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SUMMARY

The suitability was assessed of various designs for field experiments investigating plant diseases
caused by airborne pathogens that can be subject to interplot interference. Use of a model to describe
such interference showed that the treatments with the most dissimilar effects on controlling the
disease should be allocated to experimental plots furthest apart in each block, in order to minimize
the interplot interference within a block. When using large square plots, rectangular blocks were more
efficient than square blocks in minimizing treatment-comparison biases due to interference between
neighbours. For rectangular blocks with the square plots side by side, less biased treatment
comparisons were obtained from designs with complete blocks than from designs with incomplete
blocks, especially when larger numbers of treatments were included in the experiment. However,
when interplot variance is taken into account, incomplete blocks may give better treatment
comparisons. Similarly, unbalanced designs composed only of incomplete blocks that yield less biased
treatment comparisons may be better than balanced incomplete block designs when interplot
variance is low. For high levels of variation, balanced incomplete block designs may be more
appropriate, as increasing the precision of the treatment comparisons becomes more important than
reducing the bias.

INTRODUCTION

The problem of correlated observations between
adjacent plots resulting from interplot interference
has been approached either by using special data
analysis techniques or by constructing experimental
designs that minimize the interference from neigh-
bouring plots. Some recent field experiments con-
ducted at Horticulture Research International (HRI)
to study airborne transmitted fungal diseases have
used square blocks, each consisting of four large
square plots. This seemed appropriate when studying
fungal diseases, as their pattern of spread is usually
around the foci of infection, which in the experiments
at HRI were the plot centres. In these experiments,
the plots are kept free of disease until a certain time
when the centre of each plot is inoculated with the
specific disease. Large square plots mean that plot
boundaries are kept at a reasonable distance from the
foci of infection. Van der Plank (1963, Chapter 23)
concluded that square plots were safer than rec-
tangular plots when considering interference. By using

* To whom correspondence should be addressed.

small blocks of large plots it is possible to ensure that
each plot is subject to infection from only a few
sources and that these sources are not too close
together. The objective of the work described in this
paper was to assess these designs and find out whether
and how they could be improved.

HRI does work on several diseases and on several
vegetable species. The treatments of current interest
are either spraying regimes or cultivars with different
levels of resistance, the overall objective being to
control diseases with minimal amounts of fungicide.
Interplot interference may occur because of localized
spread of disease, although the effect of movement of
inoculum between plots is kept to a minimum by the
use of large guard areas. The interference is likely to
be uneven because plots in which sprays are not used
or are ineffective, or plots containing susceptible
cultivars, may exert more disease pressure on neigh-
bouring plots than plots with effective treatments do.
The treatments are such that the scientists have some
prior knowledge of how effective they are and certainly
which are likely to be the most effective and which the
least effective.

The disease may appear in patches because of the
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way in which fungal spores move from plot to plot
due to variation in dispersal conditions. There is no
reason to believe that, in general, there will be a
directional effect of the wind, since the strongest
winds are often in stormy weather when the wind
swirls around. In particular, it would be very risky to
plan an experiment assuming that interference will be
mainly in the direction of the prevailing wind. We will
assume that disease from a particular source is equally
likely to spread in any direction. According to Ainsley
et al. (1995) this is the simplest form of interference.

Ainsley et al. (1995) and Azaı$ s et al. (1995) showed
that randomization on its own and nearest-neighbour
analyses are often ineffective when tackling interplot
interference and showed how these methods could
lead to very biased estimates of treatment effects. For
further discussion of the problems of interference see
Ainsley et al. (1995), Jenkyn et al. (1996) and the
references contained in these papers. Besag & Kemp-
ton (1986) presented a thorough summary of nearest-
neighbour analysis and related techniques. As these
techniques do not solve the problem of interplot
interference, experiments should be designed to ensure
that such interference is minimized. Van der Plank
(1963, Chapter 23) advised experimenters to avoid
having treatments with very different effects in
neighbouring plots. David & Kempton (1996) and
David et al. (1996) proposed the use of prior
information on the relative magnitudes of treatment
effects in order to control interplot interference due to
competition in variety trials. This should be done by
ensuring that treatments in neighbouring plots are
similar, so that interplot interference can safely be
ignored in the subsequent analysis.

In this paper we show how this general advice can
be most usefully applied to experiments of the type
performed at HRI, using small blocks, either square
or rectangular, of large square plots which are
inoculated at their centres. The designs are applicable
to a wide range of diseases and plant species. Semi-
systematic designs with a small number of replicates
of between four and eight treatments were studied. By
studying situations involving several ranges of treat-
ment effectiveness and degrees of airborne mobility to
represent the way in which different diseases may
affect crops, designs were sought that estimated
treatment differences with low bias, but acceptable
precision.

METHODS

A model for interplot interference

A treatment that successfully controls a disease will
reduce the probability of inoculum production and
this in turn will reduce the probability of disease
dispersal and hence disease development. The res-
ponses measured from field experiments are usually
the proportion of infected plants in a plot and the

1 2

1

2

1 2

d [i j ]=1

d [ij]='2

d [i j ]= 2

Fig. 1. Values of the distance, d
[ij]

, for three possible
allocations of treatments labelled 1 and 2.

number of lesions per plant in a plot. When treatments
are close together in a field experiment, the observed
proportion of infected plants in a particular plot may
be the result both of the treatment applied to that plot
and of the interference from the neighbouring plots.
The amount of interference may follow any number
of different patterns, but we decided to compare
designs by using one particular model for interference.
This model accounts only for within-block inter-
ference as we are assuming that the blocks are kept far
enough apart to minimize interblock interference so
that it can be safely ignored.

We assume that the response observed in each plot
is the proportion of plants infected (or some similar
proportion). Let p$

[i]
be the expected proportion of

infected plants observed in plot i, given that plot i is
subject to interference. Let p

[i]
be the expected

proportion of infected plants in plot i if plot i were
free from interference from neighbouring plots. Then
our model for the expected proportion of infected
plants observed is

p$
[i]

¯ p
[i]

0
j1i

0p[j]

p
[i]

1
η(d[ij])

.

The ratio p
[j]

}p
[i]

increases the expected proportion,
p$
[i]

, infected in plot i, if a less effective treatment is
applied to plot j, as p

[j]
" p

[i]
. The effect is reversed

when a better treatment is applied to plot j. Use of
p$
[j]

}p
[i]

would be more logical, but we would then
have to use simulations to compare different designs.
The formula used gives similar results and allows
direct calculations to be performed.

The neighbour exponent function, η(d
[ij]

), depends
on d

[ij]
, the distance between the centres of plot i and

plot j relative to the shortest distance between any two
plot centres, so that d

[ij]
& 1. Figure 1 illustrates

different values of d
[ij]

according to three different
allocations of two treatments labelled 1 and 2.

If treatments 1 and 2 are applied to adjoining
square plots, d

[ij]
will take its lowest value of 1. If they

are applied to diagonally neighbouring plots, d
[ij]

¯
o2, and if they have a third plot in between, d

[ij]
¯ 2.

The exponent η(d
[ij]

) determines the magnitude of the
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increase or decrease to p
[i]

, due to the treatment
applied to the neighbouring plot j. It depends on the
distance between plot centres and on the degree of
airborne mobility of the disease, i.e. how far the
spores typically travel in a given time. The ratios
(p

[j]
}p

[i]
)η(d[ij]) for every plot in the same block as

plot i are then multiplied together to determine the
adjustment to p

[i]
to allow for interference.

In theory the model used allows proportions of
infected plants " 1. However, in practice, when the
plots show near 100% infection, treatment compari-
sons are based on other variables such as the number
of lesions. Therefore this is one reasonably plausible
model of interference, although of course there are
many others. We would expect that the pattern of
results we report will be similar for other models of
interference; our method of comparing designs can be
applied for any such model.

We studied different levels of airborne mobility of
the disease including the extreme cases :

1. Under low levels of airborne mobility, treatments
applied to plots would affect only their nearest
neighbours. Thus,

η(d
[ij]

)¯ c, for d
[ij]

¯ 1

η(d
[ij]

)¯ 0, for d
[ij]

" 1

2. Under high levels of airborne mobility, treatments
applied to a plot affect other plots in the same block
in the same way, regardless of the distance between
their centres. Thus,

η(d
[ij]

)¯ c, for all values of d
[ij]

This was studied as an extreme case, even though in
reality such a situation is difficult to envisage, except
for very small blocks.

In this paper we present the results from using an
intermediate level of airborne mobility, where the
amount of interference is reduced as the distance
between plot centres increases. Thus,

η(d
[ij]

)¯ cd[ij], for all values of d
[ij]

The constant c is an arbitrary value that balances (i)
the decrease in potential infection caused by neigh-
bouring more effective treatments with (ii) the increase
due to neighbouring less effective treatments. A value
of c¯ 0±025 was found to give a plausible description
of the neighbour interference on the treatment effects
in the experiments described in the Introduction.

Appropriate values of treatment effects when no
interplot interference is present were established from
previous experimentation. Various patterns of treat-
ment effectiveness were considered and the conclu-
sions were consistent over all patterns studied. The
results presented in this paper correspond to a wide
range of treatments, from 1% to 90% of infected
plants, and an intermediate degree of airborne
mobility of the disease.

Assessment of properties of the designs

A good design has to be both efficient and valid.
Efficiency is measured by the variances of the
estimated treatment differences which depend on the
design and the within-block variation, which is
estimated by the residual mean square. High within-
block variation will lead to high standard errors of the
treatment comparisons and imprecise estimation of
treatment effects. Validity is concerned with the
expected closeness of the estimated treatment effects
to the true treatment effects and is measured by the
bias of the estimated treatment differences.

A measure of how close the estimated treatment
differences are to the true treatment differences is the
Mean Square Error (...) which is given by

...¯bias#­variance

where both bias and variance are of the estimated
treatment differences. Low values of ... will
indicate good designs. Thus, the bias and standard
error of each treatment comparison are the key
measures in the assessment of the designs.Ainsley et al.
(1995) considered only bias, but here it is particularly
important to look at the within-experiment
variance because the plots are large, in order to
reduce the effect of interference, and therefore the
total replication is low and the within-block variance
may be quite high. This is unlike the usual small plots
which allow more replication and are chosen to
minimize within-block variance.

The proportion, p, of infected plants, which is often
the variable of interest in phytopathology studies, was
used as a basis for comparing designs. Because such a
response is usually transformed before analysis of the
data, a logit transformation, log

e
[p$}(1®p$)], was

chosen in this study to calculate the biases for each
treatment comparison in every design.

Estimates of the differences between the logits for
particular pairs of treatments have different biases if
the treatments are allocated in different relative
positions in various blocks. Thus, the bias obtained
from a particular design is the average bias over all
the blocks in which this pair of treatments appears.
Therefore, for example, in a design comprising six
complete blocks where treatments labelled 1 and 2
vary in their neighbour positions, each apparent
treatment effect will have six different values according
to the treatments allocated to the neighbouring plots.
The apparent treatment effect to look at will be the
difference in the averages of the respective six values.
The bias of the estimated difference between treat-
ments 1 and 2 will be

(16 0
'

k="

logit (p$

"k
)®

1

6
0
'

k="

logit (p$

#k
)*

®²logit (p
"
)®logit (p

#
)´
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where k indicates the block from which the apparent
proportion of infected plants from the treatments is
obtained; p

"
and p

#
are the expected proportions of

infected plants from treatments 1 and 2 assuming no
interplot interference; and p$

"k
and p$

#k
are the expected

proportions of infected plants from treatments 1 and
2 in the presence of interplot interference in block k.

Different neighbour positions for pairs of treat-
ments in designs with complete blocks do not affect
the design matrix from which the standard error of
the treatment comparison is obtained. However, the
within-block variation may vary in blocks of different
shapes and sizes and this will affect the precision of
the estimated treatment comparisons.

The results in the next section compare blocks of
different shapes and sizes for square plots ; with one
exception, only square and rectangular blocks are
considered. As stated in the Introduction, square
plots have been recommended for experiments on
plant pathogens and are used at HRI. The same
method could be used to compare blocks of plots of
other shapes, such as long, narrow, rectangular plots.
Calculations based on designs with complete blocks
of four plots established the principles for minimizing
biases. Biases from comparisons amongst treatments
allocated in all possible relative neighbour positions
into square and rectangular blocks were obtained.
For simplicity, the within-block variance was assumed
to be the same regardless of the block shape. Studies
of more complex designs, comprising a larger number
of treatments, were primarily concerned with off-
setting bias against variability.

For more than four treatments, designs with
complete blocks of several shapes were compared
with incomplete balanced or near balanced designs
and with designs where treatments were allocated
only in the optimal relative neighbour positions for
minimizing biases.

RESULTS

Throughout this section, treatments will be labelled 1,
2,… in order of effectiveness, where treatment 1 is the
least effective.

Designs for four treatments – principles for
minimizing bias

The square block that was found to have the least
biased treatment comparisons was the one that
allocates treatments ranked 1–4 in the following
neighbour positions :

1 2

3 4

Such a block can be randomized in eight different
ways by interchanging diagonally adjacent treatments
and rotating through 90°.

The rectangular block with the least biased treat-
ment comparisons was:

1 2 3 4

The only alternative arrangement for maintaining
neighbour structure under randomization is :

4 3 2 1

The preliminary investigation that looked at four
treatments, with η(d

[ij]
)¯ 0±025d[ij] and p

"
¯ 0±90,

p
#
¯ 0±50, p

$
¯ 0±10 and p

%
¯ 0±01, allocated to com-

plete blocks, established the following principles for
minimizing biases :

1. Designs in which extreme treatments are allocated
to more distant plots give the lowest biases in the
estimation of treatment comparisons. For instance,
block 1 2 3 4 had a mean squared bias of 0±015 and
block 2 3 4 1 had a mean squared bias of 0±357.
2. Less biased treatment comparisons are obtained
from rectangular blocks than from square blocks
when the experimenter is certain of the order of the
treatments. The least squared bias from a square
block was 0±281 against 0±015 for the rectangle with
least bias.
3. The magnitude of the biases increases as the level
of airborne mobility increases and the interplot
interference becomes less controllable.
4. When treatments with similar effects are considered
in the same experiment, less biased treatment com-
parisons are obtained than when considering a wide
range of treatments.
5. Combinations of block types with lower biases are
advantageous over neighbour balanced designs and
over completely randomized designs.

Designs for five treatments

Complete blocks

Two block shapes were investigated, rectangular and
star-shaped. The optimal rectangular block in mini-
mizing bias was the one that allocates treatments in a
ranked manner, in agreement with results for four
treatments :

1 2 3 4 5 or 5 4 3 2 1 (C1)

The star-shaped block that showed the lowest biases
was

1

2

3

4

5

(C2)

This block allocates intermediate treatments 2, 3 and
4, in rank order, to plots forming one of the diagonals
and extreme treatments 1 and 5 to the remaining

https://doi.org/10.1017/S0021859697004826 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859697004826


Experimental designs for airborne diseases 253

Table 1. Values of I
i
for a wide range of five treatments.

I
i
is the percentage increase in σ# for the design with C2

blocks, over the design in the Table, which would give
the same M.S.E. from both designs

σ# in designs in Table

Design 1 0±1 0±01

C1 blocks 0±3 3±0 30±0

Balanced rectangle 7±8 24±2 188±0
Unbalanced rectangle 28±5 33±0 78±0

Balanced square 41±1 417±4 4120±0
Unbalanced square 51±8 265±6 2404±0

plots. Randomization can be achieved by interchang-
ing pairs of diagonally opposite treatments and
treatments within pairs in the non-central plots. This
leads to eight different layouts for the same block
type.

Incomplete blocks

The optimal neighbour arrangements for all possible
incomplete blocks of size four in square and rec-
tangular shapes are shown in Fig. 2.

The designs that were assessed were those com-
prising four blocks of type C1, four C2 blocks and five
blocks in either of these groupings :

1. I1, I2, I3, I4, I5. (Balanced design)

2. I1, I1, I2, I2, I2. (Unbalanced design).

Under the assumption that designs have the same
within-block variation, regardless of the shape, the
design with lowest ... was the one comprising
blocks of type C2. This was the design with lowest
mean squared biases and lowest mean variance of the
treatment comparisons.

However, more realistically, when blocks cover a
larger area they are expected to show a higher within-
block variation. Therefore, the design with C2 blocks
was used as a baseline design in order to calculate the
minimum increase ofwithin-block variance acceptable
without increasing its ... to that of the other
designs. This measure, denoted I

i
, is the minimum

percentage of increase in within-block variance
required when using the design with C2 blocks to get
a ... as large as any design with smaller blocks.

1   2   3   4            2   3   4   5            1   3   4   5            1   2   4   5            1   2   3   5            RECTANGLE

1   2
3   4

(I1)

2   3
4   5

(I2)

1   3
4   5

(I3)

1   2
4   5

(I4)

1   2
3   5

(I5)

SQUARE

labels

Fig. 2. Optimal neighbour arrangements for incomplete blocks.

Low values of I
i
are likely to occur in experimental

conditions when the block area is increased. Hence,
designs with smaller blocks, i.e. covering less area,
would represent a better option than designs with
bigger blocks when I

i
is small.

Table 1 shows results for three levels of σ#, the
within block variance, for the designs with smaller
blocks. In this case, η(d

[ij]
)¯ 0±025d[ij] and p

"
¯ 0±90,

p
#
¯ 0±62, p

$
¯ 0±23, p

%
¯ 0±05 and p

&
¯ 0±01.

Table 1 shows that a design with C2 blocks and
σ#% 1±003 will have a ... not greater than that of
a design with C1 blocks and σ#¯ 1. As the bigger C2
blocks are likely to have larger σ# values than the C1s,
designs with complete rectangular blocks are a better
option than star-shaped blocks when the within-block
variance is expected to be near 1 in the designs with
smaller blocks.

Designs of the same size can also be compared
against each other by subtracting their I

i
values. For

instance, when comparing balanced designs with
square blocks and balanced designs with rectangular
blocks for σ#¯ 1, the within-block variation of the
rectangular blocks would have to be increased by
41±1®7±8¯ 33±3% in order to get the same ...
as the design with square blocks. This is a rather high
value, unlikely to occur, so in general the rectangular
blocks would give treatment comparisons with lower
... than square blocks of the same size.

As the within-block variance, σ#, decreases, the
difference between balanced and unbalanced designs
with blocks of the same shape is less evident and
unbalanced designs comprising blocks which mini-
mize biases may eventually become a better option
than balanced designs. To illustrate this, compare
across the rows containing results for Balanced
rectangle and Unbalanced rectangle in Table 1. The
advantage of using unbalanced designs with blocks
that minimize biases becomes evident as the value of
σ# is reduced, because the bias then becomes more
important than the variance when calculating the
... values.

Designs for six treatments

Complete blocks

Two designs with complete blocks were assessed,
rectangular blocks of six consecutive plots on a 1¬6
array and rectangular blocks of 2¬3 plots. The
behaviour of these 2¬3 plots is considered to be
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Table 2. Values of I
i
for a wide range of six treatments.

I
i
is the percentage increase in σ# for the design with

1¬6 blocks, over the design in the Table, which would
give the same M.S.E. from both designs

σ# in designs within Table

Design 1 0±1 0±01

2¬3 11±0 109±8 1089±0
RECTANGLE

Near-balanced 13±7 29±4 186±0
Unbalanced 46±1 47±7 60±0

SQUARE
Near-balanced 36±2 254±4 2436±0
Unbalanced 57±0 156±4 1150±0

equivalent to their corresponding 90° rotations of
3¬2 rectangles. The 2¬3 layout which minimizes
bias is

1 3 5

2 4 6

In this layout, similar treatments are allocated to
plots that are as close as they can be. This result is
consistent with results for designs with four and five
treatments, for which the block types with lower
biases were the ones where treatments with similar
effects were allocated to closer plots. The optimal
1¬6 rectangular block was

1 2 3 4 5 6 or 6 5 4 3 2 1

Incomplete blocks

Near-balanced and unbalanced designs with bias-
minimizing blocks of size four were assessed for both
square and rectangular shapes. Only the optimal
designs with square blocks are presented (Fig. 3),
but rectangles can easily be constructed.

The design that showed the lowest ... is the one
with complete 1¬6 blocks and this was therefore used
as a baseline design. Table 2 shows the values of I

i

required in order to make any of the designs as
good as the optimal design with 1¬6 blocks for
p
"
¯ 0±90, p

#
¯ 0±70, p

$
¯ 0±37, p

%
¯ 0±13, p

&
¯ 0±04

and p
'
¯ 0±01.

The design comprising 2¬3 blocks appears far

1   2
3   4

3   4
5   6

2   4
5   6

1   4
5   6

1   2
3   6

1   2
3   5

1   2
3   4

1   2
3   4

2   3
4   5

2   3
4   5

3   4
5   6

3   4
5   6

Near-balanced design

Unbalanced design with bias-minimizing blocks

Fig. 3. Optimal near-balanced and unbalanced designs with incomplete square blocks.

Table 3. Resolvable designs for seven treatments. Each
design has four replicates each comprising two rec-
tangular incomplete blocks of three and four plots

respectively

Design Blocks with Blocks with
number Block four plots Block three plots

1 I 1 2 3 4 V 5 6 7
II 1 2 3 4 VI 5 6 7
III 4 5 6 7 VII 1 2 3
IV 4 5 6 7 VIII 1 2 3

2 I 1 2 3 4 V 5 6 7
II 4 5 6 7 VI 1 2 3
III 2 5 6 7 VII 1 3 4
IV 2 3 6 7 VIII 1 4 5

3 I 1 2 3 4 V 5 6 7
II 4 5 6 7 VI 1 2 3
III 2 5 6 7 VII 1 3 4
IV 1 4 5 6 VIII 2 3 7

4 I 1 2 3 4 V 5 6 7
II 4 5 6 7 VI 1 2 3
III 1 3 4 5 VII 2 6 7
IV 1 4 5 6 VIII 2 3 7

from being a better option than the one formed by
1¬6 blocks as the required increase in within-block
variance is high. For example, if the 2¬3 blocks gave
a residual mean square of 0±1, the 1¬6 blocks would
still be as good if they gave a residual mean square of
0±2. The design with 2¬3 blocks may be appropriate
to more heterogeneous experimental conditions, bear-
ing in mind that the reduction in variance has to be
big enough to compensate for the more biased
treatment comparisons. An increase to 1±110 for the
within-block variance for 1¬6 blocks would be
needed when the residual mean square for 2¬3
blocks is 1.

Unbalanced designs comprising blocks expected to
give less biased treatment comparisons are better than
near-balanced designs for residual mean squares of
0±01. As for five treatments, this is due to the increase
in relative importance of the bias with respect to the
variance when the experimental conditions are more
homogeneous. On the other hand, near-balanced
designs are better when the within-block variance is 1
or 0±1.
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Table 4. Designs for seven treatments. Each design is made up of incomplete rectangular blocks of four plots

Layout of the Designs
Design
number Block Block

1 I 1 2 3 4 V 2 3 4 5
Unbalanced II 2 3 4 5 VI 3 4 5 6
(least biased) III 3 4 5 6 VII 4 5 6 7

IV 4 5 6 7

2 I 1 2 3 4 V 2 3 4 5
Compromise II 3 4 5 6 VI 4 5 6 7

III 1 2 3 5 VII 3 4 5 7
IV 1 2 4 7

3 I 1 2 3 4 V 1 3 5 6
Balanced II 1 2 5 7 VI 1 4 6 7
(least variance) III 2 3 6 7 VII 2 4 5 6

IV 3 4 5 7

Designs for seven treatments

Only designs with rectangular blocks were considered.
The optimal complete block design is the one
comprising rectangular blocks with treatments allo-
cated in increasing or decreasing order according to
their effects. Four complete blocks of seven plots in a
1¬7 optimum array were considered,

1 2 3 4 5 6 7 or 7 6 5 4 3 2 1

Four resolvable incomplete block designs, each
consisting of four pairs of blocks of size three and
four, were assessed (see Table 3). A resolvable design
is one in which groups (in this case pairs) of blocks
contain complete sets of the treatments. The assump-
tion behind these designs is that the within-block
variance is the same for both sizes of block, but the
possibility of increased variability for bigger blocks
should be borne in mind. Design 1 comprises only
blocks with consecutive treatments, which makes it
the most unbalanced. The other three designs in Table
3 include also blocks with other pairs of treatments to
improve the balance of the design.

Designs with seven incomplete blocks, all of size
four, were also considered (see Table 4). Design 1 of
Table 4 is an unbalanced design with blocks that
achieve less biased treatment comparisons, where
the three blocks with more effective treatments are
repeated. Design 2 of Table 4 is a compromise design
between balance and bias, formed by four blocks with
lowest biases and three more that improve the balance.
Design 3 of Table 4 is a balanced incomplete block
design where the starting block in its construction was
a block already known to have low bias, 1 2 3 4.

The baseline design for the construction of Table
5 was the one with complete rectangular blocks,
1¬7. Here p

"
¯ 0±90, p

#
¯ 0±74, p

$
¯ 0±48, p

%
¯ 0±23,

Table 5. Values of I
i

for a wide range of seven
treatments. I

i
is the percentage increase in σ# for the

design with 1¬7 blocks, over the design in the Table,
which would give the same M.S.E. from both designs

σ# in designs in Table
Designs with
blocks of 1 0±1 0±01

UNEQUAL SIZE
Design 1 120±0 120±1 121±2
Design 2 33±2 44±3 155±2
Design 3 33±4 45±5 167±2
Design 4 29±6 43±7 185±2

EQUAL SIZE
Design 1 88±1 89±1 99±2
Design 2 36±4 39±7 73±2
Design 3 15±7 30±9 183±2

p
&
¯ 0±09, p

'
¯ 0±03 and p

(
¯ 0±01. The values in

Table 5 show that the lowest percentage of increase in
within-block variance required for preferring compact
blocks to blocks of size seven is " 15%. The optimum
design with incomplete blocks will vary according to
the within block variance of small blocks.

For values of residual mean square of 1 or 0±1, the
precision of a treatment comparison is a more
important issue than its bias. Therefore, balanced or
near-balanced designs should be used if the ex-
perimenter expects to get values of residual variation
within this range.

When the experimental conditions are more homo-
geneous, with values of residual mean square of 0±01
or less, the biases of the treatment comparisons are
more important than their variances, so unbalanced
designs comprising blocks that lead to lower biases
should be preferred. Amongst designs with incomplete
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blocks of equal size, the most unbalanced design 1 is
not better than the compromise design 2, as the
reduction in bias does not compensate for the
imprecision in treatment comparisons. However, for
a residual mean square of 0±001, design 1 behaves
better than design 2 with a percentage of increase of
196 against 412.

The behaviour of designs for eight treatments was
consistent with the results obtained so far.

DISCUSSION AND CONCLUSIONS

Selection of a good experimental design can reduce
interplot interference effects when airborne-trans-
mitted diseases are studied in field experiments, by
allocating treatments expected to have similar effects
to plots that are close together and extreme treatments
to plots that are further apart. We have demonstrated
how to apply the principle suggested by Van der
Plank (1963, Chapter 23), that treatments in any one
experiment should be limited to those that do not
differ greatly from each other in the amount of disease
that they allow to develop. There is also consistency
with the results of David & Kempton (1996) and
David et al. (1996), where block designs to control
interference are chosen such that all treatments in a
block belong to the same or a similar treatment
group.

Biases due to interplot interference increase as
airborne mobility increases and as the difference
between extreme treatment effects in an experiment
increases. With square plots, rectangular blocks are
more effective than square blocks in reducing biases
of treatment comparisons due to interplot interference
when their within-block variances are nearly the
same. This will depend on the experimental conditions
but, as the number of treatments increases, the
advantage of a rectangular block in reducing these
biases is more evident. Because only biases due to
interplot interference were investigated, square blocks
may still have advantages that are not evident from
this study. One of the unknown factors is the effect of
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