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Multiple lock-ins in vortex-induced vibration
of a filament
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The vortex-induced vibration of a flexible filament attached behind a stationary cylinder
is studied in the two-dimensional, laminar flow regime. We explore the response of the
filament for a wide range of flexibility and inertia. Lock-in with a large number of normal
modes of the filament, each in a different regime of reduced speed, is observed. Reduced
speed is the free-stream speed of the incoming flow non-dimensionalized with the first
natural frequency of the structure and the diameter of the cylinder. Several branches,
based on response of the filament, are identified and the contributions of various structural
modes along these branches are quantified. Contribution from a particular structural mode
increases significantly during lock-in, accompanied by a large amplitude of vibration. The
transition between different branches is found to be hysteretic and intermittent. The flow
exhibits a variety of vortex-shedding patterns, including the 2P+2S mode. The modes
of shedding show a systematic variation with amplitude and frequency. The map of
vortex-shedding patterns in the amplitude–frequency plane resembles the corresponding
map for forced vibration of a rigid cylinder. The transformation of wake from one mode of
shedding to another is explained phenomenologically. Variation of rate of energy transfer
between the fluid and filament with space and time is analysed to determine optimal
placement of transducers for harvesting energy.

Key words: flow-structure interactions, vortex shedding

1. Introduction

A bluff body placed in a uniform stream of fluid experiences time-varying force due to
shedding of vortices. Its response to this unsteady force is referred to as vortex-induced
vibration (VIV). Notably, the vibration of the body can profoundly alter the flow.
A remarkable feature of VIV is lock-in, wherein the body vibrates with large amplitude,
over a range of reduced flow speeds, U∗, at close to its natural frequency. Vortex-induced
vibration of a rigid circular cylinder on an elastic support, modelled by a linear
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spring, has been widely studied at low and high Reynolds number Re (Sarpkaya 2004;
Williamson & Govardhan 2004; Bearman 2011). Here, we briefly review the results for
the laminar regime. Navrose & Mittal (2016) reported three types of branches in the
VIV response of an isolated cylinder with U∗: desynchronization (DS), initial branch
(IB) and lower branch (LB). The amplitude of response is very small in DS regime
and the non-dimensional frequency (F) of vibration is close to St0, the Strouhal number
corresponding to vortex-shedding frequency for flow past a stationary cylinder. The lock-in
regime consists of IB and LB. The cylinder undergoes high-amplitude oscillation (up
to sixty per cent of its diameter) in LB that are almost sinusoidal. In IB, the power
spectra of the time histories of cylinder response and the fluid force reveal two prominent
peaks that are close to the natural frequency of the structure (Fn) and St0. The flow
and response is hysteretic during transition from DS to IB, IB to LB and from LB to
DS; increasing- and decreasing-U∗ lead to different states for a certain range of U∗.
Response frequency F gets closer to Fn during lock-in with increase in mass ratio m∗
(Navrose & Mittal 2017). The mode of vortex shedding in the laminar regime is 2S
for the stationary cylinder and when the amplitude of vibration is relatively small. In
this mode, two vortices of opposite sign are shed in one cycle of shedding. Larger
amplitude vibration modifies the shedding to C(2S), wherein the vortices in the wake
coalesce.

Splitter plates/filaments have been used in the past to control vortex shedding and
the oscillations resulting from it. The earliest experimental studies were limited to the
effect of rigid plates on suppressing vortex shedding (Roshko 1954, 1955; Apelt, West
& Szewczyk 1973; Apelt & West 1975). Shukla, Govardhan & Arakeri (2009) observed
sustained oscillations of a plate hinged behind a circular cylinder in their experiments. The
oscillation amplitude showed increase with Reynolds number before attaining saturation
at around Re = 4000. The VIV of a flexible filament attached to a bluff body is far
more complex than that of rigid cylinder. Unlike the latter, the former is associated with
infinite degrees of freedom, and, consequently, as many natural frequencies and their
corresponding modes of vibration. In terms of its engineering applications, an optimal
design of such an oscillator may be used as a passive device for either inhibiting VIV,
without making the structure vulnerable to galloping (Wu et al. 2014; Sahu, Furquan
& Mittal 2019b), or extracting energy from flow (Song et al. 2017; Soti et al. 2017).
Despite its association with rich dynamical phenomena and its potential in practical
applications, most of the past studies on vibration of a filament behind a fixed cylinder
focus on its use as a benchmark problem with limited exploration of the parameter
space (Wall & Ramm 1998; Turek & Hron 2006; Kalmbach & Breuer 2013). Shukla,
Govardhan & Arakeri (2013) experimentally investigated the effect of Reynolds number
at few values of filament stiffness. They observed two regimes of periodic oscillations
with frequency close to the vortex shedding frequency of an isolated cylinder, separated
by a range of aperiodic oscillations. Lee & You (2013) studied the effect of plate length
at Re = 100. The amplitude of vibration was observed to be lowest when the length
is twice the cylinder diameter. A related problem widely studied in the literature is
the flutter of a flag (Zhang et al. 2000; Shelley & Zhang 2011). According to Shelley
& Zhang (2011), the first attempt to analyse this problem was made by Rayleigh who
used the Kelvin–Helmholtz-like instability to explain the flapping motion of the flag.
Kelvin–Helmholtz vortices in the wake of a flapping flag were observed experimentally
by Zhang et al. (2000). However, Argentina & Mahadevan (2005) showed that the primary
mechanism driving the instability is aeroelastic flutter, while the Kelvin–Helmholtz
mechanism plays a secondary role of destabilizing the vortex sheet in the wake. Several
improvements have since been proposed to their model, for example, inclusion of finite
916 R1-2
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span (Eloy, Souilliez & Schouveiler 2007) and an upstream cylinder (pole) (Manela
& Howe 2009). The latter study showed that vortices shed by an upstream body can
trigger vibration long before the filament encounters flutter instability. The postcritical
behaviour has also been studied using nonlinear beam/plate models coupled with panel
methods (Tang & Paidoussis 2007) as well as the Navier–Stokes equation (Connell &
Yue 2007).

In this paper, we address several questions, in the context of VIV of a flexible body,
that have been earlier posed for VIV of rigid bodies: (i) What are the various branches of
response and how do they relate to the natural modes of the structure? (ii) Can the response
be intermittent/hysteretic? (iii) How does the flow pattern vary from one branch to another?
(iv) What is the effect of mass ratio, m∗? (v) What is the spatio-temporal distribution of
energy exchange between fluid and the structure? To the best of our knowledge there has
been no organized study in the past that explores these questions. Sahu et al. (2019b)
and Pfister & Marquet (2020) studied the VIV of a cylinder with a flexible plate for a
limited range of U∗ and only one value of m∗. For the parameter range investigated in
their study, only the first two modes were found to be relevant and only the 2S pattern
of vortex shedding was reported. On the other hand, by considering a significantly larger
parameter space we observe lock-in with up to fourth structural mode and a myriad of
vortex-shedding patterns.

2. Problem description and computational details

We study the VIV of a flexible filament which is attached behind a stationary circular
cylinder placed in a uniform stream. The filament models a plate of very small thickness
with equivalent mass and flexural rigidity. Figure 1 shows the schematic of the set-up and
the computational domain. Also shown are the conditions applied at the boundaries of the
domain. The parameters relevant to VIV are m∗, U∗, ζ and Re. The mass ratio is defined
as m∗ = ρsA/ρf Db, where ρs and ρf are the respective densities of the structure and the
fluid, b is the span and A is the cross-sectional area of the filament. Three values of m∗ are
considered: 1, 2 and 20. The reduced speed is defined as U∗ = U/fn1D, where fn1 is the
fundamental natural frequency of the filament, U is the free-stream speed of the flow and
D is the diameter of the cylinder. We note that the definitions of m∗ and U∗, for the flexible
body, are a little different than those for the rigid body. Here U∗ is varied between 0 and
160. A rigid filament is represented by U∗ = 0, while U∗ = 160 corresponds to a filament
that offers very small bending resistance. The coefficient of structural damping, ζ , is fixed
at zero. The Reynolds number is defined as Re(= UD/νf ), where νf is the coefficient of
kinematic viscosity of the fluid. Its value is 150 for this study. The flow is laminar and
expected to be two-dimensional at Re = 150. It is, however, unsteady even for a stationary
filament. The length of the filament is L = 3.5D, while the Poisson’s ratio of its material
is 0.35.

The unsteady response of the filament for different (U∗, m∗) is analysed to identify the
contribution of the various structural modes. Each of these modes has a distinct shape,
shown in figure 2(a) along with their corresponding natural frequencies Fk, characterized
by the number of nodes and anti-nodes. The displacement of the filament with respect
to its undeformed geometry is zero at the nodes. For example, a filament vibrating in
the first structural mode has just one node, which is at the root. Similarly, the second
mode of vibration has two nodes, while the third mode has three. Let φk(X) be the
normalized Euler–Bernoulli (EB) mode such that

∫ L
0 φ2

k (X) dX = 1. Let Y(X, t) denote
the vertical displacement of the filament as a function of undeformed coordinate X,
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v2 = 0, σf12
 = 0

σf11
 = 0,

σf21
 = 0

v2 = 0, σf12
 = 0

3.5D

25D 50D

100D

v = (U, 0)

D

Figure 1. Schematic of the problem set-up (not to scale) for a stationary cylinder with a flexible filament. Also
shown are the boundary conditions on the fluid velocity, v, and the fluid stress, f . The subscripts 1 and 2
respectively denote the horizontal and vertical directions.

non-dimensionalized with D. The fraction of Y(X, t), over n complete oscillation cycles,
that may be attributed to the kth mode φk(X) is estimated as

qk =

∫ τ+nT

τ

(∫ L

0
Y(X, t)φk(X) dX

)2

dt
∫ τ+nT

τ

∫ L

0
Y2(X, t) dX dt

, (2.1)

where τ is an arbitrary time instant and T is the time period of oscillation. Similar
measures have been adopted in the past as a measure of energy contribution of individual
eigenmodes in flow-induced vibration of a membrane (Allen & Smits 2001) and flexible
cylinder (Shang, Stone & Smits 2014).

Higher eigenmodes are excited at relatively large U∗ (Sahu et al. 2019b). However,
numerical modelling of fluid-structure interactions becomes increasingly challenging with
increase in flexibility of structures. A partitioned approach similar to Sahu et al. (2019b)
has been adopted in the present work for simultaneously solving the equations governing
the flow as well as the structural dynamics. The structure is modelled as a Timoshenko
beam (Simo & Vu-Quoc 1986a). It is solved via Galerkin finite-element method (Simo
& Vu-Quoc 1986b) and Bathe’s time-integration method (Bathe 2007). A stabilized
finite-element method with linear interpolation for velocity and pressure is used to model
the flow (Tezduyar et al. 1992). Use of a conservative time-integration scheme and a robust
model for the structure allows us to study VIV at U∗ that is up to an order of magnitude
larger than the maximum value considered in the earlier studies (Sahu et al. 2019b; Pfister
& Marquet 2020). The fluid-structure solver is validated against the benchmark problem
proposed by Wall & Ramm (1998). In this set-up, a thin flexible plate of length L = 4D and
thickness 0.06D, is attached to a stationary square cylinder of edge length D. The relatively
small thickness of the plate enables modelling it as a filament with equivalent mass and
flexural rigidity. The Reynolds number, based on D, is Re = 332.6. The reduced speed is
U∗ = 16.94, while the mass ratio is m∗ = 5.085. The Poisson’s ratio of the material of the
filament/plate is νs = 0.35. Table 1 lists the results from the present and past studies. The
present results are in good agreement with those available in the literature.

We also compare the present results for a filament with those for a splitter plate
(thickness: 0.2D) undergoing large amplitude vibration reported by Sahu et al. (2019b). At
Re = 150, U∗ = 80 and m∗ = 2, the maximum displacement of the tip of the splitter plate
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Figure 2. The Re = 150, m∗ = 2 flow past a fixed cylinder with a flexible filament: variation of (a) dominant
frequency F and natural frequencies Fk, (b) r.m.s. displacement Arms. Also shown in panel (a) are the
contribution of various EB modes to the filament response via pie charts. The extent and layout of different
branches is shown using block structures below panel (a) as well as by the shading of the relevant portions in
panels (a,b). Letters L and D refer to lock-in and desynchronization branches. Arrows indicate the increasing-
and decreasing- U∗ initial conditions.

Reference Amax F

Wall & Ramm (1998) 1.20 0.0604
Matthies & Steindorf (2003) 1.18 0.0610
Bazilevs et al. (2008) 1.21 0.0591
Wood et al. (2008) 1.15 0.0573
He, Yang & Baniotopoulos (2018) 1.24 0.0586
Present 1.18 0.0573

Table 1. The Re = 332.6 flow past a stationary square cylinder with a thin flexible plate corresponding to
U∗ = 16.94, m∗ = 5.085: comparison of tip-displacement amplitude and frequency obtained using the present
solver with the values available in the literature. Amax denotes amplitude of tip oscillation.
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Case NE Δt Arms Clrms Cdrms Cdavg F

C1 71k 0.025 0.7803 (1.9) 2.2225 (1.2) 0.6848 (0.1) 1.7564 (2.8) 0.1144 (1.1)
C2 174k 0.025 0.7681 (3.4) 2.2891 (1.7) 0.7041 (2.7) 1.8698 (3.5) 0.1122 (0.9)
C3 174k 0.005 0.7955 2.2502 0.6855 1.8066 0.1132

Table 2. Re = 150 flow past a stationary cylinder with a flexible filament corresponding to U∗ = 49, m∗ = 2:
mesh and time-step convergence study. Here NE refers to the approximate number of elements in the mesh.
Values in parenthesis are percentage deviations from the case C3; Cl and Cd are the lift and drag coefficients,
respectively. The subscripts rms and avg refer to the r.m.s. and mean values.

is 1.206 from the present computations with a filament model, while it is 1.202 from the
plate model reported by Sahu et al. (2019b). The values of frequency from the two studies
are 0.095 and 0.098, respectively. The results from both the studies are in reasonable
agreement. The small difference can be attributed to the difference in structural models
for the splitter plate in the two studies.

Computations were carried out for VIV of flexible filament for Re = 150, U∗ = 49 and
m∗ = 2 to study the adequacy of the finite-element mesh and the time step used in this
study. Two meshes, with over 71 000 and 174 000 triangular elements, were considered
for studying the mesh convergence. They are referred to as 71k and 174k, respectively.
Further, two different time steps, Δt = 0.005 and 0.025, were used to establish time-step
independence. Table 2 lists the r.m.s. of the tip displacement, Arms, as well as the mean
and r.m.s. of the force coefficient for different meshes and time steps. Also listed is the
non-dimensional frequency of vibration of the plate-tip, F. It is seen that the maximum
difference in the results from the three cases is 3.5 %. The 71k mesh and Δt = 0.025 are
used for carrying out the computations presented in the paper.

3. Results and discussion

3.1. Filament response: multiple lock-ins and branches
Figure 2 shows the variation of frequency F and the root mean squared amplitude Arms
of the filament tip with U∗ for m∗ = 2. The Strouhal number corresponding to the
vortex-shedding frequency for a rigid filament (St0) is marked in figure 2(a) using a broken
line. The pie charts represent the fraction qk corresponding to the first few EB modes at
some notable values of U∗ (refer to (2.1)). Also shown are the first four EB modes and
variation of their corresponding non-dimensional natural frequencies Fk with U∗. The
mode shape, natural frequency and qk are depicted with the same colour for a particular
mode. For example, a light-magenta colour is used for depicting the first EB mode and
the quantities related to it. Similarly, the value of q1 at various (U∗, m∗) is displayed by
the fractional area of the sector coloured light-magenta in the pie charts. The extent of
various branches, in terms of U∗, is indicated using block structures below the frequency
plot as well as with the light background shading. The blocks also indicate the type of
vortex shedding observed within different branches. For example, the branch L2 extends
between U∗ = 25 and 100 for increasing-U∗ and between 24 and 78 for decreasing-U∗.
Further subdivison of the rectangle indicates the ranges of U∗ in which the 2S and the 2P
vortex-shedding modes appear.

Figure 3 shows the response of a flexible filament for m∗ = 1, 2 and 20. The format of
the figure is same as figure 2. In addition, figure 3 also shows the time-averaged location
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Figure 3. The Re = 150 flow past a fixed cylinder with a flexible filament: variation of (a) dominant frequency
F and natural frequencies Fk, (b) r.m.s. displacement Arms and (c) average displacement Aavg of the filament
tip with U∗ for m∗ = 1, 2 and 20. Pie charts in panel (a) show the contributions of the various EB modes.
Blocks below panel (a) show the extent and layout of the branches. Letters L and D refer to lock-in and
desynchronization branches. Arrows indicate the increasing- and decreasing-U∗ initial conditions.

Aavg of the filament tip with U∗. The pie charts showing the contribution of various modes
to filament response are enclosed in a border with colour corresponding to the relevant m∗.
Figure 4 shows typical vorticity fields, at the time instant of maximum upward deflection,
corresponding to the different vortex shedding patterns for points marked in figure 3(b)
with letters a to e. Computations have been carried out with three initial conditions: (i)
increment in U∗, (ii) decrement in U∗ and (iii) flow past stationary filament. The first two
are referred to as increasing- and decreasing-U∗. The three initial conditions lead to the
same state in most cases; the states are marked in figure 3, when they do not.
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(a)

2P 2P+2S P+S

2S 2S 2P

(b) (c)

(d ) (e) ( f )

Figure 4. The Re = 150 flow past a fixed cylinder with a flexible filament: instantaneous vorticity fields for
(U∗, m∗) = (a) (24, 2), (b) (49, 2), (c,f ) (145, 2), (d) (80, 20) and (e) (90, 20) when the filament tip is at its
highest position. The points are indicated in figure 3(b) with letters a to e. Panels (c) and ( f ) correspond to
different time instants for same point on the branch L3i. Type of vortex shedding is also indicated. Vortices shed
in one cycle are enclosed in a box.

Multiple lock-ins with different EB modes are observed. The first lock-in occurs with
EB-1 on branch L1, as indicated by the proximity of F with F1 and a peak in Arms. The pie
charts for qk confirm that the predominant mode of vibration at low U∗ is EB-1, and the
system essentially behaves as a single degree of freedom oscillator. Branch L1 is flanked
on either side by the desynchronization regimes (D1 and D2) with relatively small Arms and
F close to St0. The response of the filament in this low U∗ regime is qualitatively similar
to the VIV of a rigid cylinder and the mode of vortex shedding is 2S.

It is found that the larger the value of m∗, the closer F is to F1 on branch L1. This
behaviour can be attributed to the reduction in added mass coefficient with increase in m∗
(Navrose & Mittal 2017). Although the peak amplitude is independent of m∗, it occurs at a
higher U∗ with increase in m∗. These observations are consistent with VIV of rigid bodies
(Sahu et al. 2019a). A notable feature of the D2 branch is symmetry-breaking bifurcation,
wherein the mean position of the tip is biased, for low m∗. A similar symmetry-breaking
bifurcation has been reported in the steady solutions by Bagheri, Mazzino & Bottaro
(2012). In the unsteady case, the steady bias solution serves as the base solution for the
unsteady Hopf bifurcation (Pfister & Marquet 2020).

Higher modes become active at larger U∗ for the flexible structure. Unlike a rigid body,
where further increase in U∗ does not bring any qualitative change in response once the
second desynchronization regime sets in, the response of the flexible filament shifts from
branch D2 to L2 with increase in U∗. The shift occurs via an abrupt change in the amplitude
as well as frequency of oscillation. The transition between D2 and L2 is hysteretic, that
is, the response of the system depends on increasing- vs decreasing-U∗. Branch L2 is
characterized by a significant contribution from the second, besides the first, EB mode
as seen from the increase in value of q2. Further, the dominant frequency of oscillations
follows the F2 curve. The amplitude increases significantly with increase in U∗ before
waning off.

Branches L3 and L4 are characterized by significant values of q3 and q4. Similar to L2, the
onset of L3 is also hysteretic. Computations initiated with flow past a stationary filament,
for large m∗ and certain range of U∗, lead to branches L0

3, L0
4 and D3. These states/branches

are not approachable from L2. The response on branches L0
3 and L0

4 are dominated by the
EB-3 and EB-4 modes, respectively. However, unlike other lock-in branches, the amplitude
of vibration is smaller and with a significant bias in the mean position. The effect of m∗ on
the lock-in with EB modes is interesting. The contribution of EB-2 decreases on branch L2
with increase in U∗ for low m∗ (= 1 and 2). The behaviour of q3 on branch L3 is similar.
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3.2. Physics of vortex shedding
Figures 3 and 4 highlight the large number of modes of vortex shedding that are
observed in the free vibration of the flexible filament in the parameter space considered.
Contrary to expectation, the vortex-shedding pattern is not sustained on a response branch.
For example, three distinct vortex-shedding patterns are observed on L2, namely 2S, 2P and
2P+2S. In general, 2S mode is observed at the lower U∗ end of a branch (figure 4a,b), while
the more complex 2P, P+S and 2P+2S modes occur at higher U∗. This can be explained
by looking at the variation of the vortex-shedding frequency, which is equal to F, over
a branch. It decreases with increase in U∗ resulting in stretching of the shed vortices as
shown in figure 4(b). Eventually for F � 0.1, the stretched vortices split into two, resulting
in a transition to the 2P mode (figure 4c). Four vortices are shed in one cycle of 2P mode,
two of the same sign from each side. A further decrease in frequency leads to an even
larger stretching of vortices. When F reduces to below 0.07 approximately, the stretched
vortices undergo yet another split leading to a transition from the 2P to 2P+2S mode of
shedding (figure 4e). Such low values of F occur only for large m∗ (figure 4e). In the
2P+2S shedding pattern, an additional single vortex, of opposite sign, accompanies the
pair of vortices seen in 2P mode (Williamson & Roshko 1988). The shedding pattern
reverts back to 2S mode towards the higher U∗ end of L2 with irregular spacing between
the vortices. Unlike in VIV of rigid bodies (Mathai et al. 2017), the transitions between
the vortex-shedding modes on the L2 branch are not abrupt; rather they occur through
a range of intermediate mixed states. While the mode of vortex shedding on L3, L4, L0

3
and L0

4 is 2S, intermittent switching between the 2P and P+S modes of shedding occurs
on branch L3i. Three vortices, two of the same sign, are shed in one cycle in the P+S
pattern (figure 4f ). Intermittency reduces as U∗ increases and eventually only the 2P
mode is observed. It may be noted that the 2S mode is associated with both low and high
amplitudes of vibration. However, the modes in which a larger number of vortices are shed
in each cycle of oscillation appear only during lock-in when the filament vibrates with
relatively large amplitude. The foregoing discussion suggests that the pattern of vortex
shedding observed is largely dependent on the amplitude and frequency, irrespective of U∗
and the associated branch. Williamson & Roshko (1988) identified the regimes of various
modes of vortex shedding for the forced vibration of a rigid cylinder on amplitude vs St0/F
plane. Their experiments were conducted at relatively large Re. We extend their analysis
to the present case of flexible filament. We replace the amplitude and frequency of forced
vibration with the r.m.s. displacement and frequency of the tip of the flexible filament
undergoing free vibration. The map so generated is presented in figure 5. Remarkably, it
not only shows clustering of modes into distinct regions but is even qualitatively similar
to the one presented in Williamson & Roshko (1988) for the rigid cylinder despite the two
VIV systems being very different. This similarity may be attributed to the dependence of
the vortex-shedding patterns on the wake itself and not on how the wake is generated.
Figure 5 also shows that the mode shapes are relatively insignificant, compared with
the tip displacement of the filament, in terms of vortex-shedding patterns. An interesting
observation from figure 5 is that the extent of 2P+2S does not share a boundary with the
2S mode. Therefore, the transition from the 2S to 2P+2S mode is via 2P. We also note that
both 2P and 2S modes are possible when the filament vibration frequency is less than 60
per cent of St0 approximately. Which of these, 2P or 2S, is actually observed is decided
by the amplitude of vibration. Unless the frequency is very low, the 2S mode is preferred
for low amplitude as it is associated with a relatively narrower wake. The 2P mode results
from stretching of vortices, which requires either a sufficiently low vibration frequency or
a wide wake, that results from large amplitude vibration.
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Figure 5. The Re = 150 flow past a fixed cylinder with a flexible filament: distribution of vortex shedding
modes in the Arms–St0/F plane for m∗ = 1, 2 and 20.
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Figure 6. The Re = 150 flow past a fixed cylinder with a flexible filament: space–time contours showing
energy (per unit length) transfer rate across the length of the filament during one cycle of oscillation at points
marked using letters A to H in figure 3.

3.3. Energy transfer between fluid and filament
Kumar, Navrose & Mittal (2016) investigated the energy transfer between a rigid cylinder
and fluid during VIV. Unlike a rigid body undergoing VIV, a flexible body can gain energy
at one location, while simultaneously loosing some of it at another. It is, therefore, possible
to locate points on the structure that absorb energy for most part of a cycle, while loosing
only a small fraction of it during the remaining. This is despite the fact that no net energy
is transferred to the entire structure in one complete cycle when the structural damping is
zero. Popular designs for energy harvesting devices use piezo-electric or electromagnetic
transducers at certain locations on the body. Identification of ‘maximum energy absorption
points’ can be useful in the optimal placement of transducers.

Energy transfer rate (per unit length), P(X, t), at a location X along the filament and
instant t is defined as follows: P(X, t) = vn(X, t)[[p(X, t)]], where vn(X, t) and [[p(X, t)]]
respectively denote the normal component of filament velocity and difference between
pressure on the two sides. The viscous forces contribute negligibly to the energy budget
and are not included in the estimate. Figure 6 shows contours of P(X, t) with (X, t) ∈
[0, L] × [τ, τ + T], for selected points marked with letters A to H in figure 3(b). A positive
value of P corresponds to gain in energy of the filament. The topology of the contours is
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mainly governed by the underlying dominant EB mode. Cases dominated by the first EB-1
mode (A,D,E,F), show only one sink (red spot) in a half-cycle. Similarly, those dominated
by the second mode (C,G) and by the fourth mode (H) respectively show two and four such
spots. This pattern is consistent with the number of antinodes in the corresponding modes.
Most energy contours have a period of T/2. However, the contours for two halves of the
single cycle are different for B and H due to bias in the mean position of the filament.

As expected, maximum value of P is higher when Arms is large (D,E,F and G).
Maximum energy absorption is along L2, L3 and L4 branches. It is higher for U∗ � 30
and low m∗. Further, the maximum value of energy transfer rate, Pmax, for most cases is
located at X ∼ 2.5–3. This, therefore, is the best location for placing transducers to extract
energy. However, response of a real device will be affected by the presence of a transducer
as well. The recommendations made here are suggestive, aimed towards narrowing down
the already vast parameter space.

4. Conclusions

We have identified, by investigating a wide range of inertia and flexibility, lock-in branches
corresponding to the first four EB modes in the response of a flexible filament behind
a cylinder. Response of the filament shifts abruptly, and hysteretically, from one branch
to another as U∗ is varied. Each such transition is accompanied by a sharp change in
the contribution of a particular EB mode. Increasing inertia of the filament brings its
frequency closer to the natural frequency during lock-in. There is no fixed vortex-shedding
pattern for a branch, rather the frequency and amplitude of a state decide the type of
pattern observed. While the simpler 2S pattern is observed at higher frequencies, one
of the more complex 2P, P+S and 2P+2S patterns gets selected, based on the value of
amplitude, at lower frequencies. Using r.m.s. amplitude and the dominant frequency of
the tip vibration, we have generalized the delimitation of vortex-shedding modes in the
amplitude–frequency plane from forced vibration of a cylinder (Williamson & Roshko
1988) to the present case. That the vortex-shedding map for rigid and flexible bodies have
strong similarities, suggests that it might be possible to construct a universal map valid
for all wakes irrespective of the geometric complexity of the body. The spatio-temporal
distribution of energy transfer primarily depends on the dominant EB mode. Maximum
gain in energy of the filament takes place at approximately 70 %–85 % of its length from
the base and its value correlates well with the amplitude of vibration.
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