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In this paper we are interested in comparing the spectra of two elliptic operators
acting on a closed minimal submanifold of the Euclidean unit sphere. Using an
approach introduced by Savo in [A Savo. Index Bounds for Minimal Hypersurfaces
of the Sphere. Indiana Univ. Math. J. 59 (2010), 823-837.], we are able to compare
the eigenvalues of the stability operator acting on sections of the normal bundle and
the Hodge Laplacian operator acting on 1-forms. As a byproduct of the technique
and under a suitable hypothesis on the Ricci curvature of the submanifold we obtain
that its first Betti’s number is bounded from above by a multiple of the Morse index,
which provide evidence for a well-known conjecture of Schoen and Marques & Neves
in the setting of higher codimension.
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1. Introduction

The study of minimal submanifolds and its characteristics are considered classical
in Riemannian geometry. In particular, problems about the Morse index. Roughly
speaking, if Σn is a closed minimal submanifold in a Riemannian manifold M ,
its Morse index, Index(Σ), measures how far Σ is from being a local minimum of
the area functional. There are many papers highlighting the relation between the
index and geometric and topological aspects of minimal submanifolds. In his cel-
ebrated work[19], Simons proved that all closed minimal submanifolds Σn of the
unit sphere S

n+p+1 have Index(Σ) � p + 1, with equality only when Σ is totally
geodesic. After this, others papers were made describing families of minimal sub-
manifolds with same index and providing estimates of the Morse index in other
special ambient manifolds, see for instance [7, 13, 15, 16, 20]. We point out some
results in these works. Lawson and Simons in [13] characterized the complex sub-
manifolds as the only stable minimal submanifolds in the complex projective space
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CP
m. Ohnita in [15] completed the classification of stable minimal submanifolds

in compact rank-one symmetric spaces. Futhermore, do Carmo, Ritoré and Ros
obtained in [7] a classification for two-sided closed minimal hypersurfaces Σn with
index one in the real projective spaces RP

n+1. Recently, Torralbo and Urbano in
[20] classified minimal submanifolds into a product of a sphere by an arbitrary
Riemannian manifold, and Perdomo in [16] characterized the Clifford tori as the
only closed orientable minimal hypersurfaces with antipodal symmetry and index
n + 3 into the unit Euclidean sphere. We must also mention the work done by Ros
in [17], where the author used harmonic forms in a clever way to obtain lower
bounds of the Morse index as a function of the genus of minimal surfaces immersed
in a flat 3-torus T 3 and in R

3. Finally, we highlight that Savo in [18] performed
an ingenious trick to obtain a comparison theorem between the spectrums of the
stability operator acting on functions and the Hodge–Laplacian acting on 1-form
of closed orientable minimal hypersurfaces of S

n+p+1, and such comparison implies
a lower estimate of the Morse index by a linear function of its first Betti’s number.
This technique was refined in many directions, see for instances the breakthrough
done in [2, 11]. Also, due to the fruitfulness of this technique, very recently such
method was successfully adapted for the constant mean curvature and weighted
minimal hypersurfaces settings, see for instance [1, 3, 4, 9, 10].

Focusing on the higher codimensional case, we apply the Savo’s approach to a
new family of normal sections inspired by the works of Simons [19] and Savo [18]
and we thus obtain a comparison result between the spectrums of the stability
operator acting on sections of the normal bundle and the Hodge–Laplacian acting
on 1-forms of a closed minimal submanifold Σn into S

n+p+1 and thus we generalize,
in some sense, the Savo’s results to closed minimal submanifolds. We point out that
whether the codimension is at least 2, our comparison theorem uses topological and
geometrical features of the submanifold, but in codimension one we get the same
estimates of Savo, which only requires topological features. As a consequence we
obtain a theorem that shows that the Morse index is bounded from below by a
linear function of the first Betti’s number b1(Σ).

The main result of the paper compares the spectrums of the stability operator
acting on sections of the normal bundle and the Hodge–Laplacian acting on 1-forms.

The result reads as follows:
Let Σn be a closed minimal submanifold of S

n+p+1, p � 0, and let L be the
stability operator acting on the space of normal sections. Then,

λα(L) � λm(α)(Δ1) − 2(n − 1)
p + 1

− 2p

p + 1
C,

where m(α) =
(
n+p+2

2

)
(α − 1) + 1 and C is a lower bound for the Ricci curvature

of Σ
As a by product of the technique we obtain the following result:
Let Σn be a closed minimal submanifold of S

n+p+1, p � 0, and let L be the
stability operator acting on the space of normal sections. If

p · RicΣ > −(n − 1),
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then

b1(Σ) �
(

n + p + 2
2

)
Index(Σ).

We observe that our curvature hypothesis is less restrictive than the hypotheses
in [5, 14], and since the spaces of closed minimal surfaces in S

3 and in S
5 are

abundant, see for instance [12], we believe that our curvature hypothesis is not so
restrictive, see remark 4.5.

Finally, we point out that the last result provides evidence for a positive answer
to a well-known conjecture proposed by Schoen and Marques–Neves in the setting
of higher codimension.

The paper is organized in the following way: In the second section we give
a brief summary about the minimal submanifolds theory and about p-forms. In the
third section we establish conventions that will be used later in the paper and also
some technical results that will be necessary in the proof of the main results. In the
last section, we provide the proof of the main results.

2. Background material

In this section we present some concepts and notations that will be useful
throughout this manuscript.

2.1. Rough Laplacian

Let EN be a Riemannian bundle over a closed Riemannian manifold Σn and
denote by Hom(TΣ, E) the homomorphism bundle endowed with a metric 〈·, ·〉 and
a linear connection ∇ given by

〈s, r〉 =
n∑

i=1

〈s(ei), r(ei)〉,

where {e1, . . . , en} is an orthonormal frame on Σ, and

∇Xs(Y ) = ∇X(s(Y )) − s(∇XY ),

for all sections s and r in Hom(TΣ, E) and tangent vectors X and Y on Σ. It is
easy to show that 〈·, ·〉 is well defined and Hom(TΣ, E) endowed with ∇ and 〈·, ·〉
is a Riemannian bundle over Σ. For all section s in E, we note that ∇s is a section
in Hom(TΣ, E), which is given by

∇s(X) = ∇Xs,

for any vector field X on Σ. Using the connection on Hom(TΣ, E), consider ∇X,Y s
given by

∇X,Y s = ∇X(∇s)(Y ),

for any X,Y ∈ Γ(TΣ).
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Definition 2.1. Given s ∈ Γ(E), the rough Laplacian ∇2 s of s is the trace of the
bilinear form (X,Y ) → ∇X,Y s.

Proposition 2.2. Given an arbitrary geodesic frame {e1, . . . , en} on Σ at p, for
any section s in E, we have

∇2s(p) =
n∑

i=1

(∇ei
∇ei

s)(p).

Proof. See [19, proposition 1.2.1]. �

2.2. Minimal immersions and stability operator

A closed submanifold Σ of a Riemannian manifold M is called minimal if it is a
critical point of the area functional associated to admissible variations. That is, for
all smooth maps φ : (−ε, ε) × Σ → M , such that at each t ∈ (−ε, ε), φt := φ|{t}×Σ

is an immersion of Σ and φ0 is the inclusion map, we have that

d
dt

∣∣∣∣
t=0

|Σt| = 0,

where Σt := φt(Σ) and |Ω| means the area of Ω. A straightforward computation
gives us

d
dt

∣∣∣∣
t=0

|Σt| = −
∫

Σ

〈H,X〉dvg,

where X = ∂φ
∂t (0, ·) and H is the trace of the second fundamental form of Σ in M .

From this previous formula, we have that Σ is a minimal submanifold if and only
if H vanishes.

Furthermore, if Σ is minimal, for any Z ∈ Γ(TΣ⊥) and φ(t, x) = expx(tZ(x)) for
t ∈ (−ε, ε), where exp is the exponential map of M , we have

d2

dt2

∣∣∣∣
t=0

|Σt| = −
∫

Σ

〈∇2Z + R̃(Z) + B̃(Z), Z〉dvg,

with R̃(Z) =
∑

i R̄(Z, ei)ei and B̃(Z) =
∑

i,j〈Z,B(ei, ej)〉B(ei, ej) for an orthonor-
mal frame {e1, ..., en} on Σ, where R̄ is the curvature tensor of M and B is the
second fundamental form of Σ. The right-hand side of the above equation defines
a quadratic form on Γ(TΣ⊥) given by

Q(Z) = −
∫

Σ

〈∇2Z + R̃(Z) + B̃(Z), Z〉dvg,

and it is known in the literature as Index form. The linear operator associated to
the quadratic form is

LZ = −∇2Z − R̃(Z) − B̃(Z),

and it is called the stability operator. Simons proved in [19] that L is a strongly
elliptic operator on a compact manifold, its spectrum is discrete and consists of an
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increasing sequence of eigenvalues converging to infinity:

λ1(L) � λ2(L) � · · · � λk(L) � · · · → +∞,

which is counted with multiplicity. Notice that we can estimate the eigenvalues of
L using the min-max quotient associated to the quadratic form induced by the
operator L as follows:

λk(L) = inf
Z �=0

Q(Z)∫
Σ
|Z|2 dvg

,

for any Z orthogonal to Lk−1 which is the direct sum of the first k − 1 eigenspaces
of L, see [6, chapter 4].

Finally, we recall that the Index(Σ) of a minimal submanifold Σ is the number
of negative eigenvalues of L. Furthermore, Σ is called stable if Index(Σ) = 0 and
unstable otherwise. The Index(Σ) measures how far Σ is from being a local minimum
of the area functional.

2.3. The Hodge–Laplacian and harmonic forms

In a closed Riemaniann manifold Σ, the Hodge–Laplacian on the space of p-forms
Ωp(Σ) is the second order differential operator Δp given by

Δp = dd∗ + d∗d,

where d is the exterior differential and d∗ is its formal adjoint with respect to the
L2-inner product. The eigenvalues of Δp, counted with multiplicity, are

0 � λ1(Δp) � λ2(Δp) � · · · � λk(Δ1) � · · · → +∞.

A p-form ω ∈ Ωp(Σ) is called harmonic if Δpω = 0. The Hodge’s Theorem asserts
that in a closed Riemannian manifold Σ, the space of harmonics p-forms is isomor-
phic to the p-th de Rham cohomology space of Σ. Hence, the space of p-harmonics
forms has dimension equal to the p-th Betti’s number bp(Σ) of Σ. In particular,
λi(Δp) = 0 for all i = 1, . . . , bp(Σ).

The Bochner–Weitzenböck formula relates the Hodge–Laplacian and the rough
Laplacian. More precisely, on Ω1(Σ) the Bochner–Weitzenböck formula reads as
follows:

Δ1ω = −∇2ω + Ric(ω�, ·), (2.1)

for any 1-form ω, where ∇2 is the rough Laplacian on 1-forms and Ric is the Ricci
tensor of Σ.

3. Preliminary results

In this section, we will present some results and computations that will simplify
the arguments and notation in the proof of the main results.

Let η(x) = −x be a unit normal vector field on S
n+p+1 and so the second funda-

mental form of the standard embedding of S
n+p+1 in R

n+p+2 is ÃX = −DXη = X
for all X ∈ Γ(TS

n+p+1), where D is the standard derivative of maps on R
n+p+2.
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Let Σ be an oriented closed minimal submanifold of S
n+p+1, whose second fun-

damental form will be indicated by B and its associated shape operator in
direction of Z ∈ Γ(TΣ⊥) is denoted by AZ . Precisely, B(X,Y ) = (∇̄XY )⊥ and
〈AZX,Y 〉 = 〈B(X,Y ), Z〉, for X and Y tangent vectors on Σ, where ∇̄ is the
Levi–Civita connection on the sphere.

The next result summarizes some simple computations.

Lemma 3.1. Let V be a parallel vector field of R
n+p+2. If V ⊥ and V � are the

normal and tangential components of V along Σ in the sphere S
n+p+1, then:

(a) For all X ∈ Γ(TΣ) one has ∇⊥
XV ⊥ = −B(X,V �);

(b) For all X ∈ Γ(TΣ) one has ∇XV � = 〈V, η〉X + AV ⊥X;

(c) ∇〈V, η〉 = −V �;

(d) Δ〈V, η〉 = −n〈V, η〉;
(e) ∇2V ⊥ = −B̃(V ⊥),

where ∇ and ∇⊥ are the connections induced by the Levi–Civita connection of the
sphere on the tangent and normal bundle of Σ in S

n+p+1.

Proof. Noticing that V = 〈V, η〉η + V ⊥ + V � and differentiating this identity we
obtain

0 = DXV = −〈V,X〉η − 〈V, η〉X + DXV ⊥ + DXV �

= −〈V,X〉η − 〈V, η〉X + 〈DXV ⊥, η〉η + 〈DXV �, η〉η + ∇̄XV ⊥ + ∇̄XV �.

Taking the normal and tangential component along Σ in S
n+p+1 of the formula

above we get items (a) and (b). Next, note that

∇〈V, η〉 =
n∑

i=1

ei〈V, η〉ei,

for {e1 · · · , en} a geodesic frame on Σ at p. Therefore,

∇〈V, η〉 =
n∑

i=1

(〈Dei
V, η〉 + 〈V,Dei

η〉)ei

and thus

∇〈V, η〉 = −
n∑

i=1

〈V, ei〉ei = −V �,

and so we get item (c).
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Using the definition of Laplacian of functions and items (b) and (c) we have:

Δ〈V, η〉 = −
n∑

i=1

〈∇ei
V �, ei〉

= −n〈V, η〉 −
n∑

i=1

〈V,B(ei, ei)〉

= −n〈V, η〉,
where we used the minimality of Σ here.

Let {e1, ..., en} be an orthonormal geodesic frame on Σ at p. Using the
proposition 2.2 and item (a) we have

∇2V ⊥ = −
∑

i

∇⊥
ei

B(V �, ei)

and therefore, using item (b) and Codazzi equation and omitting the summation
sign, we get

∇2V ⊥ = −(∇⊥
ei

B)(V �, ei) − B(∇ei
V �, ei) − B(V �,∇ei

ei)

= −(∇⊥
V �B)(ei, ei) − 〈V, η〉B(ei, ei) − B(AV ⊥ei, ei) − B(V �,∇ei

ei).

Since Σ is minimal and {e1, .., en} is an orthonormal geodesic frame, the second
and last terms in equation above are equal to zero. Using minimality again and the
commutativity of tracing and derivative we get

∇2V ⊥ = −
∑

i

B(AV ⊥ei, ei) = −
∑
i,j

〈B(ei, ej), V ⊥〉B(ei, ej) = −B̃(V ⊥),

and thus we conclude the desired results. �

We now recall the definition of the Laplacian of a vector field on Σ. First of all,
given a vector field X on Σ, we can produce an 1-form by the formula

X�(Y ) = 〈Y,X〉,
for any Y tangent vector to Σ. Moreover, given an 1-form ω, the Riesz representation
on a Hilbert space gives us a vector field ω� defined by

ω(Y ) = 〈Y, ω�〉,
for any Y tangent vector to Σ. Such operations � and � are known as musical
isomorphisms.

Using the Hodge–Laplacian on 1-forms and the musical isomorphisms above, we
introduce the following concept.

Definition 3.2. For a vector field X ∈ Γ(TΣ), the Laplacian of X is defined by

ΔX = (Δ1X
�)�.

https://doi.org/10.1017/prm.2021.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.86


Index Estimates for Closed Minimal Submanifolds of the Sphere 809

The next result provides a relation between the rough Laplacian and the
Laplacian introduced above.

Lemma 3.3. For any vector field X ∈ Γ(TΣ) we have

∇2X = −ΔX + (n − 1)X −
∑

i

AB(ei,X)ei,

where {e1, ..., en} is a local orthonormal frame on Σ. Moreover,

ΔV � = nV �.

In particular,

∇2V � = −V � −
∑

i

AB(ei,V �)ei.

Proof. Using the Bochner–Weitzenböck formula 2.1 we have

〈ΔX,Y 〉 = −〈∇2X,Y 〉 + RicΣ(X,Y ),

for all Y ∈ Γ(TΣ). On the other hand, the Gauss equation and minimality of Σ
yields us

RicΣ(X,Y ) = 〈(n − 1)X −
∑

i

AB(ei,X)ei, Y 〉.

Replacing this equality in the previous equation we deduce the first formula
asserted.

Since the Hodge–Laplacian Δ1 and exterior differential d commutes, we have
from items (c) and (d) of lemma 3.1 that

ΔV � = −(Δ1(d〈V, η〉))� = −(−dΔ〈V, η〉)� = nV �,

and so we conclude the proof. �

Lemma 3.4. For any vector V of R
n+p+2 and any vector field X ∈ Γ(TΣ) we

have:

(a) ∇〈V,X〉 = 〈V, η〉X + AV ⊥X +
∑

i〈V,∇ei
X〉ei;

(b) Δ〈V,X〉 = (n − 2)〈V,X〉 − 〈V,ΔX〉 + 2div(X)〈V, η〉 − 2
∑

i〈B(ei, V
�),

B(ei,X)〉 + 2
∑

i〈AV ⊥ei,∇ei
X〉,

where {e1, ..., en} is a local orthonormal frame on Σ at q.
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Proof. Let {e1, · · · , en} be an orthonormal geodesic frame on Σ at q. Using the
definition of Laplacian and rough Laplacian we obtain

Δ〈V,X〉 = 〈∇2V �,X〉 + 〈∇2X,V �〉 + 2
∑

i

〈∇ei
V �,∇ei

X〉,

and

∇〈V,X〉 =
∑

i

ei〈V,X〉ei =
∑

i

〈∇ei
V �,X〉ei +

∑
i

〈V,∇ei
X〉ei.

Using the equalities above, lemma 3.3 and lemma 3.1 we get the desired formulas.
�

Next we have a simple and useful formula that will be used many times in our
computations. Its expression is the following:

Lemma 3.5. For all pair of vector X,Y of R
n+p+2, we have

∫
Sn+p+1

〈U,X〉〈U, Y 〉 dHn+p+1(U) = C(n, p)〈X,Y 〉,

where C(n, p) = ωn+p+1
n+p+2 and ωk is the area of the k-dimensional unit sphere.

Proof. Using the Divergence Theorem for the vector field V (q) = 〈q, Y 〉X on the
unit ball B

n+p+2 and noticing that S
n+p+1 is its boundary, we deduce the equality

directly. �

Now we introduce a new family of normal vector fields on Σ which depends on
a given X ∈ Γ(TR

n+p+2) and given vectors V,W of R
n+p+2. Such family of vector

fields ZX ∈ Γ(TS
n+p+1) are given by:

ZX = ((V ∧ W )X)⊥ = 〈W,X〉V ⊥ − 〈V,X〉W⊥ ∈ Γ(TΣ⊥).

We point out that such vector field Z can be seen as tri-linear function from the
space Γ(TS

n+p+1) × Γ(Rn+p+2) × Γ(Rn+p+2) to Γ(TΣ⊥) and it is skew-symmetric
in the variables V and W , and this fact will be very useful in this manuscript.

Using the notation established above we are able to prove the following result:

Proposition 3.6. For any X ∈ Γ(TΣ) and L the stability operator, we have

L(ZX) = −2(n − 1)ZX + ZΔX + 2N,

and here

N = −div(X)Zη + Z∑
i AB(X,ei)ei

− Z∑
i B(ei,∇ei

X) + (B(∇〈W,X〉, V �)

− B(∇〈V,X〉,W�)),

and V and W are vectors of R
n+p+2 and {e1, ..., en} is a local orthonormal frame

on Σ.
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Proof. By definition of ZX it is enough to compute ∇2(〈W,X〉V ⊥). Notice that

∇2(〈W,X〉V ⊥) = Δ〈W,X〉V ⊥ + 2∇⊥
∇〈W,X〉V

⊥ + 〈W,X〉∇2V ⊥.

Using lemma 3.4, lemma 3.1 items (a) and (e) and R̃(V ⊥) = nV ⊥, we get

L(〈W,X〉V ⊥) = −∇2(〈W,X〉V ⊥) − 〈W,X〉R̃(V ⊥) − 〈W,X〉B̃(V ⊥)

= −2(n − 1)〈W,X〉V ⊥ + 〈W,ΔX〉V ⊥ − 2div(X)〈W,η〉V ⊥

+ 2
n∑

i=1

〈B(ei,W
�), B(ei,X)〉V ⊥ − 2

n∑
i=1

〈AW⊥ei,∇ei
X〉V ⊥

+ 2B(∇〈W,X〉, V �).

In a similar fashion we obtain

−L(〈V,X〉W⊥) = 2(n − 1)〈V,X〉W⊥ − 〈V,ΔX〉W⊥ + 2div(X)〈V, η〉W⊥

− 2
n∑

i=1

〈B(ei, V
�), B(ei,X)〉W⊥ + 2

n∑
i=1

〈AV ⊥ei,∇ei
X〉W⊥

− 2B(∇〈V,X〉,W�).

Thus, summing these two formulas and using the notation introduced before we
conclude the desired formula. �

The last result in this section provide us a useful and direct formula for the
L2-inner product of elements of the form Z(·). In this result we denote by μ the
measure C(n, p)−1Hn+p+1.

The computations are:

Lemma 3.7. For any X and Y in Γ(TR
n+p+2) the following formulas hold:

(a)
∫

U

|V ⊥|2 dμ(V ) = p + 1;

(b)
∫

U×U

〈ZX , ZY 〉dμ(V )dμ(W ) = 2p〈X,Y 〉 + 2〈X�, Y �〉 + 2〈X, η〉〈Y, η〉,

and here U = S
n+p+1 and (·)� is the projection on TΣ.

Proof. The first item follows directly from lemma 3.5, because |V ⊥|2 =
∑

i〈V, ηi〉2,
where {η1, · · · , ηp+1} is an orthonormal frame of TΣ⊥.

For the last item, note that

〈ZX , ZY 〉 = 〈W,Y 〉〈W,X〉|V ⊥|2 − 〈W,Y 〉〈V,X〉〈V ⊥,W 〉
− 〈V, Y 〉〈W,X〉〈W⊥, V 〉 + 〈V, Y 〉〈V,X〉|W⊥|2,
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and so, using lemma 3.5 and item (1) in this lemma, we obtain:
∫

U×U

〈ZX , ZY 〉dμ(V )dμ(W ) = 2(p + 1)〈X,Y 〉 − 2〈X,Y ⊥〉

= 2p〈X,Y 〉 + 2〈X�, Y �〉 + 2〈X, η〉〈Y, η〉,

and in the last equality we used that TR
n+p+2 = TΣ ⊕ TΣ⊥ ⊕ 〈η〉. �

4. Statements and proof of the main results

We restate our main results, and provide a proof for each one of them. The first
result reads as follows:

Theorem 4.1. Let Σn be a closed minimal submanifold of S
n+p+1, p � 0, and let

L be the stability operator acting on the space of normal sections. Then,

λα(L) � λm(α)(Δ1) − 2(n − 1)
p + 1

− 2p

p + 1
C,

where m(α) =
(
n+p+2

2

)
(α − 1) + 1 and C is a lower bound for the Ricci curvature

of Σ.

Proof. Let {N1, N2, . . . , Nk, . . . } be an orthonormal basis of the space of normal
sections Γ(TΣ⊥) formed by eigensections of L, where Ni is an eigensection associ-
ated to λi(L). Given a positive integer α, if Lm denotes the direct sum of the m
first eigenspaces of Δ, we want to find a non-zero X ∈ Γ(TΣ) such that

∫
Σ

〈ZX , N1〉dvg =
∫

Σ

〈ZX , N2〉dvg = · · · =
∫

Σ

〈ZX , Nα−1〉dvg = 0, (4.1)

for all pairs of parallel vector fields V and W . As Z is a skew symmetric bilinear
form on the variables V and W and the space of parallel vector fields of R

n+p+2 has
dimension equal to n + p + 2, the problem of finding X is equivalent to the prob-
lem of finding a non-zero solution to a homogeneous system with

(
n+p+2

2

)
(α − 1)

equations and m unknown variables. So, X satisfying 4.1 exists if

m � m(α) =
(

n + p + 2
2

)
(α − 1) + 1.

Thus, under the previous condition, the min-max principle for quadratic forms gives
us

λα(L)
∫

Σ

|ZX |2 �
∫

Σ

〈L(ZX), ZX〉

= −2(n − 1)
∫

Σ

|ZX |2 +
∫

Σ

〈ZΔX , ZX〉 + 2
∫

Σ

〈N,ZX〉,
(4.2)

and here and from now on we omit the Riemannian volume element dvg on Σ.
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Using lemma 3.7 item (b) we get, for U = S
n+p+1:

∫
U×U

|ZX |2 dμdμ = 2(p + 1)|X|2,
∫

U×U

〈ZΔX , ZX〉dμdμ = 2(p + 1)〈X, ΔX〉,
∫

U×U

div(X)〈Zη, ZX〉dμdμ = div(X) · 0 = 0,

∫
U×U

〈Z∑
i AB(X,ei)ei

, ZX〉dμdμ = 2(p + 1)
∑

j

|B(X, ej)|2,
∫

U×U

〈Z∑
i B(ei,∇ei

X), ZX〉dμdμ = 0,

where {e1, · · · , en} is an orthonormal frame on Σ. For the last term, we consider
{η1, · · · , ηp+1} a local orthonormal frame for TΣ⊥. Denoting

〈B(∇〈W,X〉, V �) − B(∇〈V,X〉,W�), ZX〉

by Ω, and after a direct computation we have:

Ω = 〈W,η〉〈W,X〉〈B(X,V �), V 〉 + 〈W,X〉〈V, ei〉〈B(AW⊥X, ei), V 〉
+ 〈W,∇ej

X〉〈W,X〉〈V, ei〉〈B(ej , ei), V 〉 − 〈W,η〉〈V,X〉〈B(X,V �),W 〉
− 〈V,X〉〈V, ei〉〈W,ηk〉〈B(Aηk

X, ei),W 〉 − 〈W,∇ej
X〉〈V,X〉〈B(ej , V

�),W 〉
− 〈V, η〉〈W,X〉〈B(X,W�), V 〉 − 〈W,X〉〈W, ei〉〈V, ηk〉〈B(Aηk

X, ei), V 〉
− 〈V,∇ej

X〉〈W,X〉〈B(ej ,W
�), V 〉 + 〈V, η〉〈V,X〉〈B(X,W�),W 〉

+ 〈V,X〉〈W, ei〉〈B(AV ⊥X, ei),W 〉 + 〈V,∇ej
X〉〈V,X〉〈W, ei〉〈B(ej , ei),W 〉,

and so

∫
U×U

〈B(∇〈V,X〉,W�) − B(∇〈W,X〉, V �), ZX〉dμdμ = −2
p+1∑
k=1

|Aηk
X|2.

On the other hand, we have

∑
j

|B(X, ej))|2 =
∑

j

∑
k

〈B(X, ej), ηk〉2 =
∑

j

∑
k

〈Aηk
X, ej〉2 =

∑
k

|Aηk
X|2,

and by the Gauss equation and minimality of Σ we deduce

∑
j

|B(X, ej)|2 = (n − 1)|X|2 − RicΣ(X,X).
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Integrating inequality (4.2) with respect to (V,W ) ∈ U × U and using Fubini
theorem we deduce, from the previous equalities, that

2(p + 1)λα(L)
∫

Σ

|X|2 � −4(n − 1)
∫

Σ

|X|2 + 2(p + 1)
∫

Σ

〈X, ΔX〉

− 4p

∫
Σ

RicΣ(X,X).

Since X is a non-zero vector field in Lm(α), it verifies the inequality
∫

Σ

〈ΔX,X〉 � λm(α)(Δ1)
∫

Σ

|X|2,

and hence we get

λα(L) � λm(α)(Δ1) − 2(n − 1)
p + 1

− 2p

p + 1
C.

�

Remark 4.2. As we pointed out before, in codimension one case (p = 0) we do not
have geometric constraints on the submanifold, i.e., the lower bound on the Ricci
curvature of the submanifold is not necessary.

Following the same arguments used by Savo in [18] and under a suitable
hypothesis we are able to prove the following lower bound to the Morse index:

Theorem 4.3. Let Σn be a closed minimal submanifold of S
n+p+1, p � 0, and let

L be the stability operator acting on the space of normal sections. If p · RicΣ >
−(n − 1), then

Index(Σ) � b1(Σ)(
n+p+2

2

) .

Proof. Taking

α =
⌊

b1(Σ) +
(
n+p+2

2

) − 1(
n+p+2

2

)
⌋
,

where 
x� is the denoting the largest integer which is �x. By definition, we have
m(α) � b1(Σ) and thus, using theorem 4.1, we obtain

λα(L) � λb1(Σ)(Δ1) − 2(n − 1)
p + 1

− 2p

p + 1
inf
|v|=1

(RicΣ(v, v))

= −2(n − 1)
p + 1

− 2p

p + 1
inf
|v|=1

(RicΣ(v, v)),

and by our hypothesis on the Ricci curvature of Σ, we get

λα(L) < 0.
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Since α � b1(Σ)

(n+p+2
2 ) , follows from the inequality above that

Index(Σ) � b1(Σ)(
n+p+2

2

) .

�

So, a direct consequence is the following:

Corollary 4.4. Let Σn be a closed minimal submanifold of S
n+2, and let L be the

stability operator acting on the space of normal sections. If RicΣ > −(n − 1), then

Index(Σ) � b1(Σ)(
n+3

2

) .

Remark 4.5. It would be interesting to know whether there is a sequence of n-
dimensional closed minimal submanifolds in the unit sphere with codimension p, and
p · RicΣ > −(n − 1) and also unbounded first Betti number. What we already know
is that the first Betti’s number, under the lower bound of the Ricci curvature, has
an upper bound depending on the codimension and the diameter, see [8, theorem
5.21], which can be large for big values of the diameter.
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