
Geological Magazine

www.cambridge.org/geo

Original Article

Cite this article: Ramacciotti CD, Casquet C,
Baldo EG, Pankhurst RJ, Verdecchia SO,
Fanning CM, and Murra JA (2022) The Maz
Metasedimentary Series (Western Sierras
Pampeanas, Argentina). A relict basin of the
Columbia supercontinent? Geological Magazine
159: 309–321. https://doi.org/10.1017/
S0016756821000935

Received: 4 June 2021
Revised: 12 August 2021
Accepted: 16 August 2021
First published online: 14 October 2021

Keywords:
Sierra de Maz; Sierras Pampeanas; Argentina;
Columbia supercontinent; U–Pb SHRIMP zircon
dating

Author for correspondence:
C. D. Ramacciotti,
Email: carlosramacciotti@yahoo.com.ar

© The Author(s), 2021. Published by Cambridge
University Press.

The Maz Metasedimentary Series (Western
Sierras Pampeanas, Argentina). A relict basin
of the Columbia supercontinent?

C. D. Ramacciotti1,2 , C. Casquet3, E. G. Baldo1,2, R. J. Pankhurst4,

S. O. Verdecchia1,2, C. M. Fanning5 and J. A. Murra1,2

1Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611,
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Abstract

TheMazMetasedimentary Series is part of theMazComplex that crops out in the sierras ofMaz
and Espinal (Western Sierras Pampeanas) and in the Sierra de Umango (Andean Frontal
Cordillera), northwestern Argentina. The Maz Complex is found within a thrust stack of
Silurian age, which later underwent open folding. TheMazMetasedimentary Seriesmainly con-
sists of medium-grade garnet–staurolite–kyanite–sillimanite schists and quartzites, with minor
amounts of marble and calc-silicate rocks. Transposed metadacite dykes have been recognized
along with amphibolites, metagabbros, metadiorites and orthogneisses. Schist, quartzite and
metadacite samples were analysed for SHRIMP U–Pb zircon dating. The Maz
Metasedimentary Series is polymetamorphic and records probably three metamorphic events
during the Grenvillian orogeny, at c. 1235, 1155 and 1035Ma, and a younger metamorphism at
c. 440–420Ma resulting from reactivation during the Famatinian orogeny. The sedimentary
protoliths were deposited between 1.86 and 1.33–1.26 Ga (the age of the Andean-type
Grenvillian magmatism recorded in theMaz Complex), and probably before 1.75 Ga. The main
source areas correspond to Palaeoproterozoic and, to a lesser magnitude, Meso-Neoarchaean
rocks. The probable depositional age and the detrital zircon age pattern suggest that the Maz
Metasedimentary Series was laid down in a basin of the Columbia supercontinent, mainly
accreted between 2.1 and 1.8 Ga. The sedimentary sources were diverse, and we hypothesize
that deposition took place before Columbia broke up. The Rio Apa block, and the Río de la
Plata, Amazonia and proto-Kalahari cratons, which have nearby locations in the palaeogeo-
graphic reconstructions, were probably the main blocks that supplied sediments to this basin.

1. Introduction

The Sierras Pampeanas of Argentina are large tilted fault-blocks of Precambrian to
Carboniferous metamorphic and igneous basement in the present foreland of the southern
Central Andes (Fig. 1). The Western Sierras Pampeanas contain evidence of terranes that were
involved in the mainly middle to late Mesoproterozoic (Ectasian and Stenian) Grenvillian orog-
eny. Because of our still limited knowledge of those terranes we hereafter employ the term
Grenville orogen(y) in its wider meaning to refer to a succession of tectonic events that occurred
between c. 1.3 and 1.0 Ga and led to the amalgamation of Rodinia (e.g. Tollo et al. 2004; Tollo,
2005, Johnson et al. 2020). As a consequence, these terranes (and Amazonia) were accreted to
Laurentia and remained part of a larger supercontinent until the opening of the Iapetus Ocean in
early Cambrian times and the subsequent northward drift (present coordinates) of the ancestral
North American craton (Hoffman, 1991; Thomas & Astini, 1996; Dalziel, 1997 and references
therein; Tohver et al. 2002, 2004; Li et al. 2008; Casquet et al. 2012).

U–Pb zircon evidence of Mesoproterozoic (1.33 to 1.0 Ga) terranes in the Western Sierras
Pampeanas has been long recognized (for a review see Varela et al. 2011). The first was found in
the Sierra de Pie de Palo (Fig. 1) and is an oceanic terrane (McDonough et al. 1993; Ramos et al.
1998; Vujovich & Kay, 1998; Casquet et al. 2001; Vujovich et al. 2004). The Maz terrane in the
northern area of the Western Sierras Pampeanas is continental and consists of an Andean-type
magmatic arc (1.33–1.26 Ga), an Anorthosite–Mangerite–Charnockite–Granite (AMCG) com-
plex (1.09–1.07 Ga) and older metasedimentary rocks (Casquet et al. 2005, 2006; Rapela et al.
2010;Martin et al. 2019). The latter contain no detrital zircons younger than 1.7 Ga and have Nd
model ages between 2.6 and 1.7 Ga and very radiogenic common Pb, which led Casquet et al.
(2008) to infer that the protoliths probably formed the sedimentary cover to a Palaeoproterozoic
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basement older than 1.7 Ga. TheMaz terrane was further reworked
by the Silurian Famatinian orogeny (Lucassen & Becchio, 2003;
Casquet et al. 2005, 2008; Tholt, 2018; Webber, 2018).

The inferred Palaeoproterozoic basement of the Maz terrane
was the basis of the MARA continental block (or craton) concept
(Casquet et al. 2012). MARA is an acronym forMaz, Arequipa, Rio
Apa. The Rio Apa and Arequipa terranes, south and southwest of
Amazonia, have basements of Palaeoproterozoic age (Fig. 2; Loewy
et al. 2004; Casquet et al. 2010; Cordani et al. 2010; Teixeira et al.
2020). Along with the alleged Maz terrane basement, they consist
of rocks formed between 2.1 and 1.7 Ga, with Nd residence ages
(TDM) between 2.6 and 1.7 Ga, which led to the hypothesis that
they formed part of a single continental block (Casquet et al.
2012). The Paraguá block of Eastern Bolivia (Fig. 2) also has a
Palaeoproterozoic basement older than c. 1.7 Ga (Boger et al.
2005) and was probably part of MARA as well. It is thought that
the MARA block or craton was first accreted to Amazonia during
the San Ignacio orogeny (1.34–1.32 Ga; Boger et al. 2005), forming
a large hypothetical continentalmass (AmazoniaþMARA) that then
collided with Laurentia along the western margin (present coordi-
nates) in Ectasian and Stenian times, during the Grenvillian orogeny
(s.l.) (Casquet et al. 2006; Varela et al. 2011) (Fig. 3).

Here we recognize, for the first time, the Maz Metasedimentary
Series (MMS) within the Maz terrane, which provides important
information about the pre-Grenvillian history of the MARA block.
The aim of this contribution is to evaluate the probable depositional
age of theMMS and the sedimentary sources in order to constrain the
pre-Grenvillian history of theMARAcraton and its probable linkwith
the Columbia supercontinent. This supercontinent contained almost
all the Earth’s current continental blocks, amalgamated mainly
between 2.1 and 1.8 Ga (Rogers & Santosh, 2002; Zhao et al. 2002)
although it is possible that parts of it completed assembling even later,
e.g. Australia to Laurentia at c. 1.6 Ga (Kirscher et al. 2019).

2. Geological setting

The Sierra de Maz is one of the westernmost of the Sierras
Pampeanas (Fig. 1). We present here the first detailed geological
map of the Sierra de Maz and the adjacent Sierra del Espinal
based on satellite imagery and several field campaigns
(Fig. 4). The first survey of the Sierra de Maz was carried out
by Kilmurray & Dalla Salda (1971) who described the lithologi-
cal units and presented a very schematic map of the sierra. The
Sierra del Espinal is the northern continuation of the Sierra de
Maz but was left-laterally displaced along E–W-striking faults
(Fig. 4): it abuts the Andean frontal belt via a steep Cenozoic
thrust that is younger than the transcurrent faults. The Sierra
de Maz (which reaches an altitude of 3030 m) is the more acces-
sible of the two and shows a more complete view of the stratig-
raphy and structure of the Proterozoic to early Palaeozoic
basement in the Andean foreland. To the east, and separated
by Andean faults and late Palaeozoic-to-present sedimentary
cover, is the Sierra de Ramaditas and other smaller basement
outcrops near Villa Castelli (Fig. 4).

The overall structure of the Sierra de Maz is an antiformally
folded thrust stack (nappes) of metamorphic rocks with a dis-
continuous inverted metamorphic arrangement, i.e. downward
decrease in metamorphic grade. The antiform (named here the
Las Víboras fold) is an upright, wide, open fold striking NNW–SSE
in the central part of the sierra. The eastern flank of the antiform
shows a complete sequence of thrust sheets. We distinguish the
structurally lowest unit in the core of the Las Víboras antiform, the
intermediate group of nappes, and the upper high-grade nappes
that crop out in the eastern Sierra del Espinal and in the Sierra
de Ramaditas (Fig. 4). Metasedimentary rocks of Neoproterozoic
to early Palaeozoic age with Nd model ages (TDM) peaking at
c. 1.3 Ga occur in both the lower unit and in the upper nappes.
The intermediate nappes record a complex Mesoproterozoic his-
tory of sedimentation and orogeny (Grenvillian orogeny s.l.). This
complex was called the Maz Group by Kilmurray & Dalla Salda
(1971), theMaz Complex by Porcher et al. (2004) and theMaz sus-
pect terrane by Casquet et al. (2008). Hereafter we call it the Maz
Complex.

The Maz Complex consists of at least two nappes. The lower
one is formed by a mainly medium-grade metasedimentary series,
i.e. the MMS, with Ndmodel ages (TDM) of c. 2.0 Ga (Casquet et al.
2008). The series comprises garnet, ± staurolite, ± kyanite/silli-
manite schists, white quartzites, calc-silicate rocks and marbles.
Amphibolites, metagabbros, metadiorites, transposed felsic dykes,
rare anthophyllite–garnet gneisses and granitic orthogneisses are
also found within the MMS. The upper nappe of the Maz
Complex includes banded garnet–amphibole–biotite gneisses
and a metamorphosed juvenile Andean-type magmatic arc of
1.33–1.26 Ga ranging from gabbro to granite, and an AMCG com-
plex of c. 1.07 Ga (Porcher et al. 2004; Casquet et al. 2005; Rapela
et al. 2010; Martin et al. 2019).

Regional metamorphism is inverted ranging from high grade
in the upper nappes to low grade in the core of the Las Víboras
antiform. Structures in outcrop (foliation and folding), as well as
the thrusts, mainly resulted from Silurian orogenic reworking
(Famatinian orogeny) with peak metamorphism at c. 440 Ma
(Lucassen & Becchio, 2003; Casquet et al. 2005, 2008; Tholt,
2018; Webber, 2018). However, evidence for high-grade meta-
morphism and deformation of Grenvillian age is also recognized
(Porcher et al. 2004; Casquet et al. 2006; Martin et al. 2019).

Fig. 1. Simplified geological map of the Sierras Pampeanas of Argentina.
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3. Sampling and petrography

Three samples from the MMS were collected for U–Pb SHRIMP
zircon dating. One is a schist (MAZ-11032) from near Puesto
de Maz, a homestead in the main E–W creek (Quebrada de
Maz) that crosses the northern part of the sierra (Fig. 4). The schist
contains quartz, biotite, muscovite, garnet, staurolite and plagio-
clase as framework minerals with accessory sillimanite, K-feldspar,

monazite, zircon, allanite, tourmaline, apatite and ilmenite. The
second sample is an almost pure white quartzite (MAZ-16223) col-
lected from a small outcrop of metasedimentary rocks isolated by
alluvial deposits in the same creek as the schist, on the dirt road to
Puesto de Maz. This rock contains minor amounts of muscovite,
chlorite (after biotite), sericitized plagioclase and accessory zircon
and opaque minerals. The third sample (MAZ-12036), collected at

Fig. 2. (Colour online) Sketch map of Precambrian cratons of southern South America (modified after Casquet et al. 2012). MARA – acronym of Maz, Arequipa and Rio Apa; PP –
Paranapanema craton; RPC – Río de la Plata craton.
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the same locality as MAZ-11032, is from a thick grey metadacite
bed with sharp contacts with the schists and concordant with foli-
ation. This rock is interpreted as a dyke, probably related to the
early Grenvillian arc magmatism (see Section 7). It is fine grained
and consists of quartz, plagioclase (≈An35), biotite, garnet, ilmen-
ite, zircon and apatite. Coordinates of the three samples are
29° 11 0 10″ S, 68° 27 0 24″W (MAZ-11032 and MAZ-12036), and
29° 11 0 32″ S, 68° 24 0 30″W (MAZ-16223).

4. Analytical methods

U–Pb analyses were carried out using a sensitive high-resolution
ion microprobe with reverse geometry (SHRIMP RG) at the
Research School of Earth Sciences, The Australian National
University, Canberra, Australia, following the methods of
Williams (1998 and references therein), as in Rapela et al.
(2007). Spot analyses were generally 25–30 μm. Data were reduced
using ISOPLOT/Ex (Ludwig, 2003). Analytical results and the
reproducibility of the standard during the relevant analytical ses-
sion are presented in online Supplementary Material Table S1.
Errors for individual analyses are reported at one sigma level,
those for averages at the 95 % confidence level. 204Pb-corrected
207Pb–206Pb ages were used, discarding those with common lead
>5 %, discordance >10 % or age error (one sigma) >5 %.

Whole-rock powder of sample MAZ-12036 was analysed at
Activation Laboratories Ltd (ACTLABS, Ontario, Canada) follow-
ing the 4Lithores routine (https://actlabs.com/geochemistry/
lithogeochemistry-and-whole-rock-analysis/lithogeochemistry/).
Major elements were determined by inductively coupled plasma

atomic emission spectroscopy, whereas minor and trace elements
were determined by inductively coupled plasma mass spectrom-
etry. Chemical data are shown in online Supplementary Material
Table S2.

Rb–Sr and Sm–Nd isotope analyses were carried out at the
Geochronology and Isotope Geochemistry Center (CIGC) of the
Complutense University of Madrid on a Phoenix automated
multi-collector mass spectrometer following analytical procedures
as in Dahlquist et al. (2020). Concentrations of Rb and Sr, as well as
Rb/Sr ratios, were based on the chemical analysis from ACTLABS.
Sm and Nd concentrations were determined by isotope dilution at
CIGC. Three replicate analyses of the NBS-987 Sr-isotope standard
yielded an average 87Sr/86Sr of 0.710256 ± 0.000005 (2σ) (accepted
value 0.71025 ± 0.00005; Faure, 2001), and the La Jolla Nd-isotope
standard yielded an average 143Nd/144Nd ratio of
0.511848 ± 0.000004 (2σ) for six analyses (accepted value
0.511858 ± 0.00007; Lugmair & Carlson, 1978). Results are shown
in online Supplementary Material Table S2.

5. Whole-rock chemical composition of metadacite
MAZ-12036

The chemical composition of MAZ-12036 is: SiO2= 67.08 %;
Al2O3= 14.5 %; Na2O = 2.72 %; K2O= 2.1 %; Rb= 72 ppm;
Sr= 269 ppm; Zr= 206 ppm (online Supplementary Material
Table S2), which corresponds to dacite (e.g. Middlemost, 1985).
The aluminium saturation index (ASI) is 1.17, i.e. peraluminous,
as evidenced by garnet in the mineral assemblage. The chon-
drite-normalized rare earth element (REE) pattern is characterized
by relatively high REE contents (total 186 ppm), with a (La/Yb)N of
4.4 and amoderate negative Eu anomaly of 0.7. Themetadacite has
a low 10 000*Ga/Al of 2.3, typical of S- and I-type granitoids.

This rock yielded a Nd model age TDM (single stage) of 1.5 Ga,
which contrasts with the host metasedimentary rocks nearby
(TDM= 2.5 to 2.0 Ga; Casquet et al. 2008). The calculated 87Sr/86Sr
at 1300 Ma is 0.7063 (online Supplementary Material Table S2).

6. Zircon U–Pb SHRIMP results

6.a. MAZ-11032: garnet-staurolite schist

Abundant zircon grains (c. 80 to 180 μm long) are rounded to sub-
rounded. Almost all consist of a core and a surrounding mantle.
Cores are sub-rounded (presumably of detrital origin) with varia-
ble internal structures. Mantles are thick, continuous and discord-
ant to the core zoning; many show an internal zone of higher
cathodoluminescence (CL) and an external one with lower CL,
implying increasing U concentration as they crystallized. A few
grains show a highly luminescent rim, too thin (<20 μm) to be ana-
lysed by SHRIMP. Dated spots (118) included mantles and cores,
although in some cases the sampled area seems to have represented
a mixture of both. Many of the analysed areas show significant dis-
cordance and scatter on a Wetherill Concordia plot, largely
between c. 2 Ga and c. 1 Ga (Fig. 5a). This appears to be mainly
the result of radiogenic-Pb loss during Grenvillian times, with
slight additional loss during the Famatinian orogeny, or later, rep-
resented by the youngest apparent ages. Sixty of the measurements
were sufficiently concordant to discriminate the times of zircon
growth.

Most cores yield dates between 1.86 and 2.02 Ga, with four
grains giving extrapolated Archaean dates at c. 2.7 and 3.1 Ga

Fig. 3. (Colour online) Palaeogeographic reconstruction of Laurentia, Amazonia and
MARA in Rodinia at c. 620 Ma (modified after Ramacciotti et al. 2015). Ages of
Laurentian Precambrian orogenic belts and cratons according to Goodge et al.
(2004) and Tohver et al. (2004) (Laurentia in its present position). Laurentia:
TH – Trans-Hudson and related mobile belts; P – Penokean orogen; Y – Yavapay
orogen; M – Mazatzal orogen; G-R – Granite–Rhyolite province.
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Fig. 4. (Colour online) Geological map of the Sierra de Maz, Sierra del Espinal and Sierra de Ramaditas. Modified after Fauqué et al. (2004), Porcher et al. (2004) and Casquet et al.
(2005, 2006). AMCG – Anorthosite–Mangerite–Charnockite–Granite. El Zaino Series after Kilmurray & Dalla Salda (1971).
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(Fig. 5b). The most prominent group shows an apparently bimodal
peak at 1.98 and 2.01 Ga with a secondary peak at 1.86–1.90 Ga.
The three youngest cores yielded a weighted mean age of
1860 ± 10Ma (MSWD = 0.23).

Mantles gave ages between c. 970 and c. 1230 Ma: all have very
low Th contents and low Th/U ratios (≤0.04; Fig. 5c), which
together with the internal structure indicates a metamorphic origin
(e.g. Rubatto, 2017). Twenty-two mantles give a precise weighted
mean age of 1037 ± 7Ma (MSWD = 1.5), and four more give
1159 ± 15Ma (MSWD = 0.8; Fig. 5d), suggesting two possible
Grenvillian metamorphic events, the younger one resulting in
more new zircon growth. The thin rims probably resulted from
a Famatinian metamorphic overprint.

6.b. MAZ-16223: white quartzite

Zircon is abundant and has equant to prismatic forms with mod-
erate aspect ratios (c. 80 to 160 μm long). Internally, the grains have
rounded to sub-angular cores, presumably detrital, often with
oscillatory or complex zoning shown by CL images. In most cases
dark grey mantles, mostly homogeneous, surround the cores. As
with MAZ-11032, many grains are further surrounded by a thin
bright CL rim that follows the external boundary and even textural

details of the grain such as embayments. Mantles are usually con-
tinuous but some of them were partially disrupted during growth
of the outer rim.

Fifty-one areas were measured, of which 21 were discarded
owing to discordance >10 %. Two groups of ages are distinguished
(Fig. 6a): (a) concordant to slightly discordant Palaeoproterozoic
to Archaean ages in cores, and (b) nearly concordant
Grenvillian ages of c. 1080 to c. 1240Ma determined in mantles.
The core ages range widely, from c. 1840 to c. 3020 Ma, but with
notable Palaeoproterozoic peaks at 2.08 and 2.42 Ga (Fig. 6b). The
discordant pattern in Figure 6a suggests a significant Archaean
population.

Some of the mantles show a tendency to low Th/U ratios of
c. 0.1 (Fig. 6c) and could represent metamorphic growth (e.g.
Rubatto, 2017). The distribution of mantle ages shows possibly dis-
crete peaks at c. 1110Ma and c. 1170Ma (Fig. 6d). Only one bright
rim was wide enough to analyse (spot no. 33.1), yielding an age of
461± 12Ma, which presumably records Famatinian metamorphism.

6.c. MAZ-12036: metadacite

Zircon grains are mostly smaller than in the other samples,
between 40 to 100 μm, and most exhibit a core with oscillatory

Fig. 5. (Colour online) U–Pb zircon data of schist MAZ-11032. (a) Wetherill plot and CL images of typical zircons with core(c)–mantle(m) arrangement. Grey ellipses correspond to
rejected spots due to high discordance (>10%). (b) Probability density plot of cores. (c) Th/U versus age diagram. (d) Probability density plot of mantles with two weighted mean
ages corresponding to metamorphic events.
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zoning and a continuous dark CLmantle. Some grains have equant
shapes and homogeneous low-luminescent CL internal structures.
Thirty spots were dated, two of which were discarded owing to high
discordance (>10 %). The Wetherill plot (Fig. 7a) distinguishes
two groups, corresponding to cores and mantles (together with
neoformed crystals).

The cores are mostly prismatic and show resorption to a vari-
able extent. A few are fragments and oscillatory zoning is common.
They have Th/U ratios in the range 0.3–0.6, which, along with zon-
ing, is compatible with igneous zircon (e.g. Kirkland et al. 2015).
Their ages range from c. 1140 to c. 1380Ma with a broad peak
in the density probability plot showing a maximum at c.
1190 Ma (Fig. 7b). The scattered older ages up to 1400Ma are
interpreted as inherited with respect to the dacite magma.

The mantles show low to very low Th/U ratios <0.04 (Fig. 7c,
except no. 28.1: Th/U= 0.22 and 959 ± 51 Ma). Together with the
weak zoning this suggests a metamorphic origin for the mantle zir-
con (e.g. Rubatto, 2017). Ten of these analyses give a mean
weighted age of 1033 ± 12Ma (MSWD= 1.2; Fig. 7d). The two
youngest ages (<1000Ma) probably resulted from Pb loss during
the Famatinian metamorphism. We conclude that the dacite crys-
tallized between 1.38 and 1.19 Ga and underwent Grenvillian
metamorphism at 1033 ± 12Ma.

7. Discussion

7.a. Depositional age and metamorphism of the Maz
Metasedimentary Series

The youngest detrital grains (zircon cores) found in the metasedi-
mentary samples are 1855 ± 9Ma (spot no. 3.2 in MAZ-11032)
and 1837 ± 9Ma (spot no. 50.1 in MAZ-16223), with a 1.86 Ga
weighted mean age for the three youngest igneous zircons in
MAZ-11032. If the Grenvillian metamorphic zirconmantles found
in the three analysed samples grew in situ, as seems possible given
their generally complete development around the igneous cores,
then 1.86 Ga is the most probable maximum depositional age of
the MMS.

Casquet et al. (2006) found two zircon populations in sample
MAZ-6063, a high-grade garnet schist (P= 780 ± 140MPa, and
T= 775 ± 95 °C) from the eastern edge of the Sierra de Maz that
we correlate with the MMS. These corresponded to rather discord-
ant core ages of 1.9–1.7 Ga and mantle metamorphic overgrowths
peaking at c. 1230 Ma. Figure 8 shows the distribution of zircon
ages attributed to metamorphism of the MMS, combining data
from the three samples of this study with similarly filtered results
published by Casquet et al. (2006) for sample MAZ-6063. The pat-
tern suggests three possible discrete tectonothermal events of

Fig. 6. (Colour online) U–Pb zircon data of quartzite MAZ-16223. (a) Wetherill plot and CL images of typical zircons with core(c)–mantle(m)–rim(r) arrangement. Grey ellipses
correspond to rejected spots due to high discordance (>10%). (b) Probability density plot of cores. (c) Th/U versus age diagram. (d) Probability density plot of mantles and
weighted mean age of one metamorphic event.
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Grenvillian age: 1234 ± 18Ma, 1157 ± 11Ma and 1035 ± 6Ma.
The oldest further sets a minimum value for the sedimentation age
of theMMS.Moreover, the absence of significant Grenvillian igneous
zircons common in syn- or post-Grenvillian sediments (Casquet et al.
2008) suggests that the MMS pre-dates the Andean-type magmatism
of 1.33–1.26 Ga recorded in the Sierra de Maz (Rapela et al. 2010).
Crystallization of the metadacite MAZ-12036 is poorly constrained
to between 1.38 and 1.19 Ga and does not help to specify the mini-
mumage of sedimentation of theMMS. The dykewas thenmetamor-
phosed at 1033± 12Ma, which coincides with the 1037± 7Ma
metamorphic age peak of schist MAZ-11032.

The ages of the Andean-type arc magmatism between 1.33 and
1.26 Ga proposed by Rapela et al. (2010) and those of metamor-
phism recorded in the MMS are broadly coincident with those
of tectonothermal events recorded in the Grenville Province of
eastern Canada and its continuation in Mesoproterozoic
Appalachian inliers (Rivers, 1997, 2012, 2015; McLelland et al.
2010). The latter similarity is remarkable because Laurentia was
probably juxtaposed to southern South America cratons in the
supercontinent Rodinia by the end of the Grenville orogeny
(Hoffman, 1991; Li et al. 2008). However, correlation is hindered

Fig. 7. (Colour online) U–Pb zircon data of metadacite MAZ-12036. (a) Wetherill plot and CL images of typical zircons with core(c)–mantle(m) arrangement and neoformed
crystals. Orange ellipses correspond to cores, purple to mantles and grey to rejected spots due to high discordance (>10%). (b) Probability density plot of igneous cores
and metamorphic mantles. (c) Th/U versus age diagram. (d) Weighted mean age of mantles corresponding to the metamorphic event.

Fig. 8. (Colour online) Probability density plot of metamorphic zircon ages from our
three samples (MAZ-11032, MAZ-16223 and MAZ-12036) together with mantles of MAZ-
6063 (Casquet et al. 2006). Weighted mean ages were calculated at 1035 ± 5 Ma,
1157 ± 11 Ma and 1234 ± 18 Ma.
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by our still limited knowledge and complications arising from the
widespread Famatinian overprint.

In summary, we interpret the MMS as deposited after 1.86 Ga
and before the Andean-type arc magmatism at 1.33–1.26 Ga
recorded in the Maz Complex. Moreover, it is probable that dep-
osition occurred between 1.86 and 1.80–1.75 Ga based on palaeo-
geographic and source areas considerations (see Section 7.b.3).

7.b. Provenance of the Maz Metasedimentary Series

Detrital zircon grains from the two samples of the MMS are
Palaeoproterozoic (1.86 Ga and older) with only a few Archaean
dates, and a notable absence of c. 1.3–1.0 Ga (Grenvillian) ages.
Consequently, it is likely the sedimentary protoliths of the MMS
were deposited within a basin that received sediment from
Palaeoproterozoic continental basement prior to the onset of the
Grenvillian-age magmatism and metamorphism recorded in the
Maz Complex.

7.b.1. The Columbia (Nuna) supercontinent
There is growing evidence that most Palaeoproterozoic and
Archaean cratons were contained in a supercontinent that was
named Columbia (or Nuna) (Rogers & Santosh, 2002; Meert,
2002). Columbia was mainly amalgamated between 2.1 and
1.9 Ga by collisional orogenies. One of those collisional events
of interest to this contribution is the 2.25–2.05 Ga Trans-
Amazonian orogeny, recognized in the Maroní–Itacaiunas geo-
logical province of the Amazonia craton (Cordani & Teixeira,
2007). It is also recognized in other Palaeoproterozoic blocks in
southern South America, such as the Río de la Plata craton
(Hartmann et al. 2002; Pankhurst et al. 2003; Santos et al. 2003;
Rapela et al. 2007; Cingolani, 2011). After amalgamation,
Columbia was fringed with juvenile accretionary orogenic belts
dated between c. 1.9 and 1.8 Ga (Chaves, 2020). The Amazonian
Ventuari–Tapajós province is one of those accretionary orogens
that has yielded ages between 2.0 and 1.8 Ga (Cordani &
Teixeira, 2007).

The break-up of this supercontinent started at c. 1.6 Ga (Zhao
et al. 2004), marked by widespread anorogenic magmatism (e.g.
Anderson & Morrison, 1992; Wiebe, 1992; Åhäll & Connolly,
1998), and ended at c. 1.3–1.2 Ga through discrete mantle-plume
related rifting events that produced mafic dyke swarms of global
distribution (see review in Chaves, 2020). The dispersal of
continental blocks away from Columbia concluded with a renewed
amalgamation to form the Rodinia supercontinent, whose final
assembly occurred during the collisional Rigolet event of the
Grenvillian orogeny at c. 1.1–0.9 Ga (e.g. Li et al. 2008; Rivers,
2015; Cawood et al. 2016).

7.b.2. Position of the Maz Metasedimentary Series within
Columbia
Columbia palaeogeography is still very speculative and the location
of its constituent cratons remains uncertain, including those of
South America (e.g. Amazonia and Río de la Plata) and West
Africa. The South American cratons were placed south of
Laurentia and adjacent to South Africa (Kalahari–Madagascar)
by Rogers & Santosh (2002), whereas Zhao et al. (2002) suggested
that they were adjacent to Baltica and northeastern Laurentia.
More recent palaeogeographic reconstructions place South
America cratons near the southwestern continental margin of
Columbia (Teixeira et al. 2013; Chaves, 2020).

Figure 9 shows a palaeogeographic model of Columbia at c.
1.79 Ga according to palaeomagnetic evidence by D’Agrella-Filho
et al. (2012) and Teixeira et al. (2013), with Baltica and Amazonia
attached to West Africa as in the SAMBA model of Johansson
(2009, 2014) and Bispo-Santos et al. (2014). This supercontinent
reconstruction shows the location of the subduction zone that
fringed Columbia immediately after assembly. The Río de la
Plata craton is placed in one of the three possible palaeomagnetic
locations proposed by Teixeira et al. (2013) but slightly eastward in
continuation with Rhyacian Amazonia. The Kalahari craton loca-
tion is according to Chaves (2020). In this scenario the MMS basin
could well be located at the margin of Palaeoproterozoic
Amazonia, coincident with the Rio Apa block position proposed
by Teixeira et al. (2013). In this interpretation the Amazonia,
Río de la Plata and proto-Kalahari cratons, as well as Rio Apa,
could be potential sources of sediments to the MMS basin. (As rec-
ommended by Jacobs et al. (2008) the term proto-Kalahari is pre-
ferred to Kalahari. The first comprises an Archaean crustal core
along with accreted Palaeoproterozoic rocks, which were
assembled by c. 1750Ma. The second involves crust formed in
the Mesoproterozoic. However, we have retained the term
Kalahari where used by other authors with the same meaning.)
We assume here that MARA, i.e. the basement of the MMS of
which the Rio Apa block was part (Casquet et al. 2012), and
Amazonia were continuous in early Statherian times, in agreement
with Teixeira et al. (2020).

7.b.3. Source areas of the Maz Metasedimentary Series
As theMMSwas deposited after c. 1.86 Ga, and before the Andean-
type magmatism recorded in the Maz Complex at 1.33–1.26 Ga,
the issue arises as to whether the basin formed before, during or
after the break-up of the Columbia supercontinent. In both meta-
sedimentary samples analysed here the main zircon age population

Fig. 9. (Colour online) Palaeogeographic reconstruction of Columbia supercontinent
modified from Teixeira et al. (2013) and Chaves (2020), showing the hypothetical loca-
tion of the Maz Metasedimentary Series (MMS) basin. Black arrows show the probable
direction of sediment transport. KAL – Kalahari; RA – Rio Apa; RPC – Río de la Plata
craton.
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ranges between c. 1.86 and 2.08 Ga, with minor peaks at c. 2.24,
2.42 and 2.66–2.70 Ga and 2.9–3.1 Ga, although that at 2.42 Ga
is only recognized in MAZ-16223.

Casquet et al. (2012) proposed that the basement of the MMS,
along with the Rio Apa outcrop in southern Brazil, and the
Grenvillian Arequipa inlier in southern Peru were parts of a single
Palaeoproterozoic block (MARA) on the basis of similar Nd TDM

ages of c. 2.0 Ga. This block would fill the space south of Amazonia
prior to collision of both (MARA and Amazonia) with Laurentia,
and is an enlargement of the Arequipa–Antofalla basement of the
central Andean margin of South America (Loewy et al. 2004 and
references therein). So far we have not found outcrops of the base-
ment underlying the MMS in the Western Sierras Pampeanas.
However, Palaeoproterozoic igneous rocks are exposed in the
Rio Apa and Arequipa outcrops that could be potential sources
of zircon grains in the overlying sedimentary cover. In the Rio
Apa block, Teixeira et al. (2020) reported many U–Pb zircon ages
from an igneous complex (granitoids) with peaks at 1.75–1.80 Ga,
1.82–1.87 Ga and 1.94–2.07 Ga. In Arequipa, orthogneisses of c.
1.79 Ga were recognized by Loewy et al. (2004) and Casquet
et al. (2010). The Rio Apa zircon ages between 1.82 and 2.07 Ga
can be correlated with those found in the MMS between 1.86
and 2.08 Ga (Fig. 10). This group of ages is also found in the nearby
Ventuari–Tapajós and Maroní–Itacaiunas provinces of the
Amazonia craton (Cordani & Teixeira, 2007). However, the
1.75–1.80 Ga ages of Arequipa and Rio Apa granitoids are not
found in the MMS, possibly suggesting that the MMS was depos-
ited before that magmatic episode. In consequence, the depositio-
nal age could be as old as between 1.86 and 1.80–1.75 Ga. In fact, no
detrital zircon has been found in the MMS corresponding to the
Rio Negro–Jurena (1.82–1.60 Ga) or Rondonia–San Ignacio
(1.59–1.30 Ga) orogenic belts between Amazonia and MARA
(Teixeira et al. 2020 and references therein).

The minor detrital zircon ages of c. 2.2 and 2.4 Ga in the MMS,
most notable in the quartzite sample MAZ-16223, could not be
sourced from either Rio Apa or Arequipa, where those ages have
not been recorded. One likely source of c. 2.2 Ga zircons could be
the Río de la Plata craton, another Palaeoproterozoic block in
eastern Argentina and southern Uruguay. The Río de la Plata

craton has yielded igneous zircon ages between 2.05 and 2.26 Ga
equivalent to the Trans-Amazonian orogeny of the Amazonian
Craton (Hartmann et al. 2002; Rapela et al. 2007; Cingolani,
2011 among many others) (Fig. 10). Also, the Maroní–
Itacaiunas province of the Amazonia craton could have supplied
the c. 2.2 Ga zircons (Cordani & Teixeira, 2007) considering the
palaeogeographic reconstruction.

The c. 2.4 Ga age recognized in quartzite MAZ-16223 is not
common in Palaeoproterozoic terranes. Zircon of this age is poorly
recorded in Palaeoproterozoic terranes of southern South America,
either because of poor preservation between major continental col-
lisions (Hawkesworth et al. 2009) or because it was a period of
mafic magmatism and, in consequence, with minor zircon forma-
tion. This is probably also the case for the prominent c. 2.4 Ga peak
of detrital zircon ages that Schröder et al. (2016) found in the
Pretoria Group (Transvaal Supergroup; c. 2.06–2.65 Ga), a cover
sequence on the Kaapvaal craton. The Duitschland Formation,
at the base of the Pretoria Group, yields zircon ages with a main
peak at 2.41–2.57 Ga, a secondary population at 2.69–2.81 Ga,
and minor grains between 3.0 and 3.4 Ga. Remarkably, this pattern
closely resembles that of the MMS for ages ≥2.4 Ga. Because
Schröder et al. (2016) did not find exposures of equivalent-age vol-
canic rocks on the Kaapvaal craton, they invoked the Woongarra
Rhyolite (c. 2.45 Ga) in the Pilbara craton of Western Australia,
which was allegedly joined to the Kaapvaal craton at the time
(Cheney, 1996; de Kock et al. 2009; Schröder et al. 2016 and refer-
ences therein). More recently, however, mafic volcanism and dyk-
ing of the c. 2.4 Ga Ongeluk event has been recognized in the
Kaapvaal and Zimbabwe cores of the composite proto-Kalahari
craton (de Kock et al. 2018). A potential source for the 2.4 Ga detri-
tal zircon, and other grains older than this, in the MMS can thus be
found in Southern Africa.

Figure 10 shows the coincidence of detrital zircon ages found in
the MMS with sources in the Rio Apa block and the Río de la Plata,
Amazonia and proto-Kalahari cratons. This suggests that sedimen-
tation probably occurred before Columbia break-up. If so, available
sources could be very variable, from Archaean to variably
Palaeoproterozoic.

The extended region from the Sierras Pampeanas of Argentina
and the Rio Apa block to the Arequipa block is covered by
Phanerozoic sedimentary rocks and basement is not accessible.
Thus, most of the hypothetical MARA block remains unknown
and potential sedimentary sources of the MMS, other than those
referred to above, could be still unrecognized.

8. Conclusions

The MMS consists of medium-grade garnet–staurolite–kyanite–
sillimanite schists and quartzites, with minor amounts of marble
and calc-silicate rocks. Transposed metadacite dykes have been
recognized along with orthoamphibolites, metagabbros, metadior-
ites and orthogneisses. Deposition of the MMS sedimentary pro-
toliths occurred after 1.86 Ga and before 1.33–1.26 Ga, and
probably between 1.86 and 1.80–1.75 Ga. They were subsequently
affected by Grenvillian metamorphic events at 1234 ± 18Ma,
1157 ± 11Ma and 1035 ± 6Ma, and finally variably overprinted
by the Silurian Famatinian metamorphism. Detrital zircons in
the MMS are mainly Palaeoproterozoic, with a minor component
of Meso-Neoarchaean origin. The diversity of peak detrital zircon
ages indicates multiple basements sources, which is compatible
with sedimentation in a basin along the Columbia (Nuna) super-
continent before its break-up. The main sources areas were

Fig. 10. (Colour online) Probability density plot of the Maz Metasedimentary Series
detrital (cores) zircon ages. Dashed and coloured columns show age range of base-
ments as probable sources of sediments.
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probably the Rio Apa block, and the Río de la Plata, Amazonia and
proto-Kalahari cratons, which have nearby locations in some
Columbia reconstructions.
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