N)) ⊆P+(K, N; J ∗(K)).

On the other hand, it follows from Lemma 4.2 that F(J ∗(K)) ≤ F(D(K, N)) if X(0) ∈Z
∞
K+1 and

F(D(K, N)) ≤ F(ZN
0 ) if X(0) ∈J ∗(K). We thus have P+(K, N; J ∗(K)) ⊆P+(K, N; D(K, N))

from Lemma 4.1, which completes the proof. �
The following theorem shows that the minimum convex polytope P+(K, N; D(K, N)) is

tight in M(Q(1,1)(K),J (K)).

Theorem 4.2. Suppose M(Q(1,1)(K),J (K)) �= ∅. For any x ∈ ri P+(K, N; D(K, N)), there
exists a Markov chain in M(Q(1,1)(K),J (K)) whose π(N) is given by x.

The proof of Theorem 4.2 is given in Appendix J. As shown in the proof, if
M(Q(1,1)(K),J (K)) �= ∅ and x ∈ ri P+(K, N; D(K, N)), we have x > 0. The following corol-

lary comes from the fact that P+(K, N; D(K, N)) is a convex polytope spanned by h
(∗,1)
i (K; N)

for i ∈D(K, N) (cf. (H.1)), where h
(∗,1)
i (K; N) (i ∈ Z

K
0 ) denotes the ith normalized row vector

of H(∗,1)(K; N) in (4.1).

Corollary 4.2. Suppose M(Q(1,1)(K),J (K)) �= ∅. For an arbitrary probability vector x ∈
�(N), we have

‖x − π(N)‖1 ≤ max
i∈D(K,N)

‖x − h
(∗,1)
i (K; N)‖1.

Furthermore, if x ∈P+(K, N; D(K, N)), we have

max
i∈D(K,N)

‖x − h
(∗,1)
i (K; N)‖1 ≤ max

i,j∈D(K,N)
‖h

(∗,1)
j (K; N) − h

(∗,1)
i (K; N)‖1,

x ∈P+(K, N; D(K, N)).
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TABLE 1. The worst-case error bounds in Example 4.2 (N = 50).

K worst-case error bound

50 1.4822557975239198× 10−1

60 2.8325135949980040× 10−2

70 3.3500314471736218× 10−3

80 2.3592892522569017× 10−4

90 1.0840482894389214× 10−5

100 3.5265317430057536× 10−7

110 8.6146805062733978× 10−9

120 1.6515206910372449× 10−10

130 2.5711073894929548× 10−12

140 3.2661373605691324× 10−14

150 2.0140139556090730× 10−15

Example 4.2. (Example 2.1 continued.) Consider Q in Example 2.1 of Section 2.3. Note that
J (N) = {0, N} and J (K) =J ∗(K) =D(K, N) = {0, K}. We set qi,j = λibj−i (i ∈Z

+, j > i),
qi,i−1 = μi (i ∈Z

+ \ {0}), and qi,0 = γi (i ∈Z
+ \ {0, 1}), where

λi = 2 − 1

i + 1
(i ∈ Z

+), bi = 1

2i
(i ∈ Z

+ \ {0}),

μi = i

10
(i ∈Z

+ \ {0}), γi = λi

i
(i ∈Z

+ \ {0, 1}).
Table 1 shows the worst-case error bound

max
i,j∈D(K,N)

‖h
(∗,1)
j (K; N) − h

(∗,1)
i (K; N)‖1 = ‖h

(∗,1)
0 (K; N) − h

(∗,1)
K (K; N)‖1

of Corollary 4.2, where N = 50, and the result for K = N indicates the worst-case error bound

max
i,j∈J (N)

‖hj(N) − hi(N)‖1 = ‖h0(N) − hN(N)‖1

of Corollary 2.3. We observe that the worst-case error bound steadily decreases as K increases
and that if K = 150, any probability vector x ∈ riP+(K, N; D(K, N)) is a good approximation
to π(N) in this specific case.

5. Concluding remarks

This paper studied the conditional stationary distribution π (N) in ergodic, continuous-time
Markov chains on Z

+ via systems of linear inequalities. Specifically, we first obtained an
N-simplex P(N) containing π (N), assuming only the knowledge of the (N + 1) × (N + 1)
northwest corner block Q(1,1)(N) of the infinitesimal generator. We then refined this result
and eliminated unnecessary vertices from P(N), using the structural information J (N). These
results are closely related to the augmented truncation approximation (ATA), and we provided
some practical implications for it. In particular, we observed that the linear ATA is sufficient
for computing an ATA solution, and the structural information J (N), if available, is useful for
obtaining a reasonable ATA solution.
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Next, we extended our results to the cases where the (K + 1) × (K + 1) (K > N) northwest
corner block (and J (K)) are available. Furthermore, we introduced new state transition struc-
tures called (K, N)-skip-free sets, and we obtained a tight convex polytope that contains π(N),
under the condition that only Q(1,1)(K) and J (K) are available.

Note that the results in this paper are also applicable to a time-homogeneous, discrete-time
Markov chain on Z

+. Specifically, in a discrete-time Markov chain with a state transition prob-
ability matrix PD, the stationary distribution πD, if it exists, satisfies πD = πDPD and πDe = 1.
Therefore, we can study πD by considering the corresponding continuous-time Markov chain
with the infinitesimal generator Q = PD − I.

In this paper, the state space of a Markov chain {X(t)}t∈(−∞,∞) was assumed to be countably
infinite. Except for Corollary 3.3, however, all the results in this paper also hold for Markov
chains with finite state space Z

K∗
0 for some K∗ ∈ Z

+ such that N < K < K∗, if we replace Z
∞
N

and Z
∞
K by Z

K∗
N and Z

K∗
K .

We scarcely ever discussed one-point approximations to the conditional stationary distri-
bution π (N), except in Section 2.4. In view of the error bounds in Corollaries 2.3 and 4.2, it
seems to be reasonable to choose the center of a convex polytope that contains π (N) as a one-
point approximation to π (N). Note, however, that we cannot identify the exact location of π(N)
within the convex polytopes unless further information is available. Therefore, for a specific
problem, the choice of the center may or may not work well. The development of new approx-
imation algorithms for the (un)conditional stationary distributions of Markov chains remains
as future work.

Appendix A. Proof of Corollary 2.2

Substituting (2.15) and (2.16) into (2.12) yields (2.17). We thus consider (2.15) and (2.16)
below. Because

H(N) = (− Q(1,1)(N))−1 =
∫ ∞

0
exp (Q(1,1)(N)t)dt,

we have

[H(N)]i,j =E

[ ∫ T(2)
n

T(1)
n

I(X(t) = j)dt | X(T(1)
n ) = i

]
, i, j ∈ Z

N
0 ,

and therefore

[H(N)]i,j = 1

E
[
T(2)

n − T(1)
n | X(T(1)

n ) = i
]E[ ∫ T(2)

n

T(1)
n

I(X(t) = j)dt | X(T(1)
n ) = i

]
,

from which (2.15) follows.
We also have π (1)(N) = π (2)(N)Q(2,1)(N)H(N) from (2.4) and (2.9), so that

π (1)(N)e = π (2)(N)Q(2,1)(N)diag(H(N)e)e.

It then follows from (2.10) and (2.12) that

α∗(N) = π (2)(N)

π (1)(N)e
· Q(2,1)(N)diag(H(N)e) = ζ ∗(N)diag(H(N)e)

ζ ∗(N)diag(H(N)e)e
,

where

ζ ∗(N) = π (2)(N)Q(2,1)(N)

π (2)(N)Q(2,1)(N)e
. (A.1)
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It is readily seen that
[ζ∗(N)]i = P(X(T(1)

n ) = i), i ∈ Z
N
0 .

We thus have

[α∗(N)]i = 1

E
[
T(2)

n − T(1)
n
]E[ ∫ T(2)

n

T(1)
n

I(I(t) = i)dt

]
, i ∈Z

N
0 ,

from which (2.16) follows.

Appendix B. Equivalence between (2.22) and (2.23) for J (N) �=Z
N
0

Suppose J (N) �=Z
N
0 . We partition H(N) into two matrices:

H(N) =
( Z

N
0

J (N) H+(N)
Z

N
0 \J (N) H0(N)

)
.

Note that (2.23) for J (N) �= Z
N
0 is equivalent to

{x ∈R
N+1; x = αH+(N), α ≥ 0, αe = 1}.

We now rewrite (2.22) as

P+(N) = {
x ∈R

N+1; x(− Q(1,1)
+ (N)) ≥ 0, x(− Q(1,1)

0 (N)) = 0, xe = 1
}

= {
x ∈R

N+1; x(− Q(1,1)
+ (N)) = y, x(− Q(1,1)

0 (N)) = 0, y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x(− Q(1,1)
+ (N) − Q(1,1)

0 (N)) = (y 0), y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x(− Q(1,1)(N)) = (y 0), y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x = (y 0)H(N), y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x = (y 0)diag(H(N)e)H(N), y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x = (ydiag(H+(N)e) 0)H(N), y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x = ydiag(H+(N)e)H+(N), y ≥ 0, xe = 1
}

= {
x ∈R

N+1; x = αH+(N), α ≥ 0, αe = 1
}
,

where the last equality follows from the same reasoning as in (2.11).

Appendix C. Proof of Lemma 2.2

Since AL(N) ⊆A(N), we have TL(N) ⊆ T (N). We thus show T (N) ⊆P(N) and P(N) ⊆
TL(N), from which the lemma follows.

We first prove T (N) ⊆P(N). Suppose x ∈ T (N); i.e., x[Q(1,1)(N) + QA(N)] = 0 for some
QA(N) ∈A(N). Post-multiplying both sides of this equation by H(N) = (− Q(1,1)(N))−1 and
rearranging terms, we obtain

x = xQA(N)H(N) = αH(N),
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where α = xQA(N)diag(H(N)e). Note here that α ∈ �(N) because α ≥ 0, xe = 1, and xe =
αH(N)e = αe. We thus obtain x ∈P(N) from (2.8), so that T (N) ⊆P(N).

Next, we prove P(N) ⊆ TL(N). For an arbitrarily fixed x ∈P(N), let y = x(− Q(1,1)(N)) ≥ 0
(cf. (2.7)). Since xe = 1 and Q(1,1)(N) is nonsingular, we have y �= 0. We then consider a linear
augmentation matrix Q†

A(N) given by

Q†
A(N) = (− Q(1,1)(N))e · y

ye
= (− Q(1,1)(N))e · y

x(− Q(1,1)(N))e
.

It is clear that Q†
A(N) ∈AL(N) and

x[Q(1,1)(N) + Q†
A(N)] = −y + x · (− Q(1,1)(N))e

x(− Q(1,1)(N))e
· y = 0,

which implies x ∈ TL(N), so that P(N) ⊆ TL(N).

Appendix D. Proof of Lemma 2.3

If J (N) =Z
N
0 , Lemma 2.3 immediately follows from Lemma 2.2. We thus assume J (N) �=

Z
N
0 . Implication 2.2 with ζ ∈ �+(N) implies T +

L (N) ⊆P+(N). We thus show P+(N) ⊆ T +
L (N)

below. For an arbitrarily fixed x ∈P+(N), let y = x(− Q(1,1)(N)). Since xe = 1 and Q(1,1)(N)
is nonsingular, y �= 0. Furthermore, by definition, x(− Q(1,1)

+ (N)) ≥ 0 and x(− Q(1,1)
0 (N)) = 0,

where Q(1,1)
+ (N) and Q(1,1)

0 (N) are given in (2.18). We then partition y into two parts:

y = (J (N) Z
N
0 \J (N)

y+ 0
)
,

where y+ ≥ 0 and y+e > 0. We now consider a linear augmentation matrix Q†
A(N) given by

Q†
A(N) = (− Q(1,1)(N))e · y

ye
= (− Q(1,1)(N))e · (y+ 0)

x(− Q(1,1)(N))e
.

It is clear that
(y+ 0)

x(− Q(1,1)(N))e
∈ �+(N),

and

x[Q(1,1)(N) + Q†
A(N)] = −y + x · (− Q(1,1)(N))e

x(− Q(1,1)(N))e
· y = 0,

which implies x ∈ T +
L (N), so that P+(N) ⊆ T +

L (N).

Appendix E. Proof of Corollary 3.1

We first prove (3.16) by showing that β ∈ �(N) ⇒ α ∈ �(N) in (3.14), i.e., that

β ≥ 0, βe = 1 ⇒ α ≥ 0, αe = βe ( = 1).

For this purpose, we consider (3.5). By definition, we have for i, j ∈Z
N
0 ,

[R(K, N)]i,j = P(X(T(1)
n+1) = j, X(t) ∈ Z

K
N+1 (T(2)

n ≤ t < T(1)
n+1) | X(T(1)

n ) = i),
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and therefore R(K, N) is substochastic; i.e.,

R(K, N) ≥ O, R(K, N)e ≤ e, R(K, N)e �= e.

It follows that

(I − R(K, N))−1 =
∞∑

n=0

(
R(K, N)

)n ≥ O.

Recall that H(N) ≥ O and H̃(K, N) ≥ O. We thus conclude β ≥ 0 ⇒ α ≥ 0 from (3.14).
Furthermore, we have

αe = βdiag−1(H̃(K, N)e)(I − R(K, N))−1H(N)e

= βdiag−1(H̃(K, N)e)H̃(K, N)e

= βe.

Next we show (3.17). For this purpose, we consider the censored process on Z
N
0 ∪Z

∞
K1+1

whose generator is given by Q̃(K1, N). We then apply Theorem 2.1 with N = K = K1 and obtain
�̃(K1, N). Moreover, we apply Theorem 3.1 to the above censored process on Z

N
0 ∪Z

∞
K1+1 with

K = K2 and obtain �̃(K2, N). Now (3.17) follows from (3.16), with �̃(K1, N) and �̃(K2, N)
corresponding to �(N) and �̃(K, N) in (3.16).

Appendix F. Proof of Corollary 3.2

We first consider (3.29). If J (N) =Z
N
0 , (3.29) is immediate because

�̃+(K, N) ⊆ �̃(K, N) ⊆ �(N) = �+(N).

We thus assume J (N) �= Z
N
0 . Noting (3.20), we partition Z

N
0 into the three subsets J̃ (K, N),

J (N) \ J̃ (K, N), and Z
N
0 \J (N):

Q(2,1)(K, N) =
( J̃ (K,N) J (N)\J̃ (K,N) Z

N
0 \J (N)

Q(2,1)
+ (K, N) Q(2,1)

++ (K, N) O
)

. (F.1)

Note here that J (N) \ J̃ (K, N) may be empty; if this is the case, we simply ignore the
corresponding terms. It follows from (3.5) that

(I − R(K, N))−1 = I + (I − R(K, N))−1R(K, N) = I + BQ(2,1)(K, N), (F.2)

where

B = (I − R(K, N))−1(− Q(1,1)(K, N))−1Q(1,2)(K, N)(− Q(2,2)(K, N))−1 ≥ O.

Suppose α ∈ �̃+(K, N), i.e., there exists a nonnegative vector β such that

β =
J̃ (K,N) J (N)\J̃ (K,N) Z

N
0 \J (N)

( β1 0 0 ), β1 ≥ 0, β1e = 1,

and

α =
(J̃ (K,N) J (N)\J̃ (K,N) Z

N
0 \J (N)

α1 α2 α3

)
= (β1 0 0)diag−1(H̃(K, N)e)(I − R(K, N))−1diag(H(N)e).

https://doi.org/10.1017/apr.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.40


The conditional stationary distribution in Markov chains 1277

It follows from (3.16) and (3.27) that �̃+(K, N) ⊆ �(N), so that αe = 1 and α ≥ 0. Moreover,
using (F.1) and (F.2), we can rewrite α as

α = (β1 0 0)diag−1(H̃(K, N)e)diag(H(N)e)

+ βdiag−1(H̃(K, N)e)B
(
Q(2,1)

+ (K, N) Q(2,1)
++ (K, N) O

)
diag(H(N)e),

and therefore α3 = 0, which completes the proof of (3.29).
We omit the proof of (3.30) because it is almost the same as the proof of (3.17) in Corollary

3.1, except that the former uses Theorem 2.2, Theorem 3.2, and (3.29) where the latter uses
Theorem 2.1, Theorem 3.1, and (3.16), respectively.

Appendix G. Proof of Theorem 4.1

Without loss of generality, we assume Z
N
0 ∪X ∗ =Z

M
0 , where M = |ZN

0 ∪X ∗| − 1. It then
follows from Theorem 3.1 with N := M that

π (M) ∈ P̃(K, M),

where from (3.11) and (3.15),

P̃(K, M) = P̂(K, M) = {
x ∈R

M+1; x = βMH̃(K, M), βM ∈ �(M)
}
.

Note here that if X(0) ∈Z
∞
K+1, the first passage time to Z

M
0 ends on X ∗. Therefore, following

a discussion similar to the proof of Theorem 3.2, we obtain

π(M) ∈ P̂+(K, M; X ∗) for X ∈ S(K, N), (G.1)

where

P̂+(K, M; X ∗) = {
x ∈R

M+1; x = βMH̃(K, M),

βM ∈ �(M), [βM]i = 0 (i ∈Z
M
0 \X ∗)

}
. (G.2)

For a proper X ∗, we have X ∗ ∩N0(K, N) = ∅; i.e., the probability that the first passage time
from Z

∞
K+1 to Z

M
0 ends on state i is strictly positive for all i ∈X ∗. We thus have X ∗ = J̃ (K, M)

for X ∗ ∈ S∗(K, N), and therefore from Theorem 3.2,

π(M) ∈ ri P̃+(K, M; X ∗) for X ∗ ∈ S∗(K, N).

Since Z
N
0 ∪X ∗ =Z

M
0 , π (N) can be expressed in terms of π(M). Specifically, we first

partition π(M) and H̃(K, M) as follows:

π (M) = ( Z
N
0 Z

M
N+1

π (1)(M; N) π (2)(M; N)
)
,

H̃(K, M) =
( Z

N
0 Z

M
N+1

H̃
(∗,1)

(K, M; N) H̃
(∗,2)

(K, M; N)
)

.

It then follows from (G.1) and (G.2) that π (1)(M; N) ∈ P̂+(1)
M (K, M; X ∗), where

P̂+(1)
M (K, M; X ∗) = {

x ∈R
N+1; x = βMdiag−1(H̃(K, M)e)H̃

(∗,1)
(K, M; N),

βM ∈ �(M), [βM]i = 0 (i ∈Z
M
0 \X ∗)

}
. (G.3)
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By definition, π (N) = π (1)(M; N)/π (1)(M; N)e. It follows from (G.3) that π (1)(M; N) is given

by a weighted sum of row vectors of H̃
(∗,1)

(K, M; N). On the other hand, it follows from
Remark 3.1 that if ZN

0 ∪X ∗ =Z
M
0 , then H̃(K, M) is identical to the (M + 1) × (M + 1) north-

west corner block of H(K). Therefore, the row vectors corresponding to state i ∈X ∗ in

H̃
(∗,1)

(K, M; N) and in H(∗,1)(K; N) are identical. Therefore, replacing H̃
(∗,1)

(K, M; N) by
H(∗,1)(K; N) and normalizing π (1)(M; N), we obtain

π (N) ∈ P̂+(K, N; X ∗) for X ∈ S(K, N),

where

P̂+(K, N; X ∗) = {
x ∈R

N+1; x = βdiag∗(H(∗,1)(K; N)e)H(∗,1)(K; N),

β ∈ �(K), [β]i = 0 (i ∈ Z
K
0 \X ∗)

}
. (G.4)

In particular, for a proper X ∗, we have

π (N) ∈ ri P̂+(K, N; X ) for X ∗ ∈ S∗(K, N).

Note that P̂+(K, N; X ∗) in (G.4) is a convex polytope on the first orthant of RN+1.
The proof of (4.5) will be complete if we can show that

P̂+(K, N; X ∗) =P+(K, N; X ∗); (G.5)

this will be done below. Note that H(∗,1)(K; N) is given in terms of H̃(K, N) in (3.7):

H(∗,1)(K; N) =
(

Z
N
0 I

Z
K
N+1 (− Q(2,2)(K, N))−1Q(2,1)(K, N)

)
H̃(K, N). (G.6)

It then follows from (3.12) and (G.6) that

βdiag∗(H(∗,1)(K; N)e)H(∗,1)(K; N)

= βdiag∗(H(∗,1)(K; N)e)

(
I

(− Q(2,2)(K, N))−1Q(2,1)(K, N)

)
H̃(K, N)

= βU(K, N)H(N),

so that P̂+(K, N; X ∗) is identical to P+(K, N; X ∗) in (4.6). The equivalence between (4.5)
and (4.6) can be shown in the same way as in the proof of Theorem 2.2, so that we omit it.

Appendix H. Proof of Lemma 4.1

If X ∗
A =X ∗

B , Lemma 4.1 holds. We thus assume X ∗
A �=X ∗

B . Note that for X ∈ S(K, N),
P+(K, N; X ∗) is equivalent to P̂+(K, N; X ∗) in (G.4); i.e.,

P̂+(K, N; X ∗) = {
x ∈R

N+1; x = βH
(∗,1)

(K; N),

β ∈ �(K), [β]i = 0 (i ∈Z
K
0 \X ∗)

}
, (H.1)

where
H

(∗,1)
(K; N) = diag∗(H(∗,1)(K; N)e)H(∗,1)(K; N).
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Let h(∗,1)
j (K; N) and h

(∗,1)
j (K; N) (j ∈Z

K
0 ) denote the jth row vectors of H(∗,1)(K; N) and

H
(∗,1)

(K; N). Note that the lemma is proven if

h
(∗,1)
i (K; N) ∈ P̂(K, N; X ∗

B ), i ∈X ∗
A . (H.2)

It is clear that (H.2) holds for i ∈X ∗
A ∩X ∗

B . We thus show (H.2) for i ∈X ∗
A \X ∗

B below.
For a fixed i ∈X ∗

A \X ∗
B , we consider a censored Markov chain {X̃(t)}t∈(−∞,∞) by observ-

ing {X(t)}t∈(−∞,∞) only when X(t) ∈ Z
N
0 ∪X ∗

B ∪ {i} ∪Z
∞
K+1. The infinitesimal generator Q̃ :=

Q̃(K, N,X ∗
B , i) of the censored Markov chain {X̃(t)}t∈(−∞,∞) takes the following form:

Q̃ =
⎛⎝

Z
N
0 ∪X ∗

B ∪{i} Z
∞
K+1

Z
N
0 ∪X ∗

B ∪{i} Q̃
(1,1)

Q̃
(1,2)

Z
∞
K+1 Q̃

(2,1)
Q̃

(2,2)

⎞⎠,

where, with ZB =Z
N
0 ∪X ∗

B ,

Q̃
(1,1) =

⎛⎝
ZB {i}

ZB Q̃
(1,1)
ZB,ZB

q̃(1,1)
ZB,i

{i} q̃(1,1)
i,ZB

−̃q(1,1)
i,i

⎞⎠.

Note here that

q̃(1,1)
i,ZB

=
(ZN

0 \X ∗
B X ∗

B

0 q̃(1,1)
i,ZB,+

)
, (H.3)

since i ∈X ∗
A \X ∗

B and (4.7) holds sample-path-wise. We define H̃ := H̃(K, N,X ∗
B , i) as

H̃ = (− Q̃
(1,1))−1 =

( ZB {i}
ZB H̃ZB,ZB h̃ZB,i

{i} h̃i,ZB h̃i,i

)

=
( ZB {i}

ZB H̃ZB,ZB h̃ZB,i

{i} (̃q(1,1)
i,i )−1̃q(1,1)

i,ZB
H̃ZB,ZB h̃i,i

)
.

Note here that if we partition H̃ZB,ZB as

H̃ZB,ZB =
⎛⎝

Z
N
0 ZB\ZN

0

Z
N
0 \X ∗

B H̃
(1,1)
ZB,ZB

H̃
(1,2)
ZB,ZB

X ∗
B H̃

(2,1)
ZB,ZB

H̃
(2,2)
ZB,ZB

⎞⎠,

the row vector of H̃
(2,1)
ZB,ZB

corresponding to j ∈X ∗
B is identical to h(∗,1)

j (K; N). Furthermore,
noting (H.3), we have
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q̃(1,1)
i,ZB

H̃ZB,ZB =
(̃

q(1,1)
i,ZB

(
H̃

(1,1)
ZB,ZB

H̃
(2,1)
ZB,ZB

)
q̃(1,1)

i,ZB

(
H̃

(1,2)
ZB,ZB

H̃
(2,2)
ZB,ZB

))

= (̃
q(1,1)

i,ZB,+H̃
(2,1)
ZB,ZB

q̃(1,1)
i,ZB,+H̃

(2,2)
ZB,ZB

)
,

and
h(∗,1)

i (K; N) = (̃q(1,1)
i,i )−1̃q(1,1)

i,ZB,+H̃
(2,1)
ZB,ZB

.

Therefore, h(∗,1)
i (K; N) (i ∈X ∗

A \X ∗
B ) is given by a linear combination of the h(∗,1)

j (K; N) (j ∈
X ∗

B ) with nonnegative weights αi,j:

h(∗,1)
i (K; N) =

∑
j∈X ∗

B

αi,jh
(∗,1)
j (K; N).

We thus conclude that h
(∗,1)
i (K; N) (i ∈X ∗

A \X ∗
B ) is given by a convex combination of

h
(∗,1)
j (K; N) (j ∈X ∗

B ); i.e.,

h
(∗,1)
i (K; N) =

∑
j∈X ∗

B

βi,jh
(∗,1)
j (K; N),

where

βi,j =
αi,jh

(∗,1)
j (K; N)e

h(∗,1)
i (K; N)e

, j ∈X ∗
B .

Note that βi,j ≥ 0 and
∑

j∈X ∗
B

βi,j = 1, which completes the proof.

Appendix I. Proof of Lemma 4.2

We first prove that D(K, N) is an (s, t)-node cut in G(K, N), and then we show its minimality.
To prove the former, we show that the graph G(K, N; −D(K, N)), which is obtained from
G(K, N) by removing all nodes in D(K, N), has no directed paths from s to t. To prove this, we
assume that G(K, N; −D(K, N)) has a directed path P from s to t and derive a contradiction.
Since J (K) is the set of all neighboring nodes of s, P must contain a node v ∈J (K) \D(K, N),
where we assume that if P contains more than one node in J (K) \D(K, N), then v is the node
closest to t. Because the directed path from v to t has no edges incoming to any nodes in J (K),
G∗(K, N) should contain the subpath Pv,t of P from v to t. This, however, contradicts the fact
that D(K, N) contains all nodes in J (K) from which t is reachable in G∗(K, N).

Next we show the minimality of D(K, N). For each node v ∈D(K, N), G∗(K, N) contains
a directed path Pv,t from v that visits t without passing through any other nodes in J (K). As
a result, the edge (s, v) ∈ E(K, N) and Pv,t form a directed path from s to t in G(K, N), and
therefore v ∈D(K, N) must be included in any (s,t)-node cut X ⊆J (K) in G(K, N). We thus
conclude that D(K, N) ⊆X for any X such that X ⊆J (K) and X ∈ S(K, N), which completes
the proof.

Appendix J. Proof of Theorem 4.2

Note that x ∈ ri P+(K, N; J ∗(K)) from Lemma 4.3 and P+(K, N; J ∗(K)) =
P̂+(K, N; J ∗(K)) from (G.5), where P̂+(K, N; J ∗(K)) is given in (G.5). We thus have
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x ∈ ri P̂+(K, N; J ∗(K)); therefore there exists β ∈ �(K) such that [β]i > 0 (i ∈J ∗(K)),
[β]i = 0 (i ∈Z

K
0 \J ∗(K)), and

x = βdiag∗(H(∗,1)(K; N)e)H(∗,1)(K; N).

On the other hand, it follows from (4.8) that J (K) \J ∗(K) =J (K) ∩N (3)
0 (K, N).

Therefore, we have from (4.3) that

h(∗,1)
i (K; N) = 0, i ∈J (K) \J ∗(K),

where h(∗,1)
i (K; N) (i ∈ Z

K
0 ) denotes the ith row vector of H(∗,1)(K; N). Let γ ∈R

K+1 be defined
by

γ = βdiag∗(H(∗,1)(K; N)e) +
∑

i∈J (K)\J ∗(K)

ei,

where ei ∈ �(K) (i ∈Z
K
0 ) denotes the unit vector whose ith element is equal to one. Note here

that

[γ ]i > 0, i ∈J (K), (J.1)

[γ ]i = 0, i ∈Z
K
0 \J (K). (J.2)

We thus have
γ H(∗,1)(K; N) = x +

∑
i∈J (K)\J ∗(K)

h(∗,1)
i (K; N) = x.

Let y = γ H(∗,2)(K; N). We then have

(x y)(− Q(1,1)(K)) = γ .

It follows from (J.1) and (J.2) that

[(x y)Q(1,1)(K)]i > 0, i ∈J (K),

[(x y)Q(1,1)(K)]i = 0, i ∈Z
K
0 \J (K).

Furthermore, (x y)e = γ H(K)e > 0 since H(K)e > 0. We thus have (x y)/((x y)e) ∈ ri P+(K),
and therefore

(x y) > 0,

from Lemma 2.1. We then define ζ (x, y) as

ζ (x, y) = (x y)(− Q(1,1)(K))

(x y)(− Q(1,1)(K))e
= γ

γ e
.

Note that ζ (x, y) ∈ ri �+(K), where

�+(K) = {
α ∈R

K+1; α ≥ 0, αe = 1, [α]i = 0 (i ∈Z
K
0 \J (K))

}
.

We now consider a Markov chain whose infinitesimal generator Q is given by

Q =
( Z

K
0 Z

∞
K+1

Z
K
0 Q(1,1)(K) (− Q(1,1)(K))ez

Z
∞
K+1 eζ (x, y) −I,

)
, (J.3)
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where z denotes a 1 × ∞ positive probability vector. Note here that the Markov chain with
Q given by (J.3) is a member of M(Q(1,1)(K),J (K)) if it is ergodic, i.e., if the global
balance equation πQ = 0 has a unique positive solution π satisfying πe = 1, where πQ = 0 is
written as

π (1)(K)Q(1,1)(K) + π (2)(K)eζ (x, y) = 0,

π (1)(N)(− Q(1,1)(K))ez − π (2)(K) = 0.

Solving the above with π (1)(K)e + π (2)(K)e = 1, we obtain

π = (
π (1)(K)π (2)(K)

)
= 1

(x y)e + (x y)(− Q(1,1)(K))e

(
(x y) (x y)(− Q(1,1)(K))e · z

)
= 1

1 + ye + γ e

(
(x y) γ e · z

)
> 0;

in particular,

π (1)(N) = π (1)(K, N) = 1

1 + ye + γ e
· x.

We thus conclude that the Markov chain with Q in (J.3) is a member of M(Q(1,1)(K),J (K)),
and it has π (N) = x.
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