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We revisit the problem of approximating minimizers of certain convex functionals
subject to a convexity constraint by solutions of fourth order equations of Abreu
type. This approximation problem was studied in previous articles of Carlier–Radice
(Approximation of variational problems with a convexity constraint by PDEs of
Abreu type. Calc. Var. Partial Differential Equations 58 (2019), no. 5, Art. 170)
and the author (Singular Abreu equations and minimizers of convex functionals with
a convexity constraint, arXiv:1811.02355v3, Comm. Pure Appl. Math., to appear),
under the uniform convexity of both the Lagrangian and constraint barrier. By
introducing a new approximating scheme, we completely remove the uniform
convexity of both the Lagrangian and constraint barrier. Our analysis is applicable
to variational problems motivated by the original 2D Rochet–Choné model in the
monopolist’s problem in Economics, and variational problems arising in the analysis
of wrinkling patterns in floating elastic shells in Elasticity.
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1. Introduction

In this note, we revisit the problem of approximating minimizers of certain convex
functionals subject to a convexity constraint by solutions of fourth order equations
of Abreu type. This problem was investigated in previous studies by Carlier–Radice
[3] and the author [6], under the uniform convexity of both the Lagrangian and
constraint barrier. Here, by introducing a new approximating scheme, we completely
remove the uniform convexity of both the Lagrangian and constraint barrier. We
start by recalling this problem.

1.1. Approximating minimizers of convex functionals subject to a
convexity constraint

Let Ω0 be a bounded, open, smooth and convex domain in R
n (n � 2). Let Ω be a

bounded, open, smooth uniformly convex domain containing Ω0. Let ϕ be a convex
and smooth function defined in Ω. Let F (x, z, p) : R

n × R × R
n → R be a smooth
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Convex functionals without uniform convexity 357

Lagrangian which is convex in each of the variables z ∈ R and p = (p1, . . . , pn) ∈ R
n.

Consider the following variational problem with a convexity constraint:

inf
u∈S̄[ϕ,Ω0]

∫
Ω0

F (x, u(x),Du(x)) dx (1.1)

where

S̄[ϕ,Ω0] = {u : Ω0 → R | u is convex,

u admits a convex extension to Ω such that u = ϕ on Ω \ Ω0}.
(1.2)

Note that elements of S̄[ϕ,Ω0] are Lipschitz continuous with Lipschitz constants
bound from above by ‖Dϕ‖L∞(Ω) and hence S̄[ϕ,Ω0] is compact in the topology of
uniform convergence. Under quite general assumptions on the convexity and growth
of the Lagrangian F , one can show that (1.1) has a minimizer in S̄[ϕ,Ω0].

Due to the intrinsic difficulty in the convexity constraint, as elucidated in [3,6],
for practical purposes such as numerical computations, one wonders if minimizers
of (1.1) can be well approximated in the uniform norm by solutions of some higher
order equations whose global well-posedness can be established. The approximating
schemes proposed in [3,6] use the second boundary value problem of fourth order
equations of Abreu type which we now would like to make more precise.

Let ψ be a smooth function in Ω with inf∂Ω ψ > 0. Fix 0 � θ < 1/n. For each
ε > 0, consider the following second boundary value problem for a uniform convex
function uε: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε
n∑

i,j=1

U ij
ε (wε)ij = fε(·, uε,Duε,D

2uε;ϕ) in Ω,

wε = (detD2uε)θ−1 in Ω,
uε = ϕ on ∂Ω,
wε = ψ on ∂Ω.

(1.3)

Here and what follows, Uε = (U ij
ε )1�i,j�n is the cofactor matrix of the Hessian

matrix

D2uε = ((uε)ij)1�i,j�n ≡
(

∂2uε

∂xi∂xj

)
1�i,j�n

and

fε(x, uε(x),Duε(x),D2uε(x);ϕ(x))

=

⎧⎪⎪⎨
⎪⎪⎩
∂F

∂z
(x, uε(x),Duε(x)) −

n∑
i=1

∂

∂xi

(
∂F

∂pi
(x, uε(x),Duε(x))

)
x ∈ Ω0,

1
ε
(uε(x) − ϕ(x)) x ∈ Ω \ Ω0.

(1.4)

The fourth order expression U ij [(detD2u)θ−1]ij appears in several geometric con-
texts including Kähler geometry (such as the Abreu’s equation when θ = 0; see
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[1]) and affine geometry (such as the affine maximal surface equation when θ =
1/(n+ 2); see [9]). When the Lagrangian F depends on the gradient variables, the
right-hand side of (1.4) contains the Hessian D2uε of uε. Without further regularity
for the convex function uε, the Hessian D2uε can be just a measure-valued matrix.
Thus, as in [6], we call fourth order equations of the type (1.3)–(1.4) singular Abreu
equations.

We note that the first two equations of system (1.3)–(1.4) are critical points,
with respect to compactly supported variations, of the following functional:

Jε(v) =
∫

Ω0

F (x, v(x),Dv(x)) dx+
1
2ε

∫
Ω\Ω0

(v − ϕ)2 dx− ε

∫
Ω

(detD2v)θ − 1
θ

dx.

When θ = 0, the integral
∫
Ω

((detD2v)θ − 1)/θ dx is replaced by
∫
Ω

log detD2v dx.
The requirement 0 � θ < 1/n is to make Jε a convex functional.

The function fε defined by (1.4) is not continuous in general; this is usually due
to the jump discontinuity through ∂Ω0. Thus, the best global regularity one can
expect for a solution to (1.3)–(1.4) is W 4,p(Ω) for all p <∞.

The questions we would like to ask are the following:

(Q1) Does system (1.3)–(1.4) have a uniformly convex solution uε ∈W 4,p(Ω) (for
all p <∞) for each ε > 0 small?

(Q2) If the answer to Q1 is yes, does uε converge uniformly on compact subsets of
Ω to a minimizer u ∈ S̄[ϕ,Ω0] of problem (1.1)?

Another way to rephrase the above questions is to study limiting properties of
solutions, if any, to singular Abreu equations of the type (1.3)–(1.4) when ε→ 0.

The positive answers to questions Q1 and Q2 above have been given in [3,
theorem 5.3] and [6, theorem 2.3] when F and ϕ satisfy certain structural condi-
tions. These studies require the uniform convexity of the Lagrangian F (x, z, p) with
respect to z and also the uniform convexity of the barrier constraint ϕ. We recall
these theorems here.

Theorem 1.1 [3, theorem 5.3]. Let θ = 0. Let ψ be a smooth function in Ω with
inf∂Ω ψ > 0. Assume that ϕ is uniformly convex in Ω and that F (x, z, p) = F 0(x, z)
where F 0 is uniformly convex with respect to z, that is, f0(x, z) := ∂F 0(x, z)/∂z
satisfies for some α > 0

(f0(x, z) − f0(x, z̃))(z − z̃) � α|z − z̃|2 for all x ∈ Ω0 and all z, z̃ ∈ R. (1.5)

Assume that, for some continuous and increasing function η : [0,∞) → [0,∞), we
have

|f0(x, z)| � η(|z|) for all x ∈ Ω0 and all z ∈ R. (1.6)

Then, for ε > 0 small, system (1.3)–(1.4) has a uniformly convex solution uε ∈
W 4,q(Ω) for all q ∈ (n,∞). Moreover, when ε→ 0, uε converges uniformly on
compact subsets of Ω to the unique minimizer u ∈ S̄[ϕ,Ω0] of (1.1).
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Theorem 1.2 [6, Theorem 2.3]. Assume n = 2 and 0 � θ < 1/n. Let ψ be a smooth
function in Ω with inf∂Ω ψ > 0. Assume that ϕ is uniformly convex in Ω and that
F (x, z, p) = F 0(x, z) + F 1(x, p) where F 0 satisfies (1.5) and (1.6). Suppose that for
some M � 0, we have for all p ∈ R

n,

0 � F 1
pipj

(x, p) � MIn; |F 1
pixi

(x, p)| � M(|p| + 1) for all x ∈ Ω0 and for each i.

Then, for ε > 0 small and α > 0 sufficiently large, system (1.3)–(1.4) has a uni-
formly convex solution uε ∈W 4,q(Ω) for all q ∈ (n,∞). Moreover, for α sufficiently
large, uε converges, when ε→ 0, uniformly on compact subsets of Ω to the unique
minimizer u ∈ S̄[ϕ,Ω0] of (1.1).

In theorem 1.2 and what follows, we use the following notation: In is the identity
n× n matrix and

F 1
pipj

(x, p) =
∂2F 1(x, p)
∂pi∂pj

; F 1
pixj

(x, p) =
∂2F 1(x, p)
∂pi∂xj

;

∇pF
1(x, p) =

(
∂F 1(x, p)
∂p1

, . . . ,
∂F 1(x, p)
∂pn

)
.

Remark 1.3. Inspecting the proof of theorem 5.3 in [3], we find that theorem 1.1
also holds for all θ ∈ [0, 1/n).

From the variational analysis and practical models in Economics and Elasticity
to be described below, it would be interesting to remove the uniform convexity
assumptions in theorems 1.1 and 1.2.

(Q3) Can we remove the uniform convexity assumptions on F and ϕ in theorems
1.1 and 1.2?

1.2. Examples with non-uniformly convex Lagrangians

Our examples of convex functionals subject to a convexity constraint arise in the
Rochet–Choné model of the monopolist’s problem in Economics and variational
problems arising in the analysis of wrinkling patterns in floating elastic shells in
Elasticity. In these models, the Lagrangians F (x, z, p) are convex but not uniformly
convex with respect to z.

The Rochet–Choné model. The analysis in [6] is applicable to the 2D Rochet–
Choné model perturbed by a strictly convex lower order term. It is not known if
the analysis in [6] is applicable to the original Rochet–Choné model [7] where

F (x, z, p) =
1
2
|p|2γ(x) − x · pγ(x) + zγ(x).

Rochet–Choné modelled the monopolist problem in product line design with
quadratic cost using maximization of the functional

Φ(u) =
∫

Ω0

{
x ·Du(x) − 1

2
|Du(x)|2 − u(x)

}
γ(x) dx.

Here Φ(u) is the monopolist’s profit; u is the buyers’ indirect utility function with
bilinear valuation; Ω0 ⊂ R

n is the collection of types of agents; γ is the relative
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frequency of different types of agents in the population. The function γ is assumed
to be nonnegative, bounded and Lipschitz continuous, that is,

0 � γ � C and ‖Dγ‖L∞(Ω0) � C.

For a consumer of type x ∈ Ω0, the indirect utility u(x) is computed via the formula

u(x) = max
q∈Q

{x · q − p(q)}

where Q ⊂ R
n is the product line and p : Q→ R is a price schedule that the monop-

olist needs to both design to maximize her total profit Φ. Clearly, u is convex and
maximizing Φ(u) is equivalent to minimizing

∫
Ω0
F (x, u(x),Du(x)) among all con-

vex functions u. For economic reasons, there are other conditions for u outside Ω0;
see [7] and also [2] for more details.

Thin elastic shells. We also note that, in certain applications where F is indepen-
dent of the gradient variables, F can be non-uniformly convex in z. A particular
example arises in the analysis of wrinkling patterns in floating elastic shells by
Tobasco [8]. As discussed in [8, § 1.2.3], describing the leading order behaviour of
weakly curved floating shells lead to limiting problems which are dual to problems
of the type:

Given a smooth function q : Ω0 ⊂ R
2 → R, minimize

∫
Ω0

( |x|2
2

− u(x)
)

detD2q(x) dx (1.7)

over the set {
u convex in R

2, u =
|x|2
2

in R
2 \ Ω0

}
.

Optimal functions in (1.7) are called optimal Airy potential in [8]. In this example,

F (x, z, p) =
( |x|2

2
− z

)
detD2q(x).

1.3. The main results

In this note, we answer question Q3 at the end of § 1.1 by completely removing
both the uniform convexity of F with respect to z and the uniform convexity of
ϕ. To do this, we introduce a new approximating scheme, slightly different from
(1.3)–(1.4).

As in [6] and motivated by the Rochet–Choné model, we consider Lagrangians
of the form:

F (x, z, p) = F 0(x, z) + F 1(x, p).

Let

f0(x, z) :=
∂F 0(x, z)

∂z
.
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We assume the following convexity and growth assumptions on F 0 and F 1. For
some nonnegative constant C∗:

(f0(x, z) − f0(x, z̃))(z − z̃) � 0; |f0(x, z)| � η(|z|) for all x ∈ Ω0 and all z, z̃ ∈ R

(1.8)
where η : [0,∞) → [0,∞) is a continuous and increasing function. Furthermore, for
all p ∈ R

n

0 � F 1
pipj

(x, p) � C∗In; |F 1
pixi

(x, p)| � C∗(|p| + 1) for all x ∈ Ω0 and for each i.
(1.9)

Let ρ be a strictly convex defining function of Ω, that is,

Ω := {x ∈ R
n : ρ(x) < 0}, ρ = 0 on ∂Ω and Dρ 	= 0 on ∂Ω. (1.10)

Let

Cϕ =

{
0 if ϕ is uniformly convex in Ω,
1 otherwise.

(1.11)

For ε > 0, consider the following second boundary value problem for a uniform
convex function uε:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε

n∑
i,j=1

U ij
ε (wε)ij = fε

(
·, uε,Duε,D

2uε;ϕ+ Cϕε
1/3n2

(eρ − 1)
)

in Ω,

wε = (detD2uε)θ−1 in Ω,
uε = ϕ on ∂Ω,
wε = ψ on ∂Ω.

(1.12)

Here,

fε(x, uε(x),Duε(x),D2uε(x);ϕ(x) + Cϕε
1/3n2

(eρ(x) − 1))

=

⎧⎪⎪⎨
⎪⎪⎩
∂F

∂z
(x, uε(x),Duε(x)) −

n∑
i=1

∂

∂xi

(
∂F

∂pi
(x, uε(x),Duε(x))

)
x ∈ Ω0,

1
ε

(
uε(x) − ϕ(x) − Cϕε

1/3n2
(eρ(x) − 1)

)
x ∈ Ω \ Ω0.

(1.13)

Our main theorem states as follows.

Theorem 1.4. Let Ω0 and Ω be bounded, open, smooth and convex domains in R
n

(n � 2) such that Ω is uniformly convex and contains Ω0. Fix 0 � θ < 1/n. Let ψ
be a smooth function in Ω with inf∂Ω ψ > 0. Let ϕ be a convex and smooth function
defined in Ω. Assume that (1.8) and (1.9) are satisfied. If F 1 	≡ 0 then we assume
further that n = 2. Then the following hold.

(i) For ε > 0 small, system (1.12)–(1.13) has a uniformly convex solution uε ∈
W 4,q(Ω) for all q ∈ (n,∞).
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(ii) For ε > 0 small, let uε ∈W 4,q(Ω) (q > n) be a solution to (1.12)–(1.13). After
extracting a subsequence, uε converges uniformly on compact subsets of Ω to
a minimizer u ∈ S̄[ϕ,Ω0] of (1.1).

Several remarks are in order.

Remark 1.5. Without the uniform convexity of F with respect to z, minimizers
of problem (1.1) with the convexity constraint (1.2) can be non-unique. As such,
each convergent subsequence of {uε} converges to a minimizer of (1.1) as stated
in theorem 1.4(ii). It would be interesting to investigate whether the approximating
scheme (1.12)–(1.13) selects a distinguished minimizer of problem (1.1) when it
has several minimizers.

Remark 1.6. When ϕ is not uniformly convex, the addition of ε1/3n2
(eρ − 1) to

ϕ is to make the new function ‘sufficiently’ uniformly convex. The choice of the
exponent 1/3n2 (or any positive number not larger than this) is motivated by the
need to establish uniform bounds for uε in the a priori estimates for solutions to
(1.12)–(1.13); see (3.2) and (3.6).

Remark 1.7. Let G(t) be an antiderivative of tθ−1. One of the crucial information
in the proof of the convergence of solutions of (1.3)–(1.4) to a minimizer of (1.1)
is a variant of the estimate

lim inf
ε

ε

∫
Ω

G(detD2v)dx � 0 for all v ∈ S̄[ϕ,Ω0]. (1.14)

(a) When ϕ is uniformly convex in Ω, for any v ∈ S̄[ϕ,Ω0], (1.14) was shown to
be true with v being replaced by (1 − ε)v + εϕ ∈ S̄[ϕ,Ω0] in [3, proposition
3.5] and [6, inequality (5.15)]. When the uniform convexity of ϕ is removed,
unless θ > 0, (1.14) might fail for all v ∈ S̄[ϕ,Ω0] as in the case ϕ being a
constant for which S̄[ϕ,Ω0] = {ϕ}.

(b) On the other hand, for any convex ϕ, estimate (1.14) holds for v ∈ S̄[ϕ,Ω0]
being replaced by v + Cϕε

1/3n2
(eρ − 1); see (3.25). This somehow indicates

the advantage of our approximating scheme.

In theorem 1.4 and in two dimensions, we can replace the convexity of F 0 in (1.8)
by a semi-convexity condition as long as the function F 1 is highly uniformly convex
with respect to p. Moreover, the whole sequence of solutions uε to (1.12)–(1.13)
converges to the unique minimizer u ∈ S̄[ϕ,Ω0] of (1.1). This is the content of the
next theorem.

Theorem 1.8. Let n = 2. Let Ω0 and Ω be bounded, open, smooth and convex
domains in R

n such that Ω is uniformly convex and contains Ω0. Fix 0 � θ < 1/n.
Let ψ be a smooth function in Ω with inf∂Ω ψ > 0. Let ϕ be a convex and smooth
function defined in Ω. Assume that the following conditions (1.15) and (1.16) are
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satisfied for some positive constants Cb, Cl,C, C∗:

∂2F 0

∂z2
(x, z) =

∂f0

∂z
(x, z) � −Cb,

|f0(x, z)| � Cl(1 + |z|) for all x ∈ Ω0 and all z ∈ R; (1.15)

CI2 � F 1
pipj

(x, p) � C∗I2;

|F 1
pixi

(x, p)| � C∗(|p| + 1)∀x ∈ Ω0,∀p ∈ R
n and for each i. (1.16)

Then the following hold.

(i) For ε > 0 small, system (1.12)–(1.13) has a uniformly convex solution uε ∈
W 4,q(Ω) for all q ∈ (n,∞).

(ii) For ε > 0 small, let uε ∈W 4,q(Ω) (q > n) be a solution to (1.12)–(1.13).
Assume that C is large (depending only on Cb and Ω0). When ε→ 0, the
sequence {uε} converges uniformly on compact subsets of Ω to the unique
minimizer u ∈ S̄[ϕ,Ω0] of (1.1).

Remark 1.9. As explained in detail in [6, § 1.3], for a gradient-dependent
Lagrangian F , nothing is known in dimensions n � 3 about the solvability of
the singular Abreu equations (1.12)–(1.13) in suitable Sobolev spaces. This is the
main reason why we restrict ourselves in this paper to dimensions n = 2 when the
Lagrangians F depend on the gradient variables p.

Key in the proof of the existence of a uniformly convex solution uε ∈W 4,q(Ω) to
system (1.12)–(1.13) is the derivation of a priori estimates. Crucial ingredients in
the convergence proof of uε are their uniform a priori estimates with respect to ε
small. The uniform convexity of F with respect to z in [3,6] allows us to control
‖uε‖L∞(Ω0). Here, without the uniform convexity of F with respect to z, our new
input is that we can control ‖uε‖L∞(Ω0) by ‖ϕ‖L∞(Ω) + 1/ε

∫
Ω\Ω0

|uε − ϕ|2 dx. This
follows from lemma 2.1 which is of independent interest.

The rest of the note is organized as follows. In § 2, we prove a simple but crucial
convexity result stated in lemma 2.1. In § 3, we prove our main results stated in
theorems 1.4 and 1.8.

2. A convexity lemma

Lemma 2.1. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 be bounded, convex domains in R
n (n � 2).

Then there is a positive constant C = C(n,Ω0,Ω1,Ω2) with the following property.
If u is a continuous, convex function in Ω2 with u � 0 on ∂Ω2 then

‖u‖L∞(Ω1) � C

∫
Ω2\Ω0

|u|dx.
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Proof of lemma 2.1. Suppose by contradiction that there exists a sequence of
continuous, convex functions {uk} in Ω2 with uk � 0 on ∂Ω2 such that

‖uk‖L∞(Ω1) = 1 but
∫

Ω2\Ω0

|uk|dx � 1
k
.

Thus ∫
Ω2

|uk|dx =
∫

Ω2\Ω0

|uk|dx+
∫

Ω0

|uk|dx � 1
k

+ |Ω0|.

Therefore, we have (see, e.g. inequality (3.2) in [6])

‖uk‖L∞(Ω2) � n+ 1
|Ω2|

∫
Ω2

|uk|dx � C1(n,Ω0,Ω2).

From uk � 0 on ∂Ω2 and the gradient bound for each x ∈ Ω2 (see, e.g. (3.1) in [6])

|Duk(x)| � max∂Ω2 uk − uk(x)
dist (x, ∂Ω2)

�
‖uk‖L∞(Ω2)

dist (x, ∂Ω2)
,

we find that, after extracting a subsequence, {uk} converges locally uniformly in Ω2

to a convex function u in Ω2 with u � 0 on ∂Ω2. Hence ‖u‖L∞(Ω1) = 1. Moreover,
from ∫

Ω1\Ω0

|uk|dx � 1
k
,

we find that u ≡ 0 in Ω1 \ Ω0. By the convexity of u, we have u ≡ 0 in Ω1. This
contradicts ‖u‖L∞(Ω1) = 1 and hence, the lemma is proved. �

Corollary 2.2. Let Ω0 ⊂⊂⊂ Ω be bounded, convex domains in R
n (n � 2).

If u is a continuous, convex function in Ω then

‖u‖L∞(Ω) � C1

(
n,Ω0,Ω,max

∂Ω
u

)
+ C2(n,Ω0,Ω)

∫
Ω\Ω0

|u|dx. (2.1)

Proof. Applying (3.2) in [6] to u− max∂Ω u, we get

‖u‖L∞(Ω) � C(n,Ω)
∫

Ω

|u|dx+ C

(
n,Ω,max

∂Ω
u

)
. (2.2)

Applying lemma 2.1 to u− max∂Ω u, we find

‖u‖L∞(Ω0) �
∥∥∥∥u− max

∂Ω
u

∥∥∥∥
L∞(Ω0)

+
∣∣∣∣max

∂Ω
u

∣∣∣∣
� C(n,Ω0,Ω)

∫
Ω\Ω0

∣∣∣∣u− max
∂Ω

u

∣∣∣∣ dx+
∣∣∣∣max

∂Ω
u

∣∣∣∣
� C(n,Ω0,Ω)

∫
Ω\Ω0

|u|dx+ C

∣∣∣∣max
∂Ω

u

∣∣∣∣ .
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It follows that∫
Ω

|u|dx � |Ω0|‖u‖L∞(Ω0) +
∫

Ω\Ω0

|u|dx

� C(n,Ω0,Ω)
∫

Ω\Ω0

|u|dx+ C(n,Ω0,Ω)
∣∣∣∣max

∂Ω
u

∣∣∣∣
and therefore (2.1) follows from (2.2). �

3. Proof of the main results

In this section, we prove theorems 1.4 and 1.8.

Proof of theorem 1.4. We divide the proof into several steps.
Step 1: A priori estimates. In this step, we establish the a priori L∞(Ω) estimates

for uniformly convex solutions uε ∈W 4,q(Ω) (q > n) to system (1.12)–(1.13). Recall
that ϕ ∈W 4,q(Ω) is convex. We only consider

0 < ε < 1.

For t > 0, let

G(t) =

⎧⎨
⎩
tθ − 1
θ

if θ ∈ (0, 1/n),

log t if θ = 0.

Then G′(t) = tθ−1 for all t > 0 and wε = G
′
(detD2uε) in Ω.

In what follows, we use C,C0, C1, C2, . . . , etc., to denote positive constants
depending only on n, q, Ω0,Ω, θ, C∗, inf∂Ω ψ, and ‖ϕ‖W 4,q(Ω). They are called
universal constants and their values may change from line to line. However, they
do not depend on ε > 0. When such constants depend on ε, they will be indicated
explicitly, as for Cd(ϕ, ε) below.

Recall from (1.10) that ρ is a strictly convex defining function of Ω. Then, there
is γ > 0 depending only on Ω such that

D2ρ � γIn and ρ � −γ−1 in Ω.

Recall that the constant Cϕ is defined in (1.11). For simplicity, let us denote

ũ = ϕ+ Cϕε
1/3n2

(eρ − 1). (3.1)

From the convexity of ϕ and

D2(eρ − 1) = eρ(D2ρ+Dρ⊗Dρ) � e−γ−1
γIn,

we find that the function ũ is uniformly convex, belongs to W 4,q(Ω) and satisfies:

(a) ũ = ϕ on ∂Ω,

(b) ‖ũ‖C3(Ω) + ‖ũ‖W 4,q(Ω) � C, and detD2ũ � C−1Cd(ϕ, ε) > 0,
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(c) letting w̃ = G′(detD2ũ), and denoting by (Ũ ij) the cofactor matrix of (ũij),
then

‖w̃‖L∞(Ω) � C[Cd(ϕ, ε)]−1;
∥∥∥Ũ ijw̃ij

∥∥∥
L1(Ω)

� C[Cd(ϕ, ε)]−3.

Here, from the definition of ũ in (3.1), we have the following estimate for the
magnitude of detD2ũ in terms of ε:

Cd(ϕ, ε) =

{
minΩ detD2ϕ if ϕ is uniformly convex in Ω,
ε1/3n otherwise.

(3.2)

Note that (c) follows from (b) and the following formula (see also [5, lemma 2.1]):

w̃ij = G
′′′

(detD2ũ)ŨklŨrsũkliũrsj +G
′′
(detD2ũ)Ũklũklij +G

′′
(detD2ũ)Ũkl

j ũkli.

We use ν = (ν1, . . . , νn) to denote the unit outer normal vector field on ∂Ω and
ν0 on ∂Ω0. First, from (4.5) in [6], we have

∫
∂Ω

(ψU ij
ε − w̃Ũ ij)((uε)j − ũj)νi dS +

∫
Ω

U ij
ε (wε)ij(uε − ũ) dx

+
∫

Ω

Ũ ijw̃ij(ũ− uε) dx � 0. (3.3)

For readers’ convenience, we include the derivation of (3.3) which relies on some
concavity arguments. Indeed, from the definition of G and θ ∈ [0, 1/n), we find that
the function G̃(t) := G(tn) is strictly concave on (0,∞). Using this together with
G′ > 0, and the concavity of the map M �−→ (detM)1/n in the space of symmetric
matrices M � 0, we obtain

G̃((detD2ũ)1/n) − G̃((detD2uε)1/n)

� G̃
′
((detD2uε)1/n)((detD2ũ)1/n − (detD2uε)1/n)

� G̃
′
((detD2uε)1/n)

1
n

(detD2uε)1/n−1U ij
ε (ũ− uε)ij .

Since G̃
′
((detD2uε)1/n)=nG

′
(detD2uε)(detD2uε)(n−1)/n =nwε(detD2uε)(n−1)/n,

we rewrite the above inequalities as

G(detD2ũ) −G(detD2uε) � wεU
ij
ε (ũ− uε)ij .

Similarly, we have

G(detD2uε) −G(detD2ũ) � w̃Ũ ij(uε − ũ)ij .
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Adding these two last inequalities, integrating by parts twice and using the fact
that (U ij

ε ) is divergence free, we obtain

0 �
∫

Ω

[
wεU

ij
ε (uε − ũ)ij + w̃Ũ ij(ũ− uε)ij

]
dx

=
∫

∂Ω

wεU
ij
ε ((uε)j − ũj)νi dS +

∫
Ω

U ij
ε (wε)ij(uε − ũ) dx

+
∫

∂Ω

w̃Ũ ij(ũj − (uε)j)νi dS +
∫

Ω

Ũ ijw̃ij(ũ− uε) dx,

from which (3.3) follows. Here we recall that wε = ψ on Ω.
In what follows, we will use fε to denote fε(·, uε,Duε,D

2uε; ũ). Then, by (1.12),

U ij
ε (wε)ij = ε−1fε.

Let K(y) be the Gauss curvature of ∂Ω at y ∈ ∂Ω. We have the following assertion.
Assertion. For all ε > 0, we have

∫
∂Ω

Kψ(uε)n
ν dS � C[Cd(ϕ, ε)]−3 + C[Cd(ϕ, ε)]−3

(∫
∂Ω

((uε)+ν )n dS
)(n−1)/n

+
∫

Ω

−ε−1fε(uε − ũ) dx.

The proof of the assertion is similar to that of (4.10) in [6], and we include it here
for readers’ convenience.

We start by analysing the boundary terms in (3.3). Since uε − ũ = 0 on ∂Ω, we
have (uε − ũ)j = (uε − ũ)ννj , and hence

U ij
ε (uε − ũ)jνi = U ij

ε νjνi(uε − ũ)ν = Uνν
ε (uε − ũ)ν

where

Uνν
ε = detD2

x′uε

with x′ ⊥ ν denoting the tangential directions along ∂Ω. Therefore,

(ψU ij
ε − w̃Ũ ij)((uε)j − ũj)νi = (ψUνν

ε − w̃Ũνν)((uε)ν − ũν).

Now, using Uνν
ε and Ũνν , we can rewrite (3.3) as

∫
∂Ω

(ψUνν
ε − w̃Ũνν)((uε)ν − ũν) dS +

∫
Ω

Ũ ijw̃ij(ũ− uε) dx

�
∫

Ω

−ε−1fε(uε − ũ) dx
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which gives

∫
∂Ω

ψUνν
ε (uε)ν dS � ‖ψũν‖L∞(Ω)

∫
∂Ω

|Uνν
ε |dS + ‖Ũνν ũν‖L∞(Ω)‖w̃‖L∞(Ω)

+ ‖Ũνν‖L∞(Ω)‖w̃‖L∞(Ω)

∫
∂Ω

|(uε)ν |dS

+ ‖Ũ ijw̃ij‖L1(Ω)

(‖ũ‖L∞(Ω) + ‖uε‖L∞(Ω)

)
+

∫
Ω

−ε−1fε(uε − ũ) dx. (3.4)

Observe that:

(A) By (a)–(b), the quantities ũ, ũν and Ũνν = Ũ ijνiνj are universally bounded.
By (c),

‖w̃‖L∞(Ω) � C[Cd(ϕ, ε)]−1; ‖Ũ ijw̃ij‖L1(Ω) � C[Cd(ϕ, ε)]−3.

(B) For the convex function uε ∈ C2(Ω) with uε = ϕ on ∂Ω, we have (see, e.g.
[5, inequality (2.7)])

‖uε‖L∞(Ω) � C(n, ϕ,Ω) + C(n,Ω)
(∫

∂Ω

((uε)+ν )n dS
)1/n

.

(C) The Gauss curvature K of ∂Ω and Uνν
ε are related by (see, e.g. (4.9) in [6])

Uνν
ε = K((uε)ν)n−1 + Eε where |Eε| � C(1 + ((uε)+ν )n−2).

Now, the Assertion follows from (3.4) together with the above observations.
Let us continue with the proof of Step 1. Since uε is convex with boundary value

ϕ on ∂Ω, we have

(uε)ν � −‖Dϕ‖L∞(Ω) := −C0.

It follows that, for u+
ν = max(0, uν), we have ((uε)+ν )n � (uε)n

ν + Cn
0 and therefore

from the Assertion, we obtain

∫
∂Ω

Kψ((uε)+ν )n dS � C[Cd(ϕ, ε)]−3 + C[Cd(ϕ, ε)]−3

(∫
∂Ω

((uε)+ν )n dS
)(n−1)/n

+
∫

Ω

−ε−1fε(uε − ũ) dx. (3.5)

By the uniform convexity of ∂Ω, we have K � C(Ω) > 0 on ∂Ω. Using this, together
with inf∂Ω ψ > 0 and Young’s inequality for the second term on the right-hand side
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of (3.5), we find that

C[Cd(ϕ, ε)]−3

(∫
∂Ω

((uε)+ν )n dS
)(n−1)/n

� C[Cd(ϕ, ε)]−3n +
1
2

∫
∂Ω

Kψ((uε)+ν )n dS

and hence ∫
∂Ω

((uε)+ν )n dS � C[Cd(ϕ, ε)]−3n +
∫

Ω

−ε−1fε(uε − ũ) dx.

Therefore, multiplying both sides of the above inequality by ε > 0 and using
ε[Cd(ϕ, ε)]−3n � C from (3.2), we get, as in inequality (4.31) in [6] (which was
stated for n = 2 there)∫

∂Ω

ε((uε)+ν )n dS � Cε[Cd(ϕ, ε)]−3n +
∫

Ω

−fε(uε − ũ) dx

� C +
∫

Ω

−fε(uε − ũ) dx. (3.6)

We will estimate the right-hand side of (3.6).
From the convexity of F 0 (see (1.8)), we can estimate

Aε :=
∫

Ω0

−f0(x, uε(x))(uε − ũ) dx

�
∫

Ω0

−f0(x, ũ(x))(uε − ũ) dx

� C + C1‖uε‖L∞(Ω0). (3.7)

In what follows, we will frequently use the following inequality (see, (3.1) in [6])

|Duε(x)| � max∂Ω uε − uε(x)
dist (x, ∂Ω)

∀x ∈ Ω. (3.8)

By the convexity of uε and F 1(x, p) in p, we have F 1
pipj

(uε)ij � 0. Moreover,
uε � sup∂Ω ϕ � C and |ũ| � C. Thus, recalling (1.9), we find that

F 1
pipj

(uε)ij(uε − ũ) � CF 1
pipj

(uε)ij � CC∗Δuε.

By the divergence theorem and (3.8), we have∫
Ω0

F 1
pipj

(uε)ij(uε − ũ) dx � CC∗
∫

Ω0

Δuε dx = CC∗
∫

∂Ω0

(uε)ν0 dS

� C + C2‖uε‖L∞(Ω0). (3.9)

On the other hand, for any i = 1, . . . , n, using (1.9) and (3.8), we can estimate
in Ω0:

|F 1
pixi

(x,Duε(x))(uε(x) − ũ(x))| � C∗(|Duε(x)| + 1)(|uε(x) + C)

� C3(|uε(x)|2 + 1). (3.10)
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Note that (2.1) together with ‖ũ‖L∞(Ω) � C gives

‖uε‖L∞(Ω0) � C + C

∫
Ω\Ω0

|uε|dx � C + C4

∫
Ω\Ω0

|uε − ũ|2 dx. (3.11)

From (3.7), (3.9), (3.10) and (3.11), we find that∫
Ω0

−fε(uε − ũ) dx =
∫

Ω0

[
−f0(x, uε(x)) +

∂

∂xi

(
∂F 1

∂pi
(x,Duε(x))

)]
(uε − ũ) dx

= Aε +
∫

Ω0

[
F 1

pixi
(x,Duε(x)) + F 1

pipj
(x,Duε(x))(uε)ij

]
× (uε − ũ) dx

� Aε + C3

∫
Ω0

(|uε|2 + 1) dx+ C + C2‖uε‖L∞(Ω0)

� C5‖u‖2
L∞(Ω0)

+ C � C + C6

∫
Ω\Ω0

|uε − ũ|2 dx. (3.12)

It follows from (3.6) and (3.11), and fε = 1/ε(uε − ũ) on Ω \ Ω0 that∫
∂Ω

ε((uε)+ν )n dS � C +
∫

Ω

−fε(uε − ũ) dx

= C +
∫

Ω0

−fε(uε − ũ) dx+
∫

Ω\Ω0

−fε(uε − ũ) dx

� C + C6

∫
Ω\Ω0

|uε − ũ|2 dx+
∫

Ω\Ω0

−1
ε
|uε − ũ|2 dx

� C −
∫

Ω\Ω0

1
2ε

|uε − ũ|2 dx (3.13)

if ε is small, say

ε � 1
2C6

.

From now on, we assume that ε is small. Then, we get∫
∂Ω

ε2((uε)+ν )n dS +
∫

Ω\Ω0

(uε − ũ)2 dx � Cε. (3.14)

This together with (2.1) and ‖ũ‖L∞(Ω) � C gives the uniform bound for uε on Ω:

‖uε‖L∞(Ω) � C7. (3.15)

Step 2: Existence and convergence properties of uniformly convex solutions to
(1.12)–(1.13).

(i) We consider two separate cases.
Case 1: F (x, z, p) = F 0(x, z). In this case, from the a priori L∞(Ω) estimates

(3.15) for uniformly convex solutions uε ∈W 4,q(Ω) (q > n) to system (1.12)–(1.13),
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we can use a Leray–Schauder degree argument as in [3, theorem 4.2] to show the
existence of a unique uniformly convex solution uε ∈W 4,q(Ω) (for all q <∞) to
system (1.12)–(1.13).

Case 2: F (x, z, p) = F 0(x, z) + F 1(x, p) and n = 2. In this case, from the a priori
L∞(Ω) estimates (3.15) for uniformly convex solutions uε ∈W 4,q(Ω) (q > n) to
system (1.12)–(1.13), we can establish the a priori W 4,q(Ω) estimates for uε as in
[6, theorem 4.1]. With these a priori estimates, we can use a Leray–Schauder degree
argument as in [6, theorem 2.1] to show the existence of a uniformly convex solution
uε ∈W 4,q(Ω) (for all q <∞) to system (1.12)–(1.13).

Hence (i) is proved.
(ii) For ε > 0 small, let uε ∈W 4,q(Ω) (q > n) be a solution to (1.12)–(1.13). By

(3.15), the sequence {uε} is uniformly bounded with respect to ε. By (3.8), |Duε| is
uniformly bounded on compact subsets of Ω. Thus, by the Arzela–Ascoli theorem,
up to extraction of a subsequence, uε converges uniformly on compact subsets of
Ω, and also in W 1,2(Ω0), to a convex function u on Ω. From (3.14) and the fact
that limε→0 ũ = ϕ, we find u ∈ S̄[ϕ,Ω0]. Let

ηε := ε1/n

(∫
∂Ω

((uε)+ν )n dS
)1/n

. (3.16)

Then, from (3.14), we have as in [3, inequality (5.5)] and [6, inequality (4.27)]

ηε � C. (3.17)

Consider the functional J defined over S̄[ϕ,Ω0] by

J(v) :=
∫

Ω0

F (x, v(x),Dv(x)) dx. (3.18)

Since uε converges uniformly to u on Ω0, by Fatou’s lemma, we have

lim inf
ε

∫
Ω0

F 0(x, uε(x))dx �
∫

Ω0

F 0(x, u(x)) dx.

From the convexity of F 1(x, p) in p and the fact that uε converges to u on W 1,2(Ω0),
we have

lim inf
ε

∫
Ω0

F 1(x,Duε(x)) dx �
∫

Ω0

F 1(x,Du(x)) dx,

which is due to lower semicontinuity. Therefore

lim inf
ε

J(uε) � J(u). (3.19)

Our main estimate is the following.
Claim. If 0 � θ < 1/n, then for any v ∈ S̄[ϕ,Ω0], we have

J(v) � lim inf
ε

J(uε) − lim sup
ε

[
ε(n−1)/nηε + ε1/nηn−1

ε

]
. (3.20)

Assuming the above claim, we show that u is a minimizer of (1.1). Indeed, this
follows from (3.20), (3.19) and (3.17) which imply the estimate J(v) � J(u) for all
v ∈ S̄[ϕ,Ω0].
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It remains to prove the claim. The proof is similar to that of [6, theorem 2.3]
where the case n = 2 was treated. In our context of theorem 1.4(ii), we would
like to treat also the case of general dimensions n when F 1 ≡ 0, that is, when the
Lagrangian is independent of the gradient variables. For reader’s convenience, we
repeat the arguments there. Recall from (3.1) that

ũ = ϕ+ Cϕε
1/3n2

(eρ − 1).

Consider the following functional Jε over the set of convex functions v on Ω:

Jε(v) =
∫

Ω0

F (x, v(x),Dv(x)) dx+
1
2ε

∫
Ω\Ω0

(v − ũ)2 dx− ε

∫
Ω

G(detD2v) dx.

(3.21)

From the Alexandrov theorem [4, theorem 1, p. 242], v is twice differentiable a.e.
At those points of twice differentiability of v, we use D2v to denote its Hessian
matrix. Thus, in addition to setting log 0 = −∞, the functional Jε is well defined
with this convention for all θ � 0; it can take value ∞.

Let Uνν
ε = U ij

ε νiνj . Let K be the Gauss curvature of ∂Ω. Then, we have (see,
e.g. (4.9) in [6])

Uνν
ε = K((uε)ν)n−1 + Eε where |Eε| � C(1 + ((uε)+ν )n−2). (3.22)

First, by [6, estimate (5.6)], if v is a convex function in Ω with v = ũ in a
neighbourhood of ∂Ω, then

Jε(v) − Jε(uε) � ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS +

∫
∂Ω0

(v − uε)∇pF
1(x,Duε(x)) · ν0 dS.

(3.23)

Now, we are ready to prove (3.20) for all v ∈ S̄[ϕ,Ω0]. Indeed, applying (3.23) to

vε := v + Cϕε
1/3n2

(eρ − 1),

which clearly satisfies vε = ũ on Ω \ Ω0, and using the fact that the subsequential
uniform limit u ∈ S̄[ϕ,Ω0] of uε satisfies u = v = ϕ on ∂Ω0, we conclude that the
corresponding rightmost term in (3.23)∫

∂Ω0

(vε − uε)∇pF
1(x,Duε(x)) · ν0 dS → 0 as ε→ 0,

and hence,

ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS − oε(1) � Jε(vε) − Jε(uε)

= J(vε) − J(uε) − 1
2ε

∫
Ω\Ω0

(uε − ũ)2 dx

− ε

∫
Ω

[G(detD2vε) −G(detD2uε)] dx. (3.24)

Here we use oε(1) to denote a quantity that tends to 0 when ε→ 0.
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Since detD2vε � Cε1/3n, we have

lim inf
ε

ε

∫
Ω

G(detD2vε) dx � 0 for all v ∈ S̄[ϕ,Ω0]. (3.25)

From the definition of vε and the dominated convergence theorem, we have

lim
ε→0

J(vε) = J(v).

Combining this with (3.24) and (3.25), we get

J(v) � lim inf
ε

J(uε) + lim inf
ε

ε

∫
Ω

[G(detD2vε) −G(detD2uε)] dx

+ lim inf
ε

ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS

� lim inf
ε

J(uε) − lim sup
ε

ε

∫
Ω

G(detD2uε) dx

+ lim inf
ε

ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS. (3.26)

From (3.22), ‖ũν‖L∞(∂Ω) � C and (uε)ν � (uε)+ν − C0 by the estimate preceding
(3.5), we have

Uνν
ε ∂ν(uε − ũ) � −C((uε)+ν )n−1 − C.

From the definition of ηε in (3.16), one has∫
∂Ω

(uε)+ν dS � Cε−1/nηε and
∫

∂Ω

((uε)+ν )n−1 dS � Cε−(n−1)/nηn−1
ε

and hence,

ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS � −Cε

∫
∂Ω

[1 + ((uε)+ν )n−1] dS

� −Cε1/nηn−1
ε . (3.27)

From 0 � θ < 1/n and the convexity of uε, we can find C > 0 depending only on θ
and n such that

G(detD2uε) � C[1 + (detD2uε)1/n] � C(1 + Δuε).

Therefore, from the divergence theorem, we obtain∫
Ω

G(detD2uε) dx � C

∫
Ω

(1 + Δuε) dx

= C|Ω| + C

∫
∂Ω

(uε)ν dS � C(1 + ε−1/nηε). (3.28)

Combining (3.26)–(3.28), we get

J(v) � lim inf
ε

J(uε) − lim sup
ε

[
ε(n−1)/nηε + ε1/nηn−1

ε

]
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which implies (3.20). The Claim is proved and the proof of the theorem is
complete. �

Sketch of proof of theorem 1.8. The proof is parallel to that of theorem 1.4 with
some minor modifications. We briefly indicate these. Recall that n = 2.

(i) Existence result. The key is still the a priori estimate (3.15) for a uniformly
convex solution uε ∈W 4,q(Ω) (q > n) to (1.12)–(1.13). Assume that there
holds the linear growth condition of f0(x, z) with respect to z in (1.15). In
this case, the quantity Aε defined in (3.7) can be estimated from above by

Aε � C + C1‖uε‖2
L∞(Ω0)

.

Thus, the final estimate in (3.12) holds. Therefore (3.15) holds if ε is small;
the constant C7 now depends also on Cl. As a consequence, the existence
result of theorem 1.8(i) follows as that of theorem 1.4(i).

(ii) Convergence result. The new input here is the following well-known trace
inequality. There is a constant Ct = Ct(Ω0) > 0 depending only on Ω0 such
that∫

Ω0

|v − u|2 dx � Ct

∫
Ω0

|Dv −Du|2 dx

+ Ct

∫
∂Ω0

|v − u|2 dS for all u, v ∈W 1,2(Ω0). (3.29)

Assume that (1.15) and (1.16) hold. With (1.15), we have

F 0(x, z̃) − F 0(x, z) � f0(x, z)(z̃ − z) − Cb

2
|z̃ − z|2 for all x ∈ Ω0 and all z, z̃ ∈ R.

(3.30)

With (1.16), we have

F 1(x, p̃) − F 1(x, p) � ∇pF
1(x, p) · (p̃− p) +

C
2
|p̃− p|2

for all x ∈ Ω0 and all p, p̃ ∈ R
2. (3.31)

For ε > 0 small, let uε ∈W 4,q(Ω) (q > n) be a solution to (1.12)–(1.13).
Step 1: Convergence of a subsequence of {uε} to a minimizer of (1.1). As in the

proof of theorem 1.4(ii), up to extraction of a subsequence, uε converges uniformly
on compact subsets of Ω, and also in W 1,2(Ω0), to a convex function u ∈ S[ϕ,Ω0].

We show that u is a minimizer of (1.1). The proof is similar to that of theorem
1.4(ii) except that (3.23) is replaced by

Jε(v) − Jε(uε) � ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS +

∫
∂Ω0

(v − uε)∇pF
1(x,Duε(x)) · ν0 dS

− C
2

∫
∂Ω0

|v − uε|2 dS (3.32)
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for all convex functions v in Ω with v = ũ in a neighbourhood of ∂Ω and provided
that

C � CtCb + 1. (3.33)

In (3.32), the function ũ is defined as in (3.1). Clearly, when v ∈ S[ϕ,Ω0], the extra
boundary term in (3.32) disappears in the limit ε→ 0.

Now, we explain how to obtain (3.32) from (1.15), (1.16) and (3.33). Again, let v
be a convex function in Ω with v = ũ in a neighbourhood of ∂Ω. In the derivation
of (3.23) in [6, estimate (5.6)], we used (3.30) with Cb = 0 (and z̃ a mollification vh

of v and z the function uε) and (3.31) with C = 0 (and p̃ the gradient Dvh and p
the gradient Duε); see [6, estimate (5.10)]. With Cb > 0,C > 0, instead of (3.23),
we have the following:

Jε(v) − Jε(uε) � ε

∫
∂Ω

ψUνν
ε ∂ν(uε − ũ) dS +

∫
∂Ω0

(v − uε)∇pF
1(x,Duε(x)) · ν0 dS

− Cb

2

∫
Ω0

|v − uε|2 dx+
C
2

∫
Ω0

|Dv −Duε|2 dx. (3.34)

Thus, provided (3.33) holds, (3.32) follows from (3.34) and (3.29).
Step 2: The whole sequence {uε} converges to the unique minimizer in S̄[ϕ,Ω0]

of (1.1) when (3.33) holds. To show this, in view of Step 1, it suffices to show that
(1.1) has unique minimizer in S̄[ϕ,Ω0].

Suppose that u, v ∈ S̄[ϕ,Ω0] are two minimizers of the functional J defined by

J(u) :=
∫

Ω0

F (x, u(x),Du(x)) dx

where we recall F (x, z, p) = F 0(x, z) + F 1(x, p).
Note that (u+ v)/2 ∈ S̄[ϕ,Ω0]. From (3.30) and (3.31), we find

F 0(x, u(x)) + F 0(x, v(x)) � 2F 0

(
x,
u(x) + v(x)

2

)
− Cb

4
|u(x) − v(x)|2 ∀x ∈ Ω0

and

F 1(x,Du(x)) + F 1(x,Dv(x)) � 2F 1

(
x,
Du(x) +Dv(x)

2

)

+
C
4
|Du(x) −Dv(x)|2 ∀x ∈ Ω0.

Adding these inequalities and integrating over Ω0, we find that

J(u) + J(v) � 2J
(
u+ v

2

)
+

C
4

∫
Ω0

|Du(x) −Dv(x)|2 dx

− Cb

4

∫
Ω0

|u(x) − v(x)|2 dx

� 2J
(
u+ v

2

)
+

1
4

∫
Ω0

|Du(x) −Dv(x)|2 dx. (3.35)
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In the last inequality of (3.35), we used (3.29) while recalling (3.33) and u = v on
∂Ω0. By the minimality of u and v, we deduce from (3.35) that u ≡ v. Therefore,
(1.1) has unique minimizer in S̄[ϕ,Ω0] as asserted. �
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