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Abstract
We propose a newmethodology for inferring political actors’ latent memberships in communities of collec-

tive activity that drive their observable interactions. Unlike existing methods, the proposed Bipartite Link

Community Model (biLCM) (1) applies to two groups of actors, (2) takes into account that actors may be

members of more than one community, and (3) allows a pair of actors to interact in more than one way. We

apply this method to characterize legislative communities of special interest groups and politicians in the

113th U.S. Congress. Previous empirical studies of interest group politics have been limited by the difficulty

of observing the ties between interest groups and politicians directly. We therefore first construct an original

dataset that connects the politicians who sponsor congressional bills with the interest groups that lobby

on those bills based on more than two million textual descriptions of lobbying activities. We then use the

biLCMtomakequantitativemeasurementsof actors’ communitymemberships ranging fromnarrow targeted

interactions according to industry interests and jurisdictional committeemembership to broadmultifaceted

connections across multiple policy domains.

Keywords: network analysis, bipartite network, lobbying, ideal point estimation, scaling, stochastic block

model, link community model, community detection

1 Introduction

Social scientists have long been interested in understanding the networks that organize the

relationships among actors engaged in a collective activity. Mapping networks in this way helps

scholars answermany questions about how actors form communities, what they gain from doing

so, and how those communities intersect, evolve, and govern various social interactions. More

recently, network analysis has benefited fromadvances in computing, which offer unprecedented

capacity to record and analyze large quantities of political interactions (Hoff, Ra�ery, and Hand-

cock 2002; Lazer et al. 2009; Ward, Stovel, and Sacks 2011; Box-Steffensmeier and Christenson

2014; Hadden 2015). Consequently, researchers have successfully partitioned massive networks

of social and political actors into similarly-behaving communities that are simpler to understand

(Barberá 2014; Bond and Messing 2015; Desmarais, La, and Kowal 2015).

Despite advances in community detection methods (Newman 2006), however, existing

approaches seldom account for various important properties of political networks. We focus

on three of these properties. First, political actors o�en come in distinct types that determine

the nature of their interactions. In particular, bipartite networks, formed by interactions between

two types of actors, are prevalent in politics. Examples include the interactions between voters

and politicians, politicians and pieces of legislation, private firms and government entities,

and democratic and autocratic countries. Ignoring this extra network structure may severely

compromise the validity of network analyses (Larremore, Clauset, and Jacobs 2014). Second,

these interactions are o�en driven by mixed memberships in political communities, wherein

actors may have multiple interests, motivations, or roles that drive their behaviors (Gray and
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Lowery 2000; Heaney 2004). For instance, a politician may interact with voters sometimes as a

party leader but other times as a local representative. Finally, a pair of actors may have mixed

interactions that combine different alignments of their motivations. For instance, how much a

citizen contributes to a politician’s campaign may depend on how much they agree with the

politician’s views onmany issues.

To date, no network model captures all three properties at once. We therefore develop a

new methodology for inferring political actors’ latent memberships in communities that drive

their observable interactions. The proposedBipartite Link CommunityModel (biLCM) departs from

existing community detectionmodels in the literature by accounting for the above properties. We

derive and implement an Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin

1977) to efficiently estimate the biLCM, allowing researchers to apply this method to bipartite

networks with mixed memberships and interactions and thereby measure how actors’ activity is

distributed across communities.

To illustrate the advantages of the biLCM methodology over existing community detection

models, we apply the biLCM to identify legislative communities of special interest groups and

politicians in the U.S. Congress. Scholars have long been interested in studying the relationships

between interest groups and elected officials in order to better understand who influences legis-

lation and how they exert that influence (Austen-Smith and Wright 1992; Potters and Van Winden

1992; Wright 1996; Grossman and Helpman 2001). Early empirical works, such as Wright (1990)

andHeinz et al. (1993), investigated these interactions based on interviewswith lobbyists, interest

groups, and politicians. Though these inquiries have yielded many insights, they are limited in

scope and treat only a few policy domains in isolation. Providing a rich and large-scale political

map of this network, on the other hand, has been limited both by the available data and by the

absence of an appropriate methodology.

We therefore begin by building a dataset that identifies a type of political connection between

interest groups and members of Congress by combining two types of political behavior related

to a bill: (1) which politician sponsored the bill and (2) which interest groups lobbied the bill.

Our dataset is distilled from a larger database of lobbying data, which we build by applying

natural language processing techniques on mandatory reports filed by lobbyists to identify the

interest groups that lobbied on 108,086 congressional bills introduced between the 106th and

114th Congress.1 Although lobbying on a bill does not necessarily imply political ties to its sponsor,

recurring instances of lobbying that involve the same interest group and sponsor on numerous

bills do reliably indicate a shared involvement on specific political issues. Therefore, analyzing

how o�en various politicians and interest groups interact in this way lets us infer the structure of

political issue networks in the legislative process.

We then apply the biLCM tomeasure participation in legislative issue domains for each interest

group and politician. The results are instructive for understanding the different ways in which

interest groups pursue lobbying in the U.S. Congress. First, we find that “specialist” and “gener-

alist” interest groups coexist in U.S. legislative politics. Namely, some interest groups engage in

targeted lobbying of members of committees that have jurisdiction over their narrow interests.

Meanwhile, other interest groups, particularly those that represent the varied interests of many

members (such as the CHAMBER OF COMMERCE), target politicians who are members of broad

“power committees” such as the HOUSE COMMITTEE ON WAYS AND MEANS and the SENATE COMMIT-

TEE ON APPROPRIATIONS (Fenno 1973).

Second, we find that it is rare for a diverse collection of specialist interest groups to lobby on

the same legislation. Ourmodels confirm statistically thatmost interest groups lobby in just a few

1 Our replicationdataarepublicly available viaPolitical AnalysisHarvardDataverse (KimandKunisky 2020a) andCodeOcean
(Kim and Kunisky 2020b).
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issueareas that aredirectly related to theirmission. This suggests that theunderlyingnatureof the

lobbying network is different from other types of political interactions that tend to be structured

by ideology, such as campaign contributions (Bonica 2013; Desmarais et al. 2015) and socialmedia

connections (Barberá 2014; Bond and Messing 2015). In fact, our model identifies just one major

issue area that is lobbied by diverse interest groups: legislation concerning social and human

rights issues. This quantitative finding is consistent with Hojnacki (1997), who found that civic

groups tend to participate in interest group alliances rather than lobbying alone.

Finally, by identifying connections that deviate most from the predictions of the biLCM, we are

able to distinguish genuinely significant political connections from routine alignments of lobbying

and legislative activity, such as energy firms lobbying on energy bills written by members of an

energy committee. The special connections we identify in this way o�en coincide with campaign

contributions, geographic ties betweenpoliticians and interest groups, or disruptive and industry-

changing legislation.

To the best of our knowledge, ours is the first network model that accounts for all three of

bipartite structure,mixedmembership, andmixed interactions. Latent spacemodels, for example,

cannot explicitly describe mixedmemberships. As Minhas, Hoff, and Ward (2019) have suggested,

these models confound actors belonging to a single community with actors belonging to similar

combinations of many communities; in our setting, they would suggest that the CHAMBER OF

COMMERCE and the SPECIALTY EQUIPMENT MARKET ASSOCIATIONmust have similar interests merely

because both lobby on a wide range of legislation. On the other hand, while stochastic block

models have been adapted separately to bipartite networks (Larremore et al. 2014) and mixed

memberships (Airoldi et al. 2008), they are not well-suited to describing mixed interactions. In

our setting, they would require that the numerous interactions between a pair of powerful actors

like Senator Barbara Boxer (D-CA) and the CHAMBER OF COMMERCE all arise from a single shared

issue of interest. Our model avoids both of these pitfalls, and provides more refined insights

than both latent spacemodels and stochastic blockmodels, distinguishing shared broad interests

from shared focused interests and numerous interactions on different issues from numerous

interactions on the same issue.

The open-source so�ware polnet is available as an R package for implementing the proposed

methods. The replication materials for this paper are available through the Political Analysis

Dataverse (Kim and Kunisky 2020a) and Code Ocean (Kim and Kunisky 2020b). The network

data, the estimated community memberships of political actors, ancillary results from other

models, and the visualization tools used in preparing this paper will be made publicly available

at https://www.lobbyview.org (Kim 2018).

2 The Bipartite Link Community Model

In this section, we propose a statistical model of bipartite networks of interactions between two

types of actors, the Bipartite Link Community Model (biLCM). We first motivate themethodology in

the context of interest groups’ interactionswithpoliticians.We thengiveanabstractmathematical

formulation and derive an EM algorithm to estimate the model parameters, giving a scalable

implementation of the proposed method that can be applied by other researchers to analyze

bipartite networks found in American politics, international relations, sociology, and political

economy.

2.1 Motivation
Political networks are o�en organized into distinct communities2 within which actors typically

interact. Researchers have found that members of Congress form partisan communities in

2 We use the term “community” in the technical sense common in network science: a community is a densely connected
subset of actors in a network.
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cosponsorship networks (Zhang et al. 2008), while larger congressional units such as committees

and subcommittees form more complex communities according to subject matter (Porter

et al. 2005). Interest groups and politicians also form communities who interact via campaign

contributions (Desmarais et al. 2015). Our goal is to identify a different type of interest group–

politician community, whichwe call a legislation community: a collection of groups and legislators

that are interested in the same bills.3

Perhaps the most common model of communities in networks is the stochastic block model

(SBM) of Fienberg and Wasserman (1981), which Larremore et al. (2014) adapted to bipartite

networks as the bipartite stochastic block model (biSBM). In these models, each political actor

belongs to one community, and interactions depend only on actors’ respective memberships.

O�en, the network structure is assortative, meaning that actors interact more when they share

a community, and less when they do not.

The first problem with the biSBM for our purposes is that it assigns each actor to only one

community. That may be fine if the scholar is interested only in knowing the community in which

an actor spends a plurality of time, but it leaves out a great deal of detail about community

structure. In reality, political actors o�en have mixed memberships, meaning they participate in

multiple communities. This can occur when actors have heterogenous interests across various

policy domains or represent the interests of diverse constituents. For instance, an oil energy firm

might be interested in both restrictions on utility providers and automotive pollution regulation.

Similarly, most members of Congress are interested in numerous policy domains (Lauderdale

and Clark 2014) and sit on several committees that have distinct legislative jurisdictions. To

account for this, we need to allow political actors to have simultaneous memberships of varying

strengths in all legislation communities.

One prominent model in the SBM family that incorporates this enhancement is the mixed-

membership stochastic block model (mmSBM) (Airoldi et al. 2008). In this model, each actor has a

probability distributionover communities.When twoactors interact, they “roll thedice” to choose

which community they will belong to for all of their interactions; how many times they interact

depends only on that choice of communities. Panels (a) and (b) of Figure 1 illustrate how the

biSBM differs from the mmSBM: the biSBM (panel (a)) assumes that each actor belongs to only

one community (indicated by color), and members in the same community tend to interact more

frequently with each other thanwith actors in other communities. In contrast, themmSBM (panel

(b)) allows an actor to act in different communities for different interactions.4

Although the mmSBM has some desirable features, it does not allow for mixed interactions:

an actor cannot be part of more than one community when interacting with a given counterpart.

For modeling interactions between interest groups and politicians, this is a severe limitation.

For example, the CHAMBER OF COMMERCE interacted repeatedly with the same legislator, Senator

Barbara Boxer (D-CA), by lobbying three diverse bills: 113th S. 601 “Water Resources Development

Act of 2013,” 113th S. 462 “United States-Israel Strategic Partnership Act of 2013,” and 113th

S. 809 “Genetically Engineered Food Right-to-Know Act.” A human analyst taskedwith identifying

legislation communities would certainly not conclude that all three bills belong to a single issue

area. Yet a model in the mmSBM family would bizarrely insist that a single common community

membership must account for every interaction involving the two actors.

To overcome this limitation, instead of modeling each interaction as a mixture of possible

interactions in different communities, we model each interaction as a sum of independent inter-

actions in all possible communities. Panels (b) and (c) of Figure 1 illustrate this difference. Under

3 We show below that the presence of community structure is corroborated by latent space models, which do not assume
that community structure exists in the lobbying network.

4 For the sake of comparison, we illustrate a hypothetical adjustment of the original mmSBM to an assortative community
structure in a bipartite network, with interactions having integer magnitudes.
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(a) biSBM (b) mmSBM (c) biLCM

Figure 1. Schematic comparison of community models. We illustrate three generative network models:
the biSBM, the mmSBM, and the biLCM. The first two models are illustrated in the assortative case, where
each politician community interacts strongly with just one interest group community and vice-versa. Colors
indicate community memberships and, in the mixed membership cases, interaction types. (a) In the single
membershipmodel, political actors sharingacommunity interactmore frequently. (b)ThemmSBMallows for
mixedmemberships, but all interactions of a single pair of actors are constrained tobeof a single type. (c) The
biLCM allows for mixed membership as well as mixed interaction types. This captures political interactions
in which actors with diverse memberships interact repeatedly for different political reasons.

our model, illustrated in panel (c), interactions between a single pair of actors can belong to

multiple communities (see also Equation (1) below). In this way, we arrive at amodel similar to the

link community model (LCM) of Ball, Karrer, and Newman (2011) that we adapt specifically to the

bipartite setting. Themost similar priorworkweare aware of is that of Li, Zhang, andZhang (2015),

who treat the link community detection task in bipartite graphs as an optimization problem that

they solve with an ad hoc genetic algorithm. Unlike that work, our model provides an underlying

probabilistic generative model and therefore a statistical interpretation.

In summary, motivated by examples from interest group lobbying, we posit that political

actors are organized into legislation communities, that actors are o�en members of multiple

communities, and that two actors may interact in more than one community. As we will see, this

allows us to accurately describe the activity of both powerful actors with broad interests and less

prominent actors with narrower interests within the samemodel.

2.2 The Model
We now give a general mathematical description of the biLCM. Suppose that we have two disjoint

groups of political actors, U and V, which we index by i ∈U = {1, . . . ,m} and j ∈V = {1, . . . ,n}. We

denote the number of interactions between the pair i , j byAi ,j , and organize these numbers as the

entries of the interactionmatrix A ∈ Rm×n . This matrix may be viewed as the adjacencymatrix of a

bipartite graph with weighted edges, where actors in the groups U and V lie on opposite sides of

the partition.

We suppose that interactions occur in k “link communities” (a generic term for “legislation

communities” from the presentation above), which we index by z ∈ {1, . . . ,k }. Each actor i and

j has a vector of parameters αi ,z and βj ,z , respectively, which represents their involvement in

community z. The number of total interactions between i and j in community z is modeled as

Poissonwith amean proportional to αi ,zβj ,z . To impose parameter identification, we assume that

for each fixed z,
∑m
i=1αi ,z =

∑n
j=1 βj ,z = 1, and we introduce another parameter κz to capture the

overall level of activity in community z, so that the number of interactions between i and j in

community z hasmean κzαi ,zβj ,z . We assume that these Poisson variables are independent, thus

the joint distribution of the interaction matrix is
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P(A | α ,β ,κ) =
m
∏

i=1

n
∏

j=1

Poisson

(

Ai ,j

�

�

�

k
∑

z=1

κzαi ,zβj ,z

)

. (1)

2.3 Estimation
We derive an EM algorithm for this model in Appendix B.1. The algorithm alternates expectation

andmaximization update steps until the log-likelihood of themodel converges. The update equa-

tions produced by our derivation are given below, including ancillary optimization parameters

qi ,j (1), . . . ,qi ,j (k ). The first equation is the expectation step for the ancillary parameters, and the

last three equations are maximization steps for the model parameters.

qi ,j (z ) =
κzαi ,zβj ,z

∑k
z=1 κzαi ,zβj ,z

, (2)

κz =

∑m
i=1

∑n
j=1Ai ,j qi ,j (z )

∑m
i=1

∑n
j=1αi ,zβj ,z

, (3)

αi ,z =

∑n
j=1Ai ,j qi ,j (z )

∑m
i=1

∑n
j=1Ai ,j qi ,j (z )

, (4)

βj ,z =

∑m
i=1Ai ,j qi ,j (z )

∑m
i=1

∑n
j=1Ai ,j qi ,j (z )

. (5)

In practice, because the EMalgorithm is not guaranteed to converge to themaximum likelihood

parameters, we perform 50 randomly initialized runs and choose the parameters that attain the

highest likelihood value.

3 Empirical Findings

In this section,weuse thebiLCMtobetterunderstand the structureof a lobbyingnetwork involving

interest groups and legislators. We begin by introducing an original database of lobbying data.

We then apply the biLCM to a specific dataset concerning the 113th Congress and present the

estimated mixed community memberships of interest groups and legislators.5 Our analysis illus-

trates a clear distinction between “specialist” and “generalist” interest groups and identifies the

legislators connected to both types. We also describe what issues drive specialist interest groups

to lobby outside of their domains, and we analyze a class of anomalous political connections

identified by the biLCM. Finally, we discuss the benefits of this methodology over other network

models.

3.1 The Lobbying Network Database
All lobbying organizations are required by law to file quarterly reports describing the issues on

which lobbyists have engaged in political activities, including lobbied bills. However, organiza-

tions need not identify their political contacts. This is unfortunate, since almost 90% of lobbying

reports indicate that at least one member of Congress or member of their staff was contacted.

Because we cannot directly observe lobbying interactions, we construct an original lobbying

database that indirectly captures the connections between interest groups and politicians. Our

5 We focus on a single recent session of Congress to restrict our attention to a specific modeling task. In Appendix B.3 and
Figure F.3, we present some preliminary results comparing biLCM results across several sessions.
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database is built from the universe of reports filed between 1999 and 2017.6 We use a suite of

automated systems to (1) identify lobbied bills, (2) identify the session of Congress that those bills

were introduced in, and (3) identify each bill’s sponsor. We briefly outline this process below.

First,weanalyzemore than twomillion “specific lobbying issues” found in the lobbying reports,

which refer to lobbied bills by either number or title.7 In practice, bills are o�en referenced by

alternative names or subtitles, so bill references must be algorithmically identified. Second, we

identify the session of Congress that each bill belongs to, which the report o�en does notmention

explicitly. This empirical challenge has prevented prior works from analyzing lobbying accurately.

To overcome this difficulty, we mine several signals from the report text to predict the session

number, including phrases like “Act of [YEAR],” other bills identified in the same report, and

similarity between bill texts and the report text mentioning them.8 Next, we record the politicians

sponsoring each bill. Finally, we identify all the actors of the lobbying sector (lobbyists, their

lobbying firms, the interest groups that hire them, and so forth) that are involved in lobbying on

each bill. We repeat this process for each of 1,111,859 lobbying reports, which in total link 20,092

special interest groups with 1,164 (current and former) members of Congress.

The le� panel of Figure 2 shows that about 12,000 bills are introduced in each Congress and

the majority of them are lobbied by at least one interest group. Very few of these bills make it to

a vote as written, however. Instead, they tend to be merged into larger bills following a complex

process of amendment and compromise. Importantly, we observe interactions before this noisy

process takes place, and thus we witness the lobbying network at a particularly granular level.9

Indeed, as the right panel shows, most bills are lobbied by very few interest groups, suggesting

that each individual instance of lobbying tends to reflect narrow interests. A typical example: on

“A bill to exempt the aging process of distilled spirits from the production period for purposes of

capitalization of interest costs” (113th S. 1457), sponsored by Senator Mitch McConnell (R-KY), the

DISTILLED SPIRITS COUNCIL was the only interest group to lobby.10 This bill has never been voted

on in the Senate, and therefore would never appear in roll call data.

3.2 Findings of the Bipartite Link Community Model
We now apply the biLCM to lobbying in the 113th Congress. To produce a suitable dataset, we take

Ai ,j to count the number of bills interest group i lobbied that politician j sponsored (see Appendix

A.2 for further details on the data used in this section). We then estimate the parameters of the

biLCM using k = 8 legislation communities.11

Wename the legislation communities that result by examining the interest groups that interact

in them most frequently. Some involve straightforward collections of industry- or issue-specific

groups: “Healthcare,” “Veterans’ Affairs,” “Technology & Telecommunications,” “Energy,” and

“Finance & Insurance.” Others are broader: one, which we name “Universities & Research,”

involves amixof universities andaerospaceanddefense research firms (CRAY,GENERALDYNAMICS).

Another, named “Civil Society,” includes leading civil rights associations (ACLU) as well as lobby

6 Compliancewith disclosure requirements is closelymonitored, strictly enforced, and annually audited by the Government
Accountability Office (GAO). According to the 2014 GAO audit report, 90% of organizations filed reports as required and
93% could provide documentation related to expenses.

7 Each report may describe several issues lobbied, resulting in a set of 2,396,693 corpora to parse.
8 When bills are mentioned only by number, it is difficult to determine which bill is being described, as bills are num-
bered starting at 1 in every new congressional session. This presents a substantial challenge; for instance, the OpenSe-
crets.org database from the Center for Responsive Politics, which is o�en used in academic research, erroneously
states that INTEL lobbied “Value Our Time Elections Act” instead of “National STEM Education Tax Incentive or Teachers
Act.” Both bills are numbered H.R. 289. Such examples call into question previous findings based on these data. See
http://www.opensecrets.org/lobby/billsum.php?id=hr289-113.

9 There is ample empirical evidence that lobbyists help to dra� bills or evenwrite entire bills on behalf of legislators (Nourse
and Schacter 2002; Hertel-Fernandez 2014).

10 See Kim (2017) for examples of similar patterns in trade bills.
11 Our choice is guided by the community structurewe observe in the latent spacemodel below. Researchersmay specify the

number of communities based on the granularity of community structure they wish to observe.
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Figure 2. Descriptive statistics of lobbying. The le� panel presents the numbers of bills introduced, lobbied,
and votedon in each session from the 106th through the 114thCongress. Note that the increase in thenumber
of bills lobbied beginning with the 110th Congress is likely a function of the digitization of lobbying records
and does not necessarily reflect an actual increase in lobbying. The right panel shows how many interest
groups lobbied on each bill introduced in the 113th Congress. The distribution is highly skewed: the median
is three while the maximum is 946 (on 113th H.R. 1, “Tax Reform Act of 2014”), and 23% of lobbied bills are
lobbied by only one interest group.

organizations for the rights of workers (AFL-CIO), senior citizens (AARP), women (NATIONAL

WOMEN’S LAW CENTER), the disabled (EASTER SEALS), and others. The last, named “Retail

& Transportation,” includes agricultural groups (NATIONAL CORN GROWERS), manufacturing

associations (NATIONAL ASSOCIATION OF MANUFACTURERS), automotive firms (NISSAN), retailers

(HOME DEPOT), and fuel manufacturers (BRITISH PETROLEUM).

To illustrate the information the biLCM provides, in the table of Figure 3 we present legislation

communitymemberships for six interest groups that illustrate the range of lobbying behaviors the

biLCM identifies in the network. Firms such asMICROSOFT and ARCH COAL lobby on a single topic,

thus they interact with politicians in a single legislation community (“Technology & Telecommu-

nications” and “Energy,” respectively) with probability at least 85%. Firms with broader interests,

such asMCAFEE, INC. andBRITISH PETROLEUM, lobby primarily in two or three arenas. For instance,

MCAFEE, INC., a computer security firm, lobbied on 113th S. 1429 “Department of Defense Appro-

priations Act” (as did defense firms such as GENERAL DYNAMICS and NORTHROP GRUMMAN) and

113th H.R. 756 “Cybersecurity Enhancement Act” (as did technology firms including MICROSOFT

and GOOGLE). Accordingly, MCAFEE, INC. interacts in the “Technology & Telecommunications”

community with probability 31% and in the “Universities & Research” community with probability

52%. Large holding companies such as PHILIPS NORTH AMERICA or organizations such as the

CHAMBER OF COMMERCE lobby most categories of legislation, interacting in any single community

with probability no more than 25%. We present analogous examples for politicians in Table F.1,

finding that the legislators with the most legislation community memberships are o�en senior

politicians or party leaders.

To demonstrate the network structure we find, we plot part of the lobbying network in the

bottom panel of Figure 3. We show actors involved in the “Healthcare” and “Civil Society” com-

munities as well as the classification of their interactions by the biLCM. We show interactions

occurring in one community (vertical links on the le� and right) in lighter colors and mixed

interactions (diagonal links and vertical links in the center) in darker colors. As the figure shows,

many repeatedly interacting interest group–politician dyads have interactions that belong to

different communities. Thus themixed interactionsmodeledby thebiLCMare crucial to accurately

describing the lobbying network.

Before proceeding, we describe a simple way to quantify how many different legislation com-

munities an actor actively participates in. From the model definition, the mean total number of
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Interest Group Distribution Example Bills

Microsoft
Startup Act 3.0

Law Enforcement Access to Data Stored Abroad Act

Satellite Television Access and Viewer Rights Act

McAfee, Inc.
Cybersecurity Enhancement Act

Department of Defense Appropriations Act

Energy Efficient Government Technology Act

Arch Coal
Climate Protection Act

Caring for Coal Miners Act

Energy Consumers Relief Act

British Petroleum (BP)
Keep American Natural Gas Here Act

RFS Reform Act

Corn Ethanol Mandate Elimination Act

Philips North America
Protect Medical Innovation Act

Medicare DMEPOS Market Pricing Program Act

Renewable Energy Parity Act

Chamber of Commerce
Water Resources Development Act

United States-Israel Strategic Partnership Act

Genetically Engineered Food Right-to-Know Act

Figure 3. Legislation communities in the biLCM. In the table at the top, we give examples of interest
groups, their legislation communitymemberships, and examples of bills that they lobbied. Memberships are
plotted as histograms, with eight bars for the eight communities in the biLCM. In the bottom plot, we show
mixed interactions between actors in the “Healthcare” and “Civil Society” communities within the lobbying
network. Links indicate the number of interactions belonging to these communities under the biLCM, and
color indicates their distribution between the two communities.

times interest group i lobbies in community z equals κzαi ,z , and likewise κzβj ,z for politician j.

A natural choice is then to form probability distributions pi ,z =
κzαi ,z

∑k
z=1 κzαi ,z

and qi ,z =
κz βj ,z

∑k
z=1 κz βj ,z

,

and consider the entropies Hi = H (pi ,1, . . . ,pi ,k ) and H j = H (q j ,1, . . . ,q j ,k ), where H (c1, . . . ,ck ) =

−
∑

cz log2 cz . An entropy of H may then be interpreted as, roughly speaking, an actor typically

participating in 2H legislation communities. Simply put, actors with higher entropy values are

members of more legislation communities than actors with lower entropy values.

Committees Associated with Specific Communities. We study the congressional committee

memberships of politicians that interact in a small number of legislation communities and the
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Figure 4. Committeemembership of politicians by community. We present bar plots of the top 10 committee
memberships for legislators in different legislation communities found by the biLCM. Bars are divided by
political party (red for Republican and blue for Democrat), and the horizontal bars at the top show the
overall party distribution of each community. (For reference, 52% of members of the 113th Congress were
Republican.)

memberships of politicians that interact in many legislation communities. In Figure 4, we draw

bar plots of committee memberships for three groups of legislators: legislators who interact with

probability at least 40% in the “Finance & Insurance” community, legislators who interact with

probability at least 40% in the “Veterans’ Affairs” community, and legislators with entropy at least

2, that is, those who actively participate in at least four different communities.

The first two groups of politicians have committee memberships that are concentrated in

committees relevant to the subject matter of their community, such as the HOUSE COMMITTEE ON

FINANCIAL SERVICES and the HOUSE COMMITTEE ON ARMED SERVICES. In contrast, the high-entropy

politicians have committee memberships on so-called “power committees,” such as the HOUSE

COMMITTEEONWAYSANDMEANSand theSENATECOMMITTEEONAPPROPRIATIONS. Thesecommittees

hold the “power of the purse,” controlling various financial aspects of governance (Fenno 1966).12

Lobbying Beyond Specific Interests. Analyzing interest group alliances in lobbying using the avail-

able data is a subtle matter, as the data do not distinguish between lobbying for or against

a given piece of legislation. Instead, we analyze a more general question: when do nominally

domain-specific interest groups broaden their lobbying activity and lobby on legislation outside

of their main interest area?

We indeed occasionally observe such lobbying in our data. For instance, the SIERRA CLUB,

an environmentalist organization that typically lobbies bills such as 113th H.R. 3826 “Protecting

States, OpeningNational Parks Act,” also lobbied 113thH.R. 3206 “Global Sexual andReproductive

Health Act of 2013” as did PLANNED PARENTHOOD. As another example, the OUTDOOR INDUSTRY

ASSOCIATION, an outdoor recreation trade organization that typically lobbies bills such as 113th

H.R. 5204 “Federal Lands Recreation Enhancement Modernization Act of 2014,” also lobbied 113th

H.R. 1389 “Military Access to Reproductive Care and Health (MARCH) for Military Women Act.”

Not surprisingly, PLANNED PARENTHOOD also lobbied this bill. Accordingly, the SIERRA CLUB and

the OUTDOOR INDUSTRY ASSOCIATION participate in the “Civil Society” legislation community with

probability 33% and 19%, respectively.

Observing numerous examples like these and examining the corresponding community mem-

berships,we findonedominantpattern:when interest groupsbroaden their interests, it is to lobby

on social issues, as represented by involvement in the “Civil Society” community. Indeed, that is

the only community that appears not to admit a description in termsof a specific industry or issue.

12 We discuss other committees that appear similarly popular with the lobbying sector in Appendix B.4.
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Table 1. Anomalous interactions identifiedby thebiLCM.We list the 10pairs of legislators and interest groups
whose number of observed interactions deviates the most from the predictions of the biLCM. Probabilities
are computed directly from Equation (1) using the estimatedmaximum likelihood parameters.

Legislator Party State Interest group Observed Estimated

TomMarino R PA CVS 10 0.55

Mike Conaway R TX IHEARTMEDIA INC. 7 0.17

Michael Enzi R WY EBAY 11 1.08

Gary Peters D MI MEMA 5 0.09

Fred Upton R MI DIRECTV 7 0.31

Steve Scalise R LA DIRECTV 7 0.32

John Barrasso R WY IHEARTMEDIA INC. 6 0.19

Jeanne Shaheen D NH NOVO NORDISK 12 1.61

Jim Costa D CA MET. WATER DISTRICT SO. CA 4 0.05

Peter DeFazio D OR TREA SENIOR CITIZENS LEAGUE 6 0.24

On theother hand, that community is only the fourthmost active out of eight (assessing this by the

κz modelparameters), and thusaccounts foronly amodest fractionof lobbyingactivity. Therefore,

we find evidence that narrow, industry-specific interests remain the primary determinant of

lobbying activity, and other motivations play at most a secondary role. That lobbying outside of

domain-specific interests is concentrated on social issues is compatible with Hojnacki (1997), who

suggests that civic groups tend to form lobbying alliances instead of lobbying alone.

Anomalous Connections. Another analysis that emerges from the biLCM is to examine the results

that deviate the most from the model’s predictions. We list these connections in Table 1. As we

described earlier, our analysis of the results of the biLCM finds that the legislation communities in

the lobbying network are organized around actors’ interests: industry-specific groups will lobby

politicians with power over that industry; groups with a variety of interests may lobby either a

variety of politicians or specific politicians with broad power. The connections in Table 1, in which

the numbers of observed interactions exceed those predicted by the biLCM, represent pairs of

actors whose interactions must then be driven by a mechanism other than shared interests.

Indeed, investigating these interactions suggests a range of interesting explanations. In some

cases, actors are connected by geography, such as Senator Jeanne Shaheen (D-NH) and NOVO

NORDISK (a Danish firm whose U.S. operations are headquartered in New Hampshire), and Rep-

resentative Jim Costa (D-CA) and theMETROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA. In

other cases, campaign contributions show a close connection. For instance, IHEARTMEDIA, INC.

both donated to Representative Mike Conaway (R-TX) and Senator John Barrasso (R-WY) and

lobbied on bills the legislators sponsored. Finally, sometimes the interest group and politician

connect over individual legislation that is important to a relevant industry, such as Representative

Tom Marino (R-PA) and CVS (over regulation of opioid distribution), and Senator Michael Enzi (R-

WY) and EBAY (over internet sales tax). In these cases, the bills in question appear to be particularly

important to their sponsors, for instance o�en appearing in electoral materials or receiving other

publicity.

We thus find that the biLCM is a useful means of revealing “exceptional” interactions between

politiciansand interest groups thatgobeyondclassificationaccording toan issueareastructure. In

thisway, thebiLCM findspolitician–interest group connectionswith a rangeof specific substantive

explanations. The biLCM thus may be a useful tool for directing future work on the lobbying

network that can investigate theoretical explanations for these connections.
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Significance of Communities. How do we know that the community structure identified by the

biLCM arises from the structured interactions of interest groups and legislators rather thanmerely

their individual propensities to lobbyor sponsor?Toprovideananswer,weperformapermutation

test on the lobbying network to obtain a null distribution of randomnetworkswith similar activity

distribution of individual actors (see Appendix B.2 for technical details). Since the biLCM can

capture both single and multiple community memberships, this is a useful test of the statistical

significanceof the community structure findwith thebiLCM. Indeed,we find that interest groups in

thenullmodelhavemuchhighernumbersof legislationcommunitymemberships thando interest

groups inmodel of the actual lobbying network, indicating that the lobbying network has a strong

community structure compared to a “typical” similar network.13

On the whole, we find that the biLCM successfully describes the multiple community mem-

berships of political actors and how interactions among actors occur in those communities. The

proposed methodology allows researchers to quantitatively estimate participation in various

communities for each political actor, capturing a community structure that we o�en cannot

directly observe in political networks. In the specific case of legislation communities, the biLCM

allows researchers to relate interest groups with specialized and general interests to politicians

with narrow and broad political roles. It thereby provides a useful guide to the varied interests

and complex preference aggregation that drives lobbying in legislative politics.

3.3 Comparison with Other Models
We now compare the biLCM to two other types of model, latent space models and stochastic

block models. We adapt these existing models to our setting, and show that the biLCM is able to

distinguish key features of the lobbying network that the other models fail to identify.

3.3.1 LatentSpaceModels. In this section,wecompare the results of thebiLCMwithanapproachbased

on a latent space model (LSM), a common modeling choice for networks. The model we use for

comparison is close to those of Slapin and Proksch (2008) and Barberá (2014).

The Model. We model the interaction between interest group i and legislator j as a function of

the Euclidean distance between the two actors’ latent positions in d-dimensional space, θi ∈ R
d

andψj ∈ R
d , respectively, and assume that interactions have independent Poisson distributions.

To account for the differences in actors’ baseline propensities to sponsor or lobby (see Figure

F.1), we include interest group- and legislator-specific “popularity” terms, αi and βj , respectively

(Krivitsky et al. 2009). We then take themean of the interactionAi ,j to be exp(αi +βj − ‖θi −ψj ‖
2
2
).

To implement inference, it is more convenient to reparameterize in terms of α̃i = αi − ‖θi ‖
2
2
and

β̃j = βj − ‖ψj ‖
2
2
. Then, to impose parameter identification and improve the numerical behavior

of sampling, we impose hierarchical priors on the latent space positions andmodified popularity

factors. The posterior distribution under this model is then given by:

P (α ,β ,θ,ψ | A) ∝
m
∏

i=1

n
∏

j=1

Poisson
(

Ai ,j | exp(α̃i + β̃j +2θ⊤i ψj )
)

×

m
∏

i=1

N
(

α̃i | 0,σ
2
I

)

N (θi | 0,diag (τ))×
n

∏

j=1

N
(

β̃j | ν,σ
2
P

)

N
(

ψj | 0,diag (τ)
)

. (6)

13 On the other hand, legislators in the nullmodel have similar numbers of legislation communitymemberships compared to
legislators in ourmodel of the actual lobbying network. This agrees with our previous observation that varied interests are
more typical for politicians than for interest groups: while many interest groups are focused on specific industries, most
politicians are involved in a variety of policy domains.
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Computation. We estimate our model with the Stan so�ware package (Carpenter et al. 2017).

In Appendix C, we include code describing our model and discuss parameter identification,

the choice of dimensionality, the concentration of the posterior distribution, and sampling

diagnostics.

Comparison. We now apply the LSM to the lobbying network dataset for the 113th Congress. For

the two-dimensional LSM, Figure 5 presents the posterior means of the estimated latent spatial

positions, θi and ψj , for all interest groups i and politicians j, plotted against the DW-NOMINATE

ideology dimension for politicians and sized according to popularity factor.

Figure 5 shows that the LSM finds some of the same structure as the biLCM in the lobbying

network, identifying communities (shaded regions) of specific issue areas and industries, which

arise as geometric clusters. In these communities, interest groups share an industry affiliation

(such as “Telecommunications”) or an interest in an issue area (such as “Veterans’ Affairs”), and

politicians sit on committees involved with the policies that affect those groups (see Figure F.5 in

the Appendix). While o�en the dimensions of latent spacemodels encode ideological information

in political network models, we find that, even when tested formally with an F-test of regression

models involving ideological and other covariates, the inferred LSM coordinates depend strongly

only on committee memberships of politicians and industry affiliations of interest groups (see

Appendix C.5). Thus the LSM appears to detect no structure in the lobbying network beyond that

identified by the biLCM.

Not all regions in theLSM’s spatial representationare characterizedbydomain-specific political

interests, however. We find that a region in the center of the latent space (marked by the dashed

oval in Figure 5) is populatedbypoliticianswhoare lobbiedby groupswith diverse interests.While

this region appears to be unstructured and difficult to analyze, we find that it contains precisely

those actors of high entropy we identify with the biLCM. We elaborate on this in Figure 6: the le�

panel repeats the latent space plot from Figure 5 but now divides the latent space into hexagonal

areas and shades them according to the mean legislation community membership entropy of

actors within those areas. We observe that actors with more memberships (darker hexagons)

are clustered near the center of the latent space, while actors with fewer memberships (lighter

hexagons) lie at the edges. We show examples in the right panel, representing each actor with a

pie chart as in Figure 3. We highlight three actors with mixed memberships that we identified in

Figure 3: the CHAMBER OF COMMERCE, BRITISH PETROLEUM, andMCAFEE, INC.

The LSM’s failure to meaningfully describe the actors in the center region is related to its

confounding strong ties with stochastic equivalence, as studied by Minhas et al. (2019). Simply

put, two actors in the LSM may be nearby either because they themselves interact, or because

they interact with others in a similar way. Like the AMEN model of that work, the biLCM

mitigates this effect: repeated interactions in the biLCM occur between actors that share one

dominant community membership; two actors with similar mixed memberships interact less

o�en.

More nuanced results in the LSM are captured by the biLCM as well. For instance, in the

LSM, the geometry of the clusters is consistent with common intuitions about relationships

among industries. For example, the “Technology” cluster is adjacent to both the “Telecommuni-

cations” and “Energy” clusters, while the “Universities” cluster is adjacent to both the “Industrial

Research & Defense” and “Healthcare” clusters. In Figure 6, actors near these border regions

tend to have multiple legislation community memberships in biLCM communities. In summary,

the results of the biLCM improve on those of the LSM: the biLCM captures the same single

community memberships that the LSM does, but also clarifies the regions between communities

and in the center of the latent space that represent varied interests of interest groups and

politicians.
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Figure 5. Estimated LSM positions: Full 113th Congress. This figure presents the two-dimensional latent space positions and popularity factors inferred from the 113th Congress dataset.
a We indicate several significant clusters corresponding to specific industries and issue areas. Interest groups are represented with black dots while politicians are represented with
colored dots according to their ideological score on the DW-NOMINATE scale. The size of each dot is proportional to the exponential of the actor’s popularity factor ( exp(αi ) or exp(βj )).

We annotate the clusters with some representative members.a One actor with outlyingmean latent positions (right of the region shown), DIRECTTV, INC., is omitted for the sake of visual
clarity.

https://doi.org/10.1017/pan.2020.29 Published online by Cambridge University Press
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Figure 6. Latent space position versus legislation community distribution. The le� panel divides the LSM
latent space into hexagonal regions. We shade each region by the average entropy of legislation community
memberships of the actors in that region: the darker the color, the more community memberships the
actors have. The right panel plots example legislation community distributions at their corresponding latent
positions.

3.3.2 Stochastic Block Models. In this section, we compare the results of the biLCM to the biSBM of

Larremore et al. (2014). Unlike the LSM, the biSBM explicitly models interactions as a function of

communitymemberships; however, it lacks themixedmemberships andmixed interactions of the

biLCM.

The Model As before, wemodelAi ,j as having independent Poisson distributions whosemeans

now depend exclusively on the community memberships of interest group i and politician j,

denoted xi ∈ {1, . . . ,k } and yj ∈ {1, . . . ,ℓ}, respectively. Interactions between communities are

described by a matrix B ∈ Rk×ℓ . We again include popularity factors αi and βj for each interest

group and politician, respectively.14 The joint distribution of the interaction matrix is then

P(A | B,x,y,α ,β ) =
m
∏

i=1

n
∏

j=1

Poisson(Ai ,j | αi βjBxi ,yj ). (7)

The model described by Equation (7) is called the Degree-Corrected Bipartite Stochastic Block

Model (dc-biSBM) due to the presence of popularity factors.

Computation We perform maximum likelihood estimation for the dc-biSBM using the EM algo-

rithm implementation provided by Larremore et al. (2014). As with the biLCM, this algorithm is not

guaranteed to converge to the parameters maximizing the likelihood, so we take the parameters

attaining the highest likelihood value out of 50 randomly initialized runs.

Comparison The dc-biSBM suffers from the same drawbacks as the LSM: it identifies single

community memberships in the lobbying network but not the multiple memberships that reflect

actors’ actual varied interests. We illustrate this by comparing the LSM results from the previous

section with the dc-biSBMmemberships (with k = ℓ = 8 for comparison with the biLCM).

The le� panel of Figure 7 overlays the community memberships identified by the dc-biSBM on

the LSM latent space. We use the same colors for the legislation communities as we did for the

14 See Appendix D.1 for a discussion of parameter identification.
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Figure 7. Latent space position versus community membership. In the le� panel, we plot latent positions
from the LSM marked with dc-biSBM communities. Each marker designates one community of politicians
and one community of interest groups. The gray regions and the dashed oval are the ex post LSM community
boundaries from Figure 5. On the right, we plot regions where pairs of dc-biSBM communities overlap in
their latent positions. These lie near the central LSM region, whichwemark in each plot for reference. In each
plot we include only the actors from the relevant pair of communities, and highlight illustrative examples of
interest groups.

biLCM,15 and include the community boundaries from Figure 5. The figure shows that the LSM and

dc-biSBM community structures are remarkably well-aligned.16 Specifically, the boundaries that

we drew in the LSM almost always correspond to distinct political communities in the dc-biSBM.

The dc-biSBM provides some further insights about community structure that were not leg-

ible in the LSM. First, the dc-biSBM uncovers two distinct communities near the center of the

latent space, which we named “Civil Society” and “Retail & Transportation” in the biLCM. These

communities also lie near the center region of the LSM, which we found to contain the higher-

entropy actors from the biLCM. But investigating more carefully, the dc-biSBM also demonstrates

the importance of mixed membership modeling, as the right panels of Figure 7 illustrate. We

zoom in on different parts of the center region of the LSM, focusing on three pairs of adjacent

communities. We find that the communities in each pair overlap in the LSM, and actors in their

intersections indeed tend to lobby on bills related to the subjectmatters of both communities. We

again find our three examples of actors with varied interests, the CHAMBER OF COMMERCE, BRITISH

PETROLEUM, andMCAFEE, INC., lying in these intersections; under thedc-biSBM, suchactors belong

to only one of the several communities in which they interact.

These findings confirm that, while the dc-biSBM is able to discernmore structure than the LSM,

its assignment of each actor to a single community is limited because many actors participate

simultaneously in multiple communities in the lobbying network. The dc-biSBM thus furnishes

yet more evidence that mixed membership modeling is required in order to account fully for the

organization of the lobbying network.

15 As justified by the alignment between the dc-biSBM and the biLCM that is discussed in Appendix E.
16 We combine the dc-biSBM groupings of interest groups and legislators into eight joint communities when we present our

findings in this section, as justified by the observation of assortativity in Appendix D.2.
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3.4 Other Applications of the biLCM
The biLCM is applicable to a wide range of network datasets and problems in the social sciences.

First, as we have illustrated, the biLCM is useful for identifying the community structure that

drives repeated interactions between two distinct types of actors with varied interests. Many such

networks arise in political science, including patronage networks between patrons and clients in

developing countries (Jiang 2018), interactions between voters and politicians through campaign

contributions and social media (Bonica 2013; Barberá 2014), and interactions between legislators

and committees or other congressional units (Porter et al. 2005). Second, the biLCM can be

used to estimate ideal points (Poole and Rosenthal 2011) by considering roll calls as bipartite

networks between legislators and bills. This allows researchers to infer ideal points of legislators

and bills simultaneously. Finally, researchers may use the biLCM as a dimension reduction tool

for network data beyond political applications. For example, a key challenge in the study of the

global production network is to identify input–output relationships between products that are

not directly observable. To better understand global value chains in international trade, the biLCM

could quantify how intermediate products are allocated to produce a range of final goods.

4 Concluding Remarks

Many social and political networks have complex features that make them unsuitable for existing

community detection methods. We propose the novel bipartite link community model, which

models (1) networks consisting of two distinct types of actors, (2) interactions between actors

driven by “mixed memberships” or multiple interests and motivations, and (3) pairs of actors

having “mixed interactions” due to different alignments of interests. Because of these properties,

our model is applicable in numerous settings where other techniques are not.

As an example where our model reveals new network structure, we consider interest group

politics. Special interest groups influence the U.S. legislative process by lobbying for and against

bills. Yet observable connections between interest groups and legislators have proved elusive,

since groups need not reveal the individual politicians they contact. We therefore construct a

network of interactions in the 113th Congress by connecting interest groups to legislators via the

bills that were lobbied, information the groups must disclose.

While this network can be partially modeled with both latent space and stochastic block

models, its key properties are observable only with the proposed model. We find that lobbying

interactions occur in domain-specific communities organized around industries and political

issues such as energy and veterans’ affairs. Interest groups with concerns in these domains lobby

politicians who sit on committees with relevant jurisdiction, such as the HOUSE COMMITTEE ON

ENERGY AND COMMERCE and theHOUSE COMMITTEE ON VETERANS’ AFFAIRS. Furthermore, politicians

who serve on power committees with broad responsibilities are members of multiple communi-

ties and interactwithbroad interest groups that representdiverse interests. Lastly, interest groups’

activity is typically dictated by their domain-specific interests rather than broader commitments,

with the important exception of social issues.

There are currently a few technical limitations of our techniques that could be addressed by

future research. First, our model requires the researcher to choose in advance the number of

communities the biLCM will include. It would be interesting to either perform rigorous model

selection, following the work initiated by Yan et al. (2014) or Peixoto (2015), or to incorporate a

prior on this parameter, perhaps based on Dirichlet process methods (Miller and Harrison 2018).

Second, our model does not take advantage of the rich covariate data available about politicians

and interest groups. This could perhaps be incorporated by extending ourmodel along the lines of

Tallberg (2004) and Olivella, Pratt, and Imai (2018). Finally, to apply to general complex networks,

ourmodel should be extended tomulti-partite interactionswithmany types of actors (such as the

In Song Kim and Dmitriy Kunisky ` Political Analysis 333

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

29
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.29


three-way interactionbetweenan interest group, apolitician, andabill), as exploredbyHoff (2015)

using tensor regression.

In summary, we present a novel and general methodology for analyzing political networks

that have two types of actors who may interact with others in more than one way. To the best

of our knowledge, ours is the first statistical study of lobbying networks in legislative politics

that examines both politicians and interest groups using micro data. We believe applying our

methodology in other settings will both yield new substantive insights and suggest more refined

models suitable for political networks that involve complex interactions.
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