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Abstract

We prove the strong Suslin reciprocity law conjectured by A. Goncharov. The Suslin
reciprocity law is a generalization of the Weil reciprocity law to higher Milnor
K-theory. The Milnor K-groups can be identified with the top cohomology groups
of the polylogarithmic motivic complexes; Goncharov’s conjecture predicts the exis-
tence of a contracting homotopy underlying Suslin reciprocity. The main ingredient
of the proof is a homotopy invariance theorem for the cohomology of the polyloga-
rithmic motivic complexes in the ‘next to Milnor’ degree. We apply these results to
the theory of scissors congruences of hyperbolic polytopes. For every triple of rational
functions on a compact projective curve over C we construct a hyperbolic polytope
(defined up to scissors congruence). The hyperbolic volume and the Dehn invariant of
this polytope can be computed directly from the triple of rational functions on the
curve.
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1. Introduction

1.1 Search for motivic complexes
For an arbitrary field F and integers n and m, Beilinson [Bei87] suggested a definition of motivic
cohomology groups Hn(F, Q(m)) as appropriate pieces of higher algebraic K-theory groups,
defined earlier by Quillen. In several cases (n = m and n = 1, m = 2) Suslin [Sus85, Sus91]
proved that these groups could be identified with the cohomology groups of very explicit com-
plexes. For the case n = m this implies an isomorphism between motivic cohomology and Milnor
K-theory.
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One may hope that this construction can be generalized to arbitrary integers n and m. This
leads to a definition of very explicit complexes (polylogarithmic motivic complexes), whose coho-
mology groups conjecturally coincide with rational motivic cohomology groups; see [Gon95b].
The beauty and elegance of this construction come with a price: proving functoriality in F is
very hard. Difficulties already exist in the case of Milnor K-theory, which we will discuss in detail
below.

The main goal of this paper is to establish existence of norm maps for the cohomology groups
of polylogarithmic motivic complexes for the case n = m − 1, namely the degree ‘next to Milnor
K-theory’. This implies some corollaries, including the strong Suslin reciprocity law conjectured
by Goncharov [Gon05, p. 53 and Conjecture 6.2]. We will also formulate an application to
hyperbolic scissors congruence theory, which was the author’s original motivation behind this
project.

1.2 Main definitions and results
Let A be an abelian group. Denote by AQ = A ⊗Z Q its rationalization.

Let F be an arbitrary field. We will associate several Q-vector spaces with F . We start with
F×

Q := F× ⊗Z Q: the multiplicative group of a field, made rational. We have an exact sequence

0 −→ R1(F ) −→ Q[F ]1 −→ F×
Q −→ 0,

where Q[F ]1 is a Q-vector space freely generated by vectors [p]1 for p ∈ P1
F = F ∪ {∞} subject to

the relations [0]1 = [1]1 = [∞]1 = 0. The subscript 1 in the symbol Q[F ]1 is only for bookkeeping
and refers to the motivic weight. The subspace R1(F ) is generated by elements [x1, x2]1 = [x1]1 +
[x2]1 − [x1x2]1. These symbols satisfy the following cocycle relation:

[x1, x2]1 + [x1x2, x3]1 = [x1, x3]1 + [x1x3, x2]1. (1)

Next, we define the second Bloch group1 B2(F )Q as the cokernel of a map

R2(F ) −→ Q[F ]2.

Here the vector space Q[F ]2 is defined just as Q[F ]1 is defined and the space R2(F ) is freely
generated by the symbols [x1, x2]2, whose image in Q[F ]2 equals the sum

[x1]2 + [x2]2 + [x3]2 + [x4]2 + [x5]2,

where the terms xi satisfy the following 5-periodic recurrence:

xn+1 =
1 − xn

xn−1
.

Explicitly,

x3 =
1 − x2

x1
, x4 =

x1 + x2 − 1
x1x2

, x5 =
1 − x1

x2
.

For some values of x1 and x2 in the formulas above an indeterminate term of the form 0/0 or
∞/∞ may appear. In this case we omit such terms in the formula for the map R2(F ) −→ Q[F ]2.

1 The name Bloch group was used by Suslin [Sus91] for the kernel of the map δ : B2(F ) −→ Λ2F× discussed below.
We use the terminology of [Gon95b], where the group B2(F ) was called the Bloch group, and its higher analogues
Bn(F ) were introduced and called higher Bloch groups.
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We will denote the image of [x]2 ∈ Q[F ]2 in B2(F )Q by {x}2. It is easy to see that the following
relations hold in B2(F )Q:

{a}2 + {1 − a}2 = 0,

{a}2 +
{

1
a

}
2

= 0,

{a}2 − {b}2 +
{

b

a

}
2

−
{

1 − a−1

1 − b−1

}
2

+
{

1 − a

1 − b

}
2

= 0.

(2)

The third relation is called the five-term relation and is often used in defining B2(F ).

Remark. The definition above is motivated by the fact that for F = C the map

L2 : B2(C) −→ R

sending [x]2 to the Bloch–Wigner dilogarithm L2(x) is well-defined, thanks to Abel’s equation
for the dilogarithm; see [Gon95a]. We omit the rationalization sign, because B2(C) is uniquely
divisible; see [Sus91, Remark 5.1].

The following complex B(F, 2) is called the weight-two polylogarithmic complex :

B2(F )Q
δ−→ Λ2F×

Q ,

where δ{x}2 = (1 − x) ∧ x. The fact that δ annihilates the five-term relation can be checked by
a direct computation:

δ

( 5∑
i=1

{xi}2

)
=

5∑
i=1

(1 − xi) ∧ xi =
5∑

i=1

(xi−1xi+1) ∧ xi =
5∑

i=1

xi−1 ∧ xi −
5∑

i=1

xi ∧ xi+1 = 0.

Conjectures of Goncharov [Gon95b, p. 5 and Conjecture B] imply that the vector spaces
F×

Q and B2(F )Q are the first two graded components of a conjectural graded Lie coalgebra
LF , the Lie coalgebra of mixed Tate motives over F . The category of finite-dimensional graded
corepresentations of LF should be equivalent to a conjectural abelian category of mixed Tate
motives over F . The cohomology of the Chevalley–Eilenberg complex of LF in each graded
component should coincide with rational motivic cohomology groups of the field F :

H i([Λ•LF ]j , Q) = H i
M(F, Q(j)).

This suggests the existence of a very explicit presentation for motivic cohomology groups. The
above is known for i = j = n > 0: the corresponding cohomology of LF is equal to the cokernel
of the map

B2(F )Q ⊗ Λn−2F×
Q

δ−→ ΛnF×
Q ,

which coincides with the rationalized Milnor K-theory of F . It follows from the results of Suslin
[Sus85] that

KM
n (F ) ⊗ Q = Hn

M(F, Q(n)).

Results of Goncharov [Gon94] suggest that the third graded component of LF should be gen-
erated by elements [x]3 ∈ Q[F ]3 for x ∈ P1

F subject to the relations representing functional
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equations for the single-valued version of the classical trilogarithm function L3, defined in
[Gon95b]. This motivates the introduction of truncated polylogarithmic complexes B2(F, n):

[B2(F )Q ⊗ Λn−2F×
Q ]t

δ−→ ΛnF×
Q ,

where the first term is defined as the cokernel of the map

Q[F ]3 ⊗ Λn−3F×
Q

δ−→ B2(F ) ⊗ Λn−2F×
Q

sending [x]3 ⊗ y3 ∧ · · · ∧ yn to {x}2 ⊗ x ∧ y3 ∧ · · · ∧ yn.

Conjecture 1.1 (Goncharov). For an arbitrary field F and n ≥ 2, the kernel of the map

δ : [B2(F )Q ⊗ Λn−2F×
Q ]t −→ ΛnF×

Q

is isomorphic to the motivic cohomology group Hn−1
M (F, Q(n)).

This is known for n = 2 thanks to the work of Suslin [Sus91]. We will denote this kernel by
Hn−1

G (F, Q(n)). Our main result is the following theorem.

Theorem 1.2. Let k be an arbitrary field and n ≥ 3. Then the following sequence is exact:

0 −→ Hn−1
G (k, Q(n)) −→ Hn−1

G (k(t), Q(n)) ⊕∂P−→
⊕

P∈A1
k

Hn−2
G (kP , Q(n − 1)) −→ 0.

Here kP is the residue field at the point P ∈ A1
k. The residue maps ∂P will be defined below.

We will formulate and prove a similar statement for Milnor K-theory, which was used by Bass
and Tate [BT73] and by Suslin [Sus79] to construct norm maps in Milnor K-theory. Their
construction works in our case as well.

Corollary 1.3. Let F be a perfect field. For every finite field extension L/F there is a norm

homomorphism

NmL/F : Hn−1
G (L, Q(n)) −→ Hn−1

G (F, Q(n))

that makes the functor Hn−1
G (−, Q(n)) into a Rost cycle module as defined in [Ros96].

This implies the following conjecture of Goncharov [Gon05, p. 53 and Conjecture 6.2]:

Corollary 1.4 (Strong reciprocity law). Let X be a compact smooth algebraic curve over C.

For every n ≥ 3 the map

Res : B2(C(X), n) −→ B2(C, n − 1)

is null-homotopic. Here the total residue map Res is a sum over all points P ∈ X of local residue

maps ∂P .

Remark. For curves of genus g ≤ 1, Goncharov found a formula for a contracting homotopy
[Gon05, Theorems 6.5 and 6.14]. For curves of higher genus explicit construction of h remains
unknown.

To formulate the next corollary, we recall some notions from the theory of scissors congru-
ences. Let P(H3) be a Q-vector space generated by classes of hyperbolic polytopes modulo the
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scissors congruence equivalence relation. The so-called Dehn invariant

D : P(H3) −→ R ⊗ R/2πZ

associates to a polytope the sum
∑

e∈E le ⊗ αe, where E is the set of edges of a polytope, le is
the length of the corresponding edge and αe is the corresponding dihedral angle. There is a chain
map S[i],

B2(C)

S[1]

��

�� Λ2C×
Q

S[2]

��

P(H3) �� R ⊗ R/2πZ

(3)

where map S[1] : B2(C) −→ P(H3) sends an element {z}2 to the scissors congruence class of the
ideal tetrahedron with vertices ∞, 0, 1, z and

S[2]
(
(1 − z) ∧ z

)
= −(1 − z) ∧ z + (1 − z̄) ∧ z̄

= 2
(|z| ⊗ arg(1 − z) − |1 − z| ⊗ arg(z)

) ∈ R ⊗ R/2πZ. (4)

Corollary 1.5. Let X be a smooth projective curve over C. Then there is a map

h : Λ3C(X)× −→ P(H3)

such that for any three meromorphic functions f1, f2, f3 the Dehn invariant of a polytope h(f1 ∧
f2 ∧ f3) is equal to (S[2] ◦ Res)(f1 ∧ f2 ∧ f3) and the hyperbolic volume of the polytope h(f1 ∧
f2 ∧ f3) is given by the convergent integral

1
2πi

∫
X(C)

r2(f1, f2, f3),

where the form r2(f1, f2, f3) is equal to

1
6

∑
σ∈S3

(−1)σ
(
log |fσ(1)|d log |fσ(2)| ∧ d log |fσ(3)| − 3 log |fσ(1)|d arg(fσ(2)) ∧ d arg(fσ(3))

)
.

Remark. The statement of the Corollary 1.5 was the original motivation behind this project.
It was prompted by scissors congruence properties of Schläfli orthoschemes, discovered by
J.-P. Sydler [Syd65]. Hyperbolic orthoschemes appear in the image of the map h from Corollary
1.5 for X = P1.

1.3 The structure of this paper
Towards proving Theorem 1.2, we start by discussing the classical proof of an exact sequence
for Milnor K-theory: Theorem 2.1. There is nothing original in our exposition, but the proof of
Theorem 1.2 is based on it. This proof is based on the properties of a certain filtration, which we
will use extensively in the proof of Theorem 1.2. We do not write in detail proofs of Corollaries
1.3 and 1.4 because they are not different from the Milnor K-theory case, which is explained in
[Sus79]. Corollary 1.5 follows from results of [Gon05] and [Dup01].

Our proof of the main result occupies §§ 3–7. In § 3 one can find the proof modulo two key
statements: Lemmas 3.3 and 3.4. Proofs of Lemma 3.3 and 3.4 are based on the study of the
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coresidue map, which are defined in the derived category only. The most non-trivial step in
the proof of Theorem 1.2 is to show that these maps are well-defined, which is done in §§ 5.4
and 5.5.

1.4 Notation and conventions
All our results are valid only modulo torsion, so we work everywhere with Q-vector spaces. Thus
it is convenient to omit the rationalization sign from the notation, which we do everywhere,
starting with § 2, except in § 4.2. In particular, we will use F× instead of F×

Q , KM
n (F ) instead of

KM
n (F )Q, B2(F ) instead of B2(F )Q, and so on.

We use notation SkV and ΛkV for symmetric and wedge powers of a vector space. The tensor
product V ⊗ W is understood as the tensor product over Q.

Next, for n ≥ 3 we denote the cokernel of the map

Q[F ]3 ⊗ Λn−3F× δ−→ B2(F ) ⊗ Λn−2F×

by the symbol [B2(F ) ⊗ Λn−2F×]t. For every subfactor space X of the space B2(F ) ⊗ Λn−2F×

we will denote by the symbol [X]t its projection to [B2(F ) ⊗ Λn−2F×]t.
A few remarks about filtered vector spaces are in order. By a filtered vector space (V,F) we

mean a vector space V equipped with an increasing filtration

F0V ⊂ F1V ⊂ · · · ⊂ V.

We will denote by grFk V the associated graded space FkV/Fk−1V . A morphism

f : (V,F) −→ (W,G)

of filtered vector spaces is called strictly compatible with filtration if

f(FkV ) = f(V ) ∩ GkW.

Every subspace or factor space of a filtered vector space inherits the filtration. Similarly, there
exists a natural filtration on the tensor product of a finite number of filtered vector spaces.
A detailed exposition of these notions can be found in [Del71].

2. Results of Bass, Tate and Milnor

2.1 Milnor K-theory
We start by discussing a well-known analogue of Theorem 1.2 for Milnor K-theory. It was proved
by Bass and Tate [BT73] for n = 2 and by Milnor [Mil70] in general.

Let F be an arbitrary field. For every integer n we define KM
n (F ), the Milnor K-group

of F , to be the quotient of the abelian group ΛnF× by the subgroup generated by tensors
(1 − x) ∧ x ∧ y3 ∧ · · · ∧ yn. The image of an element y1 ∧ y2 ∧ · · · ∧ yn in KM

n (F ) is denoted by
{y1, y2, . . . , yn}. Our definition agrees with the classical one modulo 2-torsion. In accordance with
the convention from § 1.4, we denote by KM

n (F ) the Q-vector space KM
n (F )Q.

Our next goal is to define residue maps. Suppose that ν is a discrete valuation of F with
residue field Fν and uniformizer fν . We define a map

∂ν : ΛnF× −→ Λn−1F×
ν . (5)
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For any elements u1, . . . , un ∈ F× with vanishing discrete valuation we let

∂ν(u1 ∧ u2 ∧ · · · ∧ un) = 0

and

∂ν(fν ∧ u2 ∧ · · · ∧ un) = u2 ∧ · · · ∧ un.

Here ū is the residue of u in F×
ν . This map can be uniquely extended by linearity to ΛnF×. It

is easy to see that it induces a well-defined map from KM
n (F ) to KM

n−1(Fν).
We will be especially interested in the case when F = k(t) and the valuation νP corresponds to

a point P ∈ A1
k. We will denote the residue field by kP , and a uniformizer by fP .The uniformizer

will always be chosen to be a monic polynomial.

Theorem 2.1 (Milnor, Tate). The following sequence is exact for n ≥ 2:

0 −→ KM
n (k)

j−→ KM
n (k(t)) ⊕∂P−→

⊕
P∈A1

k

KM
n−1(kP ) −→ 0.

Here the map KM
n (k)

j−→ KM
n (k(t)) is induced by an inclusion of k in k(t).

2.2 Some corollaries of Theorem 2.1
Assume that F is perfect. Theorem 2.1 can be used to construct a norm map

NmL/K : KM
n (L) −→ KM

n (F )

for any finite field extension L/F . For this consider any point P ∈ A1
F with residue field L

(such a point exists by the primitive element theorem). Thanks to Theorem 2.1, for any element
w ∈ KM

n (L) there exists an element W ∈ KM
n+1(F (t)) with residue (at the point P ) equal to w

and with vanishing residues at all other points. Then one can define NmL/F (w) to be the residue
of W at ∞ ∈ P1.

One can show that this construction does not depend on the choice of P . The proof is
straightforward for the case when one works modulo torsion, as we do. Using the norm map,
one can establish all usual properties of norms. In particular, we obtain the following non-trivial
result.

Corollary 2.2 (Suslin reciprocity law). Let X be a compact smooth algebraic curve over C.

Then for n ≥ 1 the map

Res : KM
n (C(X)) −→ KM

n−1(C)

is equal to zero. Here the total residue map Res is a sum over all points P ∈ X of local residue

maps ∂P .

All the details of these constructions can be found in [Sus79].

2.3 Proof of Theorem 2.1

Proof. Denote the Q-vector space k(t)× by D. It is naturally graded by the degree d: D0 =
k× and for d greater than zero Dd is freely generated by monic irreducible polynomials of
degree d. We will use interchangeably the notation D≤d and FdD for

⊕
i≤dDi. The filtration F•
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can be extended to all wedge powers of k(t)× and thus defines a filtration on KM
n (k(t)). Explicitly,

FdK
M
n (k(t)) is generated by symbols {f1, . . . , fn}, where fi are irreducible polynomials of degree

≤ d.
Let P ∈ A1

k be a point of degree d. Then the map ∂P vanishes on all symbols {g1, . . . , gn},
where gi are irreducible polynomials of degree less than d. We deduce that the following map is
well-defined:

grFd KM
n (k(t)) ⊕∂P−→

⊕
deg(P )=d

KM
n−1(kP ).

We claim that this map is an isomorphism. To see that this map ⊕∂P is surjective, consider any
element {r1, r2, . . . , rn−1} ∈ KM

n−1(kP ). For each i let r̃i be a polynomial of minimal degree with
residue ri. Then

∂P {fP , r̃1, r̃2, . . . , r̃n−1} = {r1, r2, . . . , rn−1}.
If Q is any other point of degree d,

∂Q{fP , r̃1, r̃2, . . . , r̃n−1} = 0.

This implies that the map ⊕∂P is surjective.
To see that ⊕∂P is injective, for every point P we construct coresidue maps

cP : KM
n−1(kP ) −→ grFd KM

n (k(t)).

The definition is straightforward: for every element {r1, r2, . . . , rn−1} ∈ KM
n−1(kP ) we put

cP ({r1, r2, . . . , rn−1}) = {fP , r̃1, r̃2, . . . , r̃n−1} ∈ grFd KM
n (k(t)).

Lemma 2.3. The coresidue map

cP : KM
n−1(kP ) −→ grFd KM

n (k(t))

is well-defined.

Proof. To begin, we show that the map cP is linear in each variable. Consider a pair of elements
in KM

n−1(kP ):

S1 = {s1, r2, . . . , rn−1}, S2 = {s2, r2, . . . , rn−1}.
Then

S1 + S2 = {s1s2, r2, . . . , rn−1}.
It is easy to see that

cP (S1) = {fP , s̃1, r̃2, . . . , r̃n−1},
cP (S2) = {fP , s̃2, r̃2, . . . , r̃n−1},

cP (S1 + S2) = {fP , s̃1s2, r̃2, . . . , r̃n−1},
(6)

so

cP (S1) + cP (S2) − cP (S1 + S2) =
{

fP ,
s̃1s̃2

s̃1s2
, r̃2, . . . , r̃n−1

}
. (7)

Note that from the division algorithm it follows that there exists a polynomial q(t) such that

s̃1s̃2 = qfP + s̃1s2,
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so that
s̃1s̃2

s̃1s2
+

−qfP

s̃1s2
= 1.

This implies

cP (S1) + cP (S2) − cP (S1 + S2) =
{

fP ,
s̃1s̃2

s̃1s2
, r̃2, . . . , r̃n−1

}

=
{

fP , 1 − −qfP

s̃1s2
, r̃2, . . . , r̃n−1

}

=
{−qfP

s̃1s2
, 1 − −qfP

s̃1s2
, r̃2, . . . , r̃n−1

}
−

{ −q

s̃1s2
,
s̃1s̃2

s̃1s2
, r̃2, . . . , r̃n−1

}

= −
{ −q

s̃1s2
,
s̃1s̃2

s̃1s2
, r̃2, . . . , r̃n−1

}
. (8)

Since
deg(q) ≤ max

(
deg(s̃1) + deg(s̃2) − deg(fP ), 0)

)
< d,

the expression

−
{ −q

s̃1s2
,
s̃1s̃2

s̃1s2
, r̃2, . . . , r̃n−1

}
lies in Fd−1K

M
n (k(t)), so it vanishes in grFd KM

n (k(t)). Thus cP (S1) + cP (S2) = cP (S1 + S2).
It is easy to see that cP is antisymmetric and vanishes on elements {r1, 1 − r1, r3, . . . , rn−1},

so this map is well-defined. �

We claim that the map
∑

cP is the inverse of ⊕∂P . Obviously ∂P ◦ cP = id and ∂P ◦ cQ = 0
if points P and Q are distinct. It remains to show that∑

cP ∂P = id. (9)

Notice that this equality holds for elements in grFd KM
n

(
k(t)

)
of the form {fP , r̃1, r̃2, . . . , r̃n−1}

where r̃i are elements of degree less than d.

Lemma 2.4. The vector space grFd KM
n (k(t)) is generated by elements

{f, g2, g3, . . . , gn},
for polynomials f and gi such that deg(f) = d and deg(gi) < d.

Proof. Denote by GsgrFd KM
n (k(t)) a subspace of grFd KM

n (k(t)) generated by elements

{f1, f2, . . . , fk, gk+1, . . . , gn} ∈ grFd KM
n (k(t)),

where k ≤ s, the polynomials fi are monic irreducible of degree d and the degree of the
polynomials gi is less than d. Clearly,

grFd KM
n (k(t)) = GngrFd KM

n (k(t)).

To prove the lemma it is sufficient to show that

GsgrFd KM
n (k(t)) = Gs−1grFd KM

n (k(t))

for 2 ≤ s ≤ n.
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We present a proof for n = 2, the general case being similar. Consider two distinct monic
polynomials f1, f2 of degree d. Then

0 =
{

1 − f1

f2
,
f1

f2

}
= {f1, f2} − {f1, f2 − f1} + {f2, f2 − f1}.

Note that since f2 and f1 are monic, deg(f2 − f1) < d, so

{f1, f2} ∈ G1grFd KM
2 (k(t))

From this the statement follows. �

We conclude that the map

grFd KM
n (k(t)) ⊕∂P−→

⊕
deg(P )=d

KM
n−1(kP )

is an isomorphism, from which Theorem 2.1 easily follows. �

3. The plan of the proof of Theorem 1.2

To give a precise statement of Theorem 1.2, we need to extend the definition of the residue map
∂P to truncated polylogarithmic complexes.

3.1 Residue map
Let F be a field with discrete valuation ν and residue field Fν . Denote by fν a uniformizer. Our
goal is to define a chain map ∂ν ,

[B2(F ) ⊗ Λn−2F×]t

∂ν

��

�� ΛnF×

∂ν

��

[B2(Fν) ⊗ Λn−3F×
ν ]t �� Λn−1F×

ν

(10)

for n ≥ 3. We have already defined this map on ΛnF× in the previous section. On

{x}2 ⊗ y3 ∧ · · · ∧ yn ∈ [B2(F ) ⊗ Λn−2F×]t

we define it by the formula

{x̄}2 ⊗ ∂ν(y3 ∧ · · · ∧ yn) ∈ [B2(Fν) ⊗ Λn−3F×
ν ]t.

It is easy to see that ∂ν is a chain map of complexes

B2(F, n) −→ B2(Fν , n − 1).

Theorem 1.2 is equivalent to the statement that the complex of chain maps

0 −→ B2(k, n) −→ B2(k(t), n) −→
⊕

P∈A1
k

B2(kP , n − 1) −→ 0

is exact on cohomology.
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3.2 Filtration by degree
The main tool in the proof of Theorem 2.1 was an auxiliary filtration F• on KM

n (k(t)) induced
by the degree filtration on k(t)×. This filtration can be extended to the complex B2(k(t), n). For
this we first define a filtration F• on the Bloch group B2(k(t)) as a pre-image of the filtration
F• on Λ2k(t)× under δ. In the next section we will use results of Suslin to describe this filtration
more explicitly. This defines a filtration on B2(k(t)) ⊗ Λn−2k(t)×, which descends to [B2(k(t)) ⊗
Λn−2k(t)×]t.

Recall that a map

f : (V,F) −→ (W,F)

of filtered spaces is called strictly compatible with the filtration if

f(FiV ) = f(V ) ∩ FiW.

Lemma 3.1. The map

δ : [B2(k(t)) ⊗ Λn−2k(t)×]t −→ Λnk(t)×,

is strictly compatible with the filtration F .

Proof. The statement follows from the proof of Theorem 2.1. �

Lemma 3.2. To prove Theorem 1.2 it is sufficient to show that for every positive degree d the

map

⊕ ∂P : grFd B2(k(t), n) −→
⊕

deg(P )=d

B2(kP , n − 1) (11)

is a quasi-isomorphism.

Proof. Assume that (11) is a quasi-isomorphism. We will use the fact that F0B2(k(t)) = B2(k),
which will be proved in the next section. Our goal is to show that the complex

0 −→ Hn−1
G (k, Q(n)) −→ Hn−1

G (k(t), Q(n)) ⊕∂P−→
⊕

P∈A1
k

Hn−2
G (kP , Q(n − 1)) −→ 0 (12)

is exact for n ≥ 3, where Hn−1
G (F, Q(n)) is the kernel of the map

δ : [B2(F ) ⊗ Λn−2F×]t −→ ΛnF×.

Consider an element x ∈ Hn−1
G (k(t), Q(n)) in the kernel of ⊕∂P . Then

x ∈ F0[B2(k(t)) ⊗ Λn−2k(t)×]t,

by (11). But

F0[B2(k(t)) ⊗ Λn−2k(t)×]t = [F0(B2(k(t))) ⊗ Λn−2F0(k(t)×)]t = [B2(k) ⊗ Λn−2k×]t,

so x ∈ Hn−1
G (k, Q(n)). So the complex (12) is exact in the middle term. To show that ⊕∂P is

surjective, notice that δ is strictly compatible with F , so grFd Hn−1
G (k(t), Q(n)) is the kernel of
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the map

δ : grFd [B2(k(t)) ⊗ Λn−2k(t)×]t −→ grFd Λnk(t)×.

It follows from the quasi-isomorphism (11) that this kernel is isomorphic to⊕
P∈A1

k

Hn−2
G (kP , Q(n − 1)).

From this the lemma follows. �

3.3 Filtration by support
It remains to prove that the map

⊕∂P : grFd B2(k(t), n) −→
⊕

deg(P )=d

B2(kP , n − 1)

is a quasi-isomorphism. For this we introduce another filtration on grFd B2(k(t), n): filtration by
support. This is an increasing filtration G1 ⊂ G2 ⊂ · · · ⊂ Gn. On grFd

(
Λnk(t)×

)
we define the

filtration by placing tensors

f1 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn

with polynomials fi, gi such that deg(fi) = d, and deg(gi) < d in Gs. It is easy to see that

grGs grFd
(
Λnk(t)×

)
= ΛsDd ⊗ Λn−sD<d.

On grFd (B2(k(x))) we define the filtration as the pre-image of the filtration G on grFd
(
Λ2k(t)×

)
under δ. It will be computed explicitly in the next section. Finally, on grFd [B2(k(t)) ⊗ Λn−2k(t)×]t
the filtration is obtained by projecting the tensor product of the corresponding filtrations on the
components.

3.4 What remains to be proved
Theorem 1.2 follows from Lemmas 3.3 and 3.4.

Lemma 3.3. The complex

grG1 grFd B2(k(t), n)

is quasi-isomorphic to ⊕
deg(P )=d

B2(kP , n − 1).

Lemma 3.3 will be proved in § 6 using a construction of coresidue maps cP . The difficulty is
that the coresidue maps can be defined in the derived category only.

Lemma 3.4. For s > 1, the complex

grGs grFd B2(k(t), n)

is acyclic.
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Lemma 3.4 is not very hard and will be proved in § 7. To see that Lemmas 3.3 and 3.4 imply
Theorem 1.2 we also need to show that the map

δ : grFd
[
B2(k(t)) ⊗ Λn−2k(t)×

]
t
−→ grFd Λnk(t)×

is strictly compatible with filtration G; compatibility will follow from the proof of Lemma 3.4.

4. Anatomy of the group B2(k(t))

4.1 Introduction
The goal of this section is to describe a set of generators for the group B2(k(t)). The results of this
section can be formulated very explicitly (see Corollary 4.4) but the proofs use the connection
with higher algebraic K-theory, established by Suslin.

Recall from § 2.3 that for d ≥ 1 the vector space Dd ⊂ k(t)× is freely generated by monic
irreducible polynomials of degree d. Also, D0 = k×.

Definition 4.1. For a point P ∈ A1
k of degree d consider a linear map

ρP : D<d −→ k×
P ,

which sends a polynomial f ∈ k(t)× of degree less than deg(P ) to its residue f̄ . We denote the
kernel of the map ρP by BP .

The map ρP is surjective: any residue class r ∈ k×
P is the image of a unique polynomial of

degree less than deg(P ), which we denote by r̃.
Consider a map

αP : R1(kP ) −→ BP ,

defined on generators [r1, r2]1 by the formula

αP ([r1, r2]1) =
r̃1r̃2

r̃1r2

and extended to R1(kP ) by linearity. Clearly, this map is well-defined and surjective.

Remark. We will later use the fact that Dd is rather close to the rational group ring of k×
P and

BP is related to the square of the augmentation ideal of the group ring. More precisely, there
exists a surjective map

Q[k×
P ] −→ D<d,

sending r to r̃. The kernel is generated by elements [r1] + [r2] − [r1r2], where deg(r̃1) +
deg(r̃2) < d.

4.2 A result of Suslin
The second cohomology group of the weight-two polylogarithmic complex B•(F, 2) is naturally
identified with a rationalized Milnor K-group. Suslin proved2 in [Sus91] that its first cohomology

2 Suslin’s results are more precise, since he does not neglect torsion. To emphasize the difference, in this section
we do not omit the rationalization sign, as we do in the rest of the text. Also, Suslin’s results are proved under an
assumption that the field is infinite. For finite fields all the results of this section hold automatically, since all the
groups involved vanish.
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group is naturally identified with the indecomposable part of K3(F )Q. Hence, the following
sequence is exact:

0 −→ K ind
3 (F )Q −→ B2(F )Q −→ Λ2F×

Q −→ KM
2 (F )Q −→ 0.

We will use two other results from K-theory coming from the relation between the K-theory of
k and k(t). First, the following exact sequence is a special case of Theorem 2.1:

0 −→ KM
2 (k) −→ KM

2 (k(t)) −→
⊕

P∈A1
k

k×
P −→ 0.

Second, from the localization sequence and A1-homotopy invariance for algebraic K-theory it
follows that the embedding

K ind
3 (k) −→ K ind

3 (k(t))

is an isomorphism. Combining these two results with Suslin’s theorem, we get the following
statement.

Corollary 4.2. The following sequence is exact:

0 −→ B2(k)Q −→ B2(k(t))Q −→ Λ2k(t)×Q
Λ2k×

Q

−→
⊕

P∈A1
k

(
k×

P

)
Q
−→ 0.

4.3 A degree filtration on the truncated weight-two polylogarithmic complex
The associated graded factor grFd (Λ2k(t)×) can be described explicitly:

grFd (Λ2k(t)×) =
(
Dd ⊗ D<d

) ⊕ Λ2Dd.

The vector space B2(k(t)) carries a filtration induced from the filtration on Λ2k(t)×, which
we will also denote by F . It follows from Corollary 4.2 that F0B2(k(t)) = B2(k) and that the
following sequence is exact for d > 0:

0 −→ grFd [B2(k(t))] −→ grFd [Λ2k(t)×] −→
⊕

deg(P )=d

k×
P −→ 0.

Lemma 4.3. The following sequence is exact:

0 −→
⊕

deg(P )=d

BP −→ grFd [B2(k(t))] −→ Λ2Dd −→ 0.

Proof. The projection grFd [B2(k(t))] −→ Λ2Dd is surjective. Indeed, given two irreducible monic
polynomials f and g of degree d, consider the symbol {f/g}2 ∈ B2(k(t)). Since

δ

{
f

g

}
2

=
(

1 − f

g

)
∧ f

g
= f ∧ g + g ∧ (g − f) + (g − f) ∧ f,
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and g − f has degree less than d, it follows that {f/g}2 projects to f ∧ g in Λ2Dd. Consider the
following commutative diagram with exact rows and surjective columns:

0 �� grFd [B2(k(t))]

��

�� grFd [Λ2k(t)×]

��

��
⊕

deg(P )=d

k×
P

��

�� 0

0 �� Λ2Dd
�� Λ2Dd

�� 0 �� 0

(13)

Applying the snake lemma, we get an exact sequence

0 −→ Ker
(
grFd [B2(k(t))] −→ Λ2Dd

) −→ Dd ⊗ D<d −→
⊕

deg(P )=d

k×
P −→ 0.

On the other hand, BP was defined as the kernel of the map D<d
ρP−→ k×

P , so

Ker
(
grFd [B2(k(t))] −→ Λ2Dd

)
is isomorphic to

⊕
deg(P )=dBP . �

Let P ∈ A1
k be a point of degree d. A composition of the map

αP : R1(kP ) −→ BP

and an embedding

BP ↪→ grFd [B2(k(t))]

is a map

βP : R1(kP ) −→ grFd [B2(k(t))].

More explicitly, βP ([r1, r2]1) = {r̃1r̃2/r̃1r2}2.

Remark. The map βP is well-defined by construction. This is equivalent to the following relation
in grFd [B2(k(t))]:

βP ([r1, r2]1) + βP ([r1r2, r3]1) = βP ([r1, r3]1) + βP ([r1r3, r2]1).

This relation could also be derived independently by applying the 5-term relation several times.

Corollary 4.4. The vector space B2(k(t)) is generated over its subspace B2(k) by the following

two types of elements:

(1) symbols {f(t)/g(t)}2, where f and g are irreducible monic polynomials of the same degree;

(2) symbols βP ([r1, r2]1) = {r̃1r̃2/r̃1r2}2, where r1 and r2 are two elements in k×
P for some

point P .

Remark. Though this corollary is formulated in a completely elementary way, the author was not
able to derive it from the five-term relation without using algebraic K-theory. If k is algebraically
closed this is known as the Rogers dilogarithm identity; see [Dup01, Theorem 8.14].
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5. Coresidue map in the derived category

Our goal is to prove Lemma 3.3, claiming that the complex

grG1 grFd B2(k(t), n)

is quasi-isomorphic to ⊕
deg(P )=d

B2(kP , n − 1).

For this we will construct a coresidue chain map from a complex, which is quasi-isomorphic to
B2(kP , n − 1), to grFd B2(k(t), n) with image in G1. The main difficulty will be to prove the fact
that this map is well-defined.

5.1 Free resolution of the truncated polylogarithmic complex
To construct a free resolution of the polylogarithmic complex

[B2(F ) ⊗ Λn−2F×]t −→ ΛnF×,

recall the presentation of B2, F× and B2 ⊗a F× by generators and relations:

0 −→ R1(F ) −→ Q[F ]1 −→ F× −→ 0,

R2(F ) −→ Q[F ]2 −→ B2(F ) −→ 0,

Q[F ]3 ⊗ Λn−3F× −→ B2(F ) ⊗ Λn−2F× −→ [B2(F ) ⊗ Λn−2F×]t −→ 0.

(14)

Using standard properties of wedge powers, one obtains the following resolution of ΛnF×:

S2R1(F ) ⊗ Λn−2Q[F ]1 −→ R1(F ) ⊗ Λn−1Q[F ]1 −→ ΛnQ[F ]1 −→ ΛnF× −→ 0.

One also obtains the following resolution of [B2(F ) ⊗ Λn−2F×]t:

Q[F ]3 ⊗ Λn−3Q[F ]1

⊕
Q[F ]2 ⊗ R1(F ) ⊗ Λn−3Q[F ]1 −→ Q[F ]2 ⊗ Λn−2Q[F ]1 −→ [B2(F ) ⊗ Λn−2F×]t −→ 0

⊕
R2(F ) ⊗ Λn−2Q[F ]1.

(15)

The map δ = δ[0] : [B2(F ) ⊗ Λn−2F×]t −→ ΛnF× can be lifted to a map δ[i] between the
resolutions above. Clearly, we have to define

δ[1] : Q[F ]2 ⊗ Λn−2Q[F ]1 −→ ΛnQ[F ]1

by the formula

δ[1]
(
[x]2 ⊗ [y3]1 ∧ · · · ∧ [yn]1

)
= [1 − x]1 ∧ [x]1 ∧ [y3]1 ∧ · · · ∧ [yn]1.

The map δ[2] can be defined in many different ways. We put δ[2] equal to zero on Q[F ]3 ⊗
Λn−3Q[F ]1. Next, define δ[2] on Q[F ]2 ⊗ R1(F ) ⊗ Λn−3Q[F ]1 by the formula

δ[2]
(
[x]2 ⊗ [y1, y2]1 ⊗ [z3]1 ∧ · · · ∧ [zn]1

)
= [y1, y2]1 ⊗ [1 − x]1 ∧ [x]1 ∧ [z3]1 ∧ · · · ∧ [zn]1.

Finally, we need to define δ[2] on R2(F ) ⊗ Λn−2Q[F ]1. It is sufficient to define δ[2] on R2(F ).
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For that recall the simplest proof of the five-term relation. The element [x1, x2]2 ∈ R2(F )
is mapped to the element

∑5
i=1[xi]2 ∈ Q[F ]2, where the xi ∈ F satisfy the following 5-periodic

recurrence:

xi+1 =
1 − xi

xi−1
.

Then

δ

( 5∑
i=1

[xi]2

)
=

5∑
i=1

(1 − xi) ∧ xi ∈ Λ2F×.

Since (1 − xi) ∧ xi = xi−1 ∧ xi − xi ∧ xi+1, the sum vanishes telescopically. This suggests the

following definition of the map R2(F )
δ[2]−→ R1(F ) ⊗ Q[F ]1:

δ[2][x1, x2]2 = −
5∑

i=1

[xi−1, xi+1]1 ⊗ [xi]1.

Finally, denote by B̃2(F, n) the cone of the map δ[•]. For the convenience of the reader, we
list here the terms of the complex B̃2(F, n) in each degree:

Degree 1 : ΛnQ[F ]1,

Degree 2 :
(
R1(F ) ⊗ Λn−1Q[F ]1

) ⊕ (
Q[F ]2 ⊗ Λn−2Q[F ]1

)
,

Degree 3 :
(
S2R1(F ) ⊗ Λn−2Q[F ]1

) ⊕ (
Q[F ]3 ⊗ Λn−3Q[F ]1

)
⊕ (

Q[F ]2 ⊗ R1(F ) ⊗ Λn−3Q[F ]1
) ⊕ (

R2(F ) ⊗ Λn−2Q[F ]1
)
.

(16)

Denote by
π : B̃2(F, n) −→ B2(F, n)

the cone chain morphism. We have proven the following statement.

Lemma 5.1. The map π induces an isomorphism on the cohomology groups in degrees 1 and 2.

5.2 Coresidue map
Let P be a point of the degree d in A1

k. Our goal is to define a coresidue map cP in the derived
category,

cP : B2(kP , n) −→ grFd B2(k(t), n + 1),

with the property that the composition ∂P ◦ cP is a quasi-isomorphism. Because of Lemma 5.1,
it is sufficient to construct a map from B̃2(kP , n) to grFd B2(k(t), n + 1), which we will also denote
by cP .

The definition of cP is completely straightforward, but checking that it is a chain morphism
is non-trivial. First, define

cP [1] : ΛnQ[kP ]1 −→ grFd Λn+1k(t)×

by the formula
[r1]1 ∧ [r2]1 ∧ · · · ∧ [rn]1 −→ fP ∧ r̃1 ∧ r̃2 ∧ · · · ∧ r̃n.

Next, define
cP [2] : R1(kP ) ⊗ Λn−1Q[kP ]1 −→ grFd B2(k(t), n + 1)
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by the formula

[r1, r2]1 ⊗ [r3]1 ∧ · · · ∧ [rn+1]1 −→ βP ([r1, r2]1) ⊗ r̃3 ∧ · · · ∧ r̃n+1.

Here βP ([r1, r2]1) = {r̃1r̃2/r̃1r2}2 ∈ BP ⊂ grFd B2(k(t)). Finally, define

cP [2] : R2(kP ) ⊗ Λn−2Q[kP ]1 −→ grFd B2(k(t), n + 1)

by the formula

[r1]2 ⊗ [r2]1 ∧ · · · ∧ [rn]1 −→ {r̃1}2 ⊗ fP ∧ r̃2 ∧ · · · ∧ r̃n.

To check that cP is a chain map it is enough to show that the composition cP [2] ◦ δ vanishes.
Its domain B̃2(kP , n)[3] has four direct summands. On Q[kP ]3 ⊗ Λn−3Q[kP ]1 the map vanishes
by definition of δ[2]. We continue in the next sections.

5.3 Vanishing of cP [2] ◦ δ on Q[kP ]2 ⊗ R1(kP ) ⊗ Λn−3Q[kP ]1
Obviously, it is sufficient to consider the case n = 3.

Lemma 5.2. The following identity holds in [B2(F ) ⊗ Λ2F×]t:

{a}2 ⊗ (1 − b) ∧ b − {b}2 ⊗ (1 − a) ∧ a = 0.

Proof. Consider the five-term relation

{a}2 − {b}2 +
{

b

a

}
2

−
{

1 − a−1

1 − b−1

}
2

+
{

1 − a

1 − b

}
2

= 0

and multiply it by (a/b) ∧ ((1 − a)/(1 − b)). We get the expression above modulo terms {x}2 ⊗
x ∧ y = δ({x}3 ⊗ y). �

For a = r̃1 and b = r̃2r̃3/r̃2r3 we use Lemma 5.2 and get that, in B2(k(t)) ⊗ Λ2k(t)×,

{r̃1}2 ⊗
(

1 − r̃2r̃3

r̃2r3

)
∧ r̃2r̃3

r̃2r3
=

{
r̃2r̃3

r̃2r3

}
2

⊗ (1 − r̃1) ∧ r̃1.

Moreover, using arguments as in the proof of Lemma 2.3, the following equality holds in
grFd

(
B2(k(t)) ⊗ Λ2k(t)×

)
:

{r̃1}2 ⊗
(

1 − r̃2r̃3

r̃2r3

)
∧ r̃2r̃3

r̃2r3
= {r̃1}2 ⊗ fP ∧ r̃2r̃3

r̃2r3
,

so {
r̃2r̃3

r̃2r3

}
2

⊗ (1 − r̃1) ∧ r̃1 = {r̃1}2 ⊗ fP ∧ r̃2 + {r̃1}2 ⊗ fP ∧ r̃3 − {r̃1}2 ⊗ fP ∧ r̃2r3.

Equivalently,

(cP [2] ◦ δ)
(
[r1]2 ⊗ [r2, r3]1

)
= 0.

5.4 Vanishing of cP [2] ◦ δ on S2R1(kP ) ⊗ Λn−2Q[kP ]1
It is enough to check the vanishing of cP [2] ◦ δ on S2R1(kP ) ⊗ Λn−2Q[kP ]1 for n = 2. For this we
use Lemma 5.3.
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Lemma 5.3. Let r1, r2, r3, r4 be some elements in kP . Then{
r̃1r̃2

r̃1r2

}
2

⊗ r̃3r̃4

r̃3r4
+

{
r̃3r̃4

r̃3r4

}
2

⊗ r̃1r̃2

r̃1r2
= 0

in grFd [B2(k(t)) ⊗ k(t)×]t.

This is probably the strangest part of the proof. We will prove Lemma 5.3 after Lemma 5.4.

Lemma 5.4. Let A be an abelian group, and I < Q[A] be the augmentation ideal. Then the

elements of the form ([a1] + [a2] − [a3] − [a4])2 with a1a2 = a3a4 ∈ A generate S2I2.

Proof. Obviously, elements of the form

([a] + [b] − [ab] − [1]) · ([c] + [d] − [cd] − [1]) (17)

generate S2I2. The statement of the lemma follows from the following identity, which can be
checked by direct computation:

− 4([a] + [b] − [ab] − [1]) · ([c] + [d] − [cd] − [1])

+ ([ab] + [cd] − [bd] − [ac])2 + ([ab] + [cd] − [ad] − [bc])2 − ([bd] + [ac] − [ad] − [bc])2

− ([a] + [bd] − [d] − [ab])2 − ([ad] + [b] − [ab] − [d])2 + ([a] + [bd] − [ad] − [b])2

− ([a] + [bc] − [c] − [ab])2 − ([ac] + [b] − [ab] − [c])2 + ([a] + [bc] − [ac] − [b])2

− ([c] + [ad] − [a] − [cd])2 − ([ac] + [d] − [cd] − [a])2 + ([c] + [ad] − [ac] − [d])2

− ([c] + [bd] − [b] − [cd])2 − ([bc] + [d] − [cd] − [b])2 + ([c] + [bd] − [bc] − [d])2

+ 2([a] + [b] − [ab] − [1])2 + 2([c] + [d] − [cd] − [1])2 = 0. (18)

�

Proof of Lemma 5.3. We will apply Lemma 5.4 to the group A = k×
P . There is a map ϕ1 from

the group ring Q[k×
P ] to D<d, sending [r] to r̃. The image of I2 under this map is contained in

BP , because the sequence

0 −→ BP −→ D<d
ρP−→ k×

P −→ 0

is exact. Furthermore,

ϕ1

(
([r1] − [1])([r2] − [1])

)
= αP ([r1, r2]1) =

r̃1r̃2

r̃1r2
.

Denote the composition of the map ϕ1 : I2 −→ BP with the embedding BP ↪→ grFd B2(t) by ϕ2:

ϕ2(([r1] − [1])([r2] − [1])) =
{

r̃1r̃2

r̃1r2

}
2

.

This map can be used to construct a map

(ϕ1 · ϕ2) : S2I2 −→ [BP ⊗ D<d]t

sending λ1 · λ2 ∈ S2I2 to ϕ2(λ1) ⊗ ϕ1(λ2) + ϕ2(λ2) ⊗ ϕ1(λ1).
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To conclude the proof of Lemma 5.3, we need to show that the map (ϕ1 · ϕ2) vanishes on
S2I2, because the expression {

r̃1r̃2

r̃1r2

}
2

⊗ r̃3r̃4

r̃3r4
+

{
r̃3r̃4

r̃3r4

}
2

⊗ r̃1r̃2

r̃1r2

is equal to (ϕ1 · ϕ2)(([r1] − [1])([r2] − [1]) · ([r3] − [1])([r4] − [1])).
It follows from Lemma 5.4 that it is sufficient to check the vanishing of the map (ϕ1 · ϕ2) on

elements

([r1] + [r2] − [r3] − [r4])2 ∈ S2I2,

where r1r2 = r3r4 in k×
P . Notice that in this case

ϕ1([r1] + [r2] − [r3] − [r4]) =
r̃1r̃2

r̃3r̃4
,

ϕ2([r1] + [r2] − [r3] − [r4]) =
{

r̃1r̃2

r̃1r2

}
2

−
{

r̃3r̃4

r̃3r4

}
2

.

(19)

The last expression is equal to {r̃1r̃2/r̃3r̃4}2. To see that, it is enough to check that the coproduct

δ

({
r̃1r̃2

r̃1r2

}
2

−
{

r̃3r̃4

r̃3r4

}
2

−
{

r̃1r̃2

r̃3r̃4

}
2

)

vanishes in grFd [Λ2k(t)×], which is obvious.
From this we get that

(ϕ1 · ϕ2)(([r1] + [r2] − [r3] − [r4])2) = 2
{

r̃1r̃2

r̃3r̃4

}
2

⊗ r̃1r̃2

r̃3r̃4
= 0,

which finishes the proof of Lemma 5.3. �

5.5 Vanishing of cP [2] ◦ δ on R2(F ) ⊗ Λn−2Q[F ]1
Clearly, it is enough to consider the case n = 2. Our goal is to show the following lemma.

Lemma 5.5. For any r1, r2 ∈ k×
P define ri+1 = (1 − ri)/ri−1, i = 3, 4, 5. Then the expression

({r̃1}2 + {r̃2}2 + {r̃3}2 + {r̃4}2 + {r̃5}2) ⊗ fP +
{

r̃1r̃3

1 − r̃2

}
2

⊗ r̃2 +
{

r̃2r̃4

1 − r̃3

}
2

⊗ r̃3 +
{

r̃3r̃5

1 − r̃4

}
2

⊗ r̃4 +
{

r̃4r̃1

1 − r̃5

}
2

⊗ r̃5 +
{

r̃5r̃2

1 − r̃1

}
2

⊗ r̃1 (20)

vanishes in grFd [B2(k(t)) ⊗ k(t)×]t.

This will finish showing how cP [2] ◦ δ vanishes, because

βP ([ri, ri+2]1) =
{

r̃ir̃i+2

r̃iri+2

}
2

=
{

r̃ir̃i+2

1 − r̃i+1

}
2

.

We start with a lemma whose proof is inspired by the Gauss lemma, used in the classical proof
of quadratic reciprocity.
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Lemma 5.6. For 1 ≤ i ≤ 5 there exist polynomials gi(t), hi(t) of degrees less than d, such that

ri = hi/gi in k×
P and the sequence λi = gi/hi satisfies the recurrence

λi+1 =
1 − λi

λi−1
.

Proof. We will suppose that d is odd: the even case is similar. For the residue r1 ∈ kP there exist
polynomials g1(t), h1(t) ∈ k(t) of degrees less or equal to �d/2�, such that the residue of g1/h1

is equal to r1. Indeed, consider kP as a vector space over k with basis 1, t̄, . . . , td−1 and denote
by V its subspace, spanned by 1, t̄, . . . , t�d/2�. Multiplication by r1 is a linear automorphism of
kP and dim(V ) > dim(kP )/2, so there exists a vector g1 ∈ V such that r1g1 = f1 ∈ V .

Similarly, we can find g2(t), h2(t) ∈ k(t) of degrees less or equal to �d/2�, such that the residue
of g2/h2 is equal to r2. There exists a unique sequence λi, such that λ1 = g1/h1 and λ2 = g2/h2,
which satisfies the required recurrence. Then

λ3 =
1 − g2/h2

g1/h1
=

(h2 − g2)h1

h2g1

and we define g3 = (h2 − g2)h1 and h3 = h2g1. Similarly,

λ4 =
1 − g3/h3

g2/h2
=

g1h2 − h1h2 + g2h1

g1g2
=

g4

h4

and

λ5 =
1 − g4/h4

g3/h3
=

(h1 − g1)h2

h1g2
=

g5

h5
.

Obviously, deg(gi), deg(hi) are less than d for 1 ≤ i ≤ 5 as required. �

To simplify the notation a little bit we will omit the ˜ and ¯ symbols till the end of § 5.5.
First we want to rewrite

(∑5
i=1{ri}2

) ⊗ fP as an element of [BP ⊗ D<d]t.

Lemma 5.7. Consider ri ∈ k×
P , 1 ≤ i ≤ 5, as in Lemma 5.5 and λi ∈ k(t), 1 ≤ i ≤ 5, as in Lemma

5.6. The following equality holds in grFd [B2(k(t)) ⊗ k(t)×]t:

({ri}2 − {λi}2) ⊗ fP = −
{

ri

λi

}
2

⊗ (ri − 1) +
{

ri − 1
λi − 1

}
2

⊗ λi.

Proof. Thanks to the five-term relation, for every 1 ≤ i ≤ 5,

({ri}2 − {λi}2) ⊗ fP = −
{

λi

ri

}
2

⊗ fP −
{

1 − λ−1
i

1 − r−1
i

}
2

⊗ fP −
{

1 − ri

1 − λi

}
2

⊗ fP . (21)

We will simplify each of the three terms on the right-hand side of (21) in grFd [B2(k(t)) ⊗ k(t)×]t.
Suppose that

hiri = qifP + gi.
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Since the degrees of gi and hi are less than d, the degree of qi is also less than d. Then

−
{

λi

ri

}
2

⊗ fP = −
{

gi

hiri

}
2

⊗ fP =
{

hiri

gi

}
2

⊗ fP

=
{

hiri

gi

}
2

⊗
(

hiri

gi
− 1

)
−

{
hiri

gi

}
2

⊗ qi

gi
= −

{
ri

λi

}
2

⊗ qi

gi
. (22)

We used here the following equalities in [B2(F ) ⊗ F×]t:

{x}2 ⊗ (x − 1) = {x}2 ⊗ (1 − x) = −{1 − x}2 ⊗ (1 − x) = 0.

Similarly, {
1 − λ−1

i

1 − r−1
i

}
2

⊗ fP = −
{

1 − λ−1
i

1 − r−1
i

}
2

⊗ qi

(ri − 1)gi

and {
1 − ri

1 − λi

}
2

⊗ fP = −
{

1 − ri

1 − λi

}
2

⊗ qi

gi − hi
.

So, we get the following:

({ri}2 − {λi}2) ⊗ fP = −
{

ri

λi

}
2

⊗ qi

gi
+

{
1 − λ−1

i

1 − r−1
i

}
2

⊗ qi

(ri − 1)gi
+

{
1 − ri

1 − λi

}
2

⊗ qi

gi − hi
.

From the five-term relation, we see that

−
{

λi

ri

}
2

⊗ qi

(ri − 1)gi
−

{
1 − λ−1

i

1 − r−1
i

}
2

⊗ qi

(ri − 1)gi
−

{
1 − ri

1 − λi

}
2

⊗ qi

(ri − 1)gi

= ({ri} − {λi}) ⊗ qi

(ri − 1)gi
= 0. (23)

After adding it to the previous equality, we get that

({ri}2 − {λi}2) ⊗ fP = −
{

ri

λi

}
2

⊗ (ri − 1) +
{

ri − 1
λi − 1

}
2

⊗ (ri − 1)λi

λi − 1
,

which finishes the proof of the statement of Lemma 5.7. �

Proof (End of Lemma 5.5). Observe that the following relation holds in BP ⊂ grFd B2(k(t)):{
ri − 1
λi − 1

}
2

+
{

ri−1ri+1

1 − ri

}
2

−
{

ri−1

λi−1

}
2

−
{

ri+1

λi+1

}
2

= 0. (24)

Indeed, the map δ applied to this expression lands in FdΛ2k(t)× and vanishes there modulo
terms of lower degree.

Our goal is to prove that

5∑
i=1

(
{ri}2 ⊗ fP +

{
ri−1ri+1

1 − ri

}
2

⊗ ri

)
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vanishes in grFd [B2(k(t)) ⊗ k(t)×]t. Using the five-term relation for λi and the lemma above, we
get that

5∑
i=1

(
{ri}2 ⊗ fP +

{
ri−1ri+1

1 − ri

}
2

⊗ ri

)

=
5∑

i=1

(
{ri}2 ⊗ fP − {λi}2 ⊗ fP +

{
ri−1ri+1

1 − ri

}
2

⊗ ri

)

=
5∑

i=1

(
−

{
ri

λi

}
2

⊗ (ri − 1) +
{

ri − 1
λi − 1

}
2

⊗ λi +
{

ri−1ri+1

1 − ri

}
2

⊗ ri

λi
+

{
ri−1ri+1

1 − ri

}
2

⊗ λi

)
. (25)

By Lemma 5.3, {
ri−1ri+1

1 − ri

}
2

⊗ ri

λi
+

{
ri

λi

}
2

⊗ ri−1ri+1

1 − ri
= 0.

We obtain

5∑
i=1

(
{ri}2 ⊗ fP +

{
ri−1ri+1

1 − ri

}
2

⊗ ri

)

=
5∑

i=1

({
ri − 1
λi − 1

}
2

⊗ λi −
{

ri

λi

}
2

⊗ (ri−1ri+1) +
{

ri−1ri+1

1 − ri

}
2

⊗ λi

)

=
5∑

i=1

({
ri−1

λi−1

}
2

⊗ λi +
{

ri+1

λi+1

}
2

⊗ λi −
{

ri

λi

}
2

⊗ (ri−1ri+1)
)

=
5∑

i=1

({
ri−1

λi−1

}
2

⊗ λi

ri

)
+

5∑
i=1

({
ri+1

λi+1

}
2

⊗ λi

ri

)
. (26)

The last expression vanishes, because by Lemma 5.3,{
ri−1

λi−1

}
2

⊗ λi

ri
+

{
ri

λi

}
2

⊗ λi−1

ri−1
= 0. �

6. Proof of Lemma 3.3

For this we need to show that the chain map

0 �� grG1 grFd [B2(k(t)) ⊗ Λn−2k(t)×]t

��

�� grG1 grFd [Λnk(t)×]

��

�� 0

0 ��
⊕

deg(P )=d

[B2(kP ) ⊗ Λn−3k×
P ]t ��

⊕
deg(P )=d

Λn−1k×
P �� 0

(27)
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is a quasi-isomorphism. That the chain map is a quasi-isomorphism when restricted to the second
cohomology group follows from Theorem 2.1. Denote by K the kernel of the map

grG1 grFd [B2(k(t)) ⊗ Λn−2k(t)×]t
δ−→ grG1 grFd [Λnk(t)×].

We must show that the induced map on the first cohomology group which is induced by the
chain map ⊕∂P is an isomorphism:

⊕P ∂P : K −→
⊕

deg(P )=d

Hn−2
G (kP , Q(n − 1)).

Recall that we defined the coresidue map
∑

cP going in the opposite direction from the
chain map ⊕∂P . Since ∂P ◦ cP is the identity for P = Q and vanishes otherwise, ⊕∂P induces a
surjective map on cohomology. Let us prove that it is also injective.

Lemma 6.1. Vector space grG1 grFd [B2(k(t)) ⊗ Λn−2k(t)×]t is generated by elements

(1) βP ([r1, r2]1) ⊗ g3 ∧ · · · ∧ gn,

(2)
{
r̃
}

2
⊗ fP ∧ g4 ∧ · · · ∧ gn,

(28)

where r, r1, r2 ∈ kP and deg(gi) < d.

Proof. From Corollary 4.4 it follows that the space

grG1 grFd
[
B2(k(t)) ⊗ Λn−2k(t)×

]
t

is generated by elements of the following three types:

(a) βP ([r1, r2]1) ⊗ g3 ∧ · · · ∧ gn,

(b)
{

g1

g2

}
2

⊗ fP ∧ g4 ∧ · · · ∧ gn,

(c) βg1([r1, r2]1) ⊗ fP ∧ g4 ∧ · · · ∧ gn,

(29)

where g1 and g2 are both irreducible polynomials of the same degree less than d. It is sufficient
to consider the case n = 3. Our goal is to express elements of type (b) and (c) via elements of
type (1) and (2). We will show that this is true for elements of type (b); type (c) is similar. Let
r be the residue of g1/g2 modulo fP . By the five-term relation{

g1

g2

}
2

⊗ fP − {r}2 ⊗ fP =
(
−

{
rg2

g1

}
2

+
{

1 − g2/g1

1 − 1/r

}
2

−
{

1 − g1/g2

1 − r

}
2

)
⊗ fP

the expression

−
{

rg2

g1

}
2

+
{

1 − g2/g1

1 − 1/r

}
2

−
{

1 − g1/g2

1 − r

}
2

lies in BP , because δ sends it to D<d ⊗ fP .
Finally, notice that for every r1, r2 ∈ kP , such that r1r2 = qfP + r1r2,

βfP
([r1, r2]1) ⊗ fP =

{
r1r2

r1r2

}
2

⊗ fP = −
{

r1r2

r1r2

}
2

⊗ q

r1r2
,
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because {r1r2/r1r2}2 ⊗ (1 − r1r2/r1r2) = 0. So,{
g1

g2

}
2

⊗ fP − {r}2 ⊗ fP

is a linear combination of elements of type (1). �

End of the proof of Lemma 3.3. Let x ∈ grG1 grFd [B2(k(t)) ⊗ Λn−2k(t)×]t be an element in the
kernel of δ with vanishing residues ∂P at all points of degree d. Then x is lying in the subspace
generated by elements of type (1) in the notation of Lemma 6.1. Indeed, the map id − ∑

cP ∂P

is well-defined and vanishes on elements of type (2). On the other hand, (id − ∑
cP ∂P )x = x.

It remains to notice that map δ is injective on the space of elements of type (1), which follows
from the exact sequence⊕

deg(P )=d

S2BP ⊗ Λd−3D<d −→
⊕

deg(P )=d

BP ⊗ Λd−2D<d

−→
⊕

deg(P )=d

fP ⊗ Λd−1D<d −→ Λd−1F×
P −→ 0

and Lemma 5.3. �

7. Proof of Lemma 3.4

Here we prove Lemma 3.4, claiming that for s > 1 the complex

grGs grFd B2(k(t), n)

is exact. Recall that the space grGs grFd Λnk(t)× coincides with ΛsDd ⊗ Λn−sD<d. Let h be a map
in the opposite direction

h : grGs grFd Λnk(t)× −→ grGs grFd
[
B2(k(t)) ⊗ Λn−2k(t)×

]
t
,

sending
f1 ∧ f2 ∧ f3 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn

to

−
{

f1

f2

}
⊗ f3 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn.

Here we suppose that the fi are monic, irreducible, distinct polynomials of degree d and the
degrees of gi are less than d.

Lemma 7.1. Map h is well-defined.

Proof. It is sufficient to check that{
f1

f2

}
2

⊗ f3 +
{

f3

f2

}
2

⊗ f1

vanishes in grG3 grFd
(
B2(k(t)) ⊗a k(t)×

)
. From the five-term relation it follows that{

f1

f2

}
2

−
{

f3

f2

}
2

+
{

f3

f1

}
2

−
{

1 − f2/f1

1 − f2/f3

}
2

+
{

1 − f1/f2

1 − f3/f2

}
2

= 0.
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After multiplication by
1 − f2/f1

1 − f2/f3
=

(f1 − f2)f3

(f3 − f2)f1
,

we get the following equality in B2(k(t)) ⊗a k(t)×:{
f1

f2

}
2

⊗ f3 +
{

f3

f2

}
2

⊗ f1

= −
{

f1

f2

}
2

⊗ f1 − f2

(f3 − f2)f1
+

{
f3

f2

}
2

⊗ (f1 − f2)f3

f3 − f2

−
{

f3

f1

}
2

⊗ (f1 − f2)f3

(f3 − f2)f1
−

{
1 − f1/f2

1 − f3/f2

}
2

⊗ (f1 − f2)f3

(f3 − f2)f1
. (30)

All four expressions on the right-hand side of this equality lie in G2grFd
[
B2(k(t)) ⊗ Λn−2k(t)×

]
t
.

�

Obviously, δ ◦ h = id, so to finish Lemma 3.4 it is sufficient to show that h is surjective. From
Corollary 4.4 it follows that the space

grGs grFd
[
B2(k(t)) ⊗ Λn−2k(t)×

]
t

is generated by elements of the following three types:

(1) βf1([r1, r2]1) ⊗ f2 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn,

(2)
{

f1

f2

}
2

⊗ f3 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn,

(3) B ⊗ f1 ∧ f2 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn,

(31)

where f1, . . . , fs are monic, distinct, irreducible polynomials of degree d, gs+1, . . . , gn are
polynomials of degrees less than d and B lies in F<dB2(k(t)).

Lemma 7.2. Elements of type (1)–(3) lie in the image of h.

Proof. For elements of type (2) there is nothing to prove.
Let us prove the lemma for elements of type (1). From Lemma 5.2 it follows that for any

elements X, Y ∈ B2(F ) we have that

X ⊗ δ(Y ) − Y ⊗ δ(X)

vanishes in [B2(F ) ⊗ Λ2F×]t. This can be applied to X = B ∈ F<dB2(k(x)) and Y = {f1/f2}2.
We get that

B ⊗
(

1 − f1

f2

)
∧ f1

f2
=

{
f1

f2

}
2

⊗ δ(B).

Since in grGs grFd [B2(k(t)) ⊗ Λn−2k(t)×]t the element B ⊗ f1 ∧ f2 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn is
equal to B ⊗ (1 − f1/f2) ∧ f1/f2 ∧ · · · ∧ fs ∧ gs+1 ∧ · · · ∧ gn, elements of type (1) lie in the image
of h.
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It remains to deal with elements of type (3). It is enough to consider the case s = 2. Let r

be the residue of r̃1r̃2/r̃1r2 modulo f2. From the five-term relation we see that{
r̃1r̃2

r̃1r2

}
2

⊗ f2 = {r}2 ⊗ f2 −
{

r̃1r2r

r̃1r̃2

}
2

⊗ f2

+
{

(r̃1r̃2 − r̃1r2)r
r̃1r̃2(r − 1)

}
2

⊗ f2 −
{

r̃1r̃2 − r̃1r2

r̃1r2(r − 1)

}
2

⊗ f2. (32)

All terms on the right-hand side of the equality lie in the image of h. We will show this for the
second term; for the other three the proof is similar. Since deg(r) < d, there exists a polynomial
q of degree less than d, such that

r̃1r̃2 − rr̃1r2 = qf2.

So in B2(k(t)) ⊗a k(t)× we have{
(r̃1r̃2 − r̃1r2)r
r̃1r̃2(r − 1)

}
2

⊗ f2 = −
{

1 − (r̃1r̃2 − r̃1r2)r
r̃1r̃2(r − 1)

}
2

⊗ f2,

−
{

r̃1r2r − r̃1r̃2

r̃1r̃2(r − 1)

}
2

⊗ f2 = −
{ −qf2

r̃1r̃2(r − 1)

}
2

⊗ f2 =
{ −qf2

r̃1r̃2(r − 1)

}
2

⊗ −q

r̃1r̃2(r − 1)
. (33)

Clearly

δ

{ −qf2

r̃1r̃2(r − 1)

}
2

− f1 ∧ f2 ∈ Dd ⊗ D<d,

so by Corollary 4.4, { −qf2

r̃1r̃2(r − 1)

}
2

−
{

f1

f2

}
2

lies in G1grFd B2(k(t)). So{
(r̃1r̃2 − r̃1r2)r
r̃1r̃2(r − 1)

}
2

⊗ f2 −
{

f1

f2

}
2

⊗ −q

r̃1r̃2(r − 1)

vanishes in grG2 grFd [B2(k(t)) ⊗ k(t)×]t. �
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Syd65 J.-P. Sydler, Conditions nécessaires et suffisantes pour l’equivalence des polyèdres de l’espace
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