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Abstract. Let X0 be a smooth projective threefold which is Fano or which has Picard
number 1. Let π : X→ X0 be a finite composition of blowups along smooth centers. We
show that for ‘almost all’ of such X , if f ∈ Aut(X), then its first and second dynamical
degrees are the same. We also construct many examples of blowups X→ X0, on which
any automorphism is of zero entropy. The main idea is that, because of the log-concavity of
dynamical degrees and the invariance of Chern classes under holomorphic automorphisms,
there are some constraints on the nef cohomology classes. We will also discuss a possible
application of these results to a threefold constructed by Kenji Ueno.

1. Introduction
While there are many examples of compact complex surfaces having automorphisms
of positive entropies (for example, the works of Cantat [8], Bedford and Kim [4–6],
McMullen [23–26], Oguiso [28, 29], Cantat and Dolgachev [9], Zhang [40], Diller
[15], Déserti and Grivaux [14] and Reschke [33]), there are few interesting examples of
manifolds of higher dimensions having automorphisms of positive entropies (for example,
Oguiso [30, 31] and Oguiso and Perroni [27]). In particular, for the class of smooth rational
threefolds, there are currently only two known examples of manifolds with primitive
automorphisms of positive entropy (see [10, 11, 32]). Here, a primitive automorphism,
defined by Zhang [40], is one that has no non-trivial invariant fibrations over a base of
dimension one or two. For general properties on automorphism groups of compact Kähler
manifolds, see the recent survey paper [16].

It is natural to ask what happens in dimension three and higher. For example, the
following question was asked by Bedford in 2011.

Question 1. Is there a finite composition of blowups at points or smooth curves X→ P3

starting from P3 and is there an automorphism f : X→ X with positive entropy?
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This paper aims to study Question 1 and some related questions. We give evidence
that the answer to Question 1 is negative and that the examples in [10, 11, 32] cannot be
obtained as smooth blowups of smooth threefolds having Picard number 1 or being Fano.

Our results and proofs are stated in terms of dynamical degrees, which we recall now.
Let X be a smooth projective threefold. We denote by Pic(X) the Picard group of X ,
PicQ(X)= Pic(X)⊗Z Q and PicR(X)= Pic(X)⊗Z R. Let Nef(X)⊂ PicR(X) be the
cone of nef classes, which is the closure of the cone of ample classes. Recall that a class
in PicR(X) is nef if and only if it has non-negative intersection with every curve on X .
For later use, we denote by c1(X) and c2(X) the first and second Chern classes of X . Let
f : X→ X be an automorphism. Then f preserves both Pic(X) and Nef(X). Let ω be an
ample class on X . We define the first and second dynamical degrees of f as

λ1( f ) = lim
n→∞
[( f n)∗(ω) · ω2

]
1/n,

λ2( f ) = lim
n→∞
[( f n)∗(ω2) · ω]1/n .

Here are some properties of these dynamical degrees: λ1( f )2 ≥ λ2( f )≥ 1 and λ1( f −1)=

λ2( f ). For more on dynamical degrees, see [19].
Entropy of f can be computed via dynamical degrees by Gromov–Yomdin’s theorem

[20, 37]: htop( f )= log max{λ1( f ), λ2( f )}. Hence f has positive entropy if and only if
λ1( f ) > 1.

Primitivity of f can also be detected from dynamical degrees via the following criterion
(see [32]), which is a consequence of results in [17, 18]: if λ1( f ) 6= λ2( f ), then f is
primitive.

The main idea behind all the results of this paper is that the existence of an
automorphism f of positive entropy on X imposes some constraints on the cohomology
groups of X . In fact, let 0 6= ζ ∈ Nef(X) be such that f ∗(ζ )= λ1( f )ζ (the existence of
such a class is guaranteed by the Perron–Frobenius theorem). The differential d f gives
an isomorphism between the tangent bundle T X and its pullback f ∗(T X). Hence, from
the properties of Chern classes, we have f ∗c1(X)= c1(X) and f ∗c2(X)= c2(X). Since
λ1( f ) > 1 and X has dimension three, it follows that

ζ 3
= ζ 2

· c1(X)= ζ · c1(X)2 = 0.

In fact, stronger constraints are satisfied.

THEOREM 1. Let X be a projective manifold of dimension three and f : X→ X an
automorphism.
(1) If f has positive entropy, there is a nef class ζ , which is not in R · PicQ(X), such that

ζ 2
= 0, ζ · c1(X)2 = 0 and ζ · c2(X)= 0.

(2) If λ1( f ) 6= λ2( f ), there is a nef class ζ , which is not in R · PicQ(X), such that
ζ 2
= 0, ζ · c1(X)= 0 and ζ · c2(X)= 0.

Here we comment on the condition ζ 2
= 0. If X has dimension two, then this condition

is one homogeneous equation in m variables (here, m is the Picard number of X ) and hence
is very easily satisfied. In contrast, when X has dimension three or bigger, the condition
ζ 2
= 0 is a system of p ≥ m homogeneous equations in the m variables (here, p is the

https://doi.org/10.1017/etds.2016.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.4


Automorphisms of blowups of threefolds 2257

dimension of
∧2 PicR(X)), and hence is more difficult to be satisfied. This is a heuristic

argument for why it is difficult to find automorphisms of positive entropy in dimension
three or larger.

Based on Theorem 1, we state some conditions on nef cohomology classes.

CONDITION 2. Let X be a smooth projective threefold.
(1) Condition A: we say that X satisfies Condition A if, whenever ζ ∈ Nef(X) is such

that ζ 2
= 0, ζ · c1(X)2 ≥ 0 and ζ · c2(X)≤ 0, ζ ∈ R · PicQ(X).

(2) Condition B: we say that X satisfies Condition B if, whenever ζ ∈ Nef(X) is such
that ζ 2

= 0, ζ · c1(X)= 0 and ζ · c2(X)≤ 0, ζ ∈ R · PicQ(X).

By Theorem 1, if X satisfies Condition A, then any automorphism on X has zero entropy
and, if X satisfies Condition B, then, for any automorphism f of X , λ1( f )= λ2( f ). While
requiring more than the assumptions in part (1) of Theorem 1, Condition A is very suitable
for inductive arguments. A similar comment applies for Condition B.

Now we are ready to state the main results of this paper. The first result is for blowups
of some special configurations of P3.

THEOREM 3. Let p1, . . . , pn be distinct points in X0 = P3 such that any four of them do
not belong to the same hyperplane. Let Ci, j be the line connecting the points pi and p j .
Let π1 : X1→ P3 be the blowup at p1, . . . , pn . Let Di, j ⊂ X1 be the strict transforms of
Ci, j , and π2 : X2→ X1 be the blowup at Di, j . Then any automorphism of X2 has zero
entropy.

Remark. Dolgachev and Prokhorov informed us that, in the special cases where 4≤ n ≤ 7,
the automorphism group of X2 in Theorem 3 is finite. The conclusion of Theorem 3
can be proven for the blowups of more general configurations in P3. However, since the
statements of these generalizations are a bit complicated, we refer to §4 for more details.

The next two main results of the paper are for threefolds having Picard number 1 or
satisfying a special property on the second Chern class.

THEOREM 4. Let X0 be a threefold with Picard number 1. Let C1, . . . , Ct ⊂ X0 be
smooth curves which are pairwise disjoint. Let p1, . . . , ps ∈ X0 be distinct points, which
are allowed to belong to the curves C1, . . . , Ct . Let π1 : X1→ X0 be the blowup at
p1, . . . , ps , and π2 : X2→ X1 be the blowup at the strict transforms of C1, . . . , Ct . Then
X2 satisfies Properties A and B.

We note that, in general, Theorem 4 does not hold for threefolds X0 with Picard number
greater than or equal to two (for example when X0 = P2

× P1). However, the theorems
below may still hold for those manifolds. See §4 for more details. We recall that a class ζ
on X is movable if there is a smooth blowup π : Z→ X such that ζ is the pushforward of
some nef class on Z .

THEOREM 5. Let X0 be a smooth projective threefold such that c2(X0) · ζ > 0 for all non-
zero movable ζ ∈ N SR(X0). Let p1, . . . , pn ∈ X0 be distinct points. Let π1 : X1→ X0

be the blowup of X0 at p1, . . . , pn . Let D1, . . . , Dm ⊂ X1 be disjoint smooth curves and
let π2 : X2→ X1 be the blowup at D1, . . . , Dn .
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(1) X2 satisfies Condition B.
(2) Assume, moreover, that for any j , c1(X1) · D j ≤ 2g j − 2, where g j is the genus of

D j . Then X2 satisfies Condition A.

Theorem 5 applies for X0 = P3 or P2
× P1 or P1

× P1
× P1. It also applies for

complete intersection threefolds in PN (see §4 for more details). We note that, here, the
images in X0 of D1, . . . , Dn may be singular and intersect with each other, and hence
Theorem 5 is not covered by Theorem 4, not even in the case X0 = P3.

Finally, we state several results which are purely inductive in nature, which can also be
applied to blowups of Fano threefolds. Here we recall that a threefold is Fano if c1(X) is
ample.

We start with the case of point blowups.

THEOREM 6. Let Y be a smooth projective threefold satisfying one of the Conditions A
and B. Let π : X→ Y be the blowup at a point. Then X satisfies the same condition.

Next, we consider the case of curve blowups.

THEOREM 7. Let Y be a smooth projective threefold satisfying Condition A or B. Let
π : X→ Y be the blowup at a smooth curve C ⊂ Y . Let g be the genus of C, and define
γ = c1(Y ) · C + 2g − 2. Then X also satisfies the same condition if one of the following
cases occurs.
(1) c1(Y ) · C is an odd number and the normal vector bundle NC/Y is decomposable.

The latter means that NC/Y is the direct sum of two line bundles over C.
(2) γ < 0 and C is not the only effective curve in its cohomology class.
(3) There is an irreducible hypersurface S ⊂ Y such that 2κ < µγ . Here, κ = S · C and

µ is the multiplicity of C in S.

We note that in (1) of Theorem 7, the condition that NC/Y is decomposable, may
be satisfied easily. For example, if C is a smooth rational curve, then NC/Y is always
decomposable, by a result of Grothendieck, even if C does not move in Y .

THEOREM 8. Let Y be a smooth projective threefold satisfying Condition B. Let π : X→
Y be the blowup at a smooth curve C ⊂ Y . Let g be the genus of C. If c1(Y ) · C 6= 2g − 2,
then X also satisfies Condition B.

Hence, we conclude that if X0 is a smooth threefold which is Fano or has Picard
number 1, then, for almost every X→ X0 which is a finite composition of points or smooth
curves, every automorphism f on X has λ1( f )= λ2( f ). This is a strong indication that
probably all automorphisms on such manifolds are not primitive, that is, they have invariant
fibrations over a base of dimension one or two.

In §4, we will give various examples illustrating the above results. In §5 we will discuss
a possible application of the above results to Ueno’s threefold, considered in [36].

Remark. The general case of compact Kähler threefolds can be treated, similarly, by
replacing the Neron–Severi group by the (1, 1) cohomology group. After the appearance
of a first version of this paper (see [35]), some generalizations to higher dimensions have
been given in [2, 34].
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2. Preliminaries on nef classes and blowups
2.1. Kähler, nef and psef classes and effective varieties. Let X be a compact Kähler
manifold. Let η ∈ H1,1(X). We say that η is Kähler if it can be represented by a Kähler
(1, 1) form. We say that η is nef if it is the limit of a sequence of Kähler classes.
We say that η is psef if it can be represented by a positive closed (1, 1) current. A
class ξ ∈ H p,p(X) is an effective variety if there are irreducible varieties C1, . . . , Ct of
codimension p in X and non-negative real numbers a1, . . . , at so that ξ is represented by∑

i ai Ci .
Demailly and Paun [13] gave a characterization of Kähler and nef classes, which, in the

case of projective manifolds, is summarized as follows.

THEOREM 9. Let X be a projective manifold with a Kähler (1, 1) form ω. A class η ∈
H1,1(X) is Kähler if and only if, for any irreducible subvariety V ⊂ X,

∫
V η

dim(V ) > 0.
A class η ∈ H1,1(X) is nef if and only if, for any irreducible subvariety V ⊂ X,∫

V η
dim(V )− j

∧ ω j
≥ 0 for all 0≤ j ≤ dim(V ).

Nef classes are preserved under pullback by holomorphic maps.

LEMMA 10. Let π : X→ Y be a holomorphic map between compact Kähler manifolds.
Then π∗(H1,1

nef (X))⊂ H1,1
nef (Y ).

Proof. Since nef classes are in the closure of Kähler classes, it suffices to show that if η
is a Kähler class, then π∗(η) is nef. Let ϕ be a Kähler (1, 1) form representing η. Then
π∗(ϕ) is a positive smooth (1, 1) form. Let ωX be a Kähler (1, 1) form on X . Then π∗(η)
is represented as a limit of the Kähler classes

π∗(ϕ)+
1
n
ωX ,

and hence is nef. �

Remark. Similarly, it can be shown that psef classes are preserved under pushforward by
holomorphic maps. However, nef classes may not be preserved under pushforwards, even
when the map is a blowup.

2.2. Blowup of a projective 3-manifold at a point. Let π : X→ Y be the blowup of a
projective 3-manifold at a point p. Let E = P2 be the exceptional divisor and let L ⊂ E
be a line. Then H1,1(X) is generated by π∗(H1,1(Y )) and E , and H2,2(X) is generated
by π∗(H2,2(Y )) and L . The intersection product on the cohomology of X is given by

π∗(ξ) · E = 0, E · E =−L ,

π∗(ξ) · L = 0, E · L =−1.

The first and second Chern classes of X can be computed by (see, for example, the book
of Griffiths and Harris [21, §6, Ch. 4])

c1(X) = π∗(c1(Y ))− 2E,

c2(X) = π∗(c2(Y )).

The following result concerns the relations between cycles on X and Y .
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LEMMA 11. For any effective curve V ⊂ Y , there is an effective curve Ṽ ⊂ X so that
π∗(Ṽ )= V and Ṽ · E ≥ 0.

Proof. It suffices to consider the case when V is an irreducible curve. We can choose Ṽ
to be the strict transform of V . Then π∗(Ṽ )= V , and Ṽ is not contained in E . Therefore
Ṽ · E ≥ 0. �

We end this subsection showing that nef classes are preserved under pushforward by
point blowups.

LEMMA 12. Let η ∈ H1,1
nef (X). Then π∗(η) ∈ H1,1

nef (Y ).

Proof. It suffices to prove the conclusion when η is a Kähler class. Let ϕ be a Kähler
(1, 1) form representing η. Then π∗(ϕ) is a positive closed (1, 1) current, which is smooth
on X − p.

Let ωY be a Kähler (1, 1) form on Y . To show that π∗(η) is a nef class, by Theorem 9,
it suffices to show that, for any irreducible variety V ⊂ Y , π∗(η)dim(V )− j

· V · ω j
Y ≥ 0 for

0≤ j ≤ dim(V ). We let [V ] be the current of integration on V . Then, by the results
in §4, Ch. 3 in the book of Demailly [12], the current π∗(ϕ)dim(V )− j

∧ [V ] ∧ ω j
Y is well

defined and is a positive measure with mass equal to π∗(η)dim(V )− j
· V · ω j

Y . Thus the
latter quantity is non-negative. �

2.3. Blowup of a projective 3-manifold along a smooth curve. Let π : X→ Y be the
blowup of a projective 3-manifold along a smooth curve C ⊂ Y . Let g be the genus of
C . Let F be the exceptional divisor and let M be a fiber of the projection F→ C . We
can identify F with the projective bundle P(E)→ C , where E = NC/Y → C is the normal
vector bundle of C in Y .

Then H1,1(X) is generated by π∗(H1,1(Y )) and F , and H2,2(X) is generated by
π∗(H2,2(Y )) and M . The intersection between F and M is F · M =−1. The first and
second Chern classes of X can be computed as

c1(X) = π∗(c1(Y ))− F,

c2(X) = π∗(c2(Y )+ C)− π∗c1(Y ) · F.

Let [F] → X be the line bundle of F in X , denoted by e = [F]|F . Then (see, for
example, §6, Ch. 4 in the book of Griffiths and Harris [21]), in F ,

e · M =−1, e · e =−c1(E).

From the short exact sequence (SES) of vector bundles on C

0→ TC → TY |C → E→ 0,

it follows, by the additivity of first Chern classes, that

c1(E)= c1(TY ) · C − c1(TC )= c1(Y ) · C + 2g − 2.

We define

γ := c1(Y ) · C + 2g − 2.
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We now consider an effective curve C0 ⊂ F with the properties

C0 · C0 = τ,

C0 · M = µ > 0,

M · M = 0.

Any divisor on F is numerically equivalent to a linear combination of C0 and M . We now
show the following lemma.

LEMMA 13.
(a)

F · C0 =
1
2

(
γµ−

τ

µ

)
. (2.1)

(b)

F · F =−
1
µ

C0 +
1
2

(
τ

µ2 + γ

)
M.

(c) π∗(F · F)=−C.

Proof. (a) In fact,

F · C0 = [F]|C0 = [F]|F · C0 = e · C0,

where the two expressions on the right-hand side are computed in F . On F , numerically,
we can write e = aC0 + bM . Then, from −1= e · M = (aC0 + bM) · M = aµ, we get
a =−1/µ. Substituting this into e · e =−γ , we obtain

−γ = e · e =
(

1
µ

C0 − bM
)
·

(
1
µ

C0 − bM
)
=
τ

µ2 − 2b,

which implies that

b =
1
2

(
τ

µ2 + γ

)
.

Therefore

e =
−1
µ

C0 +
1
2

(
τ

µ2 + γ

)
M.

Thus

F · C0 = e · C0 =

[
−1
µ

C0 +
1
2

(
τ

µ2 + γ

)
M
]

C0

=
−τ

µ
+

1
2

(
τ

µ
+ γµ

)
=

1
2

(
−
τ

µ
+ γµ

)
.

(b) From the formula for e in the proof of (a), it is not difficult to arrive at the proof
of (b).

(c) Since C0 · M = µ, it follows that π∗(C0)= µC . Then, from (b), we obtain (c). �
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We end this subsection with a fact about ruled surfaces to be used later. By [22,
Proposition 2.8 in Ch. 5], there is a line bundle M→ C so that the vector bundle
E ′ = E ⊗M is normalized in the following sense: H0(E ′) 6= 0 but, for all line bundles
L→ C with c1(L) < 0, H0(E ′ ⊗ L)= 0. A canonical section C0 ⊂ F can be associated
to such a normalized E ′. The intersection between C0 and M is 1. Moreover, the number

τ0 = C0 · C0 = c1(E ′)= c1(E)+ 2c1(M),

is an invariant of F .

3. Proofs of the main results
We make use of the following result (see, for example, [3, 38]).

LEMMA 14. Let X be a smooth projective threefold and f : X→ X be an automorphism.
If λ1( f ) > 1, then λ1( f ) is irrational.

For the convenience of the readers, we reproduce the proof of this Lemma here.

Proof. Let A be the matrix of f ∗ : N SR(X)→ N SR(X). Then A is an integer matrix and
λ1( f ) is a real eigenvalue of A. Moreover, A is invertible and its inverse A−1 is the matrix
of the map ( f −1)∗ : N SR(X)→ N SR(X) and hence is also an integer matrix. Therefore
det(A)=±1. Thus the characteristic polynomial P(x) of A is a monic polynomial of
integer coefficients and P(0)=±1. Assume that λ1( f ) is a rational number. Since λ1( f )
is an algebraic integer, it follows that λ1( f )must be an integer. Then we can write P(x)=
(x − λ1( f ))Q(x), where Q(x) is a polynomial of integer coefficients. If λ1( f ) > 1, we
get a contradiction, ±1= P(0)=−λ1( f )Q(0). �

Now we give the proofs of the main results.

Proof of Theorem 1. Since f ∗ preserves the cone Nef(X), by a Perron–Frobenius type
theorem, there is a non-zero nef class η so that f ∗(η)= λ1( f )η. Similarly, there is a
non-zero nef class η− so that ( f −1)∗(η−)= λ1( f −)η−.

Assume that λ1( f ) > 1. By the log-concavity of dynamical degrees, we also have
λ1( f −1) > 1. By Lemma 14, both λ1( f ) and λ1( f −1) are irrational. Hence both ζ and ζ−
are not in R · N SQ(X). It is easy to see that

ζ · c1(X)2 = ζ · c2(X)= 0,

ζ− · c1(X)2 = ζ− · c2(X)= 0.

To prove (1) it suffices to show that either ζ 2
= 0 or ζ 2

− = 0. Assume otherwise. From
ζ 2
6= 0 and f ∗(ζ 2)= λ1( f )2ζ 2,

λ1( f )2 ≤ λ2( f )= λ1( f −1).

Similarly, from ζ 2
− 6= 0,

λ1( f −1)≥ λ1( f )2.

Combining these two inequalities, we conclude that λ1( f )≥ λ1( f )4, which contradicts
the fact that λ1( f ) > 1. This completes the proof of (1).

(2) The proof of (2) is similar. �
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Proof of Theorem 3. For the proof, it suffices to show that, for any non-zero nef ζ on
X = X2, either ζ · c1(X)2 6= 0 or ζ · c2(X) 6= 0.

We let E1, . . . , En be the exceptional divisors of the blowup π1 : X1→ X0 = P3. Let
Fi, j be the exceptional divisors of the blowup π2 : X = X2→ X1. Then we can write

ζ = π∗2 (ξ)−
∑
i< j

αi, j Fi, j ,

ξ = π∗1 (u)−
∑

l

βl El .

Here u is nef on P3 and αi, j , βl ≥ 0.
For the proof of (1), it then suffices to show that deg(u)= 0. From

c2(X)= π∗2 c2(X1)+
∑
i< j

π∗2 Di, j −
∑
i< j

π∗2 c1(X1) · Fi, j ,

and the fact that c1(X1) · Di, j = 0, the condition ζ · c2(X)= 0 becomes ξ · c2(X1)+∑
i< j ξ · Di, j = 0. Since c2(X1)= π

∗

1 (c2(P3)), it follows that ξ · c2(X1)= 16 deg(u).
We also have that ξ · Di, j = deg(u)− βi − β j for every i < j . Therefore, we obtain

6 deg(u)=−
∑
i< j

ξ · Di, j ,(
6+

n(n − 1)
2

)
deg(u)= (n − 1)

∑
l

βl .

From the condition ζ · c1(X)2 = 0, we obtain

0 = ζ · c1(X)2 =
(
π∗2 (ξ)−

∑
i< j

αi, j Fi, j

)
·

(
π∗2 c1(X1)

2

− 2
∑
i< j

π∗2 c1(X1) · Fi, j +
∑
i< j

F2
i, j

)
= ξ · c1(X1)

2
−

∑
i< j

ξ · Di, j − 2
∑
i< j

αi, j c1(X1) · Di, j

+

∑
i< j

αi, j (c1(X1) · Di, j + 2gi, j − 2)

= 22 deg(u)− 4
∑

l

βl +
∑
i< j

αi, j (2gi, j − 2− c1(X1) · Di, j )

= 22 deg(u)− 4
∑

l

βl − 2
∑
i< j

αi, j .

In the above, gi, j = 0 is the genus of Ci, j , and c1(X1) · Di, j = 0 for all i < j . In particular,
we obtain

11
2

deg(u)≥
∑

l

βl =

(
6

n − 1
+

n
2

)
deg(u). (3.1)

From the above inequality, we will finish by showing that deg(u)= 0. We consider several
cases.

https://doi.org/10.1017/etds.2016.4 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.4


2264 T. T. Truong

Case 1: n ≥ 10. From Equation (3.1), it follows, immediately, that deg(u)= 0, as desired.

Case 2: 6≤ n ≤ 9. In this case, for each of the six points pi1 , . . . , pi6 among n points
p1, . . . , pn , there is a unique rational normal curve C ⊂ P3 of degree three passing
through the six chosen points. Let D ⊂ X1 be the strict transform of C . Then D is different
from the curves Di, j . Therefore π∗2 D is an effective curve, and hence

3 deg(u)−
6∑

l=1

βil ≥ ξ · D = ζ · π
∗

2 (D)≥ 0.

Summing over all such choices of pi1 , . . . , pin we find that

n
2

deg(u)≥
∑

l

βl .

Combining this with ∑
l

βl =

(
6

n − 1
+

n
2

)
deg(u),

we obtain deg(u)= 0.

Case 3: n = 4, 5. In this case, we use rational normal curves to obtain
n
3

deg(u)≥
∑

l

βl .

Combining this with ∑
l

βl =

(
6

n − 1
+

n
2

)
deg(u),

we obtain deg(u)= 0.

Case 4: n = 1, 2, 3. In this case, we have n deg(u)≥
∑

l βl . Combining this with∑
l

βl =

(
6

n − 1
+

n
2

)
deg(u),

we obtain deg(u)= 0. �

Proof of Theorem 4. Let π ′1 : X
′

1→ X0 be the blowup at the C1, . . . , Ct . Let F1, . . . , Ft

be the exceptional divisors. Let M j = (π
′

1)
−1(p j ) be the preimages of the points p j

( j = 1, . . . , n). These are smooth rational curves, and are among the fibers of the maps
F1→ C1, . . . , Ft → Ct . Let π ′2 : X

′

2→ X ′1 be the blowup at the curves M j . Then X2 is
isomorphic to X ′2.

Fix a number j . Let i be such that M j ⊂ Fi . Using

c1(NM j /X ′1
)= c1(NM j /Fi )+ c1(NFi /X1 |M j )= 0+ (−1)=−1,

we find that

c1(X ′1) · M j = 1
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is an odd number. Therefore, using either part (1) or part (3) of Theorem 7, for the proof
of Theorem 5 it suffices to show that X ′1 satisfies both Conditions A and B. To this end,
we only need to show that if ζ ∈ Nef(X ′1) is such that ζ 2

= 0, then ζ ∈ R.N SQ(X ′1).
Let H ∈ N SQ(X0) be an ample divisor. Since X0 has Picard number 1, we can write

ζ = a(π ′1)
∗(H)−

∑
j

α j F j ,

where a, α1, . . . , αt ≥ 0. If a = 0, then, from the fact that ζ is nef, α1 = · · · = αt = 0.
Therefore, we may assume that α > 0, and, after dividing by α, we may assume that α = 1.
Then, for the proof of the theorem, it suffices to show that all the numbers α1, . . . , αt are
in Q.

Since the curves C j are pairwise disjoint, for any i = 1, . . . , t ,

0 = ζ 2
· Fi =

(
(π ′1)

∗H −
∑

j

α j F j

)2

· Fi

= (π ′1)
∗H2
· Fi − 2αi (π

′

1)
∗H · F2

i + α
2
i F3

i

= 2αi H · Ci − α
2
i (c1(X0) · Ci + 2gi − 2),

where gi is the genus of Ci . We note that H · Ci is a positive rational number. Hence,
either αi = 0 or

αi = 2H · Ci/(c1(X0) · Ci + 2gi − 2).

In both cases, αi are rational numbers as desired. �

Proof of Theorem 5. (1) Let ζ be a nef class on X2 such that ζ 2
= 0, ζ · c1(X)= 0 and

ζ · c1(X2)
2
≤ 0. We need to show that ζ ∈ R.H2

alg(X2,Q). More strongly, we will show
that ζ must be zero.

Let us denote by F j the exceptional divisor over D j of the blowup π2 : X2→ X1. We
denote by π1 : X1→ X0 the blowup of C0 at the points pi .

We can write ζ = π∗2 (ξ)−
∑

j α j F j , where α j ≥ 0 and ξ is a movable class on X1.
Since D j are disjoint, by intersecting the equations ζ 2

= ζ · c1(X2)= 0 with F j , we find,
as in [35], that either α j = 0 or

ξ · D j = α j c1(X1) · D j = α j (2g j − 2).

If α j = 0, then
ξ · D j = ζ · D′j ≥ 0= α j c1(X1) · D j ,

where D′j ⊂ F j is a section whose pushforward is D j . If α j 6= 0, then ξ · D j = c1(X1) ·

D j . Therefore,

0≥ ζ · c2(X2) =

(
π∗2 (ξ)−

∑
j

α j F j

)
·

(
π∗2 c2(X1)+

∑
j

(π∗2 D j − π
∗

2 c1(X j ) · F j )

)
= ξ · c2(X1)+

∑
j

(ξ · D j − α j c1(X1) · D j ).
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Since each term ξ · D j − α j c1(X1) · D j is non-negative, we find that ξ · c2(X1)≤ 0.
Because c2(X1)= π

∗

1 c2(X0), we then get that (π1)∗(ξ) · c2(X0)≤ 0. Because (π1)∗(ξ)

is movable in X0, from the assumption on c2(X0) we obtain (π1)∗(ξ)= 0. From this, it
follows easily that ξ and then ζ are zero.

(2) The proof is similar to that of (1). The difference is that, here, for each j , either
α j = 0 or

ξ · D j − α j c1(X1) · D j =
α j

2
[(2g j − 2)− c1(X1) · D j ].

In the first case,

ξ · D j − α j c1(X1) · D j = ξ · D j = ζ · D′j ≥ 0,

where D′j ⊂ F j is a section. In the second case, by the assumption (2g j − 2)− c1(X1) ·

D j ≥ 0, we also have ξ · D j − α j c1(X1) · D j ≥ 0.
Hence,

0≥−
∑

j

(ξ · D j − α j c1(X1) · D j )≥ ξ · c2(X1).

Then we can proceed as before. �

Proof of Theorem 6. Let F be the exceptional divisor of the blowup π . Let ζ be a nef
class on X . Then we can write ζ = π∗(ξ)− αF for some α ≥ 0 and for some movable
class ξ = π∗(ζ ) on Y .

Assume that ζ 2
= 0. Then,

0= ζ 2
= (π∗(ξ)− αF)2 = π∗(ξ2)+ α2 F2.

Here we used that π∗(ξ) · F = 0. Because the classes of π∗(ξ2) and F2 are linearly
independent in the (2, 2) cohomology group of X , from the above, we have that α = 0.
Then it follows that ξ is nef on Y and ξ2

= 0. Moreover, since c1(X)= π∗c1(Y )− 2F
and c2(X)= π∗c2(Y ) (see [21, Ch. 4]),

ξ · c1(Y ) = π∗(π∗(ξ) · π∗(c1(Y )))= π∗(π∗(ξ).(π∗c1(Y )− 2F))= π∗(ζ · c1(X)),

ξ · c1(Y )2 = ζ · c1(X)2,

ξ · c2(Y ) = ζ · c2(X).

Then it follows easily that, if Y satisfies one of the Conditions A and B, X also satisfies
the same condition. �

Proof of Theorem 7. We will show that if Y satisfies Condition A, then X also satisfies
Condition A. The proof for Condition B is similar.

Let ζ be a nef class on X . We need to show that if

ζ 2
= 0,

ζ · c1(X)2 ≥ 0,

ζ · c2(X) ≤ 0,

then ζ ∈ R · N SQ(X).
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Let F be the exceptional divisor of the blowup π : X→ Y . We can write
ζ = π∗(ξ)− αF for some α ≥ 0. Also (see §2),

c1(X) = π∗c1(Y )− F,

c2(X) = π∗c2(Y )+ π∗C − π∗c1(Y ) · F,

π∗(F · F) = −C.

We first consider the case α = 0. Then, ξ is nef on Y and, moreover, ξ2
= 0. In this

case,

π∗(ζ · c1(X)) = π∗(π∗(ξ) · (π∗c1(Y )− F))= ξ · c1(Y ),

ζ · c1(X)2 = π∗(ξ) · (π∗c1(Y )− F)2 = π∗(ξ) · (π∗c1(Y )2 − 2π∗c1(Y ) · F + F2)

= ξ · c1(Y )2 − ξ · C,

ζ · c2(X) = π∗(ξ) · (π∗c2(Y )+ π∗C − π∗c1(Y ) · F)

= ξ · c2(Y )+ ξ · C.

Since ξ is nef and C is an effective curve, ξ · C ≥ 0. Therefore, from the assumptions
ζ · c1(X)2 ≥ 0 and ζ · c2(Y )≤ 0, we obtain

ξ2
= 0,

ξ · c1(Y )2 = ζ · c1(X)2 + ξ · C ≥ 0,

ξ · c2(Y ) = ζ · c2(X)− ξ · C ≤ 0.

Since Y satisfies Condition A, by assumption, it follows that ξ ∈ R · N SQ(Y ). Then
ζ = π∗(ξ) ∈ R · N SQ(X). Hence X also satisfies Condition A.

Now we show that, under the assumptions of Theorem 6, actually α must be zero.
Assume otherwise, that is, that α > 0: we will obtain a contradiction. We recall that
γ = c1(Y ) · C + 2g − 2. From the assumption that ζ 2

= 0,

0 = ζ 2
· F = (π∗(ξ)− αF)2 · F

= π∗(ξ2) · F − 2απ∗(ξ) · F2
+ F3

= αξ · C − 2α2
· γ.

In the fourth equality, we used the results in §2. The assumption that α > 0 implies that

ξ · C = α · γ /2.

We now proceed according to parts (1)–(3) of the theorem.
(1) In this case, c1(Y ) · C is an odd number and NC/Y is decomposable. We have a SES

of vector bundles over C : that is,

0→ TC → TY |C → NC/Y → 0.

From this, it follows that

c1(NC/Y )= c1(Y ) · C + 2g − 2= γ.

Recall that F is the exceptional divisor of the blowup π . Then F = P(NC/X )→ C is
a ruled surface over C . Hence (see [22, Proposition 2.8 in Ch. 5]) there is a line bundle
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M over C such that E = NC/Y ⊗M is normalized, in the sense that H0(E) 6= 0, but, for
every line bundle L with c1(L) < 0, H0(E ⊗ L)= 0.

Let f be a fiber of the fibration F→ C . Then (see [22, Proposition 2.9 in Ch. 5]), there
is a so-called zero section C0 ⊂ F with the properties

τ := C0 · C0 = c1(E),
C0 · f = 1.

Because NC/Y is decomposable, E is also decomposable. By part (a) of [22, Theorem
2.12 in §5], c1(E)≤ 0. Moreover, from

c1(E)= c1(NC/Y )+ 2c1(M)= c1(Y ) · C + 2g − 2+ 2c1(M),

and the assumption that c1(Y ) · C is an odd number, we get that c1(E) < 0. Hence τ < 0.
From Lemma 13,

C0 =−F · F + 1
2 (τ + γ ) f.

Now we obtain the desired contradiction. Since ζ is nef and C0 is an effective curve,
ζ · C0 ≥ 0. Hence,

0 ≤ (π∗(ξ)− αF) ·
(
−F · F +

1
2
(τ + γ ) f

)
= ξ · π∗(−F · F)+ αF · F · F −

1
2
α(τ + γ )F · f

= ξ · C − αγ +
1
2
α(τ + γ )=

ατ

2
< 0.

In the above, we used that π∗(−F · F)= π∗(C0)= C (see, for example, [35, Lemma 4]),
F · f =−1, F · F · F =−γ , ξ · C = αγ/2, α > 0 and τ = C0 · C0 < 0.

(2) In this case, γ < 0 and C is not the only effective curve in its cohomology class. Let
D be another curve in the cohomology class of C . Since C is irreducible, we can assume
that C is not contained in the support of D. Then π∗(D) is an effective curve in X . Since
ζ is nef, we obtain a contradiction

0≤ π∗(D) · ζ = D · π∗(ζ )= D · ξ = C · ξ = αγ/2< 0.

(3) In this case, there is an irreducible hypersurface S ⊂ Y such that 2κ < µγ . Here
κ = S · C and µ is the multiplicity of C in S. We now construct an effective curve C0 ⊂ F
and use it to derive a contradiction.

The strict transform S̃ of S is given by S̃ = π∗(S)− µF and is an irreducible
hypersurface of X . Since S̃ and F are different irreducible hypersurfaces, their intersection
C0 = S̃ · F = (π∗(S)− µF) · F is an effective curve of F . We now compute the numbers
C0 · C0 and C0 · M .

C0 · C0 = S̃|F · S̃|F = S̃ · S̃ · F

= (π∗(S)− µF) · (π∗(S)− µF) · F =−2µπ∗(S) · F · F + µ2 F · F · F

= 2µS · C − µ2γ = 2µκ − µ2γ.
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Define τ = C0 · C0 and µ0 = C0 · M . Note that µ0 6= 0, otherwise C0 is a multiplicity
of M , and hence π∗(C0)= 0. But, from the definition of C0, we can see that
π∗(C0)= µC 6= 0. Then, by Lemma 13,

F · F =−
1
µ0

C0 +
1
2

(
τ

µ2
0
+ γ

)
M.

Pushforward this by the map π and, using that π∗(F · F)=−C and π∗(C0)= µC , we
have that µ0 = µ.

From the above computation, τ = 2µκ − µ2γ , we obtain

F · C0 =
1
2

(
γµ−

τ

µ

)
= γµ− κ.

Because ζ is nef, it follows that

0 ≤ ζ · C0 = (π
∗(ξ)− αF) · C0 = µξ · C −

α

2

(
γµ−

τ

µ

)
,

=
α

2
γµ−

α

2

(
γµ−

τ

µ

)
=
α

2
τ

µ
= α

(
κ −

1
2
γµ

)
.

This contradicts the assumptions that 2κ < γµ and α > 0. �

Proof of Theorem 8. Let ζ be a nef class on X . We need to show that if

ζ 2
= 0,

ζ · c1(X) = 0,

ζ · c2(X) ≤ 0,

then ζ ∈ R · N SQ(X).
Let F be the exceptional divisor of the blowup π : X→ Y . We can write ζ = π∗(ξ)−

αF for some α ≥ 0. As in the proof of Theorem 7, it suffices to show that α = 0. We
assume, otherwise, that α > 0. Let f ⊂ F be a fiber of the projection F→ C . Then

0 = ζ.ζ = (π∗(ξ)− αF) · (π∗(ξ)− αF)

= π∗(ξ · ξ)− 2απ∗(ξ) · F + α2 F · F,

0 = ζ · c1(X)= (p∗(ξ)− αF) · (π∗c1(Y )− F)

= π∗(ξ · c1(Y ))− π∗(ξ) · F − π∗c1(Y ) · F + αF2.

Intersecting both of these equations with F , and using F · F · F =−γ and π∗(F · F)=
−C , we obtain

2αξ · C − α2γ = 0,

αc1(Y ) · C + ξ · C − αγ = 0.

Then we must have α = 0. Otherwise, dividing 2α from the first equation we would have
ξ · C = αγ/2. Substituting this into the second equation and dividing by α we get 2c1(Y ) ·
C = γ . Hence c1(Y ) · C = 2g − 2, which is a contradiction. �
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4. Examples
4.1. The case X0 = P2

× P1. The Picard number of X0 is 2. By Künneth’s formula,
H1,1(X0) is generated by the classes of P2

× {pt} and P1
× P1 (here, {pt}means a point),

and H2,2(X0) is generated by P1
× {pt} and {pt} × P1. By Whitney’s formula,

c1(X0) = 2P2
× {pt} + 3P1

× P1,

c2(X0) = 6P1
× {pt} + 3{pt} × P1.

Therefore, we can check that X0 satisfies all the conditions of part (1) of Theorem 5.
In particular, if D1, . . . , Dn ⊂ X0 are pairwise disjoint smooth curves, and π1 : X1→

X0 is the blowup at D1, . . . , Dn , then, for any automorphism f of X1, λ1( f )= λ2( f ).
However, X0 does not satisfy the conditions of Theorem 4: its Picard number is 2 which
is greater than 1. For an appropriate choice of curves D1, . . . , Dn , the threefold X1 has
automorphisms of positive entropy. In fact, there is a rational surface S obtained from
P2 by blowing up distinct points p1, . . . , pn ∈ P2 such that S has an automorphism of
positive entropy. If we choose D j = p j × P1, then D j are smooth rational curves which
are disjoint, and X1 has an automorphism of positive entropy.

4.2. The case X0 = P1
× P1

× P1. This case is very similar to the case X0 = P2
× P1

above. The readers can easily redo all the (analogs of) computations and constructions in
the previous section.

4.3. The case X0 = a complete intersection in PN . Let X0 be a smooth projective
threefold which is a complete intersection in PN . This means that X0 is the intersection of
smooth hypersurfaces D1, . . . , DN−3 of PN . By Lefschetz’s hyperplane theorem, X0 has
Picard number 1. We now show that X0 satisfies the conditions of Theorem 5.

LEMMA 15. Let ζ be a non-zero movable class in X0. Then ζ · c2(X0) > 0.

Proof. Let d1, . . . , dN−3 be the degrees of V1, . . . , VN−3. Let h be the class of a
hyperplane on X . The Chern classes of the normal bundle NX0/Pn is given by the formula

c(NX0/Pn )=

N−3∏
j=1

(1+ d j h).

In particular,

c1(NX0/Pn ) =

(∑
j

d j

)
h,

c2(NX0/Pn ) =

(∑
i< j

di d j

)
h2.

From the exact sequence

0→ TX0 → TP4 |X0 → NX0/P3 → 0,
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and, from the splitting principle for Chern classes, it follows that

c1(X0)=

(
(n + 1)−

∑
j

d j

)
h,

c2(X0)=

(
(n + 1)n

2
−

∑
i< j

di d j − (n + 1)
∑

j

d j +

(∑
j

d j

)2)
h2.

We have

(n + 1)n
2

−

∑
i< j

di d j − (n + 1)
∑

j

d j +

(∑
j

d j

)2

=

[
n − 4

2(n − 3)

(∑
j

d j

)2

−

∑
i< j

di d j

]

+

[
n(n + 1)

2
+

n − 2
2(n − 3)

(∑
j

d j

)2

− (n + 1)
∑

j

d j

]
.

By the Cauchy–Schwarz inequality, the first bracket on the right-hand side of the above
expression is non-negative. We now show that the second bracket is positive. We define
x =

∑
j d j . Then x is a positive integer which is ≥ n − 3, and the second bracket is

quadratic in x : that is,

n(n + 1)
2

+
n − 2

2(n − 3)

(∑
j

d j

)2

− (n + 1)
∑

j

d j

=
n(n + 1)

2
− (n + 1)x +

(n − 2)
2(n − 3)

x2
=: g(x).

The critical point of g is x0 = (n + 1)(n − 3)/(n − 2) < n. Hence, to show that
g(x) > 0 for all positive integers x ≥ n − 3, it suffices to show that g(n − 3), g(n − 2),
g(n − 1), g(n) > 0 for any positive integer n ≥ 4. The latter claim can be checked by
direct computation.

A movable class is, in particular, psef: that is, it can be represented by a positive closed
current. Hence, if ζ is a non-zero movable class on X0 then ζ · c2(X0) > 0. Therefore,
part (1) of Theorem 5 can be applied for such a X0. �

4.4. A generalization of Theorem 3. The proof of Theorem 6 shows that the conclusion
is still valid in the following, more general, setting. Let π1 : X1→ X0 = P3 be the blowup
at n points p1, . . . , pn . Let E1, . . . , En be the exceptional divisors. Let D1, . . . , Dm ⊂

X1 be pairwise disjoint smooth curves. Let X = X2 be the blowup of X1 at D1, . . . , Dm .
We define

γ :=
∑

j

deg(π1)∗(D j ).

Assume that there is λ > 0 such that, for any l,∑
j

El · D j ≤ λ,
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and, moreover,
6+ γ
λ

>
11
2
.

In addition, assume that, for any j ,(
1
2
+

1
λ

)
c1(X1) · D j ≥

g j − 1
2

,

where g j is the genus of D j .

5. A possible application to the Ueno’s threefold
Let E√

−1 be an elliptic curve with an automorphism of order four, which we denote by
√
−1. In [36], Ueno asked whether the quotient variety E3√

−1
/
√
−1 is rational. Campana

[7] showed that the variety is rationally connected. Then, by a combination of the two
papers [10, 11], it follows that E3√

−1
/
√
−1 is rational. Previously, a similar construction,

using, instead, an elliptic curve with an automorphism of order six, has been shown to be
rational (see [32]).

The automorphism
√
−1 on E3√

−1
has 8 fixed points and 64− 8 points of period two.

Therefore, E3√
−1
/
√
−1 has 8+ 28= 36 singular points. Let X4 be the minimal resolution

of E3√
−1
/
√
−1: that is, X4 is the blowup of E3√

−1
/
√
−1 at the 36 singular points. The

analog of X4 in the case of elliptic curves with an automorphism of order six is denoted
by X6.

Since X4 is birationally equivalent to P3, by the weak factorization theorem (see [1]),
X4 can be obtained from P3 by a combination of smooth blowups and blowdowns. It is
then natural to ask the following question.

Question 2. Can X4 be obtained from P3 or P2
× P1 or P1

× P1
× P1 by a finite

composition of smooth blowups only?

This question is interesting in several aspects. First, the two dimensional analog, that is,
the minimal resolution of E2√

−1
/
√
−1, has been shown to be a finite composition of point

blowups starting from P1
× P1 in [7]. Second, the final proof that X4 is rational in [10] is

rather abstract. Hence, if the answer to Question 2 is affirmative, it will give an explicit
proof that X4 is rational.

We note that the smooth threefold X4 has automorphisms f coming from the complex
torus E3√

−1
with λ1( f ) 6= λ2( f ). Therefore, from the discussion in the introduction of this

paper, it is plausible to conclude that the answer to Question 2 is negative. The purpose of
this section is to give more weight to this speculation.

We first show that, if the answer for Question 2 is affirmative, then centers of the
individual blowups must be points or smooth rational curves. In the following, for any
quasi-projective variety Z we will denote the Euler characteristic with compact support by
χ(Z). For a smooth projective manifold Z , we denote the Picard number of Z by ρ(Z).

THEOREM 16. Let X0 be any smooth projective threefold. Assume that X4 can be obtained
from X0 by a finite composition of smooth blowups. Then the curves which are centers of
the blowups must be smooth rational curves. The same conclusion holds if we replace X4

by X6.
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Proof. We give the proof for X4 only. We divide the proof into several steps.

Step 1. We claim that χ(X4)= 92. In fact, first we consider the quotient map σ : E3√
−1
→

E3√
−1
/
√
−1. Let A ⊂ E3√

−1
be the set of fixed points of

√
−1, and B ⊂ E3√

−1
be the set of

points of period two of
√
−1. As mentioned before, the cardinals of |A| and |B| are 8 and

56, and the cardinals of σ(A) and σ(B) are 8 and 28. Since the map π : E3√
−1
− (A ∪ B)

→ E3√
−1
/
√
−1− (σ (A) ∪ σ(B)) is a 4 : 1 map, by the excision property,

χ(E3√
−1
/
√
−1− (σ (A) ∪ σ(B))) = χ(E3√

−1
− (A ∪ B))/4

= (χ(E3√
−1
)− χ(A ∪ B))/4

= (0− 64)/4=−16.

Hence, by the excision property, χ(E3√
−1
/
√
−1)=−16+ 36= 20.

Next, we consider the blowup π : X4→ E3√
−1
/
√
−1. This map has 36 exceptional

divisors, and each is a P2. Since χ(P2)= 3 and the blowup map is 1 : 1 outside exceptional
divisors, arguing as above, we obtain

χ(X4)= (χ(E3√
−1
/
√
−1)− 36χ(pt))+ 36× χ(P2)= 20− 36+ 36× 3= 92.

Here pt denotes a point.

Step 2. We claim that ρ(X4)= 45 and h3(X4)= 0. To see this, we can proceed as follows.
The complex torus E3√

−1
has Picard number 9. We can construct X4, alternatively, as

follows. We let Y be the blowup of E3√
−1

at the 64 points of order one or two. Then the

automorphism
√
−1 lifts to an automorphism of Y , which we still denote by

√
−1. Then

X4 = Y/
√
−1. It follows that the Picard group of X4 is generated by the pushforward of

the Picard group of Y . For generators of the Picard group of Y , we can take the generators
of E3√

−1
plus the exceptional divisors of the blowup Y → E3√

−1
. The pushforward to X4

of these generators are 45 hypersurfaces of X4. Therefore, ρ(X4)≤ 45. Moreover, from
Step 1 and Serre’s result mentioned above,

92= χ(X4)= 2+ 2ρ(X4)− h3(X4)≤ 92.

Since equality occurs, we conclude that ρ(X4)= 45 and h3(X4)= 0.
From the fact that h3(X4)= 0, the conclusion of the Theorem follows immediately,

since, if we blow up a smooth threefold at an irrational smooth curve, h3 increases. �

Now we show how Theorem 16 and Theorems 6–8 almost give the proof that the answer
to Question 2 is negative. In fact, let X0 be P3, P2

× P1 or P1
× P1

× P1. Then X0 satisfies
Condition B, while X4 does not satisfy Condition B. Assume that X4 is a finite composition
of smooth blowups starting from X0. Let π j : Z j+1→ Z j be an individual blowup in the
sequence, where Z j satisfies Condition B. If π j is a point blowup, then, by Theorem 6,
Z j+1 also satisfies Condition B. If π j is the blowup of a smooth curve C ⊂ Z j , then, by
Theorem 16, C must be a smooth rational curve. If c1(Z j ) · C 6= 2g − 2=−2, then, by
Theorem 8, Z j+1 also satisfies Condition B. The remaining case is when c1(Z j ) · C =−2.
But, in this case, half of the conditions of part (2) of Theorem 7 are satisfied. The only
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condition that is missing is that C is not the only effective curve in its cohomology class.
Using part (1) of Theorem 6, we can also show that if the normal vector bundle NC/Z j is
not isomorphic to O(−2)⊕O(−2), then Z j+1 also satisfies Condition B.
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2011, pp. 3–13.

[4] E. Bedford and K.-H. Kim. Dynamics of rational surface automorphisms: rotation domains. Amer. J. Math.
134(2) (2012), 379–405.

[5] E. Bedford and K.-H. Kim. Continuous families of rational surface automorphisms with positive entropy.
Math. Ann. 348(3) (2010), 667–688.

[6] E. Bedford and K.-H. Kim. Dynamics of rational surface automorphisms: linear fractional recurrences.
J. Geom. Anal. 19(3) (2009), 553–583.

[7] F. Campana. Remarks on an example of K. Ueno. Series of Congress Reports, Classification of Algebraic
Varieties. Eds. C. Faber, G. van der Geer and E. Looijenga. European Mathematical Society, Zürich, 2011,
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