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We revisit the somewhat classical problem of the linear stability of a rigidly rotating
liquid column in this article. Although the literature pertaining to this problem dates
back to 1959, the relation between inviscid and viscous stability criteria has not yet been
clarified. While the viscous criterion for stability, given by We < n2 + k2 − 1, is both
necessary and sufficient, this relation has only been shown to be sufficient in the inviscid
case. Here, We = ρΩ2a3/γ is the Weber number and measures the relative magnitudes
of the centrifugal and surface tension forces, with Ω being the angular velocity of the
rigidly rotating column, a the column radius, ρ the density of the fluid and γ the surface
tension coefficient; k and n denote the axial and azimuthal wavenumbers of the imposed
perturbation. We show that the subtle difference between the inviscid and viscous criteria
arises from the surprisingly complicated picture of inviscid stability in the We–k plane.
For all n > 1, the viscously unstable region, corresponding to We > n2 + k2 − 1, contains
an infinite hierarchy of inviscidly stable islands ending in cusps, with a dominant leading
island. Only the dominant island, now infinite in extent along the We axis, persists for
n = 1. This picture may be understood, based on the underlying eigenspectrum, as arising
from the cascade of coalescences between a retrograde mode, that is the continuation of
the cograde surface-tension-driven mode across the zero Doppler frequency point, and
successive retrograde Coriolis modes constituting an infinite hierarchy.
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1. Introduction

This article discusses the linear stability of a rigidly rotating liquid column. The limit
of zero rotation corresponds to the classical Rayleigh–Plateau problem analysed first,
in the inviscid limit, by Plateau (1873) and later by Rayleigh (1878). The subsequent
literature on the rigidly rotating liquid column (Hocking & Michael 1959; Hocking
1960; Gillis & Kaufman 1962; Pedley 1967) primarily focused on the necessary and/or
sufficient condition for instability, although later Weidman, Goto & Fridberg (1997)
examined the dominant unstable modes for the inviscid rotating column based on
growth-rate calculations. More recently, Kubitschek & Weidman (2007a) obtained the
dominant modes for the viscous rotating column, and organized their results based on
the wavenumber of the dominant perturbation, in a parameter plane consisting of the
Weber number (a dimensionless measure of rotation defined below) and the column
Reynolds number. The boundaries demarcating the crossover of the dominant mode in
this plane converged smoothly to the inviscid predictions of Weidman et al. (1997) for
Re → ∞. The later experiments of Kubitschek & Weidman (2007b) were consistent with
the modal crossover boundaries obtained in Kubitschek & Weidman (2007a). While all
of the above results show the expected destabilizing effect of rotation, in terms of a
larger range of wavenumbers turning unstable with an increase in the column angular
velocity, on account of centrifugal forces, there remains a difference between the viscous
and inviscid criteria for instability obtained in the early literature (Hocking & Michael
1959; Hocking 1960; Gillis & Kaufman 1962; Pedley 1967). Although the expression for
the stability threshold (see (2.5) below) remains the same in both cases, it has been shown
to be necessary and sufficient in the presence of viscosity (Gillis & Kaufman 1962),
but only serves as a sufficient condition in the inviscid limit (Pedley 1967; Weidman
1994; Henderson & Barenghi 2002). In this article, we re-examine the instability of a
rigidly rotating liquid column, with an emphasis on the entire inviscid spectrum, including
the neutral modes. The analysis sheds new light on this problem, showing that inviscid
unstable modes arise from an infinite hierarchy of coalescences between pairs of dispersion
curves just above the viscous threshold. The resulting intricate picture helps explain
the aforementioned difference between the nature of the inviscid and viscous threshold
criteria.

Perturbations to a liquid column may be characterized in terms of their azimuthal (n)

and axial (k) wavenumbers and, accordingly, may be classified as axisymmetric (n = 0,

k /= 0), planar (n /= 0, k = 0) and helical (spiral) or three-dimensional perturbations
(n /= 0, k /= 0). Starting in § 2, we study the dispersion curves, and the associated stability
thresholds, for a rigidly rotating column of liquid subject to each of the aforementioned
classes of perturbations. The nature of the dispersion curves is a function of the
Weber number, We = ρΩ2a3/γ , a dimensionless parameter that compares the relative
importance of centrifugal and surface tension forces; here, ρ is the density, Ω the column
angular velocity, a the column radius and γ the coefficient of surface tension. For helical
perturbations, we analyse the dispersion curves in the We–k plane for different fixed
n values. Note that, following early work by Hocking & Michael (1959) and Hocking
(1960), We−1 has often been referred to as the Hocking parameter (L); for instance, the
aforementioned efforts of Weidman et al. (1997) and Kubitschek & Weidman (2007a)
presented their results for the dominant inviscid modes as a function of L, and the dominant
viscous modes in the L–Re plane, respectively. In what follows, we stick to We. In the next
paragraph, we begin by recapitulating the well known results for the classical case of a
stationary liquid column (We = 0).

933 A55-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1109


Linear stability of a rotating liquid column revisited

The classical Rayleigh–Plateau instability is one of a stationary liquid column to
sufficiently long wavelength axisymmetric perturbations, and explains the spontaneous
breakup of a (slow) jet into nearly uniformly sized droplets (see Chandrasekhar (1981);
for sufficiently slow speeds, the shear at the air–water interface is unimportant, and
the jet may be made equivalent to a stationary column via a Galilean transformation).
Plateau (1873) concluded, via a quasistatic analysis, that perturbations with an
axial wavelength greater than the circumference of the column (ka < 1 or, if the
wavenumber is scaled with the column radius, k < 1) act to destabilize the column by
decreasing the total interfacial area. Rayleigh (1878) then accounted for both inertia
and surface tension, obtaining the following dispersion relation for small amplitude
Fourier mode perturbations, proportional to exp(i(kx + nθ − σ t)), in the inviscid
limit:

σ 2 = k
I′n(k)
In(k)

(k2 + n2 − 1), (1.1)

where σ = σr + iσi has been scaled with
√

γ /ρa3 (σr being the frequency and σi being the
growth rate), and the axial wavenumber (k) is now scaled with 1/a; In(k) is the modified
Bessel function of the first kind with the prime denoting differentiation. From (1.1), only
axisymmetric perturbations are found to be unstable (σi > 0) for k < 1, with the maximum
growth rate corresponding to k = 0.697. The growing and decaying modes transform to a
pair of neutral modes across k = 1, the latter corresponding to capillary waves propagating
in opposite directions along the axis of the column. For k → ∞, one obtains σ =

√
γ k3/ρ

regardless of n, which is the dispersion relation for capillary waves propagating on an
infinite plane interface.

Hocking & Michael (1959) and Hocking (1960) first investigated the effects of rotation
on a liquid column subject to planar and axisymmetric perturbations, obtaining the
necessary and sufficient criteria for stability. For the axisymmetric case, the authors
obtained the criterion We < k2 − 1, regardless of viscosity. For the planar case, the
authors found the inviscid criterion to be We < n(n + 1), while that for any finite
viscosity to be We < n2 − 1 (see also Gillis 1961). Gillis & Kaufman (1962) later studied
three-dimensional perturbations of a viscous rotating column and concluded that the
latter criterion generalizes to We < k2 + n2 − 1. Pedley (1967) showed that although the
aforementioned viscous criterion remains relevant in the inviscid limit, it only serves as a
sufficient condition for stability. Thus, for inviscid columns, a necessary and sufficient
condition is not yet known, and clarifying the above difference between the viscous
and inviscid criteria is the subject of this effort. As stated above, our focus on the
entire eigenspectrum allows us to understand in detail the regions in parameter space
corresponding to the inviscid unstable modes while also pointing to the necessary and
sufficient criterion for inviscid stability.

While the main findings of the present effort pertain to helical perturbations, we
nevertheless consider all three classes of perturbations mentioned above, in sequence, and
a complete picture of linear stability emerges as a consequence. Thus, § 2 below starts
off with a brief description of the linear stability formulation, which is then followed
by subsections pertaining to axisymmetric (§ 2.1) and planar (§ 2.2) perturbations. We
detail our new findings for three-dimensional perturbations in § 2.3. In the conclusions
section (§ 3), we show that our findings with regard to the non-trivial nature of the
inviscid spectrum carry over to the case where the interfacial cohesion underlying surface
tension is replaced by a volumetric cohesion mechanism, that of self-gravitation, instead.
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This makes our findings relevant to the astrophysical scenario, and we end with a few
pertinent comments in that regard.

2. The rotating liquid column

The rigidly rotating columnar base state corresponds to ur = 0, uθ = Ωr, uz = 0 and
p = p0 + (ρΩ2r2/2) for r < a, where po is an arbitrary baseline pressure on account of
incompressibility. The governing linearized equations for small-amplitude perturbations
may be derived in the usual way from the Euler equations, with kinematic (radial velocity)
and dynamic (pressure) boundary conditions at the column free-surface. The equations
governing inviscid evolution have already been written down and solved in earlier efforts
(Hocking & Michael 1959; Hocking 1960; Weidman et al. 1997), and in what follows, we
directly examine the resulting dispersion relations. Note that the density of the exterior
fluid is assumed to be small relative to that of the liquid column, and its influence on
column oscillations is neglected.

2.1. Axisymmetric perturbations
The dispersion relation for axisymmetric perturbations was obtained by Hocking (1960),
and is given by

We σ 2

√
4
σ 2 − 1

J0(α)

J1(α)
− k(k2 − 1) + We k = 0, (2.1)

where α = k
√

4/σ 2 − 1. Here, as before, k is scaled with 1/a but σ is scaled with Ω

as opposed to
√

γ k3/ρ used in (1.1). Using (2.1), Hocking obtained the necessary and
sufficient criterion for stability to be

We < k2 − 1 (2.2)

indicating that centrifugal forces destabilize the system, increasing the interval of unstable
wavenumbers from (0, 1) in the non-rotating case to (0,

√
1 + We) in the rotating case.

Figure 1(c) shows the dispersion curves for the axisymmetrically perturbed column
obtained from (2.1). The spectrum is seen to borrow its traits from two constituent cases –
the Rayleigh–Plateau configuration involving only surface tension (figure 1a) and the
Rankine vortex involving only rotation (figure 1b). Much like the Rankine vortex, the
rotating liquid column supports an infinite sequence of primarily Coriolis-force-driven
modes (henceforth referred to as the Coriolis modes), with the inner dispersion curves
corresponding to perturbations with an increasingly fine-scaled radial structure; note that
the Rankine vortex has recently been shown to also possess a continuous spectrum on
account of the irrotational shear in the column exterior (Roy & Subramanian 2014; Roy
et al. 2021). The Coriolis modes in both these problems have frequencies σr ∈ (−2, 2).
Additionally, the rotating liquid column has two modes that owe their origin to surface
tension akin to the Rayleigh–Plateau configuration (henceforth referred to as the capillary
modes). Figure 1(c) shows the family of Coriolis modes along with the two capillary
modes, and their variation with k, for We = 20. Note that the pair of capillary modes follow
the characteristic k3/2 scaling for large k, while the Coriolis mode frequencies approach
σr = ±2 in this limit. The effect of We on the dispersion curves is illustrated in figure 2.
For k � √

We + 1, Coriolis forces dominate the spectrum, and it is only for k >
√

We + 1
that the effects of surface tension become apparent, with the pair of capillary mode
dispersion curves transitioning to the aforementioned k3/2 scaling. For We � k2 − 1, (2.1)
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Figure 1. The dispersion curves for the Rayleigh–Plateau problem (a), the Rankine vortex (b) and the rotating
liquid column with We = 20 (c). Blue curves denote neutral modes while the dotted orange curves denote
growing/decaying modes. Only the first 10 of the infinite number of neutral modes are shown for the Rankine
vortex and the rotating column.

reduces to σ 2
√

4/σ 2 − 1(J0(α)/J1(α)) + k = 0, a We-independent dispersion relation; the
transition k has receded to infinity and the entire spectrum is governed by Coriolis forces.

Before discussing the spectrum further, we note that while the dispersion relation in
(2.1) is in a form suitable for making connections with prior results, and for examining
limiting scenarios, it is necessary to use an alternate form, obtained from multiplying
all terms in (2.1) by J1(α), when plotting the dispersion curves using a software such as
Mathematica. Not doing so leads to Mathematica erroneously interpreting the singularities
of (2.1), corresponding to the zeros of J1, as additional zeros, in turn leading to spurious
dispersion curves. Similar remarks apply to the dispersion relation for non-axisymmetric
modes analysed below (see (2.6)).

The description above clearly shows that there is a qualitative change in the nature of
the eigenspectrum with the onset of rotation, as evident from comparing figures 1(a)
and 1(c), and points to the stationary column (We → 0) being a singular limiting case.
The interfacial dynamics for the stationary column is entirely determined by the pair
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Figure 2. The dispersion curves of the rotating liquid column with varying We: (a) We = 0.1; (b) We = 1;
(c) We = 10; (d) We = 20. Blue curves denote neutral modes while dashed orange curves denote growing /
decaying modes. A vertical dashed line drawn at k = √

1 + We indicates the axial wavenumber beyond which
the effects of surface tension on the neutral modes become significant.

of capillary modes (whether neutral or unstable), which are now irrotational. For these
modes, the non-dimensional frequency (σ ) in (2.1) diverges in the limit of zero rotation.
Thus, α reduces to ik and one recovers the Rayleigh–Plateau dispersion relation given
in (1.1). In contrast, the Coriolis modes, which remain vortical in the zero-rotation limit,
may be regarded as a complete set of stationary vortical perturbations that do not perturb
the column free surface. For these modes, the non-dimensional frequency σ remains
finite (implying that the dimensional one vanishes as O(Ω)) and, therefore, so does α.
The dispersion relation reduces to We J0(α)/J1(α) = k(k2 − 1), implying that J1(α) = 0
governs the Coriolis mode frequencies for We = 0; this also ensures that the radial
velocity vanishes at r = 1 (see 3.2a in Kubitschek & Weidman (2007a)), consistent with
the aforementioned requirement of an unperturbed free surface. An analogous limiting
scenario prevails for any non-zero n, with the limiting dispersion relation being given by
σ − n = (2n Jn(α))/(αJ′

n(α)); thus, the Coriolis modes, in all cases, reduce to stationary
vortical perturbations as We → 0, and are irrelevant to the dynamics of free surface
disturbances.

Finally, it needs mentioning that while the growing and decaying modes for the
rotating column exist over a wider range of wavenumbers given by 0 < k <

√
1 + We,

they do not emerge as a result of coalescence of neutral modes, as was the case for
the Rayleigh–Plateau problem (where the so-called ‘principle of exchange of stability’
holds); instead, as evident from the dashed dispersion curves in figures 1 and 2, they
arise independently as the stability threshold is crossed. Importantly, since the eigenvalues
associated with these modes are purely imaginary, the state of neutral stability is one
of rigid rotation, and therefore, as pointed out by Rosenthal (1962), viscosity cannot alter
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the threshold. Thus, We = k2 − 1 remains the threshold regardless of the column Reynolds
number (which may be defined as Re = Ωa2/ν, with ν being the kinematic viscosity).

2.2. Planar perturbations
Next, we examine planar perturbations, the inviscid dispersion relation for which was first
obtained by Hocking & Michael (1959) and is given by

σ = n − 1 ±
√

(n − 1)(n(n + 1) − We)
We

, (2.3)

which is algebraic (quadratic) instead of transcendental, as was the case for axisymmetric
perturbations (see (2.1)), and as is also the case for helical perturbations (see (2.6)). The
existence of only a pair of planar modes is because the infinite number of Coriolis modes
degenerate to σ = n for k → 0 in the inviscid limit, see figures 1(c) and 4(a). For any
We, the two planar-wave frequencies are symmetrically distributed about n − 1. For small
We, they are asymptotically large (of O(We−1/2), which corresponds to a dimensional
frequency of

√
γ /ρa3, as expected, and approach each other with increasing We. For n ≥

2, the modes coalesce at σ = n − 1 for We = n(n + 1), the inviscid threshold mentioned
earlier, and become complex valued for We > n(n + 1), implying instability.

Unlike the axisymmetric case, viscosity has a profound effect on the stability of the
rotating column to planar perturbations. To see this, let Λ = n(n2 − 1)/We − n so that the
pair of inviscid frequencies above may be written as σ = n − 1 ± √

1 + Λ and the inviscid
threshold corresponds to Λ = −1. For large but finite Re, Hocking (1960) obtained the
following expressions for the planar-wave frequencies, corrected for viscous effects, again
as the solutions of a quadratic equation:

σ = n − 1 ± √
1 + Λ − i

Re

(
2n(n − 1)

−1 ± √
1 + Λ

±√
1 + Λ

)
. (2.4)

Note that the O(1/Re) scaling for the viscous correction, implied by (2.4), is not valid
near the inviscid threshold as the expression within brackets diverges for Λ → −1. One
may nevertheless derive the requirement for viscous instability. This corresponds to σ in
(2.4) having a negative imaginary part which in turn translates to Λ = 0 (bounded away
from the aforementioned breakdown value), or We = n2 − 1. This threshold was shown
to be applicable for columns of all finite Re (Gillis 1961). Rather counter-intuitively, on
one hand, the viscous threshold does not depend on Re, leading to the aforementioned
discontinuous jump in the threshold We from n(n + 1) to n2 − 1. On the other hand, the
viscous threshold for stability is less than the inviscid threshold, implying the destabilizing
influence of viscosity. The latter behaviour is attributed to the phase difference between
pressure and displacement waves. The two waves are exactly out of phase in the inviscid
limit. This is no longer true in presence of viscous effects which allow for a net work done
during a single oscillation. The role of viscosity in modifying the phase difference, and
thereby inducing exponential growth, is reminiscent of the Miles mechanism that accounts
for the growth of wind-driven gravity waves (Miles 1957; Benjamin 1967); although, on
account of the rigidly rotating base state, there isn’t the complicating effect of a critical
layer (Miles 1957) in the present problem.

Figures 3(a) and 3(b) show that although the stability threshold changes discontinuously
for any finite Re, the growth rates in the interval between the inviscid and viscous
thresholds (n2 − 1 < We < n(n + 1)) scale viscously, and therefore, decrease to zero for
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Figure 3. The two figures plot the growth rates of planar perturbations as a function of We and Re for n = 4:
(a) growth rates versus We for various Re; (b) growth rates versus Re for various We. Note the discontinuous
change in the stability criterion from We = 20, for the inviscid case (the dotted black curve in (a)) to We = 15
for any finite Re. Dashed black lines in (b) denote the large Re asymptotes obtained from the planar viscous
dispersion relation due to Hocking (1960).

Re → ∞ (see also the figure in Gillis (1961) and figure 6c in Kubitschek & Weidman
(2007a)). For We ∈ (n2 − 1, n(n + 1)), the growth rates scale as Re−1, while remaining
O(1) for We > n(n + 1). Within a small O(Re−2) interval around We = n(n + 1), the
growth rates exhibit a slower decay of O(Re−1/2) for Re → ∞, consistent with the
singular role of viscosity in the neighbourhood of the inviscid threshold, implied by (2.4),
see figure 3(b). Finally, it is worth mentioning that the viscous dispersion relation is a
transcendental one even for planar modes (Hocking 1960). Thus, for any finite Re, there
exist an infinite number of planar modes and, importantly, they remain non-degenerate. It
may be shown that all but two of these modes (the two being governed by the corrected
quadratic derived by Hocking, given by (2.4)) have σr → nΩ , with σi ∼ O(Re−1) in
the limit Re → ∞. The zero Doppler frequency limit (σr − nΩ = 0) suggests that these
remaining modes correspond to the limiting forms of the planar Coriolis modes for large
but finite Re. In fact, for any finite Re, the σi values for the Coriolis modes form an infinite
sequence going asymptotically to −∞ with increasing modal index, this being consistent
with the fact that the finer-scaled modes must exhibit progressively greater (viscous) decay
rates.

2.3. Three-dimensional perturbations
The effect of rotation on three-dimensional perturbations is well understood only in the
presence of viscosity. As shown first by Gillis & Kaufman (1962), the necessary and
sufficient criterion for the stability of the rotating column in the presence of viscosity
is

We < k2 + n2 − 1. (2.5)

It is easily seen that (2.5) reduces to the corresponding criteria for viscous planar
and axisymmetric perturbations for n = 0 and k = 0, respectively. For inviscid stability,
however, this criterion has only been shown to be a sufficient one (Pedley 1967). The
relevance of the same threshold We(= k2 + n2 − 1) in the presence and absence of
viscosity is because, as will be seen below, similar to the axisymmetric case, the system
is in a state of rigid-body rotation at this We. However, the change from a necessary and
sufficient condition in the viscous case to only a sufficient one in the inviscid limit points
to the possibly subtle relation between the inviscid and viscous stability scenarios.
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Figure 4. The inviscid dispersion curves corresponding to the different We regimes for n = 3: (a) We <

n2 − 1 (We = 7); (b) n2 − 1 < We < n(n + 1) (We = 10); (c) n(n + 1) < We < Wecusp (We = 12.5); (d) We >

Wecusp(We = 17); where Wecusp ≈ 16 for n = 3. The neutral Coriolis modes are shown in blue and the neutral
capillary modes in orange. The real part of the unstable eigenvalues are shown as dashed green curves while
the imaginary parts are shown as dashed red curves.

The dispersion relation for the inviscid rotating column has, in fact, already been given
by Weidman et al. (1997) as

α
Jn−1(α)

Jn(α)
− We

(
4 − (σ − n)2)

We + 1 − n2 − k2 − n
(

1 + 2
(σ − n)

)
= 0, (2.6)

where α = k
√

4/(σ − n)2 − 1. It will be shown below that, for a given n > 1, the
spectrum as governed by (2.6) changes qualitatively with increasing We. This is illustrated
in figure 4 which shows four sets of dispersion curves, for n = 3, each corresponding to a
different regime.

The first regime, We < n2 − 1 (= 8 for n = 3), corresponds to the case where the
rotating column is stable since We is below the aforementioned viscous threshold; the
dispersion curves for this We are shown in figure 4(a). Similar to the axisymmetric case
(see figure 1), the spectrum consists of a pair of capillary modes (orange) and an infinite
hierarchy of Coriolis modes (blue), the first few of which are shown in the figure. As
We is increased, the capillary branches move towards each other with the upper branch
moving down towards smaller σ . This is in accordance with (2.3) above, which shows that
the two capillary branch frequencies in the planar limit (k = 0) approach n − 1 with We
approaching the inviscid threshold. Since the Coriolis modes degenerate to σ = n in the
planar limit (k = 0), this motion of the upper capillary branch would seem to cause it to
cross the Coriolis modes with increasing We. The coalescences of the retrograde capillary
mode with the retrograde Coriolis dispersion curves, that result after the crossing, would
then appear to lead to the emergence of unstable modes at higher We. Note that such a
scenario was not possible in the axisymmetric case, where the frequency in the limit k → 0
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was identically zero regardless of the particular dispersion curve (capillary or Coriolis) or
We, see figure 2.

The second regime, n2 − 1 < We < n(n + 1), is where, as already seen for k = 0, the
column is unstable (to planar perturbations) only in the presence of viscosity. As shown in
figure 4(b), the upper capillary branch appears to have moved below the line corresponding
to σ = n, and now suffers a coalescence with the lowermost Coriolis branch at k1 ≈ 0.58.
This coalescence is accompanied by the pair of eigenvalues becoming complex-valued for
larger k, implying instability. The instability continues until the column approaches a state
of rigid rotation, corresponding to We = k2 + n2 − 1, and the corresponding wavenumber
is therefore given by

√
We − n2 + 1. Thus, the lone interval of instability in this regime is

given by k1 < k <
√

We − n2 + 1 with the upper limit being
√

2 for n = 3 and the chosen
We in figure 4(b).

At We = n(n + 1), the pair of capillary branches coalesce at k = 0, the corresponding
value of σ being (n − 1), as predicted by (2.3). Thus, for We larger than n(n + 1), the
eigenspectrum exhibits two coalescences, resulting in the unstable intervals 0 < k < k2
and k1 < k <

√
We − n2 + 1 (for the values chosen in figure 4(c), k1 ≈ 0.98 and k2 ≈

0.53). The first interval corresponds to the unstable mode that results from the coalesced
pair of capillary modes, and its lower limit (k2 = 0 at We = n(n + 1)) denotes the onset
of inviscid instability to planar perturbations. The two coalescences lead to an intervening
stable interval given by k2 < k < k1 (figure 4c). As a result, the composite dispersion curve
that describes the neutral mode is now a combination of portions of the original Coriolis
and capillary branches, and has a hysteretic character, as evident from the dispersion
curve bending back in the aforementioned stable interval. Although, strictly speaking, the
participating Coriolis and capillary modes lose their identity, and only a composite curve
remains, an intuitive association of its parts with the original curves is clear. We, therefore,
continue to colour portions of the composite curve based on the underlying ‘parent’ curves.
With increasing We, k1 and k2 approach each other and the hysteretic region shrinks
and eventually vanishes. The critical We where hysteresis vanishes is termed Wecusp; as
explained below, this is because the disappearance of the hysteretic region is marked by a
cusp in the We–k plane. The third regime can then be defined as n(n + 1) < We < Wecusp.
For n = 3, Wecusp ≈ 16 (see figure 7b).

The fourth regime corresponds to We > Wecusp when the fold in the dispersion curve
and, thence, the intermediate stable wavenumber interval vanishes. There is now only a
single unstable interval corresponding to 0 < k <

√
We − n2 + 1 (figure 4d), consistent

with the aforementioned viscous criterion.
The results presented above agree quantitatively with the restricted observations of

Weidman et al. (1997) who obtained the (inviscid) growth rates for n = 1, 2 and 3, as
a function of k, for We = 10. Consider figure 5(a) in Weidman et al. (1997), where the
authors present growth rates for n = 2 and 3. Since 10 > Wecusp for n = 2, the growth
rates correspond to the fourth regime according to the classification above. Nevertheless,
the local minimum seen in the growth rate curve for n = 2 (akin to the dotted red curves
in figures 4d and 5d) is reminiscent of the hysteresis that occurs at a smaller We. The
growth-rate curve for n = 3 presented in the same figure matches quantitatively with the
dotted red curve in figure 4(b). Since n(n + 1) < 10 < Wecusp for n = 3, this growth-rate
behaviour corresponding to the second regime described above. Their observations for
n = 1 can be similarly understood based on the discussion presented in the Appendix.
Thus, while our results are consistent with the earlier findings in Weidman et al. (1997),
our focus on the entire inviscid eigenspectrum allows us to move beyond growth rates
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calculations for specific We values, and thereby, infer the implications of the growth-rate
behaviour on the relation between the inviscid and viscous stability criteria.

The general behaviour of the dispersion curves with increasing We, highlighted above,
holds for all n values greater than unity. Figure 5 shows an analogous behaviour of
the eigenspectrum for n = 4 with Wecusp ≈ 25. The dispersion curves, such as those in
figures 4 and 5, may be stacked upon one another, along the We axis, so as to demarcate
the regions of inviscid stability in the We–k plane for each n. Figure 6 shows schematically
how this may be achieved (the unstable wavenumber ranges have been omitted for clarity).
With varying We, projections of the pair of folding points associated with each hysteretic
dispersion curve (the black dots in figures 4c, 5c and 6), that mark the intermediate stable
interval in the σ–k plane, yield the two branches of a stable island in the We–k plane. The
picture is that of a cusp catastrophe (Zeeman 1976), implying that the aforementioned pair
of branches terminates in a cusp. The points of coalescence between a capillary mode and
the lowest retrograde Coriolis mode (figures 4b and 5b) yield the upper branch of the stable
island, while those between the two capillary modes (figures 4c and 5c) yield the lower
branch. The cusp-shaped islands of inviscid stability in the We–k plane, for n = 2, 3, 4
and 5, are shown in figure 7. While closed form expressions for the boundaries of these
islands are not available, one may nevertheless obtain their small-k approximations. For the
lower branch, one has σ → n − 1 for k → 0; the resulting limiting form of the dispersion
relation gives the required approximation as k ∼

√
((n2 − 1)/n(n + 1))(We − n(n + 1)).

For the upper branch, however, (σ − n)/k remains O(1) as k → 0. Since this remains
true for all of the Coriolis mode branches, the upper branch asymptote is obtained by
exploiting the fact that the slope of the hysteretic dispersion curve diverges at the turning
points. Thus, simultaneously solving (2.6) with dσ/dk → ∞ for k → 0 yields the small-k
approximation for the upper branch. These approximations have been shown as dashed
black curves in figure 7, where they are seen to compare well with the numerically
determined island boundaries well beyond the rigorous interval of validity (k � 1). While
one expects the We–k plane to remain similar in form for n > 5, the scenario for n = 1 is
essentially different, and is analysed in the Appendix. In this case, there exists only one
stable island that extends to infinity along the We axis. The exceptional behaviour is not
entirely unexpected, given that the limit k → 0 is a singular one – n = 1 corresponds to a
mere translation of the rotating column in the planar limit.

The discussion along with the preceding figures establish the following behaviour. With
increasing We, the upper capillary branch moves down to lower frequencies, appearing
to cross the zero-Doppler-frequency line σ = n in the process and, thereafter, undergoes
a pair of coalescences (one with the lowest Coriolis mode, and the other with the
lower capillary branch). These coalescences lead to intermediate unstable ranges of
wavenumbers which, with varying We, trace out a stable island in the We–k plane (see
figure 7). There are two subtle aspects with regard to this general behaviour that need
amplification, however. The first is that the upper capillary branch does not, in fact, end
up crossing σ = n (hence, the usage ‘appears to’ in all the instances above). Instead,
as shown in figure 8, at We = n2 − 1, when the zero-k frequency of this branch equals
σ = n (figure 8d), the capillary branch stops moving downward as a whole; instead, a new
discrete mode emanates from σ = n, and continues down into the retrograde frequency
range with further increase in We (figures 8e and 8f ). Further, even as the upper capillary
branch descends towards σ = n, for We just below n2 − 1, it never crosses the lower
cograde Coriolis branches. These ‘avoided crossings’ are illustrated via suitably magnified
views in figure 8(a–c), and arise from the Krein signature criterion, required for unstable
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Figure 5. The inviscid dispersion curves corresponding to the different We-regimes for n = 4: (a) We <

n2 − 1 (We = 12); (b) n2 − 1 < We < n(n + 1) (We = 18), (c) n(n + 1) < We < Wecusp (We = 22); (d) We >

Wecusp (We = 26); where Wecusp ≈ 25.5 for n = 4. The neutral Coriolis modes are shown in blue and the
neutral capillary modes in orange. The real part of the unstable eigenvalues are shown as dashed green curves
while the imaginary parts are shown as dashed red curves.

k

We4

We3

We2

We1
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σ

Figure 6. A schematic showing the loci of the pairs of folding points, associated with the hysteretic
dispersion curves, which leads to the inviscidly stable island in the We–k plane.
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Figure 7. Depiction of the stable islands in the We–k plane for (a) n = 2, (b) n = 3, (c) n = 4 and (d) n = 5.
Blue curves denote both, the outer boundary (We = n2 + k2 − 1) and the numerically obtained boundaries
of the inviscidly stable island within; the shaded region between these boundaries denotes the inviscidly
unstable region. The dashed black curves denote the small-k asymptotes for the island boundaries; the lower
branch asymptote is k ∼

√
((n2 − 1)/n(n + 1))(We − n(n + 1)) and that for the upper branch is obtained by

simultaneously solving dσ/dk = ∞ with (2.6) for small k.

coalescences between different modal branches, not being satisfied for cograde modes
(Mackay & Meiss 1987; Fukumoto 2003; Chernyavsky, Kevrekidis & Pelinovsky 2018).

The second subtle aspect is related to the retrograde mode above that bifurcates from
the cograde capillary mode at σ = n. In moving further down towards σ = n − 1 with
increasing We (at which point this mode undergoes a coalescence with the lower capillary
branch, leading to an unstable wavenumber interval (0, k2), as illustrated in figures 4c
and 5c), the mode must end up crossing an infinite number of Coriolis mode branches,
in turn implying the possibility of an infinite hierarchy of coalescences, instead of just
the single one with the lowermost (retrograde) Coriolis branch shown in figures 4(b) and
5(b). Note that the infinite number of crossings must occur in the neighbourhood of σ = n
which, from (2.3), corresponds to We = n2 − 1. Therefore, one may verify the existence
of such a hierarchy of crossings by checking for the occurrence of coalescences in the
eigenspectra in the vicinity of We = n2 − 1. It turns out that all of the crossings of the
aforementioned retrograde mode with the retrograde Coriolis modes lead to coalescences
and, thence, hysteretic dispersion curves with intermediate unstable k-intervals. The
number of such hysteretic curves increases rapidly as We approaches n2 − 1 from above.
Figure 9 depicts the increasing number of hysteretic dispersion curves that result for
n = 3 for We → 8+; there is one coalescence for We = 8.5, three for We = 8.2 and
four for We = 8.1, besides the original coalescence between the new retrograde mode
and the lowest Coriolis mode, with successive coalescences occurring at progressively
smaller k. Figure 10 provides a magnified view of the ensemble of dispersion curves for
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Figure 8. Dispersion curves (σ versus k) for n = 4 and We close to n2 − 1: (a) We = 14.25; (b) We = 14.75;
(c) We = 14.95; (d) We = 15; (e) We = 15.05; ( f ) We = 15.1. At We = n2 − 1 the capillary mode splits
into two and yields a new retrograde mode (also shown in orange) which subsequently undergoes an infinite
sequence of coalescences with the retrograde Coriolis modes for higher We.

We = 8.1, emphasizing the rapid oscillations in the growth rate owing to the multiple
closely spaced intervals of stability. Similar to figure 7, each of these hysteretic intervals
marks out a stable island in the We–k plane. Therefore, in the inviscid limit, there
appears to be an infinite hierarchy of neutrally stable islands (each of these associated
with a cusp catastrophe, or a fold in the three-dimensional surface characterizing the
We–k–σ relationship as illustrated in figure 6) enclosed within the viscously unstable
region given by We > n2 + k2 − 1. This infinite hierarchy of inviscidly stable islands
only appears above, and not below, the viscous threshold since, as already pointed out,
the cograde modes exhibit avoided collisions (figure 8a–c), while the retrograde modes
coalesce, yielding complex eigenvalues, consistent with their respective Krein signatures.
The higher-order stable islands are much smaller than the leading one, and decrease
in size rapidly, eventually going asymptotically to the limit point (We, k) = (n2 − 1, 0).
The resulting picture in the We–k plane is illustrated in figure 11 for n = 2, 3, 4 and 5.
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Figure 9. An increasing number of retrograde dispersion curves exhibit a hysteretic character for We →
(n2 − 1)+; the figures show this behaviour for n = 3. (a) A single coalescence between a capillary
and a Coriolis mode: We = 9. (b) The capillary-Coriolis coalescence plus a single hysteretic dispersion
curve: We = 8.5. (c) The capillary-Coriolis coalescence plus three hysteretic dispersion curves: We = 8.2.
(d) The capillary-Coriolis coalescence plus four hysteretic dispersion curves: We = 8.1.
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Figure 10. A magnified view of figure 9(d): We = 8.1; n = 3. Note the multiple hysteretic dispersion curves
(four, besides the original) and corresponding oscillations in the growth rate.

Each of the panels shows five leading satellite islands besides the main island, of what is
likely an infinite hierarchy. As implied by figure 10, a consequence of this infinite hierarchy
is a rapid alternation of regions of stability and instability as one increases k for a fixed We
and, thence, a rapidly fluctuating growth rate with changing k.
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Figure 11. The main and satellite islands of inviscid stability, in the We–k plane, for (a) n = 2, (b) n = 3,
(c) n = 4 and (d) n = 5. Magnified views, of five of the infinite hierarchy of satellite islands, appear in the
insets.

3. Conclusion

In this paper, we have analysed the inviscid stability of a rotating liquid column as a
function of We, and the axial and azimuthal wavenumbers (k and n) of the imposed
perturbation, with a focus on the entire eigenspectrum that includes a pair of capillary
modes and an infinite hierarchy of Coriolis modes in the general case. While it is
known that a viscous rotating column becomes unstable if and only if We > k2 + n2 − 1,
consideration of the full eigenspectrum highlights the intricate nature of the inviscidly
unstable region in the We–k plane. The intricacy arises from the likelihood of an infinite
hierarchy of coalescences between pairs of dispersion curves in the neighbourhood of the
planar viscous threshold (We = n2 − 1). As illustrated in figure 11, these coalescences
appear to lead to an infinite hierarchy of inviscidly stable islands within the viscously
unstable region (We > n2 + k2 − 1) in the We–k plane; each of these islands corresponds
to a fold in the We–k–σ surface in three dimensions (see figure 6). The existence of these
islands explains why We < n2 + k2 − 1 only serves as a sufficient condition for stability in
the inviscid limit (Pedley 1967); evidently, one can be stable even when We > n2 + k2 − 1,
provided one is inside any of these islands. Thus, the necessary and sufficient condition
for inviscid instability would require We > n2 + k2 − 1 and, in addition, that the (We, k, n)

triplet chosen lies outside the inviscid islands identified in figure 11. It is not possible to
provide a precise expression for this criterion since, as already pointed out, closed form
expressions for the island boundaries are not known; although, the small-k asymptotes
appear to serve as useful approximations especially for the larger n values (see figure 7).
Interestingly, it has been shown in the appendix of Weidman et al. (1997) that one
may again obtain only a sufficient condition for inviscid stability for the analogous
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two-fluid system. Thus, for a configuration consisting of a central column of a denser
liquid and an annular domain of a lighter one, both being in a state of rigid-body rotation,
the sufficient condition for inviscid stability becomes

We1 − We2 < k2 + n2 − 1, (3.1)

which is the natural generalization of the single-fluid criterion encountered earlier, and
where We1 and We2 are now the Weber numbers based on the inner and outer fluid
densities. Although the viscous problem and, therefore, the viscous stability criterion for
the two-fluid system problem has not yet been examined, the discussion presented here
suggests an analogous relationship between the viscous and inviscid criteria.

The discovery of an infinite hierarchy of inviscidly stable islands in the We–k plane
also has implications for viscous stability for large but finite Re. As shown in figure 10,
for the case n = 3 and We = 8.1, the inviscid growth rate oscillates rapidly between zero
and order-unity values, with the oscillations becoming increasingly dense and rapid for
We → 8+ (the value of n2 − 1 for n = 3); interestingly, although the growth rates decrease
for We → (n2 − 1)+, as expected, the amplitude of the oscillations, for a fixed We, does not
appear to decay with increasing order of the modal coalescence, the order here referring to
the modal index of the (retrograde) Coriolis mode involved in the particular coalescence.
Now, for large but finite Re, one expects only a finite number of oscillations regardless of
the proximity of We to n2 − 1. This is because, as mentioned in § 2.2, the viscous decay
rates for planar perturbations can attain arbitrarily high values for large enough modal
indices, owing to the vanishingly small radial scale associated with the eigenfunction.
Thus, for finite Re, however large, one expects the (inviscid) growth rate associated with
modal coalescences above a certain threshold order to be overwhelmed by viscous decay.
Nevertheless, for an Re large enough that the spacings between adjacent islands is greater
than O(Re−2), one expects rapid oscillations in the growth rate between order-unity values
between the islands, and O(Re−1) values within them. While the Re values required to see
substantial growth-rate oscillations requires a full viscous calculation, it does appear that
the Re values involved might be very large. In contrast, experiments on the rotating liquid
column have only accessed a maximum Re of O(10), see Kubitschek & Weidman (2008).

The question of Re being large enough for one to be able to observe the aforementioned
oscillations in the (viscous) growth rate leads us to the astrophysical analogue of
the configuration examined thus far – that of a rotating self-gravitating fluid column,
which may be likened to a large-scale filamentary structure; such structures appear to
have a ubiquitous presence in the interstellar medium and are regarded as playing an
important role in the star formation process (André 2017). Chandrasekhar and Fermi
performed one of the earliest studies on the stability of a self-gravitating columnar
configuration (see Chandrasekhar & Fermi 1953; Chandrasekhar & Lebovitz 1964). Their
calculations were done in the incompressible limit when the column has a uniform
density and a finite radius, and revealed an axisymmetric instability. Analogous to the
Rayleigh–Plateau instability of the liquid column, the axisymmetrically deformed fluid
(gas) column has a lower gravitational potential energy than the original columnar
configuration for sufficiently long-wavelength perturbations and is therefore unstable to
all axisymmetric perturbations with wavelengths longer than 1.0668 times the column
radius (Chandrasekhar 1981, p. 519). Subsequently, Ostriker extended the analysis of
Chandrasekhar & Fermi (1953) to a compressible columnar configuration, evaluating the
base-state density profiles using a polytropic equation of state for different values of the
polytropic index (Ostriker 1964a). Compressibility leads to an inhomogeneous base state
with a finite radial extent, the isothermal case alone being an exception. Next, Ostriker
(1964b) analysed the effects of compressible perturbations on a homogeneous finite-radius
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cylinder (a solution of the incompressible equations). Later analyses include the stability
calculations of Stodólkiewicz (1963) and Nagasawa (1987) for the aforementioned
isothermal configuration, and those have again shown axisymmetric disturbances alone
to be unstable. On account of filamentary molecular clouds being good representations
of spiral galactic arms, and the implications of instability for formation of dense
prestellar cores, stability analyses of self-gravitation columnar configurations with or
without magnetic fields continue to garner attention (McKee & Ostriker 2007; Breysse,
Kamionkowski & Benson 2014; Motiei, Hosseinirad & Abbassi 2021).

Rotation is ubiquitous in self-gravitating filaments, and Hansen, Aizenman & Ross
(1976) were one of the first to examine the equilibrium and stability of an isothermal
and uniformly rotating cylinder. The inclusion of rotation, and the resulting conflicting
effects of rotation and self-gravitation on density stratification, introduces an unusual
feature into the equilibrium state – that of a (spatially) damped oscillatory density profile.
Hansen et al. (1976) analysed the stability of such rotating base states (of a finite radius)
to two-dimensional disturbances, and found that rotation renders cylinders, exceeding
a critical size, unstable to non-axisymmetric disturbances. Freundlich, Jog & Combes
(2014) have recently studied a polytropic rotating cylinder within the framework of a local
stability analysis. More recently, Sadhukhan, Mondal & Chakraborty (2016) have extended
the local stability analysis to polytropic rotating cylinders, with the addition of a magnetic
field, and observe that the background rotation acts to reduce the unstable growth rates.
Thus, there exist instances in the literature of rotation having conflicting roles – in terms of
both stabilizing and destabilizing self-gravitating masses. To comprehensively understand
the role that rotation plays in the stability of filamentary molecular clouds, there is an
imminent need for a global three-dimensional stability analysis of rotating polytropic
columnar configurations. In this concluding section, however, we only look at the limiting
case of an incompressible cylinder – the rotating version of Chandrasekhar and Fermi’s
seminal study referenced above. This is because our focus here is to primarily draw an
analogy between the cohesive forces of surface tension and gravitation; we show below
that a rotating self-gravitating incompressible fluid column exhibits an infinite hierarchy
of cusp catastrophes analogous to the rotating liquid column above. Although beyond the
scope of the present calculation, and despite the known singular role of compressibility
(Ostriker 1964b), we expect our findings to continue to be relevant for compressible
self-gravitating columns.

A linear stability analysis of a self-gravitating cylinder, in a state of rigid-body rotation,
readily furnishes the following dispersion relation:

α
Jn−1(α)

Jn(α)
−

Ω2

2πρG
(4 − (σ − n)2)

Ω2

2πρG
− (1 − 2Kn(k)In(k))

− n
(

1 + 2
(σ − n)

)
= 0, (3.2)

where Ω2/2πρG is the analogue of the Weber number for the self-gravitating case, in
measuring the relative importance of gravitational and centrifugal forces, G being the
gravitational constant. Let us now define

WeG = f (n, k)
Ω2

2πρG
, (3.3)

where f (n, k) = (k2 + n2 − 1)/(1 − 2In(k)Kn(k)), so that we have, in terms of WeG, a
dispersion relation identical to that in (2.6). Since f (n, k) is a monotonically increasing
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Figure 12. Comparison of the inviscidly stable islands for the surface-tension (blue) and self-gravitating
(orange) cases for (a) n = 2, (b) n = 3, (c) n = 4 and (d) n = 5. The insets in each figure show magnified
views of the first five satellite islands for the self-gravitating column.

function of k for a given n, one has a unique value of Ω2/2πρG for every WeG. The
Ω2/2πρG − k plane will then be topologically equivalent to the WeG–k plane and, thence,
to the We–k plane of the rotating liquid column seen earlier. The resulting infinite hierarchy
of cusp catastrophes for the rotating self-gravitating fluid column, and its comparison with
the hierarchy already seen above, for the rotating liquid column (with surface tension), is
shown in figure 12.

Going beyond the paradigm of Newtonian gravitation, it is worth mentioning that the
efforts of Cardoso & Dias (2006) and Caldarelli et al. (2009) who have pointed out
intriguing similarities between dynamics of black holes and fluid droplets, are again based
on the similarities between surface tension and self-gravitation. The authors demonstrate
that several aspects of the Gregory–Laflamme instability of black strings can be mapped
onto the Rayleigh–Plateau instability of a fluid cylinder. Based on the analogy between
rotating liquid drops and rotating black holes, the authors further propose an instability
of ultraspinning black holes and suggest inclusion of rotation as a possible direction for
further investigation. Although a direct analogy does not hold in this case owing to, for
instance, a dependence of the surface tension of a black hole on rotation, the results
obtained here nevertheless point to intriguing stability characteristics that might emerge
from consideration of more detailed models of rotating self-gravitating astrophysical
objects.

As a final note, our findings here apply to a rotating column of a circular cross-section.
If there is a departure from circularity, for instance, due to an imposed straining flow,
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then additional instability mechanisms come into play. Based on the known example of a
strained vortex column (see Moore & Saffman 1975; Tsai & Widnall 1976), there arises
the possibility of an instability due to a parametric resonance between eigenmodes with
different azimuthal wavenumbers; this, as opposed to an instability from the coalescence
of two modes of a given azimuthal wavenumber, as is the case analysed here.
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Appendix. Stability criteria for n = 1

For planar perturbations with n = 1, one sees from (2.3) that σ vanishes identically for all
non-zero We. Therefore, the inviscid threshold, We = n(n + 1), is of no relevance in this
case, and there can be no analogue of the different We-regimes that exist for n ≥ 2 (see
figure 4a–d). As already stated in the main text, this is expected since a planar perturbation
for n = 1 corresponds to a mere translational displacement. Further, for n ≥ 2, the pair of
planar frequencies, corresponding to the two capillary branches, are widely separated,
and symmetrically distributed approximately σ = n − 1, for small We. The motion of
the upper capillary branch down towards σ = n, with increasing We, and the subsequent
birthing of a new retrograde mode at σ = n, is essential for the infinite hierarchy of
coalescences in the σ − k plane and, thence, for the infinite hierarchy of inviscidly stable
islands in the We–k plane. In contrast, for n = 1, σ = 0 is a double root of the governing
quadratic. Thus, a second mode emanates from σ = 0, with increasing k, in addition to the
retrograde capillary mode, and may be likened to the retrograde mode above, for n ≥ 2,
that undergoes coalescences with the Coriolis modes. But, for n = 1, this mode is already
below the infinite hierarchy of retrograde Coriolis modes even at the smallest We (see
figure 13a, below), and one may only expect a merger with the lowest member of the
Coriolis hierarchy. As a result, one expects a leading stable island, but no satellite islands,
in the We–k plane.

In fact, the nature of the dispersion curves for n = 1 does not change qualitatively with
increasing We. One observes a single coalescence and, thence, a single unstable interval
bounded away from k = 0, for any finite We. Figure 13(a–d) confirms this behaviour
for We ranging from 1 to 10. As We = 10 is significantly greater than the hypothetical
threshold (n(n + 1) = 2), we do not expect this picture to alter for greater We values and
the resulting stable island in the We–k plane would thus extend to infinity (figure 13e).
This, once again, points to the absence of distinct We regimes observed for n ≥ 2. The
growth rate and range of unstable wavenumbers shown in figure 13(d) are consistent with
figure 4 of Weidman et al. (1997). Finally, from the growth rate perspective, the n = 1
mode remains subdominant for all Re greater than 1.166 (approximately). As shown by
Kubitschek & Weidman (2007a) the azimuthal wavenumber of the dominant perturbation
jumps from n = 0 to n = 2 beyond Re ≈ 1.166, and then to higher n values with increasing
We. Thus, the anomalous behaviour of n = 1 is less important in the limit of large Re as,
for instance, in the astrophysical context above.
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Figure 13. Dispersion curves for n = 1 (a–d); the solid blue curves indicate the Coriolis modes, the solid
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parts of the unstable modes. Panel (e) depicts the stable island generated as a result of coalescence of the lowest
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(e) region of stability for n = 1.
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