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SUMMARY
A novel n(2-UPS/PS+RPS) spatial hyper-redundant manipulator (SHRM) formed by an optional
number of 2-UPS/PS+RPS(2-universal joint-prismatic joint-spherical joint/prismatic joint-spherical
joint+revolute joint-prismatic joint-spherical joint) parallel manipulators(PMs) connected in series
is proposed and analyzed in this paper. First, the forward kinematics of the 2-UPS/PS+RPS PM is
derived in close form. By extending this result to the whole SHRM, the forward kinematics model
of the n(2-UPS/PS+RPS) SHRM is established. Second, the compact and elegant expressions
for solving the forward velocity of the n(2-UPS/PS+RPS) SHRM are derived. Third, the statics
and stiffness of the n(2-UPS/PS+RPS) SHRM are analyzed systematically by considering both
active forces and constrained forces existed in each 2-UPS/PS+RPS PM. Finally, an analytically
solved example is given for a 4(2-UPS/PS+RPS) SHRM formed by four 2-UPS/PS+RPS PMs. The
analytical results are verified by CAD software.
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1. Introduction
In recent years, SHRMs have attracted much attention in the field of robotics.1,2 The SHRMs are
formed by multi- PMs connected in series. This class of manipulators has large workspace, high
manipulability, good obstacle avoidance ability and can be used as spatial truss, biomimetic snake,
elephant’s trunk, multi-tasking machining tools and so on.3,4 In the aspect of SHRMs, Romdhane5

proposed a hybrid SHRM formed by a pure translational and a pure rotational PMs. Lange et al.6

studied the kinematics of an SHRM which is used as a swashplate mechanism of an unmanned aerial
vehicle. Hu et al.7,8 studied the kinematics of a class of SHRMs formed by a lower and an upper
PM. Gallardo-Alvarado et al.9–11 studied the kinematics of some SHRMs by using screw theory.
Ibrahim and Khalil12 established the inverse and direct dynamic models of hybrid robots by means of
the recursive Newton–Euler algorithms. Liang and Ceccarelli13,14 designed a waist–trunk system for
a humanoid robot by using serial-parallel architectures. SHRMs have the advantages of both serial
manipulators (SMs) and PMs from rigidity and workspace. However, the theory research such as
kinematics, statics and stiffness for this class of manipulators include the difficulties of both SMs and
PMs.
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Although some efforts have been spent on SHRMs due to their particular advantages, the research of
this class of manipulators progressed at a slow pace. The deficiencies of the research of SHRMs mainly
reflect in two aspects: First, the architectures of this class of manipulators are very limited. Second,
the theoretical system for analyzing SHRMs has not been established due to their complex structures.
In order to enrich the architectures and develop the theory of SHRMs, a novel n(2-UPS/PS+RPS)
SHRM is proposed and analyzed in this paper. In the application field of the robot, some PMs with
constrained legs15–18 are frequently used to enhance the stiffness and motion precision. Motivated by
this concept, a novel 2-UPS/PS+RPS PM is proposed and used as the individual module of the novel
SHRM. Different from the existing PMs with constrained legs,15–18 the proposed 2-UPS/PS+RPS
PM has some particular advantages. In structure, this PM has three active legs and one PS constrained
leg. The PS-type constrained leg can enhance the stiffness and provide high rotational capability
for the PM. In addition, this PM has a high motion precision because most joints are spherical or
prismatic joints. Due to the advantages of the single 2-UPS/PS+RPS PM, good performance of
the n(2-UPS/PS+RPS) SHRM can be easily obtained. Compared with conventional SHRMs, the
n(2-UPS/PS+RPS) SHRM has high stiffness and high motion ability and thus has some potential
applications for the robot arms, the surgical manipulators, the machine tools, the tunnel borers, and
the satellite surveillance platform.

Solving the kinematics, statics and stiffness is challenging work. The previous researches of
SHRMs mainly focused on the kinematics based on the principle of motional superposition for the
SHRMs formed by two PMs.6–8 However, there are few efforts made towards SHRMs formed by an
optional number of PMs.9,10 In addition, most of the previous works adopted numerical approaches
while the analytical solutions were seldom derived, which was not enough to guide the structure
design of SHRMs.

For this reason, this paper focuses on establishing the kinematics, statics and stiffness model for
a novel n(2-UPS/PS+RPS) SHRM. The established model provides the theory foundation for the
application of this manipulator, and a feasible approach for solving kinematics and statics problems
for other SHRMs.

The remainder of this paper is organized as follows. In Section 2, after a brief description of
the novel n(2-UPS/PS+RPS) SHRM, the forward kinematics is derived in close form. Then the
forward velocity is established based on the kinematic relation of each PM of the SHRM in Section 3.
In Section 4, the statics and stiffness models are established. In Section 5, a numerical example
concerned with the kinematics and stiffness of a 4(2-UPS/PS+RPS) SHRM is provided. Finally,
some concluding remarks are given in Section 6.

2. Position Analysis of the n(2-UPS/PS+RPS) SHRM

2.1. Description of the n(2-UPS/PS+RPS) SHRM
The n(2-UPS/PS+RPS) SHRM is formed by n identical three degree of freedoms (DOFs) 2-
UPS/PS+RPS PMs connected in sequence from bottom to top. Figure 1 shows a 4(2-UPS/PS+RPS)
SHRM formed by four 2-UPS/PS+RPS PMs.

For the n(2-UPS/PS+RPS) SHRM, the ith 2-UPS/PS+RPS PM(see Fig. 2) has a upper platform
mi1, a lower platform mio, three active driving legs rij (i = 1, 2, ..., n; j = 1, 2, 3), and one passive
limb roi . mi0 is a regular triangle with three vertices(Ai1, Ai2, Ai3) and a center point Oi . mi1 is
a regular triangle with three vertices (Bi1, Bi2, Bi3) and a center point oi . The first and the third
active leg rij (i = 1, 2, ..., n; j = 1, 3) connects mio with mi1 by using a universal joint U at Aij

on mio, a prismatic joint P along rij , and a spherical joint S at Bij on mi1. The second active leg
ri2(i = 1, 2, ..., n) connects mio with mi1 by using a revolute joint Ri at Ai2 on mio, a prismatic
joint P along ri2, and a spherical joint S at Bi2 on mi1. Ri is parallel with its opposite side Ai1Ai3.
The passive leg roi is perpendicular with mio, and connects mio with mi1 by using a prismatic joint
P along roi , and a spherical joint S at oi on mi1. All spherical joints in the SHRM are formed by
three intersecting revolute joints. The upper platform of (i–1)th 2-UPS/PS+RPS PM and the lower
platform of ith 2-UPS/PS+RPS PM are fixed connected with their centers kept coincidence and have
an angle of 60 × (−1)i degrees between them.
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Fig. 1. CAD model of a 4(2-UPS/PS+RPS) SHRM.

Fig. 2. CAD model of the 2-UPS/PS+RPS PM.

2.2. Forward position analysis of the 2-UPS/PS+RPS PM
Let {mio} be the coordinate frame fixed on the center of mio with Oi as its origin and Xi, Yi , and
Zi as its three coordinate axes. Let {mi1} be the coordinate frame at mi1 with oi as its origin and
xi, yi , and zi as its three coordinate axes. Some conditions (Xi ⊥ Ai1Ai2, Yi‖Ai1Ai2, Zi ⊥ Xi, Zi ⊥
Yi, xi ⊥ Bi1Bi2, y‖Bi1Bi2, z ⊥ xi, z ⊥ yi) for the coordinate axes are satisfied.

The geometrical constraints in the ith 2-UPS/PS+RPS PM can be expressed as follows:

Oioi⊥Xi,Oioi⊥Yi,Ai2Bi2⊥Ri,Ri ||Xi. (1)
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The points Aij (i = 1, 2, ..., n; j = 1, 2, 3), Oi and oi in {mio} can be expressed as follows:

mi0 Ai1 = 1

2

⎡
⎣ qLi

−Li

0

⎤
⎦ , mi0 Ai2 =

⎡
⎣ 0

Li

0

⎤
⎦ , mi0 Ai3 = −1

2

⎡
⎣qLi

Li

0

⎤
⎦ ,

mi0 O i =
⎡
⎣0

0
0

⎤
⎦ , mi0 oi =

⎡
⎣Xio

Yio

Zio

⎤
⎦ , q =

√
3. (2a)

Here, Li is the distance from Oi to Aij .
The points Bij (i = 1, 2, ..., n; j = 1, 2, 3) in {mi1} can be expressed as follows:

mi1 Bi1 = 1

2

⎡
⎣ qli

−li
0

⎤
⎦ , ni1 Bi2 =

⎡
⎣ 0

li
0

⎤
⎦ , ni1 Bi3 = −1

2

⎡
⎣qli

li
0

⎤
⎦ . (2b)

Here, li is the distance from oi to Bij .
The points Bij (i = 1, 2, ..., n; j = 1, 2, 3) in {mio} can be expressed as follows:

mi0 Bij = mi0
mi1

Rmi1 Bij + mi0 oi (j = 1, 2, 3) , mi0
mi1

R =
⎡
⎣ xil yil zil

xim yim zim

xin yin zin

⎤
⎦ . (2c)

Where, mi0 oi is the position vector for the center of upper platform of ith PM relative to its lower
platform. mi0

mi1
R is the rotational matrix from upper platform to lower platform for ith PM. Xio, Yio, Zio

are three components of position vector of oi in {mio}.
Let mi0

mi1
R be formed by ZXY Euler rotations with αi, βi , and λi are three Euler angles about the

corresponding axes, it leads to

mi0
mi1

R =

⎡
⎢⎣

cαi
cλi

− sαi
sβi

sλi
−sαi

cβi
cαi

sλi
+ sαi

sβi
cλi

sαi
cλi

+ cαi
sβi

sλi
cαi

cβi
sαi

sλi
− cαi

sβi
cλi

−cβi
sλi

sβi
cβi

cλi

⎤
⎥⎦ . (2d)

From Eq. (1), it leads to

(mi0 oi −mi0 O i) ·mi0 X i = 0,

(mi0 oi −mi0 O i) ·mi0 Y i = 0,

(mi0 Bi2 −mi0 Ai2) ·mi0 X i = 0,

mi0 X i = [
1 0 0

]T
,

mi0 Y i = [
0 1 0

]T
. (3)

The constrained equations for ith 2-UPS/PS+RPS PM can be derived from Eq. (3) as follows:

Xio = 0 (4a)

Xio = −liyil (4b)

Yio = 0. (4c)

From Eqs. (2d), (4a), and (4b), it leads to

yil = 0, αi = 0, mi0
mi1

R =

⎡
⎢⎣

cλi
0 sλi

sβi
sλi

cβi
−sβi

cλi

−cβi
sλi

sβi
cβi

cλi

⎤
⎥⎦ . (4d)
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Each extension of the driving limbs ri can be determined as follows:

r2
ij = |mi0 Bij −mi0 Aij |2 (i = 1, 2, . . . , n; j = 1, 2, 3) . (5)

From Eqs. (4a)–(4d), and (5), the inverse kinematics of ith 2-UPS/PS+RPS PM can be derived as
follows:

r2
i1 = Z2

oi + L2
i + l2

i + qlixinZio − eyinZoi + Lili(qxim − 3xil − yim)/2 (6a)

r2
2 = Z2

oi + L2
i + l2

i + 2liynZio − 2Liliyim (6b)

r2
i3 = Z2

oi + L2
i + l2

i − qlixinZio − eyinZoi − Lili(qxim + 3xil + yim)/2. (6c)

From Eqs. (6a)–(6c), and (4d), it leads to

r2
i3 − r2

i1 = 2qliZoicβi
sλi

− qliLisβi
sλi

(7a)

r2
i2 = Z2

oi + L2
i + l2

i + 2liZoisβi
− 2Lilicβi

(7b)

r2
i3 + r2

i1 − 2ri2
2 = −6lisβiZoi + 3Lilicβi − 3liLicλi . (7c)

From Eqs. (7a)–(7c), it leads to

sλi
= r2

i3 − r2
i1

qli(2Zoicβi
− Lisβi

)
, cλi

= 2r2
i2 − r2

i1 − r2
i3 − 6liZoisβi

+ 3Lilicβi

3Lili
(8a)

s2
λi

+ c2
λi

=
[

r2
i3 − r2

i1

qli(2Zoicβi
− Lisβi

)

]2

+
[

2r2
i2 − r2

i1 − r2
i3 − 6liZoisβi

+ 3Lilicβi

3Lili

]2

= 1. (8b)

Let ti = tg(βi/2), it leads to

sβi
= 2ti

1 + t2
i

, cβi
= 1 − t2

i

1 + t2
i

. (9)

Substituting Eq. (9) into Eq. (7b) and multiplying the result by (1 + t2
i ) to clear the denominators,

leads to (
r2
i2 − Z2

oi − L2
i − l2

i − 2Lili
)
t2
i − 4liZoi ti + r2

i2 − Z2
oi − L2

i − l2
i + 2Lili = 0. (10)

Equation (10) can be expressed as following:

si12t
2
i + si11t

2
i + si10 = 0. (11)

Where, si12 = r2
i2 − Z2

oi − L2
i − l2

i − 2Lili,si11 = −4liZoi,si10 = r2
i2 − Z2

oi − L2
i − l2

i + 2Lili .
Substituting Eq. (9) into Eq. (8b) and multiplying the result by (1 + t2

i ) to clear the denominators,
it leads to

(
r2
i3 − r2

i1

qli

)2 (
1 + t2

i

)2

+ 4

[(
r2
i1 + r2

i3 − 2r2
i2 + 3liLi

)
t2
i + 12liZoi t

2
i + r2

i1 + r2
i3 − 2r2

i2 − 3liLi

3liLi

]2(
Zoit

2
i + Liti − Zoi

)2

− 4
(
Zoit

2
i + Liti − Zoi

)2 = 0. (12)

Equation (12) can be expressed as following:

pi

(
1 + t2

i

)2 + (
σi2t

2
i + σi1ti + σi0

)2 (
τi2t

2
i + τi1ti + τi0

)2 − (
qi2t

2
i + qi1ti + qi0

)2 = 0, (13)
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where

pi =
(

r2
i3 − r2

i1

qli

)2

,σi2 = 2
(
r2
i1 + r2

i3 − 2r2
i2 + 3liLi

)
3liLi

,σi1 = 24Zoi

3Li

,

σio = 2
(
r2
i1 + r2

i3 − 2r2
i2 − 3liLi

)
3liLi

τi2 = Zoi,τi1 = Li,τio = −Zoi,qi2 = 2Zoi,qi1 = 2Li,qio = −2Zoi.

The expanded form of Eq. (13) can be expressed as following:

si28t
8
i + si27t

7
i + si26t

6
i + si25t

5
i + si24t

4
i + si23t

3
i + si22t

2
i + si21ti + si20 = 0, (14)

where

si28 = (σi2τi2)2

si27 = 2σi2τi2(σi1τi2 + σi2τi1)

si26 = (2σioσi2 + σ 2
i1)τ 2

i2 + 4σi1σi2τi1τi2 + σ 2
i2(2τioτi2 + τ 2

i1)

si25 = 2σioσi1τ
2
i2 + 2(2σioσi2 + σ 2

i1)τi1τi2 + 2σi1σi2(2τioτi2 + τ 2
i1) + 2σ 2

i2τioτi1

si24 = σ 2
ioτ

2
i2 + 4σioσi1τi1τi2 + (2σioσi2 + σ 2

i1)(2τioτi2 + τ 2
i1) + 4σi1σi2τioτi1 + pi − q2

i2

si23 = −2qi1qi2 + 2σ 2
ioτi1τi2 + 2σioσi1(2τioτi2 + τ 2

i1) + 2(2σioσi2 + τ 2
i1)τioτi1 + 2σi1σi2τ

2
io

si22 = −2qioqi2 − q2
i1 + 2pi + σ 2

io(2τioτi2 + τ 2
i1) + 4σioσi1τioτi1 + (2σioσi2 + σ 2

i1)τ 2
io

si21 = −2qioqi1 + 2σ 2
ioτioτi1 + 2σioσi1τ

2
io

si20 = pi + σ 2
ioτ

2
io − q2

io.

Multiplying Eq. (11) by ti ,t
2
i ,t3

i ,t4
i ,t5

i ,t6
i , and t7

i respectively, seven equations can be obtained as
following:

si12t
j+2
i + si11t

j+1
i + si10t

j

i = 0 (j = 1 . . . 7) (15)

Multiplying Eq. (14) by ti , leads to

si28t
9
i + si27t

8
i + si26t

7
i + si25t

6
i + si24t

5
i + si23t

4
i + si22t

3
i + si21t

2
i + si20ti = 0. (16)

Equations (11), (14), (15), and (16) form a system of ten linearly independent equations in ten
variables t9, t8, t7, t6, t5, t4, t3, t2, t, and 1, which can be expressed in a matrix form as following

Qi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t9
i

t8
i

t7
i

t6
i

t5
i

t4
i

t3
i

t2
i

ti

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

si28 si27 si26 si25 si24 si23 si22 si21 si20 0

0 si28 si27 si26 si25 si24 si23 si22 si21 si20

0 0 0 0 0 0 0 si12 si11 si10

0 0 0 0 0 0 si12 si11 si10 0

0 0 0 0 0 si12 si11 si10 0 0

0 0 0 0 si12 si11 si10 0 0 0

0 0 0 si12 si11 si10 0 0 0 0

0 0 si12 si11 si10 0 0 0 0 0

0 si12 si11 si10 0 0 0 0 0 0

si12 si11 si10 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t9
i

t8
i

t7
i

t6
i

t5
i

t4
i

t3
i

t2
i

ti

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (17)
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To make sure Eq. (17) has nontrivial solutions, the following condition must be satisfied,

|Qi | = 0. (18)

It is known that Eq. (18) is a nonlinear equation with regard to Zio, thus Zio can be easily solved
from Eq. (18). After Zio is solved, βi can be solved from Eq. (7b), and γi can be solved by Eq. (7c)
subsequently.

2.3. Forward kinematics of n(2-UPS/PS+RPS) SHRM
Since the platform mi−1 and the mio are fixed connected with their centers kept coincidence and have
an angle of 60 × (−1)i degrees between them, it leads to

m(i−1)1
mi0 R =

⎡
⎢⎣

cos[60o × ( − 1)i] − sin[60o × ( − 1)i] 0

sin[60o × ( − 1)i] cos[60o × ( − 1)i] 0

0 0 1

⎤
⎥⎦ , (19)

where,
m(i−1)1
mi0 R is the rotational matrix from {mio} to {m(i−1)1}.

The center of the terminal platform m10 on can be expressed as following:

m10 on =
n∑

i=1

m10
mi0

Rmi0 oi ,

m10
m10

R = E3×3,
m10
mi0

R = m10
m10

R(m10
m11

Rm11
m20

R) · · · (
m(i−1)0
m(i−1)1 R(i−1)1

mi0 R). (20)

Where, E3×3 is a 3×3 form identity matrix.
A composite rotational matrix m10

mn1R from {mn1} to {m10} can be expressed as following

m10
mn1

R = m10
m11

R(m11
m20

Rm20
m21

R) · · · (
m(i−1)1
mi0 Rmi0

mi1
R) · · · (

m(n−1)1
mn0 R

m
n0

mn1R). (21)

When the extensions of active legs rij (i = 1, 2, ..., n; j = 1, 2, 3) are given, Zio, βi , and λi can be
solved, and m10 on and m10

mi1
R can be solved from Eqs. (4d), (19), (20), and (21), subsequently.

3. Velocity of the n(2-UPS/PS+RPS) SHRM
Let b = [bxbybz]T, c = [cxcycz]T be two arbitrary vectors, S(b) be a skew-symmetric matrix. There
must be

S(b) =
⎡
⎣ 0 −bz by

bz 0 −bx

−by bx 0

⎤
⎦ ,S(b) = −S(b)T,b × c = S(b)c. (22)

Let mi0voi and mi0
mi1

ω be the linear velocity and angular velocity of upper platform relative to lower
platform of the ith 2-UPS/PS+RPS PM, respectively. Let vrij (i = 1, 2, ..., n; j = 1, 2, 3) be the
velocity of rij and Ji be the inverse Jacobian matrix of ith 2-UPS/PS+RPS PM. The velocity of rij

can be as follows:19

⎡
⎣vri1

vri2

vri3

⎤
⎦=

⎡
⎣ mi0δT

i1 (mi0 ei1 ×mi0 δi1)T

mi0δT
i2 (mi0 ei2 ×mi0 δi2)T

mi0δT
i3 (mi0 ei3 ×mi0 δi3)T

⎤
⎦ [

mi0voi
mi0ω

]
,mi0δij =

mi0 Bij −mi0 Aij∣∣mi0 Bij −mi0 Aij

∣∣ ,mi0 ei =mi0 Bij −mi0 o.

(23)
For each 2-UPS/PS+RPS PM, there are constrained forces existed in the PS and RPS type legs.

Based on the geometrical approach for determining constrained forces/torques,19, two constrained
forces Fpi1 and Fpi2 which pass through S joint and parallel with mio can be found in the PS leg.
One constrained force Fpi3 which passes through S joint and parallel with R joint can be found in the
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RPS leg. From the geometrical constraints, the unit vectors f ij of Fpij (i = 1, 2, ..., n; j = 1, 2, 3)
are determined as follows:

mi0 f i1 =mi0 f i3 =mi0 X i = [
1 0 0

]T
,

f i2 =mi0 Y i = [
0 1 0

]T
. (24)

In each 2-UPS/PS+RPS PM, as the constrained forces do no work to mi1, it leads to

F
mi0
pij f ij ·mi0 v + (mi0 d

ij
× Fmi0

pij
f ij

) ·mi0 ω = 0,[
mi0 f T

ij

(mi0 d
ij

×mi0 f
ij

)T
] [

mi0voi
mi0ω

]
= 0,

mi0 di1 =mi0 di2 = −mi0 oi ,
mi0 di3 = mi0 Bij −mi0 oi (25)

The inverse/forward velocities can be derived from Eqs. (23) and (25) as follows

vri = Ji

[
mi0voi

mi0ω

]
,

[
mi0voi

mi0ω

]
= J−1

i vri ,vri =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vri1

vri2

vri3

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Ji =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mi0δT
i1

(mi0 ei1 ×mi0 δi1

)T

mi0δT
i2

(mi0 ei2 ×mi0 δi2

)T

mi0δT
i3

(mi0 ei3 ×mi0 δi3

)T

mi0 f T
i1

(mi0 di1 ×mi0 f i1

)T

mi0 f T
i2

(mi0 di2 ×mi0 f i2

)T

mi0 f T
i3

(mi0 di3 ×mi0 f i3

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

From Eq. (26), mi0voi and mi0ω can be solved when vrij (i = 1, 2, ..., n; j = 1, 2, 3) are given.
For the n(2-UPS/PS+RPS) SHRM, let m10

mn1ω and m10von be the angular velocity and linear velocity
of terminal platform mn1 relative to {m10}.m10

mn1ω can be derived as following

m10
mn1

ω =
n∑

i=1

m10
mi0

Rmi0
mi1

ω,m10
mi1

R = m10
mi0

Rmi0
mi1

R,m10
mi1

R = m10
m11

R
(
m11
m20

Rm20
m21

R
) · · · (m(i−1)1

mi0 Rmi0
mi1

R
)
. (27)

By differentiating both sides of the first item of Eq. (20), m10von can be derived as following:

m10von =
n∑

i=1

[
m10
mi0

Rmi0voi + (
m10
mi0

ω × m10
mi0

R
)

mi0 oi

]
. (28)

From Eq. (28), it leads to

m10von =
n∑

i=1

m10
mi0

Rmi0voi −
n−1∑
i=1

⎧⎨
⎩

⎡
⎣n−1∑

j=i

S
(

m10
m(j+1)0

Rm(j+1)0 oj+1

)⎤
⎦ m10

mi0
Rmi0

mi1
ω

⎫⎬
⎭(n ≥ 2). (29)

By combing Eq. (27) with (29), it leads to[
m10von

m10
mn1

ω

]
=

n∑
i=1

JRi

[
mi0voi

mi0
mi1

ω

]
(n ≥ 2)

JRi =

⎡
⎢⎣ m10

mi0
R −

[
n−1∑
j=i

S
(

m10
m(j+1)0

Rm(j+1)0 oj+1

)]
m10
mi0

R

03×3
m10
mi0

R

⎤
⎥⎦ (i < n),

JRn =
[

m10
mi0

R 03×3

03×3
m10
mi0

R

]
(i = n). (30)
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From Eq. (30), the velocity of the n(2-UPS/PS+RPS) SHRM formed by an optional number of
2-UPS/PS+RPS PMs can be solved.

4. Statics and Stiffness of The n(2SPS+RPS+PS) SHRM
Let F and T be the external force and torque applied on the terminal platform mn1. Let Frij (i =
1, 2, ..., n; j = 1, 2, 3) be the active forces and Fpij (i = 1, 2, ..., n; j = 1, 2, 3) be the constrained
forces of the ith 2-UPS/PS+RPS PM. For the statics and stiffness analysis, suppose the rigid platform
mio and mi1 is elastically suspended by the elastic active legs with equal cross section. By applying
the principle of virtue work and combining with Eq. (30), it leads to

FT
s1vr1 + FT

s2vr2 + · · · + FT
snvrn = −

[
m10 F
m10 T

]T [
m10von

m10
mn1

ω

]
= −

[
m10 F
m10 T

]T n∑
i=1

JRi

[
mi0voi

mi0
mi1

ω

]

= −
[

m10 F
m10 T

]T n∑
i=1

JRiJ−1
i vri

Fsi = [
Fri1 Fri2 Fri3 Fpi1 Fpi2 Fpi3

]T
,vri = [

vri1 vri2 vri3 0 0 0
]T

. (31)

where, Fsi(i = 1, 2, ..., n) is a six dimensional vector formed by the active and constrained forces
of the ith 2-UPS/PS+RPS PM, m10 F and m10 T are the external force and torque applied on terminal
platform {mn1} relative to base {m10}.

From Eq. (31), it leads to

[
FT

s1 · · · FT
sn

]
⎡
⎢⎢⎣

vr1

...

vrn

⎤
⎥⎥⎦ = −

[
m10 F
m10 T

]T[
JR1J−1

1 · · · JRnJ−1
n

]
⎡
⎢⎢⎣

vr1

...

vrn

⎤
⎥⎥⎦ . (32a)

From Eq. (32a), it leads to

Fsi = −(JRiJ−1
i )T

[
m10 F
m10 T

]
. (32b)

From Eq. (32b), Frij and Fpij (i = 1, 2, ..., n; j = 1, 2, 3) can be solved when m10 F and m10 T are
given.

Let δrij (i = 1, 2, ..., n; j = 1, 2, 3) denotes the flexibility deformations along rij (i = 1, 2, 3) due
to the active force Frij ,, it leads to

Frij = krij δrij , krij = ESij

rij

, (33a)

where E is the modular of elasticity and Sij denotes the jth leg’s cross section of the ith 2-UPS/PS+RPS
PM.

Let δdij denotes the bending deformation of rij (i = 1, 2, ..., n; j = 1, 2, 3) due to the constrained
forces Fpij . The direction of this deformation can be considered along Fpi .

The relation between Fpij and δdi can be expressed as follows:

Fpij = uij δdij (1,2,3), uij = 3EI

r3
ij

(33b)

where, I is the moment of inertia.
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Table I. The dimension and kinematic parameters of ith PM.

Li(m) li(m) ri1(m) ri2(m) ri3(m) vri1(m/s) vri2(m/s) vri3(m/s)

PM 1 1.10 0.9 1.10 1.30 1.40 0.5 0.5 0.5
PM 2 1.00 0.8 1.00 1.20 1.30 0.5 0.5 0.5
PM 3 0.90 0.7 0.90 1.10 1.20 0.5 0.5 0.5
PM 4 0.80 0.6 0.80 1.00 1.10 0.5 0.5 0.5

From Eqs. (33a) and (33b), it leads to

Fsi = Kpi

[
δr i

δdi

]
,δr i =

⎡
⎢⎣

δri1

δri2

δri3

⎤
⎥⎦ ,δdi =

⎡
⎢⎣

δdi1

δdi2

δdi3

⎤
⎥⎦ ,Kpi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kri1 0 0 0 0 0

0 kri2 0 0 0 0

0 0 kri3 0 0 0

0 0 0 ui1 0 0

0 0 0 0 ui2 0

0 0 0 0 0 ui3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(34)
Based on the principle of virtual work and combing Eq. (32b), it leads to

FT
s1

[
δr1

δd1

]
+ FT

s2

[
δr2

δd2

]
+ · · · + FT

sn

[
δrn

δdn

]
= −

[
m10 F
m10 T

]T

δρ = −
[

m10 F
m10 T

]T n∑
i=1

(
JRiJ−1

i

) [
δr i

δdi

]
, (35)

where, δρ is the deformation of mn1. From Eq. (35), it leads to

δρ =
n∑

i=1

(JRiJ
−1
i )

[
δr i

δdi

]
. (36)

From Eqs. (32b), (34) and (36), it leads to

[
m10 F
m10 T

]
= Kδρ,K = −

[
n∑

i=1

(JRiJ−1
i )KT

pi(JRiJ−1
i )T

]−1

. (37)

Here, K is a 6× 6 stiffness matrix of the n(2-UPS/PS+RPS) SHRM.

5. Analytically Solved Example
In this section, the computation of 4(2-UPS/PS+RPS) SHRM is performed applying the established
kinematics, statics and stiffness model. The dimension and kinematic parameters of the each 2-
UPS/PS+RPS PM are chosen as follows.

Based on the dimension and kinematic parameters of each 2-UPS/PS+RPS PM listed in Table I,
Zio of the ith (i = 1, 2, 3, 4) 2-UPS/PS+RPS PM are solved as follows.

The results show that each 2-UPS/PS+RPS PM has 24 solutions, which leads to the 4(2-
UPS/PS+RPS) SHRM has 244 = 331,776 solutions.

In order to determine the acceptable analytic solutions from multi-solutions, the simulation
mechanisms of the 2-UPS/PS+RPS PM and the 4(2-UPS/PS+RPS) SHRM are created20 using CAD
software. When given the dimension parameters according to Table I for simulation mechanisms
in CAD software, the forward kinematics of single 2-UPS/PS+RPS PM can be solved. From the
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Table II. The 24 solutions of Z1o, Z2o, Z3o, Z4o.

Z1o 1.0218 −1.0218, 1.2642, −1.2642,
1.6275+0.1104i −1.6275–0.1104i 0.8514–0.09746i −0.8514+0.097i
0.7414–0.0371i −0.7414+0.0371i −0.14038i 0.14038i

−0.21182i 0.21182i −0.28624i 0.28624i
−0.38351i 0.38351i 0.7414+0.0371i −0.7414+0.0371i

0.8514+0.097i −0.8514–0.097i 1.6275+0.1104i −1.6275–0.1104i
Z2o 0.9610 −0.9610 1.1638 −1.1638

1.4957+0.1112i −1.4957–0.1112i 0.8116–0.0073i −0.8116+0.0073i
0.6986–0.3546i −0.6986+0.3546i −0.12686i 0.12686i

−0.18626i 0.18626i −0.27691i 0.27691i
−0.3426i 0.3426i 0.6986+0.0355i −0.6986–0.0355i

0.8116+0.0073i −0.8116–0.0073i 1.4957+0.1112i −1.4957–0.1112i
Z3o 0.89936 −0.89936 1.0633 −1.0633

0.7703–0.5142i −0.7703+0.5142i 1.3634–0.0107i −1.3634+0.0107i
0.6564–0.0329i −0.6564+0.0329i −0.11154i 0.11154i

−0.16192i 0.16192i −0.26427i 0.26427i
−0.3014i 0.3014i 0.65636+0.0329i −0.65636–0.0329i

1.3634+0.0107i −1.3634–0.0107i 0.7703+0.005i −0.7703–0.005i
Z4o 0.83682 −0.83682 0.96242 −0.96242

0.7269–0.0336i 0.7269–0.0336i 1.2302–0.0992i −1.2302+0.0992i
0.6149–0.2951i −0.6149+0.2951i −0.094486i 0.094486i

−0.13905i 0.13905i −0.24818i 0.24818i
−0.25988i 0.25988i 0.61498+0.0295i −0.61498–0.0295i

1.2302+0.0099i −1.2302–0.0099i 0.72696+0.0034i −0.72696–0.0034i

simulation result, it can be seen that the simulation solution is in excellent agreement with the first
solution obtained from the analytic method that are marked in Table II. By applying this solution
to the 4(2-UPS/PS+RPS) SHRM, the position and velocity of the terminal platform are solved as
follows:

m10 o4 = [
1.7949 0.3221 3.6872

]T
m

m10vo4 = [0.8663 0.1639 1.6290]T m/s

m10
m41

ω = [−0.0376o − 0.6594o − 0.0202o
]T

/s.

Set E = 2.11 × 1011Pa, EI = 26502N · m2, Si = 0.0013m2, G = 80 × 109Pa, Ip = 2.5120 ×
10−7m4. When the workloads applied at o4 is given as n0 Fo = [−30 − 30 − 50]TN , n0 T o =
[000]TN · m, the active forces and constrained forces in rij and roi can be solved as following (see
Table III).

The flexibility and bending deformations of rij and roi can be solved as following (see Table IV.).
The deformation of the terminal platform of 4(2-UPS/PS+RPS) SHRM is solved as following:

δρ = (−0.0038 mm 0.0259 mm 0.0025 mm 0.0033 rad − 0.0008 rad 0.0169 rad)T .

The stiffness matrix of 4(2-UPS/PS+RPS) SHRM is derived as following:

K = 104

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4.7480 −0.5204 −4.5221 −0.1795 −1.4845 0.1955

− 0.5204 −0.9911 −0.4360 −0.6030 −1.0947 1.3556

− 4.5221 −0.4360 −9.3479 −0.4876 −5.2015 0.5989

− 0.1795 −0.6030 −0.4876 −1.4247 1.2470 1.2917

− 1.4845 −1.0947 −5.2015 1.2470 −17.582 1.0546

0.1955 1.3556 0.5989 1.2917 1.0546 −2.3239

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To verify the analytical result, a finite element (FE) model for 4(2-UPS/PS+RPS) SHRM is
established in FE software according to the dimensional and material parameters used in the analytical
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Table III. Active forces and constrained forces in rij and roi .

Fri1(N ) Fri2(N ) Fri3(N ) Fpi1(N ) Fpi2(N ) Fpi3(N )

PM 1 71.6545 −57.0875 35.6488 71.6545 118.0135 −84.9927
PM 2 29.8348 −38.1541 63.6954 83.5186 2.0864 −50.1357
PM 3 85.5020 −11.7935 −9.5606 21.7679 10.6394 −16.0225
PM 4 19.7716 17.8153 17.3832 3.5481 35.7170 0.4395

Table IV. Deformations in rij and roi .

δri1(10−7m) δri2(10−7m) δri3(10−7m) δdi1(10−5m) δdi2(10−3m) δdi3(10−3m)

PM 1 2.9725 −2.8004 1.8826 29.9764 6.1837 −23.4865
PM 2 1.1258 1.7276 3.1245 16.5672 0.4139 −10.4139
PM 3 2.9013 −0.4895 −0.4327 3.2887 1.6074 −2.6824
PM 4 0.5966 0.6722 −0.7214 0.3978 4.0045 0.0553

Table V. A comparison of the calculated and simulated values.

Elastic deformation of o (mm)

FE model Analytical result

δx −4.12 −3.8
δy 22.25 25.9
δz 2.93 2.5

model. In the FE model, the spherical joint is replaced by three revolute joints. The linear active leg
with prismatic joint is formed using the elastic linear rod. The simulated results based on FE model
for the deformation of the terminal platform are solved as shown in Fig. 3.

A comparison of the results based on the FE model and the analytical model for the elastic
deformation of o4 for 4(2-UPS/PS+RPS) SHRM is listed in Table V.

The results in Table V shows that the elastic deformation derived from the FE model for 4(2-
UPS/PS+RPS) SHRM is basically coincident with the analytical solutions, which is acceptable for
stiffness analysis.

6. Conclusion
The contribution of this paper lies in the presentation and analysis of a novel n(2-UPS/PS+RPS)
SHRM. For kinematics analysis, the forward displacement of the 2-UPS/PS+RPS PM is derived in
close form. The result show that one platform of the single PM can reach at most 24 different poses, or
mechanical assemblies, with respect to the other platform. This result leads to the 4(2-UPS/PS+RPS)
SHRM has 244 = 331,776 forward solutions. In addition, compact and elegant expressions for solving
the forward velocity of 2-UPS/PS+RPS SHRM are derived. The formulae for solving the statics and
stiffness of n(2-UPS/PS+RPS) SHRM are derived. From the statics formula, the active forces and
constrained forces in PS and RPS constrained legs are solved respectively. From the stiffness model,
the deformations produced by both active and constrained forces in UPS, SP and RPS legs, and the
6× 6 stiffness matrix of n(2-UPS/PS+RPS) SHRM are derived completely.

A numerical example, which consists of the kinematics, statics, elastic deformations and stiffness
for a 4(2-UPS/PS+RPS) SHRM, is included as a case study. The analytical results are verified by
CAD software.
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Fig. 3. Simulated result for elastic deformations of a 4(2-UPS/PS+RPS) SHRM.
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