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The purpose of this paper is to establish some limit theorems of delayed averages for count-
able nonhomogeneous Markov chains. The definition of the generalized C -strong ergodicity
and the generalized uniformly C -strong ergodicity for countable nonhomogeneous Markov
chains is introduced first. Then a theorem about the generalized C -strong ergodicity and
the generalized uniformly C -strong ergodicity for the nonhomogeneous Markov chains is
established, and its applications to the information theory are given. Finally, the strong law
of large numbers of delayed averages of bivariate functions for countable nonhomogeneous
Markov chains is proved.

Keywords: countable nonhomogeneous markov chains, generalized c-strong ergodicity, strong
law of large numbers of delayed averages

Jel Classification: 60G60, 60F15

1. INTRODUCTION

We begin with introducing some notations that will be used throughout the paper.
Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state space

S = {1, 2, . . .} with the transition matrices

Pn = (pn(i, j)), i, j ∈ S, n ≥ 1, (1.1)

where pn(i, j) = P (Xn = j |Xn−1 = i). Let

P (m,n) = Pm+1Pm+2 · · ·Pn, (1.2)

and let p(m,n)(i, j) be the (i, j) element of P (m,n). It is easy to see that

p(m,n)(i, j) = P (Xn = j |Xm = i). (1.3)

Let f (0) be a distributional row vector, called initial distribution. Let

f (k) = f (0)P1 · · ·Pk = f (0)P (0,k), f (k)(j) = P (Xk = j).

If the Markov chain is homogeneous, {Pn, n ≥ 1} will be denoted simply by P and P (m,m+k)

be denoted as P k.
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If A = (aij) is a real matrix defined on S × S, where S = {1, 2, . . .}. The norm ‖ · ‖ of
A is defined as

‖A‖ = sup
i∈S

∑
j∈S

|aij |.

It is obvious that the definition of ‖A‖ is the norm of A as an operator on �∞ (space
of bounded sequences with sup-norm). If f = (f1, f2, . . .) is a row vector, define ‖f‖ =∑

j∈S |fj |. If g = (g1, g2, . . .)′ is a column vector, define ‖g‖ = supi∈S |mgi|. The norm
defined above satisfies the following two properties (see [1]), which will be used repeatedly
in this paper.

(a) ‖AB‖ ≤ ‖A‖ · ‖B‖ for all matrices A and B ;
(b) ‖P‖ = 1 for all transition matrix P.

Let Q be a constant transition matrix, that is, each row of this transition matrix Q is
the same. Let P = (pij) be a transition matrix. The delta coefficient of P, denoted by δ(P ),
is defined as

δ(P ) = sup
i,k

∞∑
j=1

[pij − pkj ]+, (1.4)

where [pij − pkj ]+ = max{0, pij − pkj} (see [5, p. 144]).
Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state space

S = {1, 2, . . .} with the transition matrices {Pn, n ≥ 1}. The sequence {Pn, n ≥ 1} is said
to be weakly ergodic if for each m ≥ 0,

δ(P (m,k)) → 0 as k → ∞. (1.5)

We also call the Markov chain {Xn, n ≥ 0} weakly ergodic (see [5, p. 149]).
If for each m ≥ 0

lim
n

‖P (m,m+n) − Q‖ = 0, (1.6)

then the sequence {Pn, n ≥ 1} is said to be strongly ergodic (with a constant transition
matrix Q) (see [5, p. 157]). We also call the Markov chain {Xn, n ≥ 0} strongly ergodic
with respect to Q. If the Markov chain is homogeneous with the transition matrix P, then
(1.6) becomes

lim
n

‖Pn − Q‖ = 0. (1.7)

If for each m ≥ 0,

lim
n

∥∥∥∥∥ 1
n

n∑
t=1

P (m,m+t) − Q

∥∥∥∥∥ = 0, (1.8)

then {Pn, n ≥ 1} will be called C -strongly ergodic with respect to Q (see [5, p. 184]), and
the Markov chain will also be called C -strongly ergodic with respect to Q. If the Markov
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chain is homogeneous with the transition matrix P, then (1.8) becomes

lim
n

∥∥∥∥∥ 1
n

n∑
t=1

P t − Q

∥∥∥∥∥ = 0. (1.9)

The sequence {Pn, n ≥ 1} will be called uniformly C -strongly ergodic (see [17]) if

lim
n

sup
m≥0

∥∥∥∥∥ 1
n

n∑
k=1

P (m,m+k) − Q

∥∥∥∥∥ = 0. (1.10)

Let {an, n ≥ 0} and {φ(n), n ≥ 0} be two sequences of nonnegative integers such that
φ(n) converges to infinite as n → ∞. If for all m ≥ 0,

lim
n

∥∥∥∥∥∥
1

φ(n)

an+φ(n)∑
t=an+1

P (m,m+t) − Q

∥∥∥∥∥∥ = 0, (1.11)

then {Pn, n ≥ 1} will be called generalized C -strongly ergodic with respect to Q. We also
call the Markov chain {Xn, n ≥ 0} generalized C -strongly ergodic with respect to Q.

The sequence {Pn, n ≥ 1} is said to be generalized uniformly C -strongly ergodic with
respect to Q if

lim
n

sup
m≥0

∥∥∥∥∥∥
1

φ(n)

an+φ(n)∑
t=an+1

P (m,m+t) − Q

∥∥∥∥∥∥ = 0. (1.12)

It is apparent that both C -strong ergodicity and uniform C -strong ergodicity of Markov
chains are the special cases of generalized C -strong ergodicity and generalized uniform
C -strong ergodicity of Markov chains, respectively.

An irreducible transition matrix P, of period d (d ≥ 1) partitions the state space S into d
disjoint subspaces C0, C1, . . . , Cd−1, and P d yields d transition matrices {Tl, 0 ≤ l ≤ d − 1},
where Tl is defined on Cl. If the irreducible periodic transition matrix P is finite, then each
Tl is automatically strongly ergodic. But if P is infinite, the strong ergodicity of Tl is not
guaranteed. As in [1], we shall consider an irreducible transition matrix P, of period d, in
which Tl is strongly ergodic for l = 0, 1, . . . , d − 1 only. As in [1], such a transition matrix
will be called periodic strongly ergodic. It has been proved that periodic strongly ergodic
of P implies C -strongly ergodic of P (see [1, Lem 1.1]), but the inverse is false (see [9]).

There have been some works on the weak ergodicity, the strong ergodicity, and the
C -strongly ergodicity for nonhomogeneous Markov chains. It has been proved that the
strong ergodicity implies the weak ergodicity and strong ergodicity and weak ergodicity
are equivalent when the Markov chain is homogenous (see [5, Chapter 5]). Isaacson and
Madson (see [5, Thm. V.5.1]) proved that if limn ‖Pn − P‖ = 0, where P is periodic
strongly ergodic, then the nonhomogeneous Markov chain is C -strongly ergodic. Bow-
erman, David and Isaacson (see [1]) obtained the convergence rates of Cesaro averages
(1/n)

∑n
t=1 P (m,m+t) under the condition of ‖Pt − P‖ ≤ G/tα, t ≥ 1, where P is periodic

strongly ergodic. Yang (see [16]) studied the C -strong ergodicity and uniform C -strong
ergodicity for countable nonhomogeneous Markov chains (see following Corollary 1). He
provided an example (see [17, Example 1]) to show that (3.6) can not imply (3.10) (see
below). Also from this example, one can find that the uniform C -strong ergodicity can not
be implied by the C -strong ergodicity. Isaacson and Senta (see [6]) studied the necessary
and sufficient conditions for the strongly ergodic of nonhomogeneous Markov chains. Tan
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(see [12]) studied the weak ergodicity of nonhomogeneous Markov chains. Mukhamedov
(see [10]) studied the Dobrushin ergodicity coefficient and the ergodicity of nonhomoge-
neous Markov chains. Recently, Waqas and Yang (see [14]) have studied the generalized
absolute mean strong ergodicity for the countable nonhomogeneous Markov chains.

Some works on the limit theorems for nonhomogeneous Markov chains also have been
studied. Rosenblatt (see [11]) studied some theorems concerning the strong law of large num-
bers for nonhomogeneous Markov chains. Chiang and Chow (see [2]) proved a limit theorem
for a class of nonhomogeneous Markov processes. Liu and Liu (see [7]) studied the strong
law of large numbers for functionals of countable nonhomogeneous Markov chains. Liu and
Yang (see [8]) studied the strong law of large numbers and Shannon–McMillan theorem
for finite nonhomogeneous Markov chains. Yang (see [15]) studied the Shannon–McMillan
theorem for a nonhomogeneous Markov information source. Dietz and Sethuraman (see
[4]) studied large deviations for a class of nonhomogeneous Markov chains. Yang (see [16])
studied the strong law of large numbers of bivariate functions for countable nonhomoge-
neous Markov chains under the condition limn(1/n)

∑n
k=1 ‖Pk − P‖ = 0 where P is periodic

strongly ergodic. Yang (see [17]) studied another strong law of large numbers for countable
nonhomogeneous Markov chains under the condition of uniformly C -strong ergodicity. He
also provided two examples in [17] to show that the results in [15,16] are not overlap-
ping. Zhong, Yang and Liang (see [19]) studied the Shannon–McMillan theorem for finite
asymptotic circular Markov chains. Yang, Wang and Shi (see [18]) studied strong law of
large numbers for countable asymptotic circular Markov chains. Wang and Yang (see [13])
studied the generalized entropy ergodic theorem for finite nonhomogeneous Markov chains.

As mentioned before, Yang (see [16]) studied the C -strong ergodicity, the uniform
C -strong ergodicity, and the strong law of large numbers of bivariate functions for
countable nonhomogeneous Markov chains, respectively. He also (see [15]) studied the Shan-
non–McMillan theorem for finite nonhomogeneous Markov information source. In this paper,
we first give the definition of the generalized C -strong ergodicity and the generalized uni-
form C -strong ergodicity for countable nonhomogeneous Markov chains. Then, we obtain
a theorem about the generalized C -strong ergodicity and generalized uniform C -strong
ergodicity for this Markov chains. As a corollary, we get the same theorem with Yang’s
work (see [16]) about the C -strong ergodicity and the uniform C -strong ergodicity for
countable nonhomogeneous Markov chains. We also obtain a corollary showing that our
result of generalized C -strong ergodicity and generalized uniform C -strong ergodicity for
countable nonhomogeneous Markov chains can imply more results. Moreover, we give some
applications to the information theory. Finally, we establish the strong law of large num-
bers of the delayed averages of bivariate functions for countable nonhomogeneous Markov
chains. As corollaries, the main result of [15] is deduced. We also get the strong law of
large numbers for the frequencies of occurrence of states of delayed averages for countable
nonhomogeneous Markov chains, which can not be implied by previous known results.

The approach used in this paper is different from that used in [15–19], where the strong
law of large numbers for martingale is applied. The strong law of large numbers of the
delayed averages of bivariate functions for countable nonhomogeneous Markov chains in
this paper follows from Lemma 3, which is similar to Lemma 1 in [13]. The essence of
the approach, used to prove Lemma 1 in [13], is first to construct a one-parameter class
of random variables with means 1 and then to prove the existence of a.e. convergence of
certain random variables by using Borel–Cantelli Lemma.

This article is organized as follows. In Section 2, we state some lemmas. In Section 3, we
present a theorem about the generalized C -strong ergodicity and the generalized uniform
C -strong ergodicity for the nonhomogeneous Markov chains, and give its applications to
the information theory. In Section 4, we state a strong law of large numbers of delayed
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averages of bivariate functions for countable nonhomogeneous Markov chains. In Section 5,
we provide the proofs of Lemma 4, Theorem 1, and Theorem 2.

2. SOME LEMMAS

Lemma 1 (see [5, Lem V.5.2]): Let P be a transition matrix. Assume that P is periodic
strongly ergodic with period d, and let Q be the constant transition matrix each row of which
is the left eigenvector π = (π1, π2, . . .) of P, which solves uniquely the system of equations
πP = π and

∑
i πi = 1. Then

lim
n

∥∥∥∥∥1
d

d−1∑
l=0

Pnd+l − Q

∥∥∥∥∥ = 0. (2.1)

Lemma 2: Let {an, n ≥ 0} and {φ(n), n ≥ 0} be two sequences of nonnegative integers
such that for any positive integers n,m,

φ(m + n) − φ(n) ≥ m,
φ(m + n)

φ(n)
−→ 1 (n → ∞). (2.2)

Let {bn, n ≥ 0} be a sequence of real numbers, and let b be a real number. If

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

|bk − b| = 0, (2.3)

then for any positive integer m, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

|bk+m − b| = 0. (2.4)

Remark 1: It is easy to see that if φ(n) = nα (α ≥ 1), then (2.2) holds.

Proof: By (2.2), for any m ≥ 0,

1
φ(n)

an+φ(n)∑
k=an+1

|bk+m − b| =
1

φ(n)

an+m+φ(n)∑
v=an+m+1

|bv − b|

≤ 1
φ(n)

an+m+φ(n)∑
v=an+1

|bv − b| ≤ 1
φ(n)

an+φ(m+n)∑
v=an+1

|bv − b|

=
φ(m + n)

φ(n)
1

φ(m + n)

an+φ(m+n)∑
v=an+1

|bv − b|, (2.5)

(2.4) follows from (2.2), (2.3), and (2.5). �

Lemma 3: Suppose {Xn, n ≥ 0} is a nonhomogeneous Markov chain taking values in
state space S = {1, 2, . . .} with the transition matrices (1.1). Suppose {an, n ≥ 0} and
{φ(n), n ≥ 0} are two sequences of nonnegative integers such that φ(n) converges to infinite
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as n → ∞. Let {fn(x, y), n ≥ 1} be a sequence of real functions defined on S2. If for all
ε > 0

∞∑
n=1

exp[−εφ(n)] < ∞, (2.6)

and there exists a real number 0 < γ < ∞ such that

lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E[|fk(Xk−1,Xk)|2eγ|fk(Xk−1,Xk)||Xk−1] = c(γ;ω) < ∞ a.e., (2.7)

then, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{fk(Xk−1,Xk) − E[fk(Xk−1,Xk)|Xk−1]} = 0 a.e. (2.8)

Proof: By going through the proof of Lemma 1 in [13], we observe that this lemma still
holds for the countable nonhomogeneous Markov chain. �

Lemma 4: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state space
S = {1, 2, . . .} with the transition matrices (1.1). Let {fn(x, y), n ≥ 1} be a sequence of real
functions defined on S2. Let {an, n ≥ 0} and {φ(n), n ≥ 0} be defined as in Lemma 3 such
that (2.6) holds. If there exists a real number 0 < γ < ∞ such that

M = sup
i,k

∑
j∈S

f2
k (i, j)eγ|fk(i,j)|pk(i, j) < ∞, (2.9)

then for any positive integer t, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{fk(Xk−1,Xk) − E[fk+t(Xk+t−1,Xk+t)|Xk−1]} = 0 a.e. (2.10)

The proof of this lemma can be found in Section 5.

Remark 2: It is easy to see that if {fn(x, y), n ≥ 1} is bounded, then the condition (2.9)
holds for any γ > 0.

3. THE GENERALIZED C-STRONG ERGODICITY

In this section, we will state a theorem about the generalized C -strong ergodicity and the
generalized uniform C -strong ergodicity for countable nonhomogeneous Markov chains, and
give its applications.

Theorem 1: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with transition matrices
(1.1). Let {an, n ≥ 0} and {φ(n), n ≥ 0} be two sequences of nonnegative integers such that
(2.2) holds. Let P be a periodic strongly ergodic transition matrix with period d, and let Q
be the constant transition matrix each row of which is the left eigenvector π = (π1, π2, . . .)
of P, which solves uniquely the system of equations πP = π and

∑
i πi = 1.
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(a) If

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖Pk − P‖ = 0, (3.1)

then for any positive integers m and v, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖P (m+k,m+k+v) − P v‖ = 0, (3.2)

and

lim
n

∥∥∥∥∥∥
1

φ(n)

an+φ(n)∑
k=an+1

P (m,m+k) − Q

∥∥∥∥∥∥ = 0. (3.3)

(b) If

lim
n

sup
m≥0

1
φ(n)

an+φ(n)∑
k=an+1

‖Pm+k − P‖ = 0, (3.4)

then

lim
n

sup
m≥0

∥∥∥∥∥∥
1

φ(n)

an+φ(n)∑
k=an+1

P (m,m+k) − Q

∥∥∥∥∥∥ = 0. (3.5)

The proof of this theorem can be found in Section 5.

Remark 3: Obviously if ‖Pn − P‖ → 0 (n → ∞), then (3.1) and (3.4) hold.

Corollary 1 (see Theorem 1 of [16]): Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain
with the transition matrices (1.1). Let P be a periodic strongly ergodic transiton matrix with
period d, and let Q be the constant transition matrix each row of which is the left eigenvector
π = (π1, π2, . . .) of P, which is the unique solution of equations πP = π and

∑
i πi = 1.

(a) If

lim
n

1
n

n∑
k=1

‖Pk − P‖ = 0, (3.6)

then for any positive integer m and v, we have

lim
n

1
n

n∑
k=1

‖P (m+k,m+k+v) − P v‖ = 0, (3.7)

and

lim
n

∥∥∥∥∥ 1
n

n∑
k=1

P (m,m+k) − Q

∥∥∥∥∥ = 0. (3.8)
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(b) If

lim
n

sup
m≥0

1
n

n∑
k=1

‖Pm+k − P‖ = 0, (3.9)

then

lim
n

sup
m≥0

∥∥∥∥∥ 1
n

n∑
k=1

P (m,m+k) − Q

∥∥∥∥∥ = 0. (3.10)

Proof: Letting an = 0 and φ(n) = n in Theorem 1, this corollary follows. �

Corollary 2: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with transition matri-
ces {Pn, n ≥ 1}. Let P be a periodic strongly ergodic transition matrix, and let Q be the
constant transition matrix each row of which is the left eigenvector π = (π1, π2, . . .) of P,
which solves uniquely the system of equations πP = π and

∑
i πi = 1. If

lim
n

‖Pn − P‖ = 0, (3.11)

then for any positive integer m,

lim
n

sup
m≥0

∥∥∥∥∥ 1
n

2n+n∑
k=2n+1

P (m,m+k) − Q

∥∥∥∥∥ = 0. (3.12)

Proof: Letting an = 2n and φ(n) = n in Theorem 1, it is easy to see that (3.11) implies
(3.4) and φ(n) = n satisfies (2.2), thus this corollary follows.

Next we give the applications of Theorem 1 to the information theory.
Let {Xn, n ≥ 0} be a sequence of random variables taking values in S. Let {an, n ≥ 0}

and {φ(n), n ≥ 0} be two sequences of nonnegative integers such that φ(n) converges to
infinite as n → ∞. Let H(Xan

,Xan+1, . . . , Xan+φ(n)) be the joint entropy of random vector
(Xan

,Xan+1, . . . , Xan+φ(n)) and assume that it is finite. If the limit

lim
n

1
φ(n)

H(Xan
,Xan+1, . . . , Xan+φ(n))

exists, it will be called the generalized entropy rate of the sequence of random variables
{Xn, n ≥ 0}. Denote it by H∞

an,φ(n). If an = 0, φ(n) = n, H∞
an,φ(n) will be called the entropy

rate of {Xn, n ≥ 0}(see [3, p. 63]). Denote it by H∞.
Since

H(Xan
, . . . , Xan+φ(n)) = H(Xan

) + H(Xan+1 |Xan
) + · · ·

+ H(Xan+φ(n) |Xan
, . . . , Xan+φ(n)−1). (3.13)

If {Xn, n ≥ 0} is a nonhomogeneous Markov chain, then

H(Xan
, . . . , Xan+φ(n))

= H(Xan
) + H(Xan+1 |Xan

) + · · · + H(Xan+φ(n) |Xan+φ(n)−1)

= H(Xan
) +

an+φ(n)∑
k=an+1

H(Xk |Xk−1). (3.14)
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It is easy to see that

H(Xk |Xk−1) = −
∑

i

P (Xk−1 = i)
∑

j

pk(i, j) log pk(i, j), (3.15)

where {Pn = pn(i, j), n ≥ 1} are the transition matrices of the nonhomogeneous Markov
chain, and log is the natural logarithm. �

Corollary 3: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with the initial dis-
tribution f (0) and the transition matrices (1.1). Let {an, n ≥ 0} and {φ(n), n ≥ 0} be two
sequences of nonnegative integers such that (2.2) holds. Suppose that {Pn, n ≥ 1} is gen-
eralized C-strongly ergodic with respect to the constant transition matrix Q, that is (1.11)
holds. Let

gn(i) = −
∑

j

pn(i, j) log pn(i, j), g(i) = −
∑

j

p(i, j) log p(i, j), (3.16)

gn and g be all column vectors with ith elements gn(i) and g(i), respectively. If

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖gk − g‖ = 0, (3.17)

and {H(Xan
), n ≥ 0} is uniform bound, where ‖g‖ is finite, then the generalized entropy

rate of the nonhomogeneous Markov chain exists, and

lim
n

1
φ(n)

H(Xan
, . . . , Xan+φ(n)) = −

∑
i

πi

∑
j

p(i, j) log p(i, j), (3.18)

where π = (π1, π2, . . .) is the row vector of the constant transition matrix Q.

Remark 4: If the nonhomogeneous Markov chain is finite, then {H(Xan
), n ≥ 0} is uniform

bound.

Remark 5: By this corollary, we know the generalized entropy rate of the countable
nonhomogeneous Markov chain exists and all of them are equal under some conditions.

Proof of Corollary 3: Since {Xn, n ≥ 0} is a nonhomogeneous Markov chain, then (3.14)
holds.

Since ∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

H(Xk|Xk−1) +
∑

i

πi

∑
j

p(i, j) log p(i, j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

⎡
⎣−∑

i

P (Xk−1 = i)
∑

j

pk(i, j) log pk(i, j)

⎤
⎦

+
∑

i

πi

∑
j

p(i, j) log p(i, j)

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

f (0)P (0,k−1)gk − πg

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

1
φ(n)

an+φ(n)∑
k=an+1

f (0)P (0,k−1)gk − 1
φ(n)

an+φ(n)∑
k=an+1

f (0)P (0,k−1)g

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

f (0)P (0,k−1)g − f (0)Qg

∣∣∣∣∣∣
≤ 1

φ(n)

an+φ(n)∑
k=an+1

‖gk − g‖ + ‖g‖ ·
∥∥∥∥∥∥

1
φ(n)

an+φ(n)∑
k=an+1

P (0,k−1) − Q

∥∥∥∥∥∥ . (3.19)

Since {H(Xan
), n ≥ 0} is uniform bound, then H(Xan

)/φ(n) → 0(n → 0). By (3.14), (3.19),
(3.17), and (1.11), this corollary follows. �

Corollary 4: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain with the transition
matrices (1.1). Suppose that {Pn, n ≥ 1} is C-strongly ergodic with respect to the constant
transition matrix Q, that is (1.8) holds. Let gn and g be defined as in Corollary 3. If

lim
n

1
n

n∑
k=1

‖gk − g‖ = 0, (3.20)

where ‖g‖ is finite, then the entropy rate of the nonhomogeneous Markov chain exists, and

lim
n

1
n

H(X0, . . . , Xn) = −
∑

i

πi

∑
j

p(i, j) log p(i, j), (3.21)

where π = (π1, π2, . . .) is the row vector of the constant transition matrix Q.

Proof: Letting an = 0 and φ(n) = n in Corollary 3, this corollary follows. �

4. STRONG LAW OF LARGE NUMBERS

In this section, we will establish the strong law of large numbers of delayed averages of
bivariate functions for countable nonhomogeneous Markov chains.

Theorem 2: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state
space S = {1, 2, . . .} with the transition matrices (1.1). Let {fn(x, y), n ≥ 1} be a sequence
of real functions defined on S2. Let {an, n ≥ 0} and {φ(n), n ≥ 0} be two sequences of
nonnegative integers such that (2.2) holds. Let P be a C-strongly ergodic transition matrix
with respect to the constant transition matrix Q. Let

gn(i) =
∑

j

fn(i, j)pn(i, j), (4.1)
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and g(i), i ∈ S, be another function defined on S. Let gn and g be column vectors with ith
elements gn(i) and g(i), respectively. If (2.9), (3.1), and (3.17) hold, where ‖g‖ is finite,
then

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

fk(Xk−1,Xk) =
∑

i

g(i)πi a.e., (4.2)

where π = (π1, π2, . . .) is the row vector of the constant transition matrix Q.

The proof of this theorem can be found in Section 5.

Corollary 5 (see Theorem 4 of [15]): Let {Xn, n ≥ 0} be a nonhomogeneous
Markov chain taking values in state space S = {1, 2, . . . , N} with the initial distribution
(q(1), q(2), . . . , q(N)) and the transition matrices Pn = (pn(i, j))N×N . Let fn(ω) be the
relative entropy density of {Xk, 0 ≤ k ≤ n}, that is

fn(ω) = −(1/n)

[
log q(X0) +

n∑
k=1

log pk(Xk−1,Xk)

]
. (4.3)

Let P = (p(i, j))N×N be another finite transition matrix, and assume P is irreducible. If

lim
n

1
n

n∑
k=1

|pk(i, j) − p(i, j)| = 0, ∀ i, j ∈ S, (4.4)

then

lim
n

fn(ω) = −
N∑

i=1

πi

N∑
j=1

p(i, j) log p(i, j) a.e., (4.5)

where {π1, π2, . . . , πN} is the unique stationary distribution determined by the transition
matrix P.

Proof: Let φ(n) = n, an = 0, fn(x, y) = − log pn(x, y), and γ = 1
2 in Theorem 2. Since

sup
i,k

∑
j∈S

f2
k (i, j)eγ|fk(i,j)|pk(i, j)

= sup
i,k

∑
j∈S

[− log pk(i, j)]2e(1/2)|−log pk(i,j)|pk(i, j)

= sup
i,k

∑
j∈S

[log pk(i, j)]2
√

pk(i, j) < ∞,

so (2.9) holds. Let g(i) = −∑j p(i, j) log p(i, j) and gk(i) = −∑j pk(i, j) log pk(i, j) in
Theorem 2. By (4.4) and Lemma 2 of [13], we have

lim
n

1
n

n∑
k=1

|gk(i) − g(i)| = 0, ∀ i, j ∈ S. (4.6)

If the matrices, row vectors, and column vectors are all finite, then the convergence in
norm is equivalent to the point-wise convergence. Hence, when an = 0 and φ(n) = n, (4.4)
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is equivalent to (3.1) and (4.6) is equivalent to (3.17). Since P is finite and irreducible, so
it is C -strongly ergodic. This corollary follows from Theorem 2. �

Let {Xn, n ≥ 0} be a sequence of random variables taking values in state space S =
{1, 2, . . .}. Let {an, n ≥ 0} and {φ(n), n ≥ 0} be two sequences of nonnegative integers
such that φ(n) converges to infinite as n → ∞. Let

San,φ(n)(i, ω) =
an+φ(n)∑
k=an+1

Ii(Xk), (4.7)

where Ii(j) = δji is the Kronecker δ function. It is easy to see that San,φ(n)(i, ω) is the
number of occurrence of states i in {Xan+1, . . . , Xan+φ(n)}.

What follows is the strong law of large numbers for frequency of occurrence of states
in {Xan+1, . . . , Xan+φ(n)} for countable nonhomogeneous Markov chains and can not be
implied in previous known results.

Corollary 6: Let {Xn, n ≥ 0} be a nonhomogeneous Markov chain taking values in state
space S = {1, 2, . . .} with the transition matrices (1.1). Let {an, n ≥ 0} and {φ(n), n ≥ 0}
be two sequences of nonnegative integers such that (2.2) holds. Let P = (p(i, j)) be a C-
strongly ergodic transition matrix with respect to the constant transition matrix Q. Let
San,φ(n)(i, ω) be defined by (4.7). If (3.1) holds, then

lim
n

San,φ(n)(i, ω)
φ(n)

= πi a.e., (4.8)

where π = (π1, π2, . . .) is the row vector of the constant transition matrix Q.

Proof: Letting fn(x, y) = Ii(y) (∀ n) in Theorem 2, it is easy to see that (2.9) holds for
any γ > 0, and we have

an+φ(n)∑
k=an+1

fk(Xk−1,Xk) =
an+φ(n)∑
k=an+1

Ii(Xk) = San,φ(n)(i, ω), (4.9)

and gn(l) =
∑

j Ii(j)pn(l, j) = pn(l, i). Let g(l) = p(l, i). It is obvious that (3.1) implies
(3.17) in this case. Since P = (p(i, j)) is a C -strongly ergodic transition matrix with respect
to the constant transition matrix Q, we can easily prove that each row vector of the constant
transition matrix Q is the unique stationary distribution determined by P. Hence we have

∑
l

g(l)πl =
∑

l

πlp(l, i) = πi. (4.10)

By Theorem 2, (4.9) and (4.10), this corollary follows. �

5. THE PROOFS

In this section, we will prove Lemma 4, Theorem 1, and Theorem 2.
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Proof of Lemma 4: By (2.9), we have

lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E[f2
k (Xk−1,Xk)eγ|fk(Xk−1,Xk)||Xk−1]

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

∑
j

f2
k (Xk−1, j)eγ|fk(Xk−1,j)|pk(Xk−1, j)

≤ M < ∞ a.e.

By Lemma 3, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{fk(Xk−1,Xk) − E[fk(Xk−1,Xk)|Xk−1]} = 0 a.e. (5.1)

Let gk(x, y) = E[fk+1(Xk,Xk+1)|Xk = y] in Lemma 3 and h(x) = x2eγ|x|. It is easy to
prove that h(x) is a convex function. By (2.9), Jensen inequality and smooth property
for conditional expectation, we have

lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E[g2
k(Xk−1,Xk)eγ|gk(Xk−1,Xk)||Xk−1]

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E{(E[fk+1(Xk,Xk+1)|Xk])2eγ|E[fk+1(Xk,Xk+1)|Xk]||Xk−1}

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E{h(E[fk+1(Xk,Xk+1)|Xk])|Xk−1}

≤ lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E{E[h(fk+1(Xk,Xk+1))|Xk]|Xk−1}

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E{E[h(fk+1(Xk,Xk+1))|X0, . . . , Xk]|X0, . . . , Xk−1}

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E{E[h(fk+1(Xk,Xk+1))|X0, . . . , Xk−1]|X0, . . . , Xk}

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E[h(fk+1(Xk,Xk+1))|Xk−1]

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

E[f2
k+1(Xk,Xk+1)eγ|fk+1(Xk,Xk+1)||Xk−1]

= lim sup
n

1
φ(n)

an+φ(n)∑
k=an+1

∑
i

∑
j

f2
k+1(i, j)e

γ|fk+1(i,j)|pk+1(i, j)pk(Xk−1, i)

≤ M < ∞ a.e.
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By Lemma 3, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{E[fk+1(Xk,Xk+1)|Xk] − E[E[fk+1(Xk,Xk+1)|Xk]|Xk−1]} = 0 a.e.

(5.2)
Using (5.2) and smooth property for conditional expectation, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{E[fk+1(Xk,Xk+1)|Xk] − E[fk+1(Xk,Xk+1)|Xk−1]} = 0 a.e. (5.3)

By (2.9) and Jensen inequality for the conditional expectation, for any m we have

(E[fan+m(Xan+m−1,Xan+m) |Xan+m−1])2

≤ E[f2
an+m(Xan+m−1,Xan+m) |Xan+m−1]

=
∑

j

f2
an+m(Xan+m−1, j) · pan+m−1(Xan+m−1, j)

≤
∑

j

f2
an+m(Xan+m−1, j) · eγ|fan+m(Xan+m−1,j)| · pan+m−1(Xan+m−1, j)

≤ M < ∞.

So

lim
n

1
φ(n)

E[fan+m(Xan+m−1,Xan+m) |Xan+m−1] = 0 a.e. (5.4)

Based on (5.1) and (5.4), we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{fk(Xk−1,Xk) − E[fk+1(Xk,Xk+1)|Xk]} = 0 a.e. (5.5)

By (5.5) and (5.3), we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{fk(Xk−1,Xk) − E[fk+1(Xk,Xk+1)|Xk−1]} = 0 a.e. (5.6)

By induction, (2.10) holds for all positive integer t. �

Proof of Theorem 1: Since {φ(n), n ≥ 0} satisfies (2.2), using (3.1) and Lemma 2, for any
positive integer m we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖Pm+k − P‖ = 0. (5.7)

Since

‖P (m+k,m+k+2) − P 2‖
≤ ‖Pm+k+1Pm+k+2 − Pm+k+1P‖ + ‖Pm+k+1P − P 2‖
≤ ‖Pm+k+2 − P‖ + ‖Pm+k+1 − P‖, (5.8)

https://doi.org/10.1017/S0269964819000354 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000354


SOME LIMIT THEOREMS OF DELAYED AVERAGES 311

by (5.7) and (5.8) we have for any positive integer m,

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖P (m+k, m+k+2) − P 2‖ = 0. (5.9)

By induction, (3.2) holds. Next we will prove (3.3).
Let L = [φ(n)/d], (i.e., φ(n) = Ld + r, 0 ≤ r < d), where [x] is the largest integer less

than x. Since
an+φ(n)∑
t=an+1

P (m,m+t) − φ(n)Q

=
an+Jd+r∑
t=an+1

(P (m,m+t) − Q) +
an+φ(n)∑

t=an+Jd+r+1

(P (m, m+t) − Q)

=
an+Jd+r∑
t=an+1

(P (m,m+t) − Q) +
L−1∑
j=J

d∑
k=1

(P (m, m+an+jd+k+r) − Q), (5.10)

where J<L, then∥∥∥∥∥∥
an+φ(n)∑
t=an+1

P (m,m+t) − φ(n)Q

∥∥∥∥∥∥ ≤
∥∥∥∥∥

an+Jd+r∑
t=an+1

(P (m, m+t) − Q)

∥∥∥∥∥
+

L−1∑
j=J

∥∥∥∥∥
d∑

k=1

P (m, m+an+jd+k+r) − dQ

∥∥∥∥∥ . (5.11)

Let M ≤ Jd,

L−1∑
j=J

∥∥∥∥∥
d∑

k=1

P (m, m+an+jd+k+r) − dQ

∥∥∥∥∥
=

L−1∑
j=J

∥∥∥∥∥P (m, m+an+jd+r+1−M)

(
d∑

k=1

P (m+an+jd+r+1−M, m+an+jd+r+k) − dQ

)∥∥∥∥∥
=

L−1∑
j=J

∥∥∥∥∥P (m, m+an+jd+r+1−M)

[
d∑

k=1

(P (m+an+jd+r+1−M, m+an+jd+r+k) − P k+M−1)

]

+P (m, m+an+jd+r+1−M)

[
d∑

k=1

P k+M−1 − dQ

]∥∥∥∥∥
≤

L−1∑
j=J

[∥∥∥∥∥
d∑

k=1

(P (m+an+jd+r+1−M, m+an+jd+r+k) − P k+M−1)

∥∥∥∥∥+

∥∥∥∥∥
d∑

k=1

P k+M−1 − dQ

∥∥∥∥∥
]

≤
L−1∑
j=J

d∑
k=1

‖P (m+an+jd+r+1−M, m+an+jd+r+k) − P k+M−1‖

+ (L − J)

∥∥∥∥∥
d∑

k=1

PM+k−1 − dQ

∥∥∥∥∥ . (5.12)
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So

∥∥∥∥∥∥
1

φ(n)

an+φ(n)∑
t=an+1

P (m, m+t) − Q

∥∥∥∥∥∥
≤ 1

φ(n)

∥∥∥∥∥
an+Jd+r∑
t=an+1

(P (m, m+t) − Q)

∥∥∥∥∥
+

1
φ(n)

L−1∑
j=J

d∑
k=1

‖P (m+an+jd+r+1−M, m+an+jd+r+k) − P k+M−1‖

+
L − J

φ(n)

∥∥∥∥∥
d∑

k=1

PM+k−1 − dQ

∥∥∥∥∥
≤ 2(Jd + r)

φ(n)
+

d∑
k=1

1
φ(n)

an+φ(n)∑
v=an+1

‖P (m+v+1−M, m+v+k) − P k+M−1‖

+
L − J

φ(n)

∥∥∥∥∥
d∑

k=1

PM+k−1 − dQ

∥∥∥∥∥ . (5.13)

From Lemma 1, ∀ ε > 0, and choosing sufficient large M, we have

L − J

φ(n)

∥∥∥∥∥
d∑

k=1

PM+k−1 − dQ

∥∥∥∥∥ < ε. (5.14)

As n → ∞, the first term of (5.13) converges to zero. By (3.2), the second term of (5.13) also
converges to zero. By (3.2), (5.13), (5.14) and the arbitrariness of ε, (3.3) follows. Similarly,
(3.5) follows from (3.4). �

Proof of Theorem 2: Obviously (2.2) implies (2.6). By Lemma 4, (2.10) holds. Now by (4.1)

E[fk+t(Xk+t−1,Xk+t) |Xk−1]

=
∑

i

∑
j

fk+t(i, j)P (Xk+t−1 = i,Xk+t = j |Xk−1)

=
∑

i

∑
j

fk+t(i, j)P (Xk+t = j |Xk+t−1 = i)P (Xk+t−1 = i |Xk−1)

=
∑

i

∑
j

fk+t(i, j)pk+t(i, j)p(k−1,k+t−1)(Xk−1, i)

=
∑

i

gk+t(i)p(k−1,k+t−1)(Xk−1, i). (5.15)
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Letting the elements of P t be p(t)(i, j), we obtain

∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

E[fk+t(Xk+t−1,Xk+t) |Xk−1] − 1
φ(n)

an+φ(n)∑
k=an+1

∑
i

g(i)p(t)(Xk−1, i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

∑
i

gk+t(i)p(k−1,k+t−1)(Xk−1, i) − 1
φ(n)

an+φ(n)∑
k=an+1

∑
i

g(i)p(t)(Xk−1, i)

∣∣∣∣∣∣
≤ 1

φ(n)

an+φ(n)∑
k=an+1

∣∣∣∣∣
∑

i

gk+t(i)p(k−1,k+t−1)(Xk−1, i) −
∑

i

g(i)p(k−1,k+t−1)(Xk−1, i)

∣∣∣∣∣
+

1
φ(n)

an+φ(n)∑
k=an+1

∣∣∣∣∣
∑

i

g(i)p(k−1,k+t−1)(Xk−1, i) −
∑

i

g(i)p(t)(Xk−1, i)

∣∣∣∣∣
≤ 1

φ(n)

an+φ(n)∑
k=an+1

∣∣∣∣∣
∑

i

p(k−1,k+t−1)(Xk−1, i)(gk+t(i) − g(i))

∣∣∣∣∣
+

1
φ(n)

an+φ(n)∑
k=an+1

sup
i

|g(i)| · sup
l

∑
i

|p(k−1,k+t−1)(l, i) − p(t)(l, i)|

≤ 1
φ(n)

an+φ(n)∑
k=an+1

‖ gk+t − g ‖ +
‖g‖
φ(n)

an+φ(n)∑
k=an+1

‖P (k−1,k+t−1) − P t‖. (5.16)

By (3.1) and Theorem 1, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖P (k−1,k+t−1) − P t‖ = 0. (5.17)

By (3.17) and Lemma 2, we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

‖gk+t − g‖ = 0. (5.18)

Combining (5.16), (5.17), (5.18), and (2.10), for any t we have

lim
n

1
φ(n)

an+φ(n)∑
k=an+1

{
fk(Xk−1,Xk) −

∑
i

g(i)p(t)(Xk−1, i)

}
= 0 a.e. (5.19)

By (5.19), for any N we have

lim
n

⎧⎨
⎩ 1

φ(n)

an+φ(n)∑
k=an+1

fk(Xk−1,Xk) − 1
φ(n)

an+φ(n)∑
k=an+1

1
N

N∑
t=1

∑
i

g(i)p(t)(Xk−1, i)

⎫⎬
⎭ = 0 a.e.

(5.20)
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Since ∣∣∣∣∣∣
1

φ(n)

an+φ(n)∑
k=an+1

1
N

N∑
t=1

∑
i

g(i)p(t)(Xk−1, i) −
∑

i

g(i)πi

∣∣∣∣∣∣
≤ 1

φ(n)

an+φ(n)∑
k=an+1

∑
i

∣∣∣∣∣ 1
N

N∑
t=1

g(i)(p(t)(Xk−1, i) − πi)

∣∣∣∣∣
≤ 1

φ(n)

an+φ(n)∑
k=an+1

sup
i

|g(i)| · sup
l

∑
i

∣∣∣∣∣ 1
N

N∑
t=1

p(t)(l, i) − πi

∣∣∣∣∣
= ‖g‖ ·

∥∥∥∥∥ 1
N

N∑
t=1

P t − Q

∥∥∥∥∥ , (5.21)

and P is a C -strongly ergodic transition matrix with the constant transition matrix Q, thus
we have

lim
N

∥∥∥∥∥ 1
N

N∑
t=1

P t − Q

∥∥∥∥∥ = 0. (5.22)

(4.2) follows from (5.20), (5.21), and (5.22). �
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