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Two of the most widespread and fascinating patterns observed on cave walls and
icefalls – karst and ice flutings – are demonstrated to share the same morphogenesis,
whose core is a water film-induced locking mechanism. Creeping flow-based parallel
and non-parallel stability analyses are developed through a numerical and analytical
approach. These instabilities are shown to develop at inverted overhung conditions. A
sharp transition between fluting and ripple-like patterns is presented. The non-parallel
problem is solved with the use of Papkovich–Neuber solutions in order to obtain a
finite wavelength selection close to the critical conditions. The method and results
can be extended to similar problems where the temporal evolution of the interface
is linearly related to the film depth.
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1. Introduction
Wavy patterns carved in stone or ice are all-present throughout the Earth’s surface.

They exhibit an amazing variety of morphological structures, and their beauty and
complexity strike everybody. This work deals with a kind of geomorphic pattern that
exhibits a relation between environmental fluid mechanics, karst speleothems and ice
waterfalls.

It is well known that karst caves, i.e. environments formed from dissolving rocks,
contain some of the most astonishing structures such as stalactites, flowstones,
draperies and helictites, commonly called speleothems by speleologists (Meakin
& Jamtveit 2010). Motivated by their importance as palaeo-climate proxies (Fairchild
et al. 2006), scientists aim to model the formation of speleothems quantitatively.
However, although standard hydrogeochemical processes acting in karst deposits
are well known (Kaufmann & Dreybrodt 2007), the morphogenesis of most such
water-driven patterns is poorly understood. For instance, the morphological evolution
of one of the most emblematic shapes, i.e. stalactites, and the occurrence of regular
sub-centimetre ripples on their surface (crenulations; see figure 1a) have been
modelled only recently (Short et al. 2005a; Camporeale & Ridolfi 2012a). The
difficulty in modelling karst morphodynamics is due to the complex interplay between
fluid dynamics and geochemistry. Although it is recognized that cave environments
are the silent repository of climate records, the dynamics of most of the patterns
entrapping these valuable records still lack a comprehensive theory.
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FIGURE 1. (Colour online) (a–c) Examples of karst and ice ripple-like instabilities:
(a) crenulations in the Lehman caves, Nevada, USA (http://www.nps.gov/grba); (b) ice
ripples on the upper surface of the Ciardoney glacier, Italy (Camporeale & Ridolfi 2012b);
(c) an example of icicles. (d–h) Examples of karst and ice flutings: (e) longitudinal section
of karst fluting head depicted in figure 2; (g,h) appearance of flutings over a calcite
concretion on the border of Fountain Ara Coeli (built in 1589, Rome). Also evident is
the fine structure of superimposed transverse patterns, ascribable to crenulations.
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Hydrodynamically locked morphogenesis in karst and ice flutings 91

Unexpectedly, very similar patterns also occur in a completely different environment:
icefalls. Unlike the cave environment, where the precipitation–dissolution processes
are of geochemical nature, icefall formation is driven by freezing–melting at the
phase-change interface. The time scales involved therefore change dramatically with
respect to the karst environment: from 103 to 105 years to a few hours. Typical
patterns that evolve on ice are icicles and ice ripples (Ueno et al. 2010; Camporeale
& Ridolfi 2012b). They can be considered the iced counterpart of crenulations, as
they are two-dimensional small-scale patterns that develop transversely to the water
flow and migrate upstream (figure 1b,c, f ).

This paper focuses on another kind of elegant pattern, which also develops in these
environments, but still awaits explanation: flutings. These structures are widespread
in caves and on icefalls and are longitudinally oriented organ-pipe-like formations
characterized by regular vertical corrugations, that sometimes hang off slightly concave
surfaces (figure 1d–f ). In karsts, they can also be associated with draperies, also called
curtains or ribbons, i.e. weak oscillations in the streamwise direction. While growing
downwards over time, flutes may become undulated and coalesce, so changing their
transverse wavelength, but the pattern regularity of the upper region is always evident,
with a transverse spacing of 2–10 cm. Flutes can emerge from the ceiling of the cave
or be preceded by a small zone where water flows on a bulb-shaped surface (dome),
at the edge of which flutes detach (figure 1e). In icefalls, roughly the same features
can be observed: long vertical ice flutes, quite regularly spaced, with transverse
wavelengths in fair agreement with karst flutings (figure 1f ). Differently from icicles
or crenulations, flutings have so far never been modelled, although they are widely
observed longitudinal patterns.

It is worth noting that longitudinal patterns never occur on the upper part of
domes, where only small-wavelength longitudinal wavelets emerge (crenulations or
ice ripples). This is also evident simply by observing the border of circular decorative
fountains where calcite deposits (figure 1g,h). Fluting formation seems therefore to
be connected to the flow of a vertical or inverted water film (θ > 0◦, according to
the representation of figure 2). The main concern of this work is in fact to show that
the morphogenesis of both structures is strictly related to hydrodynamics of thin-film
flows over an incline. With this aim, two tools are used: a morphological evolution
law and film hydrodynamic equations.

Since the seminal work by Nusselt (1916) and Kapitsa & Kapitsa (1949), falling
films have become a cornerstone in fluid mechanics. The analysis of surface waves
propagating at twice the mean fluid speed were initially addressed through a
long-wave approximation (Yih 1963). Subsequent research on falling films at low
Reynolds numbers and high slopes faced several issues, ranging from the initial
controversy concerning the zero critical Reynolds number at vertical slopes, to the
feature of nonlinear dynamics (Sivashinsky & Michelson 1980), solitary waves and
subharmonic resonance (Cheng & Chang 1992; Pradas, Tseluiko & Kalliadasis 2011).
Most of these issues have been addressed with simplified linear or nonlinear model
equations, such as the Benney equation (Benney 1966), the Ginzburg–Landau model,
the Kuramoto–Sivashinsky equation and the weighted-residual integral boundary layer
(Ruyer-Quil & Manneville 2000). Furthermore, the convective nature of the instability
of falling films has been proven numerically (Brevdo et al. 1999). Comprehensive
reviews of this topic are given in Chang & Demekhin (2002), Craster & Matar (2009)
and Kalliadasis et al. (2012).

Besides the free surface waves investigated in the above literature, open-channel
flows are also subjected to Tollmien–Schlichting waves (also called shear waves)
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FIGURE 2. (Colour online) Scheme of the longitudinal section marked in figure 1(e). Solid
curves: unperturbed conditions. Dashed curves: perturbed conditions.

which propagate at velocities lower than the mean fluid speed (Chu & Dukler 1974).
DeBruin (1974) and Floryan, Davis & Kelly (1987) pointed out that the critical
Reynolds number of the shear mode is always higher than that of the free surface
mode, except for small inclination angles, with the cross-over occurring at very low
slopes.

In the current literature, there are very few works where the instability of wavy
films is considered with the use of the linearized version of the exact Navier–Stokes
equations, namely the Orr–Sommerfeld problem, whose approximate solutions have
been provided analytically and numerically (Pierson & Whitaker 1977). Also, most
of the works on falling films deal with fixed flat bottoms. The first contribution with
undulated topography was made by Wang (1981), but he considered the bottom fixed
and the free surface steady. In the same line of research, the progress made on the
role of three-dimensional effects (Luo & Pozrikidis 2006) and on the linear resonance
of capillary–gravity waves (Wierschem et al. 2008) should also be included.

It is worth recalling that all kinds of purely hydrodynamic instabilities (either
free surface or Tollmien–Schlichting waves) accounted for by these models are
subordinated to a fundamental result in hydrodynamic stability theory, Squire’s
theorem: ‘Parallel shear flows first become unstable to two-dimensional perturbations
at a value of the Reynolds number that is smaller than any value for which unstable
three-dimensional perturbations exist’ (Schmid & Henningson 2001, p. 59). The
open-channel version of this theorem therefore ensures that Nusselt’s flat-film base
state is more stable to three-dimensional than to two-dimensional disturbances (Yih
1955). However, this is not generally true when the wall is no longer assumed to be
a fixed boundary and bottom perturbations are therefore allowed. The occurrence of
film-driven flutings suggests that Squire’s theorem in morphodynamic phenomena is
inconsistent.

In the context of karst morphodynamics, the coupling between falling film
hydrodynamics and speleothem formation has been studied by considering wall-normal
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Hydrodynamically locked morphogenesis in karst and ice flutings 93

chemical diffusion for several flow conditions and addressing the problem of
calcite precipitation under hydrostatic, laminar or turbulent films (Dreybrodt 1988;
Dreybrodt & Buhmann 1991). Numerical and experimental analyses have explored
wall instabilities at large scales (Hammer et al. 2008), calcite terraces have been
investigated, both theoretically (Wooding 1991) and numerically (Hammer et al.
2008), and mathematical rules for the evolution of stalactites and stalagmites have
been developed (Kaufmann 2003; Short et al. 2005a; Short, Baygents & Goldstein
2005b). Additionally, Dressler’s depth-averaged equations (Dressler 1978) have also
been adopted, with no success in predicting pattern formation (Chan & Goldenfeld
2007). In the context of melting–freezing morphodynamics, the adoption of the
Orr–Sommerfeld equation is widespread. When coupled to heat conservation equations
and an interface evolution law (i.e. the Stefan condition), this equation allowed the
stability analysis of icicles (Ueno et al. 2010) and ice ripples (Camporeale & Ridolfi
2012b) to be developed theoretically. Some doubts have been raised by Chen &
Morris (2013) on the validity of the former theory that we will comment on later, in
§ 3.4.

It should be noted that none of these modelling approaches have considered the
problem of fluting formation in karst or ice environments, and no explanation of the
resemblances between forms has yet been given.

In this paper, a unified theory will show that the morphological similarity
between karst and ice flutings is not accidental. With this in mind, the concept
of hydrodynamically locked morphogenesis (HLM) is introduced. In HLM the free
surface dynamics triggers longitudinal pattern formation at the liquid–solid interface.
The primary linear instability is hydrodynamic in nature, with the instability initiated
by the free surface coupled to the fluid momentum. As this instability saturates due
to nonlinear effects to a bounded nonlinear state, the resulting solution drives the
longitudinal patterns found at the liquid–solid interface. HLM is due to the physics
of inverted flows and it is substantially different from what occurs in other ripple-like
patterns, such as icicles and crenulations, where chemical and thermal mechanisms
are crucial to the wavelength selection. According to the ‘HLM conjecture’, a
purely fixed-wall hydrodynamic theory selects the same patterns as the complete
morphodynamic one. Analytical results provided by film-flow stability analysis can
therefore be used to model fluting morphogenesis.

This paper is organized as follows. In the next section (§ 2), a formal derivation
of a morphological evolution equation is provided and the mathematical problem is
formulated for both environments. Section 3 provides some analytical and numerical
results when non-parallelism and wall curvature are neglected, in order to illustrate
some phenomenological results. The fluting–ripple transition is also discussed and
the validity of the HLM conjecture is justified. In § 4, an approximate solution
of the non-parallel theory is provided, and finite wavelength selection is obtained
in a neighbourhood of the vertical tangent point. In § 5, the physical mechanisms
underlying the HLM are illustrated and a potential consequence in palaeo-flow
reconstruction rising from the match between the parallel and non-parallel theory is
discussed. Finally, some conclusions are drawn in § 6.

2. Formulation

Let us consider a pendent film which flows along the underside of a wall. For
the sake of simplicity, the domain is separated into two parts: a curved and a
flat region. The upstream curved region is assumed to have a cylindrical shape,
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94 C. Camporeale

with centre of curvature O and constant radius of curvature R̃, and it is joined
to the flat region downstream (see figure 2). In the curved region, we will adopt
a cylindrical reference frame {θ, r̃, ỹ}, corresponding to the azimuthal, radial and
spanwise coordinates, respectively. Note that the curvilinear coordinate is s̃= R̃θ , so
the alternative reference frame {s̃, r̃, ỹ} will also be adopted in the following. In the
flat region, we will use the standard Cartesian reference frame {x̃, ỹ, z̃}, corresponding
to the streamwise, spanwise and wall-normal coordinates, respectively. In this latter
region, the slope of the wall with respect to the vertical axis reduces to a constant
value, i.e. θ → ϑ (see figure 2) and, for unperturbed conditions, the depth and the
surface velocity are respectively provided by Nusselt’s solutions

D̃0 =
(

2ν2 Re
g cos ϑ

)1/3

, Ũ0 =
(

g cos ϑ Re2 ν

2

)1/3

, (2.1a,b)

where g is the gravitational acceleration, ν is the viscosity and Re = Ũ0D̃0/ν is the
Reynolds number. Henceforth, tilde refers to the dimensional notation.

In order to tackle the morphological instability, a wall evolution equation is
necessary. With this aim, it is convenient to focus on the flat region and to
decompose the film thickness into the sum of the Nusselt depth, D̃0, and a (small)
local pattern-induced perturbation, εd̃(x̃, ỹ, t̃). The quantity ε is a small perturbative
parameter that represents the amplitude of the perturbation, so d̃ is of order one.
At length scales much larger than a single crystal, it can be shown that the growth
rate of both calcite–water and ice–water interfaces is linearly related to the depth
perturbation εd̃.

Let us first consider the karst environments. In the work by Short et al. (2005a),
the stalactite shape was derived by demonstrating that the calcite deposition rate can
be written as

%
dη̃
dt̃
= a{D̃0 + εd̃(x̃, ỹ, t)}{k′−[Ca2+] − k+H[CO2]∞ + k0[H+]}, (2.2)

where % is the ratio of molar mass to density for calcite, η̃ is the wall perturbation,
square brackets refers to ion concentration, H is Henry’s constant, k′−, k+ and k0 are
pH-dependent reaction constants, and the subscript of the carbon dioxide concentration
refers to far atmospheric values. The coefficient a accounts for geometrical effects
but is very close to unity for thin films, so it can be omitted in the present context
(as also remarked by Short et al. (2005b)). The term related to calcium concentration
is formally space-dependent; however, as already pointed by Short et al. (2005a), the
calcium concentration profile is nearly flat, because of the very low deposition rate,
so there is no significant reduction of calcium along the length of the speleothem.
On the other hand, if one were interested in modelling sub-centimetre transverse
ripples (i.e. crenulations), it would be important to consider calcium concentration as
harmonically perturbed in the streamwise direction, as pointed out by Camporeale &
Ridolfi (2012a). For our purposes, the whole content of the second curly brackets –
which we denote %FK – can be considered instead independent of hydrodynamics.
In this way, (2.2) can be rewritten in the generalized form of an evolution equation,

∂η̃

∂ t̃
= A+ εBd̃, (2.3)

where A=FKD̃0 and B=FK .
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Hydrodynamically locked morphogenesis in karst and ice flutings 95

In the ice context, the master equation for wall evolution is instead the celebrated
Stefan equation, which states the heat balance at a freezing–melting interface and
reads

ρiL
dη̃
dt
= [(κi∇T̃i)I− − (κw∇T̃w)I+] · nI, (2.4)

where κw,i are the thermal conductivity of water and ice, respectively, ρi is ice density,
L is the latent heat, nI is the normal versor to the liquid–solid interface, and T̃w,i
are respectively water and ice temperature. Similarly to the depth, these latter can be
decomposed into the sum of a base state plus a pattern-induced perturbation, namely
T̃w,i = T̃0w,i(z̃) + εΘ̃w,i(x̃, ỹ, z̃). Additionally, we can introduce the normalized vertical
coordinates ζ = (z̃− η̃)/D̃ and ζi= (z̃− η̃)/S̃, where S̃ is an assigned depth in the ice.
In this way the liquid and the solid domains are rectangularized so that ζ ∈ [0, 1] and
ζi ∈ [−1, 0], respectively. One therefore obtains that T̃0w,i are linearly distributed over
the film depth, i.e.

T̃0w = T̃Sζ , T̃0i = T̃bζi, (2.5a,b)

where T̃S is a prescribed free surface temperature (in equilibrium with air), and T̃b is
the ice temperature at z̃ = −S̃ (i.e. ζi = −1). Since the Prandtl number of water at
melting conditions is equal to Pr= 13 and Re can be assumed to be of order 10−2 or
less, the Péclet number, Pe = Pr Re, is O(10−1) or less. This justifies the neglect of
thermal convection in the heat equation of the liquid phase. The perturbations Θ̃w and
Θ̃i therefore satisfy the Laplace equations ∇2Θ̃w,i = 0, with homogeneous boundary
conditions that ensure the melting temperature at the liquid–solid interface and the
constancy of the overall heat flux throughout the domain (i.e. the heat flux induced
by perturbations is zero). With the use of the normalized coordinates, after linearizing
with respect to ε and Fourier-transforming from {x̃, ỹ} to the horizontal wavevector
k̃≡{α̃, β̃}, where α̃ is the streamwise wavenumber and β̃ is the spanwise wavenumber,
the diffusive thermal problem becomes[

d2

dζ 2
− D̃2

0k̃2

]
Θ̃∗w + D̃0k̃2T̃s(D̃0 + d̃∗ζ )= 0, (2.6)[

d2

dζ 2
s

− S̃2
0k̃2

]
Θ̃∗i + S̃0D̃0k̃2T̃b(1+ ζs)= 0, (2.7)

Θ̃∗w(0)= Θ̃∗i (0)=
dΘ̃∗w
dζ

∣∣∣∣∣
ζ=1

= dΘ̃∗i
dζ

∣∣∣∣∣
ζ=−1

= 0. (2.8)

The asterisk refers to the Fourier transform while S̃0= S̃− ε and k̃=|k̃|. The solutions
of (2.6)–(2.8), when used in (2.4), at the first order in ε, provide

ρiL
dη̃∗

dt
=−FI

D̃0
+ ε

{
FI

D̃2
0

d̃∗ − k̃2

2
[(2D̃0 + d̃∗)κwT̃s − S̃0κiT̃b]

}
+O(ε2), (2.9)

where FI = κwT̃s + κiT̃b. At this point, it is instructive to perform an order-of-
magnitude analysis of (2.9). The flow conditions considered herein imply that D̃0
varies in the range [10–50] µm (see also table 1), while the morphological patterns
we are considering have centimetre length scale, namely k̃2 ∼ 10−7 µm−2. Since by
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96 C. Camporeale

D̃0 (µm) Ũ0 (mm s−1) c̃ (cm century−1) l̃c (mm) T̃ (◦C) T̃s (◦C) T̃b (◦C)

10–50 0.02–10 5–40 2.7–2.77 0–30 0.01–0.1 −0.01

Re Pe Ka Ma γi γk k ϑ (rad)

10−3–10−1 10−2–1 1740–3194 0.3–0.6 10–104 105–109 0–1 0–π/2

TABLE 1. Typical values of dimensional and dimensionless quantities.

definition d̃ = O(1) and S̃0 has the same order of magnitude as D̃0, it is evident
that the second term in the curly brackets is much smaller than the first one. The
back-transform of the resulting approximate equation falls again into the form of
(2.3), provided the following hold:

A=− FI

ρiL D̃0
, B= FI

ρiL D̃2
0

. (2.10a,b)

We note that, depending on the signs of the terms FK and FI , both karst and ice
environments can be modelled as either depositional or dissolutive (remember that
T̃0i is in fact negative by construction). However, considering the formative conditions
of the morphological patterns that superimpose over the net evolution of the liquid–
solid substrate, it reasonable that karst flutings occur in the same conditions that have
generated the supporting speleothem, i.e. a depositional environment. On the contrary,
the presence of a melt flow during ice fluting morphogenesis suggests that, in the
absence of other water sources, the icefall is melting. Based on such considerations
and without any loss of generality, we will assume henceforth that FK and FI are
both positive quantities.

At this point, all lengths and velocities can be made dimensionless by using the
Nusselt solutions (2.1a,b), respectively, and the dimensionless time follows accordingly
as t = t̃Ũ0/D̃0. Quantities without a tilde are therefore intended to be dimensionless.
The evolution equation (2.3) recast in general dimensionless form is

γ
dη
dt
=±1+ εd(x̃, ỹ, t), (2.11)

where the positive (negative) sign refers to the karst (ice) case and γ = Ũ0/BD̃0 is the
ratio of the morphological to hydrodynamic time scales. In this unified approach, γ
is the only element that discriminates between the karst and ice problem, henceforth
referred to with subscripts K and I, respectively. Assuming T̃s= 0.1 ◦C, T̃b=−0.01 ◦C
and standard conditions for speleothem formation, i.e. dη̃K/dt= c̃∼O(cm century−1)

(e.g. Short et al. 2005b), one obtains

γI = 104 Re, γK = Ũ0

c̃
, (2.12a,b)

which furnish γI of order 102 and γK of order 107 or larger (see table 1 for a summary
of typical values of dimensional and dimensionless quantities). Without any loss of
generality, the validity of (2.11) can also be extended to the curved region, provided
the function d is set to depend on (θ, y, t).
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Hydrodynamically locked morphogenesis in karst and ice flutings 97

The high values of the ratio between the morphological and hydrodynamic time
scales, γ , allows one to adopt the so-called quasi-steady approximation, where
the flow field u is assumed to be slaved to the domain deformation induced by
changes in either η or D. This assumption is customary in morphodynamic problems
(Camporeale & Ridolfi 2012b) and allows us to neglect the time derivative in
momentum equations. The main modelling effect of this approximation is to disregard
shear waves (Tollmien–Schlichting waves), which are always stable for the conditions
herein considered (θ > 0 and Re � 1).

Bearing in mind the above remarks, the governing equations are the dimensionless
form of Navier–Stokes equations for incompressible fluids (Kalliadasis et al. 2012)

u · ∇u+∇p= 1
Re
∇2u+F, (2.13)

∇ · u= 0, (2.14)

where F= (gD̃0/Ũ2
0){sin θ, 0, cos θ} accounts for gravitational effects. The liquid–solid

interface is a dynamic surface that is defined by I (x, y, t)≡ z−η(x, y, t)=0. Similarly,
the free surface is indicated through S (x, y, t)≡ z−η(x, y, t)−D(x, y, t)=0. It follows
that the boundary conditions read

DS

Dt
= 0, (2.15)

DI

Dt
=
0 (dissolution–precipitation),

ρiw
∂η

∂t
(melting–freezing),

(2.16)

(n · T · t)z=η+D = 0, (n · T · n)z=D +Ka
(

2
Re5 cos2 θ

)1/3

KS = 0, (t · u)z=η = 0,

(2.17a−c)
where D/Dt= ∂/∂t+ u · ∇ is the material derivative, p is pressure, ρiw is the density
ratio of ice to water, n and t are the unit normal and tangent vector to a generic
surface, respectively, T = pI − 2 Re−1 D is the dimensionless Newtonian stress tensor
(with I and D the identity matrix and the rate-of-strain tensor, respectively) and KS =
{[(I − nSnS) · ∇] · nS}/2 is the local mean curvature of the free surface (while KI

is the corresponding value at the interface). The parameter Ka = l2
cg2/3ν−4/3 is the

so-called Kapitza number (Chang & Demekhin 2002), representing the ratio between
surface tension and viscous forces, which depends on fluid properties (lc ∼ 2–3 mm
is the water capillary length). Henceforth, if not further specified, we will assume the
melting conditions for the ice and standard conditions, T = 20 ◦C, for karsts. It is
also worth noting that thermocapillary effects can be neglected, since the Marangoni
number Ma= Kaδσ is very small, where δσ ∼ 1.8× 10−4 is the temperature-induced
(relative) variation in the surface tension (see table 1 and also refer to Kalliadasis et al.
(2012, par. 9.5.3)). Since calcium concentration does not affect surface tension, solutal
capillarity is also negligible.

Equation (2.15) is the kinematic condition for the free surface (responsible
for surface waves), while equations (2.16) are the kinematic condition for the
liquid–solid interface, where the source term on the right-hand side that appears
in the melting–freezing case accounts for the meltwater flux entering the film (Hutter
1983, p. 136). Equations (2.17a,b) state the tangential and normal components of
momentum conservation at the free surface, i.e. the so-called dynamic conditions. We
emphasize that the last term in (2.17b) takes into account the effect of surface tension.
Equation (2.17c) states the no-slip condition. In summary, the complete dimensionless
mathematical problem is provided by (2.11) and (2.13)–(2.17).
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3. Parallel stability theory
As a first step, we neglect the curvature of the wall and perform a stability analysis

in the planar region of the wall depicted in figure 2. As already done in the thermal
problem, Prandtl’s mapping z = η + ζ (1 + d) is also adopted in the fluid dynamics
problem, and a normal mode perturbation is assumed by following the decomposition
of film thickness already introduced in the previous section, with the ansatz

{η,D} =
{
± t
γ
, 1
}
+ εd̂

{
1
γ
, 1
}

eλt+i(αx+βy) + c.c., (3.1)

where i=√−1, λ is the complex growth factor and the hat refers to the perturbation
mode. As will be evident in the sequel, the time dependence of the base state of η has
no effects on the equations governing the perturbations, since it is linear in time and
can be virtually eliminated by a rigid wall-normal translation of the reference frame
(ζ→ ζ ± t/γ ).

3.1. The morphodynamic Orr–Sommerfeld model
From standard arguments (Chang & Demekhin 2002), it is well known that the
linearized form of the problem (2.13)–(2.17) is equivalent to the Orr–Sommerfeld
problem extended to open boundary domains. Accordingly, let us set k2= |k|2= α2+
β2, where α and β are the streamwise and spanwise components of the wavevector,
respectively, and define a suitable streamfunction φ=φ0(ζ )+ φ̂(ζ ) exp[λt+ i(αx+βy)].
The constraint of the continuity equation allows the velocity perturbation modes
{û, v̂, ŵ} to follow the relations (Camporeale & Ridolfi 2012b)

αû+ βv̂ = k
dφ̂
dζ
+ α(1+ d̂)u0(ζ ), ŵ=−ikφ̂, (3.2a,b)

where u0 = dφ0/dζ = 2ζ − ζ 2 is the base-state Nusselt velocity profile. The final
linearized set of equations reads(

d4

dζ 4
− 2k2 d2

dζ 2
+ k4

)
φ̂ = iα Re

[
u0

(
d2

dζ 2
− k2

)
+ 2
]
φ̂, (3.3)

kφ̂ − iχγ −1d̂= 0, k
dφ̂
dζ
+ 2α = 0 (ζ = 0), (3.4a,b)(

k
d2

dζ 2
+ k3

)
φ̂ − 2α(1+ d̂)= 0 (ζ = 1), (3.5)

d
dζ

(
d2

dζ 2
− 3k2 − iα Re

)
φ̂ −Ω(1+ d̂)= λRe

dφ̂
dζ

(ζ = 1), (3.6)

(iλ− α)(1+ d̂)= kφ̂ (ζ = 1), (3.7)

γ λ= d̂, (3.8)

where Ω = ik[Ka(2/Re2 cos ϑ)1/3k2 − 2 tan ϑ] and χ = 1 − ρi/ρw in the I case and
χ = 1 in the K case. Note that the quantity Ω is the sum of a term proportional to the
Kapitza number, accounting for capillarity effects, and one accounting for gravitational
effects, which are competing mechanisms for the stability problem, as will be shown
in the Discussion. Additionally, in order to obtain (3.4), we have substituted (3.8) in
the kinematic equation at the wall. In the following, the set of equations (3.3)–(3.8)
will be referred as the ‘morphodynamic Orr–Sommerfeld’ (MOS) model.
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3.2. Numerical solution
The MOS model (3.3)–(3.8) is solved numerically through a spectral Galerkin
technique by adapting the procedure developed in Camporeale, Canuto & Ridolfi
(2012) and Camporeale & Ridolfi (2012b), to which the reader is referred for
additional details. Although analytical results will be provided in the following, a
consistent numerical solution is in fact decisive in order to distinguish the exact
boundaries for pattern formation parametrically.

Essentially, the differential system can be recast into a generalized algebraic
eigenvalue problem of the form S {φi} = λiM with M and S as the mass and
stiffness matrices, respectively. With this in mind, a modal representation of the
solution is adopted, where the function φ̂ is expanded in the (truncated) spectral form

φ̂ =
N∑

i=−3

φiΦi(ξ), (3.9)

with Φi being a set of trial functions, whereas φi and d̂ represent the new unknowns.
For numerical convenience, the vertical coordinate is further mapped into the range
ξ ∈ [−1, 1], according to ξ = 2ζ − 1. The original ordinary differential equation
problem is multiplied by a set of (smooth) test functions with zero first derivative
at ξ = ±1 and zero value at ξ = −1 and integrated over the domain [−1, 1]. The
repeated use of integration by parts allows the fourth derivative in (3.3) to be reduced
to a second-order derivative; in addition, the dynamic boundary condition (3.6) is
incorporated in the mass and stiffness operators in the so-called weak form, through
the boundary term that arises from the integration by parts. The correct choice of the
trial and test functions enables the use of the remaining boundary conditions to be
set in a strong form, that is, as additional rows in the ultimate algebraic system.

We consider the set of polynomials

Φi =
√

i+ 3
2

(
Li+3 − Li+1

(2i+ 3)(2i+ 5)
− Li+1 − Li−1

(2i+ 1)(2i+ 3)

)
, i ∈ [1,N − 3], (3.10)

where Li(ξ) denotes the ith Legendre polynomial. These functions are obtained by
integrating twice each Legendre polynomial, while enforcing zero boundary conditions
at ξ = ±1 for the function and its first derivative. The set of functions in (3.10)
completes the set of solutions of the classical Orr–Sommerfeld problem, where the
boundary conditions are all homogeneous (e.g. Shen 1994). In order to accommodate
non-vanishing boundary conditions, we need to add further low-degree polynomials,
which are

Φ−3 = 1
4(ξ + 1)2(ξ − 1), Φ−2 = 1

4(3− ξ 2 − 2ξ), (3.11a,b)

Φ−1 = 1
2(1− ξ 2), Φ0 = 1

4(3+ 2ξ − ξ 2). (3.12a,b)

It is straightforward to verify that trial and test spaces for the present problem are
arranged in the following way, respectively,

Φi = {Φ−3, Φ−2, Φ−1, Φ0, Φi}T, V = {Φ0, Φi}T. (3.13a,b)

The trial functions Φ−3 and Φ−2 become unnecessary in the particular cases γ →∞
and α = 0, respectively, being the homogeneous boundary conditions at the wall.

The above specifications allow one to obtain the mass and stiffness matrices
(not reported for the sake of the space). The adoption of a Galerkin discretization
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with the aforementioned Legendre modal basis and the use of integration by parts
reduces the numerical complexity due to the fourth- and third-order derivatives of
the Orr–Sommerfeld–Squire problem. This trick eliminates pointwise values of the
higher derivative in the weak form of the equations, thus increasing the accuracy of
the results, and avoids the occurrence of spurious eigenvalues. Unlike the classical
Orr–Sommerfeld problem, the quasi-steady approximation yields a void mass matrix,
except for three lines corresponding to non-homogeneous equations (3.6)–(3.8). The
eigenvalue problem is therefore reduced to the solution of a 3× 3 linear system.

3.3. The Stokes model: analytical solution
In the context of the Stokes regime (Re � 1), the right-hand sides of (3.3) and (3.6)
can be neglected. This choice is numerically justified by the fact that the range of
unstable wavenumbers and the considered Reynolds numbers yield the term α Re to
be less than 10−3. Furthermore, from (3.8), it follows that λRe = O(γ −1 Re), which
is <10−3 for the ice case and <10−8 for the karst case. We also recall that dropping
the right-hand side of (3.3) provides a biharmonic equation that is exact on the
β-axis, while the asymptotic case γ → ∞ provides the classical Orr–Sommerfeld
problem with no wall evolution. In summary, an analytical approach encompassing
two fundamental approximations will be considered: neglecting convective terms in
the momentum equation and the right-hand side of (3.6).

The thus derived differential Stokes problem allows a straightforward but
cumbersome explicit solution for φ̂(1), as a function of the unknown d̂ and parameters
α, k, Re and ϑ . By substituting the expression for φ̂(1) in the linearized kinematic
condition (3.7), and combining with the wall evolution equation (3.8), we obtain a
quadratic characteristic polynomial for λ, with two analytical solutions:

λ± =−σ1 ± (σ 2
1 − 2σ2)

1/2, (3.14)

where

σ1 = iα
2
+ 1

2γ
− k cosh k+ sinh k

(
2ik2 − Rα

)
kγ
(
2k2 + cosh (2k)+ iαRe+ 1

)
+ 2k3Ω − k2Ω sinh (2k)+ iα

(
4k4 + i

(
2k2 + 1

)
αRe

)− iα2Re cosh (2k)
4k4
(
2k2 + cosh (2k)+ iαRe+ 1

) , (3.15)

σ2 = iα
2γ
− 2k3Ω − 2k2 cosh k

(
4k2α +Ω sinh k+ 2iα2Re

)
4iγ k4

(
2k2 + cosh (2k)+ iαRe+ 1

)
+ α

(
4k4 + iαRe+ 2ik2

)− iα2Re(cosh (2k)− 4k sinh k)
4iγ k4

(
2k2 + cosh (2k)+ iRα + 1

) . (3.16)

The values of λ(r)± ≡Re[λ±] provide two modes of the growth rate of the perturbations
that are related to the wall and free surface dynamics. The feature of the Stokes
solution will be compared to the numerical solution of the MOS problem in the
following section.

The critical condition on the β-axis is obtained by setting α= σ2 = 0, leading to

βc = (2 Re sec ϑ)1/3
√

sin ϑ
Ka

. (3.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.381


Hydrodynamically locked morphogenesis in karst and ice flutings 101

The square root in the above formula shows that fluted perturbations are stable when
ϑ < 0 and this condition does not depend on the parameter γ . Thus, the unstable
domain on the β-axis is not affected by the wall evolution dynamics, which is a first
clue of HLM, as will be explained in the sequel. A synthetic result is provided by
writing (3.17) in terms of the critical wavelength Lc = 2πD̃0/βc. Quite curiously, this
quantity does not depend on Re and can be written in the compact form as Lc/lc =
2π
√

csc ϑ .

3.4. Results
The above mathematical model involves four dimensionless numbers (Re, α, β, ϑ)
plus the calcite depositional rate, c, which is given in cm century−1 for the sake
of clarity. An extensive exploration of the results in the parameter subspace
{Re, α, β, |ϑ |, c} < {1, 1, 1, π/2, 40} demonstrates that the real part of the least
stable eigenvalue (henceforth referred to as λ(r)) is positive under the condition
ϑ > 0 only. The theory therefore provides instability only in inverted conditions, in
agreement with observations (e.g. figure 1). This result has been obtained through
both the numerical and analytical solution and for the karst and ice cases.

However, some important differences have emerged between the analytical and
numerical solutions, which are worth remarking upon. Firstly, the (approximate)
analytical solution localizes the maximum growth rate on the β-axis systematically,
which means that Squire’s theorem is always violated at any Re. Conversely, the
numerical solution is able to distinguish between two patterns: fluting and ripple. In
the former case, the maximum growth rate is on the β-axis; in the latter case, it
is on the α-axis. If we define the function Ret(ϑ; γ ) as the slope-dependent value
of the Reynolds number for the transition between these two modes, then fluting is
dominant at Re < Ret, while ripples dominate at Re > Ret. The shift between these
two modes is sharp, that is, there is no hybrid bulb-like patterns with α and β both
not null. As stated earlier, the analytical solution is only valid in the fluting regime,
which is also the focus of the present work.

The above remarks are well summarized in figure 3(a) where, for the K case, we
observe that the fluting regime extends to higher values of Re with increase in the
calcite deposition rate, c, and the transition curve has a maximum at ϑ = [1–10]◦
and Re=O(10−2). In the I case (figure 3b), the transition occurs at Re=O(1). This
remarkable difference between the ice and karst cases is confirmed by the substantial
absence of ripple-like rings on ice stalactites of icefalls when the Reynolds number is
low.

It is also instructive to discuss a few particular cases. Figure 4(a) shows the
numerically computed contour map of λ(r) in the α–β plane for the particular case
AK , marked in figure 3(a) (K case, Re = 0.0115, ϑ = 2◦, γ = 5.4 × 107). The
outer contour line refers to the critical condition, namely λ(r) = 0 (dark blue curve).
According to (3.17) the theoretical value of βc is 9 × 10−4, which is in perfect
agreement with the intercept of the outer contour with the β-axis. Since this case
belongs to the fluting regime, the maximum growth rate occurs at α = 0. There is
in fact a very narrow internal boundary layer with high numerical values reported
on the β-axis. A close-up of this thin layer is reported in figure 4(b) by using the
analytical solution (3.14)–(3.16). The numerical solver described in § 3.2 provides an
almost identical plot (not reported), supporting the fact that, very close to the β-axis
(α being of order 10−8 or less in this case), the Stokes approximation theory provides
reliable results. A posteriori, it is thus evident that the occurrence of such a strange
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FIGURE 3. Boundaries between fluting (Re < Ret) and ripple (Re > Ret) regimes as a
function of ϑ : (a) karst case at different calcite deposition rates; (b) ice case. Points A,
B and C refer to some particular cases that are commented upon in the text.
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FIGURE 4. (Colour online) (a) Contour plot of λ(r) from blue to red, for the case AK

(maximum= 1.2× 10−8). (b) Close-up of a thin stripe around the β-axis (numerical and
analytical computations provide identical plots).

narrow boundary layer – which is crucial for the existence of the fluting regime –
is not a numerical artifact, since it is confirmed by the Stokes approximation theory.
This theory is in fact exact on the β-axis (see § 3.3). Incidentally, we note that the
width of this layer scales as γ −1.

Furthermore, far from the β-axis, but on the α-axis, two other relative maxima are
also located. In the case of the fluting (ripple) regime, these maxima are lower (higher)
than the peaks on the β-axis. Differently from the β-axis, these additional structures
are not correctly provided by the the Stokes approximation theory, regardless of
the Reynolds number, and therefore the ripple regime is not detectable analytically.
This latter finding is much more evident if the behaviours on the α- and β-axes
are directly compared against the growth rate (see figure 5). In the fluting regime
(case AK , panel a), the maximum along the β-axis (thick solid line) is larger than

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.381


Hydrodynamically locked morphogenesis in karst and ice flutings 103

0

0

5

10

0.2 0.4 0.6 0.8 1.0 1.2 0 0.5 1.0 1.5

2
4
6
8

10
12
14

0
–2
–4

(a) (b)

FIGURE 5. The growth rate plotted against the α-axis (thin lines) and β-axis (thick line).
Plots against the α-axis: numerical computation (solid thin line), analytical computation
(dashed thin line), numerical computation without convective terms (dash-dotted thin line).
(a) Case AK and c= 5 cm century−1. (b) Case BK and c= 5 cm century−1.

that along the α-axis, when this latter is computed both numerically (thin line) and
analytically (dashed line). On the contrary, in the ripple regime (case BK , panel b),
the thin solid line is higher than the thick one, but the dashed line still remains lower.
Therefore, the analytical prediction of the curve λ(r)(α) always underestimates the
true behaviour and mirrors the behaviour on the β-axis, i.e. the outer contour line is
nearly circular. The failure of the analytical model on the α-axis is a consequence
of the two approximations contained in the Stokes problem, which both contribute to
reducing the value of λ(r). The two effects can be separated by solving the problem
while neglecting the convective terms but not the right-hand side of (3.6). The result
of this latter choice is reported by the dot-dashed line in figure 5, which still remains
remarkably different from the dashed line where both approximations have been
made.

The above picture is completed by reporting the results for the ice case (figure 6).
Figure 6(a) shows the numerical result concerning point AI of figure 3(b) (γ = 103),
where one can observe a large boundary layer centred on the β-axis (the width of
which is again of order ∼γ −1) and the absence of secondary peaks. Owing to the
circularity of the outer contour line, once again the estimation given by the analytical
formula (3.17) corresponding to βc ∼ 0.005 provides a good approximation for the
critical longitudinal wavenumber, αc. Figure 6(b) (point BI , γ = 104) refers to a
condition that is close to the fluting–ripple transition. In this case the circularity of
the outer contour line is completely lost, as is evident by the distorted scales of
the picture, but maxima are still on the β-axis and the γ −1 scaling of the internal
boundary layer is still valid. Incidentally, we note that, if the behaviour along the
α-axis is plotted (not shown), then a very weak relative maximum appears, but
it is several orders of magnitude smaller than the dominant one on the β-axis. In
figure 6(c) (point CI , γ = 2× 104), the scenario is completely different, since it occurs
in the ripple regime. The higher contour lines in fact appear centred on the α-axis
at α ∼ 0.03, corresponding to a dimensional wavelength of nearly 5 cm. We observe
that the plot reported in figure 6(c) extends to larger values of α and β than the
previous cases, which means that the emerging patterns involve shorter wavelengths.
In this case, the theoretical critical wavelength (3.17) does not predict correctly the
border of the instability on the α-axis.
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FIGURE 6. (Colour online) Contour plot from blue to red of λ(r) for the cases AI (a), BI

(b) and CI (c). The maximum value is also reported: (a) 1.1 × 10−6; (b) 3.2 × 10−6;
(c) 3.5× 10−4.

It is worth noting that the maximum growth rate for the I case is numerically higher
than for the K case; this is quite reasonable, since the time scales of the wall evolution
are different in the two cases, as accounted for by the parameter γ , which has the
same order of magnitude as λ−1 (see (3.8)).

At this point, we sum up the main results of the above analysis. (i) At the Reynolds
numbers under investigation, the mathematical problem formulated in § 3.1 predicts
pattern formation at only inverted conditions (ϑ > 0). (ii) Provided the latter condition
is satisfied, the results depend on the slope angle ϑ , as testified by the shape of the
curve Ret(ϑ). (iii) At Re < Ret, the selected patterns are longitudinally oriented,
i.e. flutes. (iv) Since the Stokes approximation is exact on the β-axis, the developed
theoretical formulas can describe the fluting regime correctly. On the contrary, in
the ripple regime (Re > Ret) the numerical solution developed in § 3.2 is necessary.
(v) These remarks are general and valid for both karst and ice problems, the only
difference being quantitative and concerning the value of Ret for the fluting–ripple
transition and the width of the internal boundary region located around the β-axis.
(vi) There is no bulb-like pattern formation corresponding to maxima out of the
α-axis or β-axis.

The fundamental result is that the present model turns out to be a suitable tool for
explaining fluting formation, provided Re<Ret. The selected transverse wavenumbers
are of order 10−3, which corresponds to spanwise wavelengths of centimetres, whereas
the dimensional time scale of the instability is τ̃ ∼ D̃0/Ũ0λ

(r)
+ (βm), which yields τ̃K =

14 days and τ̃I = 27 min (for points AK and BI , respectively). The typical (spatial and
temporal) scales of pattern inception are therefore captured for both problems (see also
Martin-Perez, Martin-Garcia & Alonso-Zarza 2012; Chen 2014). Additionally, non-
negligible (albeit non-dominant) values of λ(r) at α 6= 0 are a clue to the longitudinal
component of the instability, and the well-known presence of draperies in the K case
and their absence in the I case support these results. We infer that this feature is
dependent on the value of parameter γ .

The dots in figure 7(a) show the selected transverse wavelength L̃y, as numerically
computed, versus wall slope. Note that, because of the Re dependence of D̃, the
dimensional outcome of L̃y is unaffected by Reynolds number (which varies over two
orders of magnitude in the figure). This feature is shared with speleothem dynamics
(Camporeale & Ridolfi 2012a) and could justify the pattern regularity and the lack of
noise in the shapes observed, since any seasonal or inter-annual variation in the flow
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FIGURE 7. (Colour online) (a) Dimensional transverse wavelength versus ϑ (Re =
[10−3–10−1], c = [1–5] cm century−1): MOS model (dots, either ice and karst case);
fixed-bed model (L̃(H)y , continuous line); and non-parallel theory (L̃(G)y ), for Re = 0.03
(full symbols) or 0.3 (open symbols) with R̃ = 2 m (squares) or 10 m (triangles), and
T = 273 K (left row) or T = 288 K (right row). (b) Normalized growth factor versus β
for the case AK , where arrows indicate the value given by (3.26).

does not force significant changes on the selected length scale. However, we will see
in § 4 that a weak dependence on the Reynolds number arises when wall curvature
is accounted for. Furthermore, the results are also γ -independent (both cases are in
fact reported in figure 7) which is a first symptom of HLM, a feature that will be
definitively proved in the next section.

Although the focus of the present work is on the fluting regime, some remarks on
ripple formation are due. In the karst problem, the emergence of ripples, also called
crenulations, confirms the findings by Camporeale & Ridolfi (2012a), where a novel
model successfully predicted the formation of ripple-like undulations on the surface of
stalactites, by considering hydrodynamics, calcium and carbon dioxide geochemistry
in detail. Despite the fact that the present model does not consider at all the dynamics
of solutes (apart from the phenomenological evolution equation (2.11)), its ability to
predict crenulations is confirmation of the recent remarks by Vesipa, Camporeale
& Ridolfi (2015), where a thorough sensitivity analysis has shown that a correct
modelling of free surface dynamics is sufficient to provide successful predictions.

As far as the ice problem is concerned, the ripple regime can be assimilated to
the so-called icicles. Past theoretical works have explained the formation of icicles by
pure water falling films (e.g. Ueno et al. 2010), but the recent experimental findings
by Chen & Morris (2013) have questioned whether pure water is able to trigger icicle
formation. The experiments in fact required the presence of dissolved salts in order to
see appreciable instabilities. Likewise, the reliability of the ripple regime that is herein
theoretically predicted could be questioned too. Yet, it is worthwhile to compute the
value of the Reynolds number corresponding to the experiments conducted by Chen
& Morris (2013). They reported a water flow rate q= 3 g min−1 or less. Assuming a
centimetre stalactite diameter, φ, this is equivalent to Re= q/2πφν =O(10−2). When
reported in figure 3(b), this value falls in the fluting regime, which could explain why
the experiments did not produce icicles. If confirmed by further experiments made
at higher values of Reynolds number, this argument might resolve the debate opened
by the experimental results by Chen & Morris (2013). Nevertheless, it remains to be
explained why dissolved salt is a destabilizing factor.
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3.5. The fixed-bed model and the HLM conjecture
We now demonstrate that the geometrical structure of the fluting instability is
completely driven by film hydrodynamics of inverted flows. To this end, we neglect
the contribution of the wall evolution equation (2.3) and consider standard fixed-bed
conditions (i.e. no slip and impermeability), in place of (3.4). This is formally
equivalent to setting γ −1→ 0. Since fluting formation is addressed here, henceforth
we will focus only on spanwise wavelength selection (α = 0). The model (3.3)–(3.8)
therefore reduces to (

d4

dζ 4
− 2β2 d2

dζ 2
+ β4

)
φ̂ = 0 (0 6 ζ 6 1), (3.18)

φ̂ = dφ̂
dζ
= 0 (ζ = 0), (3.19)(

d2

dζ 2
+ β2

)
φ̂ = 0 (ζ = 1), (3.20)

d
dζ

(
d2

dζ 2
− 3β2

)
φ̂ −Ω = 0 (ζ = 1), (3.21)

iλ− βφ̂ = 0 (ζ = 1). (3.22)

The above mathematical problem refers to a purely hydrodynamic fixed-bed modelling,
which has fully lost the morphological mode of the MOS and Stokes models, as well
as the ability to catch the temporal dynamics of pattern formation. Notwithstanding
this, our aim is to show that the geometrical features of the selected patterns are
preserved through the action of the hydrodynamic mode, which is the essence of the
HLM.

The solution of (3.18)–(3.21) is

φ̂ =Ω 2β2ζ (e2β − e2βζ )+ βe2β[(ζ − 1)e2βζ + (ζ + 1)(e2βζ + 1)](e2β + 1)(e2βζ − 1)+ βζ − 1
4β3eβ(ζ+1)(2β2 + cosh(2β)+ 1)

.

(3.23)

The use of (3.22) yields the hydrodynamic growth factor (hereafter denoted by H)

λ(H)r =
(β − sinh β cosh β)[21/3Ka Re−2/3 β2 sec ϑ1/3 − 2 tan ϑ]

β[1+ 2β2 + cosh(2β)] . (3.24)

In figure 7(b), the result provided by (3.24) is compared to the growth rates obtained
by the MOS problem for the K case, under the conditions of case AK . Since the
focus here is on the dependence of the growth factor on β, the ordinate has been
rescaled by the maximum value of each curve, λm. It is remarkable that, despite some
small differences in the shape, the values of the largest unstable wavenumber, βc, and
the wavenumber that maximizes the instability, βm, coincide among the three curves.
The same behaviour can be obtained if comparisons are made with the ice case. It
follows that the hydrodynamic theory evaluates the same wavelengths selected as the
morphodynamic theories, regardless of the value of γ .

Accordingly, we take advantage of (3.24) to analytically derive formulas for: (i) the
critical wavenumber βc, by setting λ(H)r (βc)=0, and (ii) the most unstable wavenumber
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βm, by setting dλ(H)r /dβ = 0. After Taylor-expanding in β (owing to the reasonable
assumption β� 1), one obtains

∂λ(H)r

∂β
= 4

3
β

[
−β2

(
21/3Ka sec ϑ1/3

Re2/3
+ 18

5
tan ϑ

)
+ tan ϑ

]
+O(β5). (3.25)

From (3.24) and (3.25), we arrive at

β(H)c =
(2 Re sec ϑ)1/3√

Ka

√
sin ϑ, β(H)m ∼

(
24/3Ka sin ϑ(Re sec ϑ)2/3 + 18

5

)−1/2

.

(3.26a,b)
Recalling that Re � 1, (3.26a) gives

βm = (Re sec ϑ)1/3

21/6
√

Ka csc ϑ
H⇒ L̃(H)y = 2πlc

√
2 csc ϑ. (3.27)

For the particular case ϑ =π/2, this latter result corresponds to the Rayleigh–Taylor
instability, namely L̃y = 2πlc

√
2 ∼ 8.8lc (Charru 2001). The behaviour of L̃(H)y is

reported in figure 7(a) with a continuous line. Remarkably, despite its simplicity,
equation (3.27) completely agrees with the MOS theory (dots). In order to better
appreciate this comparison, the relative difference between L̃(H)y and the wavelength
selected by the MOS theory has been computed for Re = [10−3–10−1] and c =
[1–5] cm century−1, obtaining a relative error always smaller than 10−4. This latter
test furnishes the ultimate proof of the HLM conjecture.

4. Non-parallel stability theory

According to the local stability analysis developed so far, L̃y diverges for vertical
flows (i.e. when ϑ approaches zero), so no wavelength is selected close to the critical
condition and the formulas reported in the previous section are only valid for ϑ > 0.
Another criticism is that the flow-induced morphological channelization is triggered
at the upper boundary of the unstable zone, namely where the azimuthal coordinate
θ is zero. These shortcomings can be definitively remedied through a refined non-
parallel stability analysis, which also encloses the radius of curvature R̃ of the wall
and non-parallelism of the flow field, in a neighbourhood of the vertical tangent point
(figure 2). In order to simplify the analysis, we will axiomatically assume that, in the
limit of small curvature, the HLM is also valid for the non-parallel case. Therefore,
the analysis will be focused on the fixed-bed case, in the fluting regime, with no
distinction between the karst and ice cases.

If all quantities are scaled with film depth and surface velocity at θ = 0, a new
parameter emerges, namely the dimensionless curvature µ= (D̃/R̃)θ=0. Since µ� 1,
we are allowed to simplify several relationships that will be derived in the following.
It is convenient to adopt cylindrical coordinates {θ, r, y}, as depicted in figure 2.
Accordingly, the velocity vector becomes u={uθ ,ur,uy} and the mathematical problem
is recast in the form

1
r
∂p
∂θ
− 1

Re

(
∇2uθ + 2

r2

∂ur

∂θ
− uθ

r2

)
− 2

sin θ
Re
= 0, (4.1)

∂p
∂r
− 1

Re

(
∇2ur − 2

r2

∂uθ
∂θ
− ur

r2

)
− 2

cos θ
Re
= 0, (4.2)
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∂p
∂y
− 1

Re

(
∂2uy

∂θ 2
+ ∂

2uy

∂y2
+ ∂

2uy

∂r2

)
= 0, (4.3)

∂

∂r
(rur)+ r

∂uy

∂y
+ ∂uθ
∂θ
= 0, (4.4)

where ∇2≡ r−2∂θθ + r−1∂r(r∂r)+ ∂yy (Batchelor 1967, p. 602). The boundary conditions
read

u= 0 (r=R), (4.5)

Dt + uθ
r

Dθ + uyDy − ur = 0 (r=R +D), (4.6)

n · D · [tx ty] = 0 (r=R +D), (4.7)

p− 2 Re−1(n · D · n)+ 21/3Ka Re−5/3KS = 0 (r=R +D), (4.8)

where n and tx are respectively the vectors {r−1Dθ , −1, Dy} and {1, r−1Dθ , 0},
normalized by their absolute values, while ty = tx × n, the subscripts of D refer to
partial derivatives, and the rate-of-strain tensor reads

D =



1
r
∂uθ
∂θ
+ ur

r
1
2

(
−∂uθ
∂y
− 1

r
∂uy

∂θ

)
1
2

(
uθ
r
− ∂uθ
∂r
− 1

r
∂ur

∂θ

)
−∂uθ
∂y
− 1

r
∂uy

∂θ

∂uy

∂y
1
2

(
−∂uy

∂z
− ∂ur

∂y

)
1
2

(
uθ
r
− ∂uθ
∂z
− 1

r
∂ur

∂θ

)
1
2

(
−∂uy

∂z
− ∂ur

∂y

)
∂ur

∂r


.

(4.9)
Prandtl’s mapping is posed in the form r = ζd + µ−1, thus the solution ansatz of

a generic quantity f (e.g. depth, velocity and pressure) is recast in a global-mode
fashion,

f (θ, ζ , y, t;µ)= f0(θ, ζ ;µ)+ ε f̂ (θ, ζ ;µ) exp [λ(G)t+ iβy], (4.10)

where the explicit dependence on θ accounts for non-parallel effects, whereas the basic
state O(ε0) can be further expanded in powers of µ up to the first order, namely f0=
f00(θ, ζ )+ µf01(θ, ζ ). In the present non-parallel theory, (4.10) is a generalization of
(3.1). Note that in a standard global stability analysis the azimuthal coordinate θ also
appears in the exponential, through a multiple scaling approach, and the problem is
then tackled through the WKBJ technique (Huerre & Rossi 1998). Since we are only
interested to the longitudinally parallel perturbations (flutes), this trick can be avoided.
Moreover, a detailed order-of-magnitude analysis of continuity equation (4.4) suggests
that, at the basic state, the radial component of velocity is at most of order µ, and
its correct ansatz at the order O(ε0) is therefore ur0 =µur01(θ, ζ )+µ2ur02(θ, ζ ).

4.1. Problem O(ε0)

The equations at leading order pose ε =µ= uy00 = 0 and therefore read

∂2uθ00

∂ζ 2
+ 2(1+D00)

2 cos θ = 0, (4.11)

Re
∂p00

∂ζ
− 2(1+D00) sin θ = 0, (4.12)
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(1+D00)
∂uθ00

∂θ
− ζD′00

∂uθ00

∂ζ
+ ∂ur01

∂ζ
= 0, (4.13)

uθ00 = ur01 = 0 (ζ = 0), (4.14)
D′00uθ00 − ur01 = 0 (ζ = 1), (4.15)
∂uθ00

∂ζ
= p00 = 0 (ζ = 1), (4.16)

where the prime refers to the θ derivative. The above set of equations is readily solved,
yielding

D00 = (sec θ)1/3, uθ00 = u0

D00
, ur01 = u0ζ

3
tan θ, p00 =−u′0D00

Re
sin θ, (4.17a−d)

where u0= 2ζ − ζ 2 is the Nusselt parabolic profile, which was already derived in the
parallel problem.

After substituting (4.17) and collecting the terms of order O(ε0µ1), one obtains the
problem

∂2uθ01

∂ζ 2
+ 4(cos θ)2/3D01 + 2

3
[5− 6ζ + (sec θ)2] = 0, (4.18)

Re
∂p01

∂ζ
− 2D01 sin θ + 2(3ζ − 2)

sin θ
3 cos θ 2/3

= 0, (4.19)

ζ

3
[D01(9ζ − 14)Υ2 + 6D′01(cos θ)1/3 +Υ1] + ∂ur02

∂ζ
= 0, (4.20)

uθ01 = ur02 = 0 (ζ = 0), (4.21)

D′01 −
2 tan θ

7
D01 +Υ3 = 0 (ζ = 1), (4.22)

∂uθ01

∂ζ
− (cos θ)1/3 = 1, Re p01 − 2

3
Υ2 −Ka

(
4

Re

)2/3

= 0 (ζ = 1), (4.23a,b)

where

Υ1 = [2(5− 2ζ ) sec θ 2 − (18ζ 2 − 28ζ + 7)] sin θ
3(cos θ)4/3

, (4.24a)

Υ2 = sin θ
(cos θ)2/3

, Υ3 = cos (3θ)+ 9 sin θ
36(cos θ)11/3

. (4.24b,c)

The complete solution of (4.18)–(4.23) is

D01 = 7[33(cos θ)8/21 − 8 sec2 θ − 25]
600(cos θ)2/3

, (4.25)

uθ01 =−1
3
ζ [18D01(ζ − 2)(cos θ)2/3 + (ζ − 2)(sec θ)2 − ζ (2ζ − 5)− 7], (4.26)

p01 = 10D01

Re
(ζ − 1) sin θ + 12Ka(cos θ)2/3 + 22/3((4− 3ζ )ζ + 1)Re2/3 sin θ

3 Re(Re sin 2θ csc θ)2/3
,

(4.27)
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ur02 = ζ 2[72(ζ − 3) cos11/3(θ)D01
′]

108(cos θ)10/3

+ ζ
2 sin θ [(36(7− 3ζ )D01 cos8/3 θ + (ζ (27ζ − 56)+ 21) cos 2θ + ζ (27ζ − 40)− 39)]

108(cos θ)10/3
.

(4.28)

The sum D00 + µD01 provides an approximate solution of the depth, up to order
µ, for the non-parallel base state problem and, to the author’s knowledge, is a novel
result for the present geometry. It should be noted that the first term corresponds to
the uniform Nusselt’s solution computed at a varying slope θ(s) 6= ϑ . The flow is
actually well approximated by this solution (also called normal solution) when µ is
small, namely when θ changes slowly in the streamwise direction due to the small
curvature of the wall. The normal solution has a minimum D00 = 1 at the vertical
tangent point, θ = 0, and it results from a balance between the streamwise component
of the gravity force, the pressure gradient and the basal shear stress. At the order µ,
normal viscous stresses acting on the vertical planes play a role in smoothing the free
surface curvature, and they slightly reduce its deviation from the value obtained at the
vertical tangent point. This means that D01 always gives a negative contribution. By
using the relations in (4.17) and (4.25) it is straightforward to compute the relative
deviation between the normal D00 solution and its correction µD01, which is at most
∼0.15µ for |θ | < π/4. Since in the present analysis µ will be considered of order
10−3 or less, the correction to the normal solution is not relevant, despite its theoretical
value and applicability to other problems. One could therefore neglect the effects of
this term in the following development of the perturbed problem. However, we prefer
to keep it in the following derivation, in order to pose the analysis in a more general
way.

4.2. Problem O(ε): the global eigenvalue
The problem at order O(ε) is much more involved, but it can be addressed quite easily
by recognizing that the term related to the mass forces is wholly absorbed at the
leading order and the Stokes flow problem, written at order ε, reduces to the search
for a solution of the equation ∇2û= Re−1∇p̂ posed in a cylindrical reference frame.
This allows us to use the Papkovich–Neuber solutions (Tran-Cong & Blake 1982) to
the perturbed quantities,

û=∇(r ·Ψ +Ψ0)− 2Ψ, p̂= 2 Re−1
∇ ·Ψ, (4.29a,b)

where r= r{cos θ, sin θ}, and Ψ = {Ψθ , Ψr} and Ψ0 are harmonic potentials (Ψy is set
to zero because of the transverse invariance), which satisfy the following equations:

∂2Ψθ

∂θ 2
−Ψθ + r

[
∂

∂r

(
r
∂Ψθ

∂r

)
+ r

∂2Ψθ

∂y2

]
+ 2

∂Ψr

∂θ
= 0, (4.30)

∂2Ψr

∂θ 2
−Ψr + r

[
∂

∂r

(
r
∂Ψr

∂r

)
+ r

∂2Ψr

∂y2

]
− 2

∂Ψθ

∂θ
= 0, (4.31)

∂2Ψ0

∂θ 2
+ r
[
∂

∂r

(
r
∂Ψ0

∂r

)
+ r

∂2Ψ0

∂y2

]
= 0. (4.32)

The above equations are solved by invoking once again the global-mode ansatz

Ψj = εΨ̂j(θ, r, y) exp [λ(G)t+ iβy] (j= 0, θ, r). (4.33)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.381


Hydrodynamically locked morphogenesis in karst and ice flutings 111

After substituting (4.33) in (4.30)–(4.32), using the Prandtl mapping (r :→ ζ ) and
expanding up to the first order in ε and µ, the three harmonic equations for the
perturbation mode of potentials reduce to

∂2Ψ̂j

∂ζ 2
+µD00

∂Ψ̂j

∂ζ
− β2D2

00Ψ̂j = 0 (j= θ, r, 0). (4.34)

By recalling that D00 = (sec θ)1/3 and θ =µs, the approximate solutions of (4.34) are

Ψ̂j(s, ζ )=C±j (s) exp [±(β −µ/2)ζ +O(µ2)] (j= 0, θ, r). (4.35)

The coefficients C±j are obtained by imposing no slip and impermeability at ζ = 0 and
the dynamic conditions at ζ = 1 (i.e. the O(ε) order version of (4.5) and (4.7), written
in the new coordinate system), which read, respectively,

at ζ = 0 
µ −1

2
∂

∂s
−µ ∂

∂ζ

0 −µ+ ∂

∂ζ
0

0 1 µ


Ψ̂θΨ̂r

Ψ̂0

= 0, (4.36)

at ζ = 1
µ− ∂

∂ζ

[
µ− 1+

(
1
µ
− 2µ

)
∂

∂ζ

]
∂

∂s

[(
1− µ

2

) ∂

∂s
−µ

]
∂

∂ζ

0 (5µ2 −µ− 1)
∂

∂ζ
+ µs2

6
∂

∂ζ
µ
∂

∂ζ

∂

∂s
µ+

(
1+µs

∂

∂s
− 1+µ

µ

∂

∂ζ

)
∂

∂ζ
− ∂2

∂ζ 2


Ψ̂θΨ̂r

Ψ̂0



=


µ

0
Kaβ2

(2 Re)2/3

 D̂. (4.37)

After substituting (4.35) in (4.36) and (4.37) and solving, it follows that C±j =
c±j D̂(s), with j = {θ, r, 0}. If a truncated series expansion in µ and β is performed
(recall in fact that β� 1), the coefficients c±j read

c±θ =±
µ

24β

[
β2

(
3
√

2Kas
Re2/3

− 3

)
+ 6

]
, c±r =∓

βKa[β(2∓ 8µ)+µ+ 2]
25/3 Re2/3

, (4.38a,b)

c±0 =±
βKa{β[±8−µ(109µ+ 32)] ± 3(4− 29µ)µ+ 8}

16 22/3µRe2/3
. (4.39)

It is worth recalling that D̂(s) is the global mode of depth perturbation and it plays
the role of the unknown eigenfunction of the problem. After plugging all this in the
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kinematic condition (4.6) and applying the aforementioned transformations, we finally
get a first-order differential eigenvalue problem relating D̂(s) and λ(G) in the form[

∂

∂s
+ F (s)+ λ(G)

1+ %s

]
D̂= 0, (4.40)

where the coefficient % and the function F (s) depend in a complicated manner upon
µ and β. Since (4.40) is formally solvable by a separation of variables, its solution is
proportional to the boundary condition D̂(0), which can therefore be absorbed by the
prefactor ε, by putting D̂(0) = 1. It is also evident that the eigenvalue must satisfy
the relation λ(G) = −F (0) − D̂′(0), whence a continuous spectrum of eigenvalues
parametrized by the quantity D̂′(0) emerges. A reasonable choice is to put D̂′(0)= 0
since, in this manner, it can be shown that the solution (4.40) is the most regular one
(i.e. the average value of D̂′(s) is minimized). We therefore arrive at our main goal,
namely the solution of the global eigenvalue

λ(G) =−F (0)= β(63µ+ 8) cosh β − [β2(77µ+ 8)+ 4(µ+ 2)] sinh β
8(2 Re)2/3

βKae−µ/2.

(4.41)
Inspection of the dependence of (4.41) on β, in the range β� 1, shows that there is

a maximum (the selected wavenumber) at β(G)m ∼
√

177µ/4
√

2 and a zero value (the
cutoff) at β(G)c =

√
2β(G)m . This amazing result translates into a dimensional selected

wavelength that reads

L̃(G)y ∼ 3ν1/3

(
Re
g

)1/6

R̃1/2. (4.42)

The latter formula provides a finite wavelength selection at finite values of dome
radius of curvature. A novel weak Re dependence has appeared in (4.42), through
a one-sixth power law. The effect of the capillary length, which is crucial in planar
conditions, is therefore replaced by R̃ when curvature is considered. Physically
speaking, the effect of surface tension is overwhelmed by streamwise momentum
diffusion, because of non-parallel effects. The symbols in figure 7(a) provide some
computations of (4.42); for example, L̃(G)y = 3 cm for R̃ = 2 m and Re= 0.3.

A possible scenario is that the patterns are triggered at wavelength L̃(G)y around s=0,
where θ = 0 and the curvature is maximum, then fluting spacing gradually converges
downstream to the value provided by L̃(H)y , where the wall becomes almost planar. The
non-parallel theory presented herein has therefore resolved the inconsistency observed
with the parallel theory: finite wavelengths can be selected at θ = 0.

5. Discussion
Let us summarize the key steps presented. First, a simple evolution law for the

wall dynamics – namely, (2.3) in dimensional form or (2.11) in dimensionless form
– has been obtained for both karst and ice systems; therefore these two geophysical
problems can be dealt with in a unified mathematical framework, once the parameter
γ is given. Second, at low Reynolds numbers, pattern formation occurs at inverted
conditions only and the fluting–ripple transition is identified by the curve Ret(θ).
The correct evaluation of this transition has required a rigorous numerical solution
of the Orr–Sommerfeld-like problem. Apparently, the fluting regime violates Squire’s
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MOS model
(equations (3.3)–(3.8))

Stokes model
(equations (3.14)–(3.16)) Fixed bed model

(equations (3.18)–(3.22))

Three eigenvalues Two eigenvalues One eigenvalue

FIGURE 8. Hierarchy of models in the parallel stability theory.

theorem. Third, wavelength selection in the fluting regime can be investigated
analytically through the lubrication theory. Fourth, the HLM conjecture has been
proved to be correct in the fluting regime, since a fixed-bed model selects the
same transverse wavelength of the complete model (which correctly reduces to the
Rayleigh–Taylor instability when ϑ→π/2). Fifth, close to verticality, the non-parallel
theory yields finite values of the selected wavelength, thus resolving a shortcoming
of the parallel theory.

In the following we will briefly address two questions that arise from the above
picture: (i) Which mechanisms underlie the HLM conjecture? (ii) How are the parallel
and non-parallel theories related to each other?

The first question can be tackled by recalling the hierarchy of three models we have
analysed in the parallel stability theory (see the scheme reported in figure 8): (i) the
MOS model (3.3)–(3.8), solved numerically; (ii) a simplified version of the MOS
model, based on the Stokes approximation, reported in § 3.3 and solved analytically;
(iii) a further simplified model based on purely hydrodynamic equations (the fixed-bed
model). All these models essentially require the solution of an eigenvalue problem.
The complete model exhibits three temporal derivatives, which are related to the
occurrence of three discrete eigenvalues, among which only one has a positive real
part. Since we have neglected the temporal derivative in the dynamic condition (3.6),
the Stokes model provides just two eigenvalues, which are related to the kinematics
of the free surface and the wall evolution, namely (3.7) and (3.8), respectively. In the
fixed-bed model, only one eigenvalue survives, which is related to the free surface
kinematic equation. Owing to the HLM, the latter model catches the same transverse
wavenumber as the complete one. It follows that the kinematic equation is essential
in routing the fluting instability whereas the wall evolution is slaved to the free
surface dynamics, without adding any other unstable behaviour. This means that the
free surface triggers an unstable mode, while the wall triggers a stable mode.

A physical justification of the HLM is as follows. Let us focus on the Stokes model,
which accounts for both the free surface kinematics and wall evolution (the role of the
dynamic conditions can be safely neglected for a qualitative explanation) and consider
the fluting condition only (α= 0). The theory being linear, the solution can be thought
of as the sum of two contributions: (i) a free surface-induced solution (coincident with
the fixed-bed model), where the wall evolution is switched off and (ii) a wall-induced
solution (referred to henceforth using the letter W), where the kinematic condition on
the free surface reduces to ŵ(1)= 0, namely the free surface is as frozen. These two
contributions are illustrated in figure 9 for a particular parametric case, whose the
relation dispersion is reported in panel (d). In the fixed-bed problem (panel a), when
the free surface is perturbed downwards, gravity induces fluid particles to converge
towards the centre, resulting in a positive vertical velocity pointing to the maximum
depth. This flow kinematically pushes the free surface further down, as modelled
by the kinematic condition, and the instability is reinforced. Such a destabilizing
mechanism is only possible at inverted (overhung) flows; it is smoothed out by
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FIGURE 9. (Colour online) Streamlines (arrows) and vorticity (solid contours) reported
from a frontal view for the karst case at ϑ = π/6 and Re = 0.01 (axes not to scale).
(a) Results from the fixed-bed model where the free surface is perturbed downwards with
an arbitrary amplitude ε = 0.05 at the most unstable wavenumber β = 0.0034. (b) Same
as panel (b), but at stable conditions β = 0.0068. (c) Results from model W where the
free surface is at rest and the wall is perturbed with an arbitrary amplitude ε = 0.05 and
wavenumber β=0.0034. (d) Growth rate versus wavenumber as predicted by the fixed-bed
model.

momentum diffusion and halted by surface tension. This latter in fact raises the fluid
pressure when surface curvature increases (so-called Young–Laplace effect), so in the
Fourier domain it is a ∼β2 order process. Therefore gravity-driven flows are blocked
when high wavenumbers are considered, as reported in figure 9(b).

The destabilization of the free surface is also evident if the longitudinal vorticity
ϕ(y, z) = w,y − v,z is considered (see solid contour lines in figure 9). Its Fourier
mode in the rectangularized domain is given by ϕ̂ = β2φ̂(ζ )− φ′′(ζ ) and satisfies the
vorticity equation ϕ̂′′ − β2ϕ̂ = 0. The boundary conditions for the fixed-bed problem
read

ϕ̂(0)=−φ̂′′(0), ϕ̂(1)= φ̂(1), (5.1a,b)

with

φ̂′′(0)=− 2Ω cosh β
2β2 + cosh 2β + 1

, φ̂(1)= Ω(β − sinh β cosh β)
β3(2β2 + cosh 2β + 1)

, (5.2a,b)

where (5.2a,b) follow from (3.23). The vorticity equation allows one to identify
two counter-rotating vortices localized on the free surface at y = ±Ly/4 that act
dynamically to reinforce free surface instability (see crosses in figure 9a). It is
straightforward to see from the solution to (5.1b) and (5.2b) that the sign of the
vorticity at ζ = 1 depends just on the term Ω , so the two vortices switch when
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Ω(β) = 0, namely when the capillarity term in Ω balances the gravity term. This
latter condition is in fact another way to obtain the formula (3.26a), which governs
the switching from unstable to stable wavenumbers (respectively, positive versus
negative vorticity at the free surface).

On the contrary, when the free surface is frozen and the W problem is analysed,
two vortices are confined to the wall at y=±Ly/4, thus inducing a circulating flow
from the deeper zones towards the centre (see crosses in figure 9c). Since the vertical
velocity is in this case forced to be zero on the free surface, the flow is collected
towards the wall. Note that the wall-normal velocity is slightly different from zero
because of the kinematic condition at ζ = 0 via (3.4a). At the free surface, the
converging flow is related to a lateral pressure gradient with a depletion of p at
y = 0. Through the Young–Laplace effect, this induces a negative curvature, i.e. a
slight decrease of the depth (not visible in figure). Since the wall growth rate is
proportional to the depth perturbation, it turns out that this mechanism is stabilizing.
Recalling again the vorticity equation, we can also show that the process is invariably
stable, regardless of the wavenumber. In fact, for the W problem the boundary
conditions read

ϕ̂(0)=−φ̂′′(0)= 2χβΩ(β + sinh β cosh β)
4χβ2(β sinh β + cosh β)+ iγΩ(sinh 2β − 2β)

, (5.3)

ϕ̂(1)= 0. (5.4)

Since γ is large and β small, the β2 term of the denominator of the right-hand side
of (5.3) is negligible and ϕ̂(0) turns out to be almost independent of Ω . Therefore,
the flow invariably displays two vortices rotating clockwise and anticlockwise in the
positive and negative half-planes, respectively, as depicted in figure 9(c), regardless of
the wavenumber. This means that the system is invariably stable. As announced, the
fixed-bed problem has been shown to be unstable when Ω < 0, while the W problem
is always stable.

Let us move to the second issue: the relationship between parallel and non-parallel
theories. At the end of § 4.2, we mentioned a possible scenario with a continuous
transition from the wavelength selected at θ = 0, as accounted for by the non-parallel
theory, to the one provided on the flat part of the surface (far from the vertical region
of the wall, i.e. θ→ ϑ), as accounted for by the parallel theory. It should be pointed
out that a formal and quantitative description of this kind of continuation between
the two theories is beyond the validity of the global-mode solution that we have
presented, since that solution only holds very close to verticality. A possible way to
circumvent the issue mathematically would be a three-deck theory that accounts for an
intermediate layer that asymptotically matches both the upstream (curved) layer and
the downstream (flat) layer.

However, there is a case that deserves to be investigated parametrically, wherein the
two theories match naturally, namely when L̃H

y = L̃G
y . If (3.27) and (4.42) are used, the

latter condition yields
csc ϑ =Λ(T)Re1/3R̃, (5.5)

where the coefficient Λ(T) ranges in the interval [0.77–1] for T = [15–0] ◦C. The
slopes of the flat region resulting from (5.5) are reported in figure 10 for different
parametric conditions. It is worth noting that the reported values of ϑ span a
reasonable interval for a realistic set of Re, R̃ and T . Even though it is not rigorous, a
potentially interesting pattern-based palaeo-flow reconstruction could be obtained using
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FIGURE 10. Relationship between the slope, Reynolds number and radius of curvature
when parallel and non-parallel theories match naturally: T = 0 ◦C (dashed lines); T = 15 ◦C
(solid lines).

this chart, by deducing the value of Reynolds number of the water film from simple
geomorphic data such as ϑ and R. On the contrary, the temperature is noticeably less
important. This approach is limited to the particular case considered, which imposes
the equality between the wavelengths selected between the two theories, a particular
condition that must be visually checked in advance.

6. Concluding remarks
Elongated organ-pipe morphologies are widespread in ice and karst environments.

The former case is very common over icefalls, the latter case bedecks the cave walls,
wherein speleothems represent an important source of palaeo-climatic data. A novel
approach relating fluid mechanics to the morphogenesis of such structures could
therefore be of paramount importance. Through a unified modelling approach, we
have solved the morphodynamic problem in terms of a stability analysis, and the
typical features of karst and ice flutings have been shown to be hydrodynamically
locked. The results obtained reject Squire’s theorem when the Reynolds number is
below a critical value that depends on the slope. The correct identification of the
transition between flutings and ripples has been possible thanks to the numerical
solution of the complete Orr–Sommerfeld-like problem, through an advanced spectral
Galerkin technique.

Although the occurrence of the HLM is not essential to the instability discussed
here, it has allowed us to explain that the morphogenesis of such patterns is
completely driven by hydrodynamics. Note that the HLM would be a trivial finding if
(2.3) was replaced by an algebraic relationship. The result is instead counterintuitive
because the presence of a phenomenological evolution equation is expected to
introduce new dynamics into the system, as in the case of ice ripples and crenulations
(Camporeale & Ridolfi 2012a,b). Differently, in the present case, it appears that the
wall dynamics of fluted patterns (which occur at inverted conditions) are fully slaved
to hydrodynamics in a very wide range of the morphological parameter γ , thus
embedding completely different environmental conditions, such as icefall and caves.

Another advantage in demonstrating the HLM comes from adopting the framework
of the hydrodynamic stability analysis for Stokes flow. Indeed, parallel and non-
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parallel stability analyses of inverted creeping flows have provided several analytical
results about the selected wavelength, which match well with observations. The
parallel theory readily provides the wavelengths at various slopes, but fails close to
verticality. The non-parallel theory gives a local result only in a neighbourhood of
verticality.

It is worth noting that in the parallel case there is no dependence of flute spacing
on Reynolds number; instead it appears as a result of the non-parallel theory, namely
at the head of flutes, through a one-sixth power law. Such a dependence of pattern
wavelength on flow characteristics could be of palaeo-climatic interest. Nowadays,
karst environments are in fact acquiring relevance in the field of palaeo-climate
reconstructions. Several pieces of research have demonstrated that mineral deposits
constituting speleothems can record past climatic conditions: measurable properties
of the speleothems (e.g. mineral composition, calcite crystals) can in fact be related
to dripping water and to the surrounding environmental conditions in which the
deposition occurred (McDermott, Mattey & Hawkesworth 2001). However, as pointed
out by Fairchild et al. (2006), speleothem records cannot yet be given a unique
climatological meaning.

The analytical theories provided in this work are limited to Stokes flows, namely
when the Reynolds number is much smaller than unity, which is the norm for the
phenomena herein investigated. Although an improvement to larger values of Re could
be desirable, it is instructive to show that formula (4.42) is quite robust nevertheless.
A suggestive example is provided by figure 1(g): a close observation of the fountain’s
features allows one to assume R ∼ 0.2 m, while the mean annual temperature is T =
15 ◦C. The evaluation of a precise value of the Reynolds number is prohibitive, so it is
reasonable to assume a conservative range of potential values such as Re= [20–500].
With this setting, formula (4.42) returns L̃(G)y =[5–8.5] cm, which is fairly close to the
actual value, despite the fact that the Stokes approximation would be no longer valid
at such conditions.

More generally, other boundary value problems involving interface dynamics that
follow (2.3) should support the same results (e.g. photosynthetic biofilms), as long
as the linear theory is valid. Nonlinearities can contribute to modify the final picture,
possibly introducing pattern coarse-graining. We have neglected front dynamics,
since the related fingering instability develops with time scales too short to have
a morphological significance in the present context, as is evident from numerical
simulations (Lin, Kondic & Filippov 2012).
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