
784

Intangible Inventions: A History
of Software Patenting in the
United States, 1945–1985

GERARDO CON DIAZ

On March 31, 2014, at the United States Supreme Court, Justice
Stephen G. Breyer asked a lawyer named Carter G. Phillips to imagine
King Tutankhamun, the ancient Egyptian pharaoh, sitting on top of
a pyramid containing all his gold.1 Breyer instructed Philips to sup-
pose that King Tut, who had the habit of handing out vouchers for
free gold, had hired a man with an abacus to keep tabs on his wealth.
This ancient accountant was responsible for telling the king to stop
handing out vouchers as soon as the total amount of gold given away
surpassed whatever amount was initially stored in the pyramid.
Essentially, his job was to say “Stop” as soon as the difference between
the two amounts became zero or less. In this situation, Breyer explained,
King Tut had simply used a human being to implement a very simple
abstract idea: to say a word when a value reaches a limit.

© The Author 2017. Published by Cambridge University Press on behalf of the
Business History Conference.

doi:10.1017/eso.2017.36

Published online October 6, 2017

Gerardo Con Diaz is an assistant professor of Science and Technology Studies at
the University of California, Davis, and an Affiliated Fellow of Yale Law School’s
Information Society Project. He holds a PhD in History (History of Science and
Medicine) from Yale University, as well as an MPhil in History and Philosophy of
Science from the University of Cambridge (Trinity College) and a BA in Mathematics
from Harvard University. E-mail: condiaz@ucdavis.edu

I am indebted for advice and encouragement to my dissertation adviser, Daniel
Kevles, and to my dissertation committee—Naomi Lamoreaux, Mario Biagioli,
William Rankin, and Nathan Ensmenger. The research and writing for this dis-
sertation and summary were made possible by the Science and Technology
Studies Program at the University of California at Davis, the UC Davis ModLab,
the Charles Babbage Institute, the Institute of Electrical and Electronics Engineers,
the Lemelson Center for the Study of Invention and Innovation, the Business History
Conference, the Society for the History of Technology, the Special Interest Group in
Computers, Information, and Society, and the Yale Program in the History of Science
and Medicine. I am also grateful to the IEEE for allowing me to republish portions
of my work for the IEEE Annals of the History of Computing in Enterprise & Society.

	 1.  Oral argument, Alice Corporation v. CLS Bank International. https://www.
oyez.org/cases/2013/13-298 (hereafter, Oral argument, Alice Corporation).

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

mailto:condiaz@ucdavis.edu
https://www.oyez.org/cases/2013/13-298
https://www.oyez.org/cases/2013/13-298
http://crossmark.crossref.org/dialog/?doi=10.1017/eso.2017.36&domain=pdf
https://doi.org/10.1017/eso.2017.36

785Intangible Inventions

Phillips immediately realized that thinking about King Tut was essen-
tial to his success. The lawyer stood before the justices in representation
of the Alice Corporation, an Australian firm dedicated to the acquisition
of software patents for financial transactions.2 Alice had sued CLS Bank
International, a New York-based bank, for the infringement of four pat-
ents aimed at so-called electronic escrow services. These are transaction
methods wherein a computer manages payments between two parties in
order to minimize the risk that one of the parties will fail to uphold its
part of the deal. In its defense, CLS had argued that Alice’s patents were
invalid because the inventions that they described were not patent-eligi-
ble.3 Mark A. Perry, representing the bank, argued that merely requiring
a computer implementation did not render abstract ideas such as those
at the core of the Alice patents eligible for patent protection.

All the major players in the computer industry were watching.
Earlier that year, firms such as Google, Amazon, Facebook, and Netflix
had written amicus briefs arguing that Alice’s patents were improperly
broad; that is, that software patents should be limited to a “specific
way of implementing an abstract idea.”4 Microsoft, Adobe, and Hewlett-
Packard each argued that software implementations of processes and
algorithms are patent-eligible, but that Alice had failed to disclose
an implementation of this kind.5 Advocacy groups, including the
Software Freedom Law Center, the Free Software Foundation, and
the Open Source Initiative—all distinguished by their strong oppo-
sition to intellectual property protections for software—filed briefs
arguing that software comprised nothing but algorithms written “in
human-readable terms,” and that without specialized machinery, they
were altogether ineligible for a patent.6

These groups had submitted forty-two briefs in total, and Breyer
had read all of them.7 He had chosen the caricature of King Tut because

	 2.  A patent grants an inventor the right to exclude others from making or sell-
ing his or her invention. This write-up uses the term software patent in reference
to patents issued for computer programs and their implementations. It serves
as shorthand for a patent that protects a computer program.
	 3.  The term patent-eligible refers to inventions for which Section 101 of the
United States Code’s (U.S.C.) 35th title provides protection. This includes any
“new and useful process, machine, manufacture, or composition of matter, or any
new and useful improvement thereof.” §101, 35 U.S.C.
	 4.  Brief of Google Inc. et al., No. 13-298. https://www.americanbar.org/
content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_
resp_amcu_google-etal.authcheckdam.pdf
	 5.  Brief of Microsoft Corporation et al., No. 13-298. https://www.americanbar.
org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_affirm_
microsoft-etal.authcheckdam.pdf
	 6.  Brief of Software Freedom Law Center et al., No. 13-298. https://www.
americanbar.org/content/dam/aba/publications/supreme_court_preview/
briefs-v3/13-298_resp_amcu_sflc-etal.authcheckdam.pdf
	 7.  Oral argument, Alice Corporation.

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_resp_amcu_google-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_resp_amcu_google-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_resp_amcu_google-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_affirm_microsoft-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_affirm_microsoft-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_affirm_microsoft-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_resp_amcu_sflc-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_resp_amcu_sflc-etal.authcheckdam.pdf
https://www.americanbar.org/content/dam/aba/publications/supreme_court_preview/briefs-v3/13-298_resp_amcu_sflc-etal.authcheckdam.pdf
https://doi.org/10.1017/eso.2017.36

786 CON DIAZ

it helped the justice to ponder the role that a computer plays in a
financial transaction. If King Tut somehow managed to use a pro-
grammed electronic computer instead of a man with an abacus,
would the resulting financial management system be patent-eligible?
Breyer believed that it would not, and the other eight justices agreed.
On June 14, 2014, the Supreme Court handed down a unanimous
decision in favor of CLS. The decision, delivered by Justice Clarence
Thomas, favored CLS by ruling that requiring a generic computer
implementation did not render an abstract idea eligible for patent
protection.8

Since then, industry and legal commentators have noted that the
country has entered a new era in the history of software patenting—
one in which, as one blogger for the American Bar Association put it,
it is now “open season on these patents.”9 Hundreds of writers have
taken on the task of speculating what the future of software patenting
in the United States will look like in the aftermath of Alice. Software
firms might now turn to copyright law and trade secrecy more eagerly
than ever before, or they might entirely abandon traditional intellectual
property (IP) protections such as patents and copyrights. Perhaps pat-
ent agents will need to develop entirely new ways of drafting patent
applications, at least until courts and the Patent Office cease to inter-
pret Alice as an indictment on what software patenting had become.
Perhaps license agreements will become even longer. The industry
will continue to thrive, but it is unclear what it will mean to own a
program in this new legal environment.

Despite this plentiful attention, several key questions have so far
remained unanswered: How and why did program makers start secur-
ing patents in the first place? How have patents, and IP protec-
tions more generally, shaped the American computing industry? What
have terms such as “software” and “software patents” meant over the
years? More generally, what does the interface between the computing
industry and the law reveal about the history of software?

My doctoral dissertation, “Intangible Inventions,” answers these
questions by arguing that the commercial, legal, administrative, and
conceptual problems borne out of the patent protection of computer
programs has shaped the emergence of software as a commodity,
an invention, and a creative work. This argument stands at the inter-
section of the histories of technology, business, and law, and it is
grounded on my study of corporate and federal archival materials,
trade literature, oral histories, and an assortment of rare books and
manuscripts.

	 8.  Alice v. CLS. http://www.supremecourt.gov/opinions/13pdf/13-298_7lh8.pdf
	 9.  Seidenberg, “Business-Method.”

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

http://www.supremecourt.gov/opinions/13pdf/13-298_7lh8.pdf
https://doi.org/10.1017/eso.2017.36

787Intangible Inventions

This summary sketches four key arguments that stand at the dis-
sertation’s core. In the form of three chronologically overlapping
vignettes and one concluding reflection, these arguments illustrate
how business history enables scholars to connect legal history with
the history of computing. A substantially revised and enriched version
of this work will be available (after spring 2019) in a book that I am
currently writing for Yale University Press.10

Argument 1: The early patent protections available to
computer programs hinged on the notion that code is
equivalent to hardware

In 1946, after leaving the Manhattan Project, a mathematician named
Richard Hamming began working on Bell Telephone Laboratory’s proj-
ects on telephone switching.11 He specialized in the use of computers
to transform numerical data from one number system to another on a
relay machine, the Mark V, developed at Bell. This machine had the
habit of aborting its programs as soon as it encountered a processing
error, so Hamming devised an error correcting code that would enable
the Mark V to correct these errors on the go and avoid a complete
stop.12

Hamming believed that his code was nothing more than mathemat-
ical algorithms, which rendered it ineligible for patent protection
because of the so-called mental steps doctrine. This doctrine deemed
that “mental steps,” such as computing, comparing, and observing,
are not subject matter eligible for a patent. However, Bell’s lawyers
disagreed. In 1948, they asked an electrical engineer named Bernard
Holbrook to make diagrams that disclose the electrical circuits that
Hamming’s program produced in the computer.

The lawyers then filed an application for a patent called “Error
Detecting and Correcting System.”13 This patent was aimed not at
Hamming’s codes, per se, but at a machine constructed according
to the circuitry diagrams that Holbrook had produced. This is the first
instance of the successful implementation of a patent-drafting technique

	 10.  I have also published three articles based on my doctoral dissertation.
See Con Diaz, “Text in the Machine”; Con Diaz, “Contested Ontologies of Software”;
Con Diaz, “Embodied Software.”
	 11.  Portions of the text in this first section are drawn from Con Diaz, “Embodied
Software.” They are reprinted with permission from IEEE Annals of the History of
Computing.
	 12.  The observations on the Mark V’s operation are grounded on Thompson,
Error-Correcting Codes.
	 13.  Richard Hamming and Bernard Holbrook, “Error-Detecting and Correcting
System,” US Patent 2,552,629, filed January 11, 1950, and issued May 15, 1951.

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

788 CON DIAZ

that lawyers in the 1960s would call “embodying software”—that
is, securing patent protection for a computer program by patenting
a machine that worked in accordance with the program instead of
attempting to patent the program itself.

This technique was grounded on the fact that in the late 1940s,
the act of programming a computer could be a very physical act. For
instance, the work of the women who programmed the ENIAC (the
most notable electronic computer) consisted, literally, of rewiring the
computer’s circuits so that the machine could execute whichever pro-
gram interested them.14 More important, the aim of Bell Labs was not
to develop and lease computer programs but to perform the research
and development necessary to maintain and strengthen the Bell Sys-
tem.15 This means that the impulse to secure patents for programs
emerged not from the desire to profit from the programs themselves
(as scholars used to assume) but instead from the patenting practices
of the telecommunications industry.

Starting in the 1950s, Bell’s patent-drafting technique spread to orga-
nizations ranging from oil and aerospace firms to hardware manufactur-
ers. For the next two decades, it allowed their lawyers and patent agents
to protect programs that controlled oil refineries, scientific instruments,
automatic weapons systems, and, of course, data processing equipment.

Argument 2: The possibility of securing patent protections
for software enabled the emergence and early growth of the
software products industry

For many years, historians of computing have identified Martin
Goetz’s flowcharting application, AUTOFLOW, as the first software
product, that is, the first computer program that a firm actually sold
to its clients.16 These historians highlight the commodification of
AUTOFLOW as Applied Data Research’s (ADR) quick response to a
business opportunity in the mid-1960s. No one was selling software,
so selling a flowcharting program—one of the most widely needed
applications at the time—was an appealing idea.17

In contrast, “Intangible Inventions” shows that firms such as ADR
embraced the idea of selling their programs not just because there
was a demand for them but also because their managers and lawyers

	 14.  Haigh, Priestley, and Rope, ENIAC in Action; Light, “When Computers Were
Woman.”
	 15.  Millman, History of Engineering and Science.
	 16.  See, for instance, Campbell-Kelly, Airline Reservations.
	 17.  Excerpts from this section are drawn from Con Diaz, “Embodied Software.”

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

789Intangible Inventions

started to believe in what I call the “gospel of software patenting.”
By this I mean the promise that patent law would give them the legal
protections necessary to start selling physical copies of their pro-
grams and making inroads against IBM’s market dominance without
the fear of piracy.

In the mid-1960s, IBM announced its System/360 line of mainframe
computers.18 This was IBM’s most popular machine until the 1980s.
It was a so-called general-purpose computer—one that could be pro-
grammed to meet the needs of a broad range of users. At the time,
IBM and other hardware makers distributed their programs by bun-
dling them; that is, by providing them free of charge with hardware
purchases or leases. The bundles for the System/360 included a wide
variety of programs that performed commercial, scientific, accounting,
and engineering functions.

The popularity of the System/360, paired with a general sense of
dissatisfaction with IBM’s software for it, created a demand for low-
cost alternatives to IBM’s programs. However, software companies at
the time did not normally sell their programs. Instead, they developed
them through special contracts or leased whichever ones appeared to
be in high demand. Aiming to profit from the System/360’s popularity,
managers at these firms started to wonder if they could actually sell
physical copies. However, they were hesitant to do so because they
believed that a sales-based business model would require them to
forego the anti-piracy clauses that they normally included in their
leasing or custom-development contracts.

As firms such as IBM and RCA gravitated toward the idea of selling
programs, so did many patent lawyers who used to work for hardware
manufacturers and industrial research laboratories. These lawyers
had eclectic backgrounds that included scientific and technical train-
ing, and they were very familiar with Bell’s technique of disclosing
programs as hardware. Among these lawyers was Morton Jacobs, who
once worked for RCA, and who in the mid-1960s started attending
software conferences and trade associations. There, he delivered talks
to software firm managers to explain that patent law would enable
them to abandon leasing contracts and sell their programs without
fear of piracy.

One of the people who met Jacobs at one of these venues was
Marty Goetz, from ADR. They became good friends, and they secured
the patents that scholars have identified as the first software patents.
What is more important is that Jacobs and Goetz filed a patent for

	 18.  For the standard narrative on the System/360, see Campbell Kelly et al.,
History of the Information Machine.

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

790 CON DIAZ

AUTOFLOW and started selling copies of it as widely as possible
(see Figure 1). They were not stellar, but they did prove to ADR and
its competitors that if they tried to sell their software, plenty of peo-
ple would buy it. Hardware and software firms soon started filing
patents for the programs they wished to sell. By the 1970s, the Patent
Office and the courts were handling more applications aimed at com-
puter programs than ever before.

Argument 3: The political economy of the computing
industry has yielded mutually incompatible conceptions of
hte nature of software as an invention

One of the main organizing principles of “Intangible Inventions” is
what I term ontologies of software—by which I mean conceptions of
the nature of software as an invention.19 Legal scholars have shown
that many judges who consider software patents have grounded their
rulings on whichever ontology of software they tend to favor, and
that this grounding can determine the outcome of a trial. In contrast,
“Intangible Inventions” shows that ontologies of software are far more
than just the byproduct of the idiosyncrasies or legal inclinations of

Figure 1  Autoflow sales (in $ millions).

Source: Created by the author, based on data at the Charles Babbage Institute.

	 19.  See Con Diaz, “Contested Ontologies of Software”; Con Diaz, “Text in the
Machine.”

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

791Intangible Inventions

specific judges. They are, in fact, central components of the long-term
legal and business strategies of computing firms. Each ontology of
a software program is tied to the aims and needs of the firms that
advances it.

Consider, for instance, the relationships between IBM and small
software firms.20 In 1969 IBM implemented its so-called unbundling:
it started selling its programs instead of distributing them free of
charge with the purchase or lease of hardware. Almost immediately,
it launched a series of efforts aimed at driving smaller firms out of
the market for software products. IBM’s managers agreed that software
patenting ran against their company’s best interests. If software firms
intensified their patenting efforts, then IBM might need to spend
millions of dollars in licensing fees in order to develop programs
that may or may not sell well. Because software firms were highly
litigious, there was also a possibility that IBM would need to pay
large sums in settlements or have the release of one of their programs
delayed by a court.

To prevent either situation, IBM’s lawyers set out to eliminate the
patent protection of computer programs in all its forms. For the next
decade, they argued in courts, in front of Congress, and at trade asso-
ciation meetings that software is nothing but text—something akin to
a book or pamphlet and therefore the proper subject of copyrights,
not patents. However, lawyers at software firms knew that copyrights
offered weak protection because they were limited to the specific
sequence of words and symbols that a programmer would write.
For this reason, whenever IBM delivered a brief or testimony on the
textual nature of software, the software firms’ lawyers would follow
by arguing that software is, in fact, a machine—a tangible object more
similar to a car than to a book and therefore patent eligible.

More generally, Figure 2 maps out the ontologies of software that
“Intangible Inventions” identifies as central to the history of software
patenting. The purely textual or purely mechanical natures described
above are the bottom two vertices. The vertex on the top corresponds
to the notion of programs as mathematical algorithms, which math-
ematicians such as Hamming often held. This algorithmic conception
became especially popular in the 1980s because the personal comput-
ing revolution allowed manufacturing firms of all sizes to computer-
ize their industrial processing techniques. These firms took no issue
with the claim that software was an algorithm because they aimed to
secure patent protections for programs only indirectly, as one more
element in a system of manufacture.

	 20.  See Campbell-Kelly et al., Computer; Usselman, “Unbundling IBM”;
Campbell-Kelly, Airline Reservations.

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

792 CON DIAZ

Industrial research laboratories generally moved somewhere in the
middle region. Their aim was not to sell any programs but to reduce
their licensing costs without precluding the possibility of patenting
their own software. Their lawyers often decided which ontology to
advance based on the case at hand, but most of the time they argued
that programs were hybrid technologies—part text and part machine
or a text that became a mechanical implementation of an algorithm.

There is one important exception to this diagram. It relates to the
computer hobbyists of the late 1970s: the people who tinkered with
computers at places such as the Homebrew Computer Club and the
People’s Computer Company. Some of these hobbyists would become
keen users of software patents and copyrights, but many of them
would soon gravitate toward the ideals of free and/or open source
software known today. Leading members of this second group con-
sidered each program to be a part of a series of layered routines and
interfaces, not unlike an onion. At the core of the onion is the com-
puter’s circuitry; on its outside is the interface that enables a user
to operate it, and in the middle are the many programs that mediate
between a user’s experience and the machine itself.

Figure 2  Schematic representation of the main ontologies of software central
to the patent protection of computer programs until the 1980s.

Source: Created by the author, based on his doctoral dissertation.

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

793Intangible Inventions

This conception was central to the hobbyists’ views on intellectual
property. Indeed, they considered the sale and intellectual property
protection of programs to be a great danger because corporate control
of even one layer of the onion could preclude the free and unabated
interaction between humans and machines.

Argument 4: The issues surrounding software patenting today
are the outcome of a slow evolution of patentable subject
matter that has been taking place for almost seventy years

From the 1940s to the 1990s, the Patent Office and courts at all levels
handed down hundreds of interrelated decisions that bear on the
patent protection of computer programs. Legal scholars and com-
mentators have mined the web of legal reasoning that these deci-
sions created in search of a culprit or a hero—a court decision, or
perhaps a cluster of decisions, that enable software makers today
to obtain very broad protection for their programs. More recently,
news outlets often report how software patents run against the patent
system’s intended purpose of promoting innovation and encourage
some firms to become litigation engines.

In contrast, “Intangible Inventions” shows that there is no single
historical moment—let alone a recent one—to point to in order to
support or oppose software patenting. This is neither a story of how a
particular court or company suddenly ruined the system nor how
courts systematically sided with big businesses to the detriment
of users or small firms. Instead, it is the story of how people in a rap-
idly changing technological environment negotiated what software
is and what it means to own and commodify it. In the process, they
caused a slow expansion of what is now considered to be patent-
eligible inventions and of the language that software makers can use
to describe their work.

In its book form, my work will include not just the arguments
above but also analyses of the international politics that influenced
software patenting in the United States, the advocacy work against
patents and certain forms of copyrights by proponents of free and
open source software, the relationships between internet technologies
and American patent law in the late twentieth century, and the impact
of very recent cases such as Alice v. CLS on the contemporary software
industry. Despite its broader geographic, chronological, and legal
scope, this book will share with the dissertation one major lesson:
the history of program making has carried with it a history of patent
drafting, and their joint development has slowly transformed our
understanding of software as something to be made, owned, and sold.

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/eso.2017.36

794 CON DIAZ

Bibliography of Works Cited

Books

Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog:
A History of the Software Industry. Cambridge, MA: MIT Press, 2003.

Campbell-Kelly, Martin, William Aspray, Nathan Ensmenger, and Jeffrey Yost.
Computer: A History of the Information Machine. Colorado: Westview Press,
2013.

Haigh, Thomas, Mark Priestley, and Crispin Rope. ENIAC in Action: Making
and Remaking the Modern Computer. Cambridge, MA: MIT Press, 2016.

Millman, S. (ed.). A History of Engineering and Science in the Bell System:
Communications Sciences (1925–1980). AT&T Bell Laboratories, 1984.

Thompson, Thomas. From Error-Correcting Codes through Sphere Packings
to Simple Groups. New York: Carus, 1984.

Articles, Book Chapters, Blogs

Con Diaz, Gerardo. “Contested Ontologies of Software: The Story of Gottschalk v.
Benson, 1963–1972.” IEEE Annals of the History of Computing 38, no. 1
(January–March 2016): 23–33.

———. “Embodied Software: Patents and the History of Software Develop-
ment, 1946–1970.” IEEE Annals of the History of Computing 37, no. 3
(July–September 2015): 8–19.

———. “The Text in the Machine: American Copyright Law and the Many
Natures of Computer Programs, 1974–1978.” Technology & Culture 57,
no. 4 (October 2016): 753–779.

Light, Jennifer. “When Computers Were Woman.” Technology and Culture
40, no. 3 (July 1999): 455–483.

Seidenberg, Steven. “Business-Method and Software May Go through the
Looking Glass after Alice Decision.” ABA Journal (blog), February 1, 2015.
http://www.abajournal.com/magazine/article/business_method_and_
software_patents_may_go_through_the_looking_glass_after

Archives

Charles Babbage Institute, University of Minnesota, Minneapolis, MN.

Court Cases

Alice Corporation Pty. Ltd. v. CLS Bank International et al., 573 U.S.__134 S.
Ct. 2347 (2014).

https://doi.org/10.1017/eso.2017.36 Published online by Cambridge University Press

http://www.abajournal.com/magazine/article/business_method_and_software_patents_may_go_through_the_looking_glass_after
http://www.abajournal.com/magazine/article/business_method_and_software_patents_may_go_through_the_looking_glass_after
https://doi.org/10.1017/eso.2017.36

