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We discuss quantum algorithms based on the Bernstein–Vazirani algorithm for finding

which input variables a Boolean function depends on. There are 2n possible linear Boolean

functions of n input variables; given a linear Boolean function, the Bernstein–Vazirani

quantum algorithm can deterministically identify which one of these Boolean functions we

are given using just one single function query. We show how the same quantum algorithm

can also be used to learn which input variables any other type of Boolean function depends

on. The success probability of learning that the function depends on a particular input

variable depends on the form of the Boolean function that is tested, but does not depend on

the total number of input variables. We also outline a procedure based on another quantum

algorithm, the Grover search, to amplify further the success probability. Finally, we discuss

quantum algorithms for learning the exact form of certain quadratic and cubic Boolean

functions.

1. Introduction

In the oracle identification problem, we are given an oracle from a set of possible

Boolean oracles, and our task is to determine which one we have (Ambainis 2002; Iwama

et al. 2003). The complexity of the problem is measured by the number of times we

must query the oracle to identify it. The time it takes to run the algorithm is determined

by, and is in general proportional to, the number of oracle queries. Both the Bernstein–

Vazirani (Bernstein and Vazirani 1993; Cleve et al. 1998) and Grover quantum algorithms

(Grover 1997; Brassard et al. 1998) solve this type of problem. The Bernstein–Vazirani

algorithm identifies linear Boolean functions with a single function query, and Grover’s

search algorithm finds marked elements in a database with N elements using O(
√
N)

queries.

In this paper, we will discuss quantum algorithms for testing and learning about

Boolean functions. Consider the following task. We are given a black box that evaluates
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a Boolean function f(x1, x2, . . . xn) that maps {0, 1}n to {0, 1}. The function depends on

the values of at most m of the variables and is independent of the other n − m. Such

a Boolean function is called a junta, and, if it depends on only one of the variables,

it is called a dictatorship. Our first task is to find which of the variables the function

depends on. We shall show how a variant of the Bernstein–Vazirani algorithm can solve

this problem. Recently, Rötteler presented a quantum algorithm for identifying quadratic

Boolean functions (Rötteler 2009). Atici and Serviedo discuss a quantum algorithm for

identifying k-juntas, which is essentially based on the Bernstein–Vazirani oracle (Atici and

Serviedo 2007). The quantum algorithm we outline is simpler; moreover, we also present

a method based on Grover’s quantum search algorithm to increase further the success

probability. Following this, we will show how variants of the Bernstein–Vazirani quantum

algorithm can be used to learn the form of quadratic and cubic Boolean functions where

each input variable occurs only once.

Organisation of the paper

In Section 2, we review the Bernstein–Vazirani algorithm. In Section 3, we show that this

quantum algorithm can also be used for the more general task of finding variables that

other types of Boolean functions depend on. In Section 4, we show how a method based

on the Grover search can be used to improve the success probability of finding variables

that the Boolean function depends on. In Section 5, we treat the case of higher-order

Boolean functions. Finally, we present our conclusions in Section 6.

2. The Bernstein–Vazirani algorithm

The Bernstein–Vazirani algorithm is a one-shot quantum algorithm (Bernstein and

Vazirani 1993; Cleve et al. 1998) solving the following problem. We are given a black box

that evaluates a linear Boolean function, given by

f(x) = y · x =

n∑
j=1

yjxj , (1)

where the addition is modulo 2 and y is a fixed, but unknown, n-bit string. We want to find

y. The Bernstein–Vazirani algorithm does this with one evaluation of the function. It does

so by mapping the functions to vectors in an N-dimensional Hilbert space H = ⊗nH2,

where N = 2n and H2 is a two-dimensional Hilbert space. The computational basis

vectors of H2 are |0〉 and |1〉, and the basis vectors of H, corresponding to n-bit strings,

are |x〉 = |x1〉 ⊗ |x2〉 . . .⊗ |xn〉. The function y · x is mapped to the vector |vy〉, where

〈x|vy〉 =
1√
N

(−1)y·x. (2)

These vectors are orthonormal, that is, 〈vy|vy′ 〉 = δy,y′ , and they constitute an orthonormal

basis of H, which is known as the parity basis (Bernstein and Vazirani 1993). This follows
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from the identity ∑
x∈{0,1}n

(−1)x·y = δy,0. (3)

Because the vectors are orthonormal, they are perfectly distinguishable, and so with one

measurement we can perfectly determine which function the black box is evaluating.

This is actually accomplished by using a circuit consisting of Hadamard gates and an

f-controlled-NOT gate. The Hadamard gate is the unitary transform

|0〉 → 1√
2
(|0〉 + |1〉)

|1〉 → 1√
2
(|0〉 − |1〉).

(4)

If we apply n Hadamard gates, one to each qubit in the state |x〉, we obtain

H⊗n|x〉 =
1√
N

∑
z∈{0,1}n

(−1)x·z |z〉, (5)

where, as before, we have set N = 2n. The f-controlled-NOT gate, where f is a Boolean

function, acts on n+ 1 qubits as follows:

Uf |x〉|z〉 = |x〉|z + f(x)〉, (6)

where |x〉 is an n-qubit computational basis sate, |z〉 is a one qubit state (z = 0, 1) and

the addition is modulo 2. Now, the input state to the Bernstein–Vazirani circuit is the

(n+ 1)-qubit state

|Ψin〉 =
1√
2

|00 . . . 0〉(|0〉 − |1〉). (7)

We first apply n Hadamard gates, one to each of the first n qubits, and then the f-

controlled-NOT gate, giving us

|Ψin〉 → 1√
2N

∑
x∈{0,1}n

(−1)f(x)|x〉(|0〉 − |1〉). (8)

Next, we again apply n Hadamard gates to the first n qubits yielding

|Ψout〉 =
1

N
√

2

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1)f(x)+x·z |z〉(|0〉 − |1〉). (9)

Discarding the last qubit (it is not entangled with the others, so this has no effect) and

expressing this result in terms of the vectors |vy〉, we find the n-qubit output state

|ψout〉 =
∑

z∈{0,1}n
〈vz |vf〉|z〉, (10)

where we have defined the vector vf to have the components

〈x|vf〉 = (1/
√
N)(−1)f(x). (11)

Now, if we know that f(x) is of the form f(x) = y · x, we just get the vector |y〉 as

our output, and when we measure |ψout〉 in the computational basis, we find the n-bit
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string y. Therefore, we find out what the function is with only one application of the

f-controlled-NOT gate. Classically, we would need to evaluate the function n times to

find y.

3. Testing which variables a general Boolean function depends on

If f(x) is a general Boolean function, then when we measure |ψout〉 in the computational

basis, we will obtain the label of one of the basis vectors vy , with which vf has a non-zero

overlap. The key to using this to solve the problem stated in the Introduction is the

following Theorem.

Theorem 3.1. If f(x1, x2, . . . xn) is independent of the variable xj and y ∈ {0, 1}n has the

property that yj = 1, then 〈vy|vf〉 = 0.

Proof. In order to prove the theorem, we start by noting

〈vy|vf〉 =
1√
N

∑
x∈{0,1}n

(−1)f(x)+x·y

=
1√
N

1∑
x1=0

. . .

1∑
xn=0

(−1)f(x)+x·y. (12)

Now, looking at the xj sum, we have

1∑
xj=0

(−1)f(x)+x·y = (−1)f(x)
n∏

k=1,k 
=j
(−1)xkyk

1∑
xj=0

(−1)xj = 0. (13)

This means that if f does not depend on xj and y is such that yj = 1, then 〈vy|vf〉 = 0,

thus proving the theorem.

Theorem 3.1 immediately and trivially implies the following theorem.

Theorem 3.2. If we use the Bernstein–Vazirani circuit with a Boolean function that is a

junta and find an output vector |y〉 that has ones in a number of places, then the function

depends on the variables corresponding to those places. If the function does not depend

on a particular input variable, then the n-qubit state |ψout〉 will always have a 0 in that

position.

Also, when used to identify which input variables a function depends on, the Bernstein–

Vazirani algorithm requires only one application of the f-controlled-NOT gate defined

in equation (6). It is important to note that the probability of successfully finding the

variables the function depends on is independent of the total number n of input variables.

This follows immediately, since if we add more input variables that the function f does

not depend on, then the output y will always have a 0 in the corresponding positions.

The probabilities of obtaining a 1 in the other positions, that is, the probability of

identifying the variables the function does depend on, do not change. In general, the

success probability for the quantum algorithm depends only on the form of the Boolean

function that is being tested, that is, it depends on the number of significant variables,
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and the functional form of the Boolean function involving these significant variables. In

the following section, we will investigate the success probability for some particular forms

of Boolean functions.

3.1. Boolean functions depending on only two input variables

In order to illustrate the fact that the success probability does not depend on the total

number of input variables, we will consider a simple example. Suppose we know that

our function is given by f(x1, x2, . . . xn) = xjxk , but we do not know j and k, that is, we

know that the Boolean function is the product of two of the variables, but we do not

know which two. Our task is to find out which two. The vector |vf〉 corresponding to this

function has a non-zero inner product with only four of the basis vectors |vy〉. We must

have yl = 0 for l 
= j, k, which leaves four possibilities, which we shall denote by |y00〉,
corresponding to yj = yk = 0, |y01〉, corresponding to yj = 0 and yk = 1, and so on. We

find that the output of the Bernstein–Vazirani circuit in this case is

|ψout〉 =
1

2
(|y00〉 + |y01〉 + |y10〉 − |y11〉). (14)

If we measure in the computational basis, we will obtain one of these basis vectors. If

we obtain |y00〉, we learn nothing, and the procedure has failed. This happens with a

probability of 1/4. If we obtain either |y01〉 or |y10〉, we learn one of the variables, and

if we obtain |y11〉, we obtain both. All of these outcomes have a probability of 1/4, so

we learn at least one of the variables on which the function depends with a probability

of 3/4. This probability is independent of how many input variables n there are in total.

Classically, a possible procedure would be to set all of the variables equal to 1 initially,

which would set the value of the function equal to 1. We would then change the value of

the variables, one at a time, to see which ones cause the value of the function to change.

In order to learn which variables the function depends on, we would have to evaluate

the function O(n) times. If n is large, the quantum procedure, though probabilistic, is

more efficient. As far as we are aware, there is no classical procedure for which, with a

constant number of function applications, the success probability does not decrease when

the number of input variables increases. Neither are we aware of any classical procedure

for which, in order to achieve a certain threshold success probability, the number of

necessary function applications would not increase as a function of the number of input

variables.

We will now consider a somewhat more general example. We will still assume that our

function only depends on two out of the n variables, xj and xk say, but we will not assume

the specific form of the function. We can express f(x1, x2, . . . xn) as

f(x1, x2, . . . xn) = g(xj, xk), (15)

where g(xj, xk) is some Boolean function of two variables. Now, assuming that yl = 0 for

l 
= j, k, we have

〈vf |vy〉 =
1

4

1∑
xj ,xk=0

(−1)g(xj ,xk)+yjxj+ykxk . (16)
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The right-hand side of the equation can only be 0, 1 or ±1/2, and it will only be 0 or 1 if

f(x1, x2, . . . xn) is one of the basis functions. Therefore, |ψout〉 is either one of the vectors

|yl1l2〉, or of the form

|ψout〉 =
1

2
(±|y00〉 ± |y01〉 ± |y10〉 ± |y11〉). (17)

If f(x1, x2, . . . xn) is one of the basis functions, this corresponds to the situation in the

original version of the Bernstein–Vazirani algorithm, and we succeed after one trial.

However, we do not know this, and several trials in which we get the same answer will

be necessary to confirm that we have one of the basis functions. If f(x1, x2, . . . xn) is

not one of the basis functions, we will fail with a probability of 1/4, that is, we will

get no information about which variables the function depends on. This happens if the

measurement yields |y00〉, corresponding to y = 0. In the remaining 3/4 of cases, we will

learn at least one of the variables the function depends on. Therefore, after several trials,

we will, with high probability, know xj and xk .

3.2. Boolean functions depending on more than two input variables: an example

We will now consider what the success probability is for a case where the function depends

on more than two variables. We already know that the quantum algorithm will always

find the variables a function depends on, but that the success probability for this will vary

with the form of the Boolean function. Let us consider the case

f(x1, x2, . . . xn) =

m∏
j=1

xj. (18)

The probability to identify which variables this function depends on would also be the

same for other Boolean functions that are a product of any m out of the n variables. For

vectors |vy〉 such that yj = 0 for j > m, we have

〈vf |vy〉 =
1

2m

1∑
x1=0

. . .

1∑
xm=0

(−1)h(x1 ,...xm;y), (19)

where

h(x1, . . . xm; y) =

m∏
j=1

xj +

m∑
j=1

xjyj . (20)

Now, if the product x1x2 . . . xm were absent from the exponent in equation (19), and if at

least one of the yj 
= 0, then the sum would be zero. The product changes the sign of only

one of the terms, so we have

〈vf |vy〉 = ± 1

2m−1
. (21)

If yj = 0 for j = 1, . . . n (we shall denote the vector corresponding to this y by |v0〉), then

without the product in the exponent, all of the terms in the sum in equation (19) would

be 1. The presence of the product again changes only one term, so

〈vf |v0〉 = 1 − 1

2m−1
. (22)
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Note that since the failure probability is just |〈vf |v0〉|2, this implies that the failure

probability grows with m. This is the ‘worst case scenario’; this type of Boolean function

belongs to the class of functions for which the Bernstein–Vazirani algorithm has the least

probability of succeeding in finding the variables it depends on, since a phase factor is

added only to a single term. Nevertheless, the success probability is still independent of

the total number n of input variables.

4. Amplification of the success probability

The desirable outcomes of the measurement of the output state |ψout〉 are those with

as many 1’s as possible, since a ‘1’ in position i indicates that the Boolean function

depends on input variable xi. To increase further the success probability of the quantum

algorithm, it is possible to amplify components of |ψout〉 with a chosen number and above

of 1’s. This procedure is based on Grover’s quantum search algorithm. Grover’s algorithm

uses O(
√
N/M) queries for searching a database with N elements, where M of these are

solutions to the search problem (Grover 1997; Brassard et al. 1998). Classically, O(N/M)

database queries are needed.

Let us define the normalised states |α〉 and |β〉 by

|α〉 = A
∑
x

′′

vx|x〉; A =
1√∑′′
v2x

(23)

|β〉 = B
∑
x

′

vx|x〉; B =
1√∑′
v2x

, (24)

where the prime ′ indicates a sum over all x ∈ {0, 1}n that contain k or more 1’s and ′′

indicates a sum over the remaining x. The state |ψout〉 in terms of |α〉 and |β〉 is

|ψout〉 =
1

A
|α〉 +

1

B
|β〉 = cos

θ

2
|α〉 + sin

θ

2
|β〉, (25)

where

cos
θ

2
= 1/A =

√∑′′

v2x

sin
θ

2
= 1/B =

√∑′

v2x .

(26)

Repeated application of the operator

G = H⊗nUfH
⊗n(2|0〉〈0| − 1)H⊗nUfH

⊗nO, (27)

where the operator O produces phase factors −1 for components with k or more 1’s, gives

Gl |ψout〉 = cos

(
2l + 1

2
θ

)
|α〉 + sin

(
2l + 1

2
θ

)
|β〉 (28)

after l applications. The optimal number of Grover iterations is given by the integer

closest to

R(γ) =
arccos[sin(θ/2)]

θ
=

arccos
√
γ

2 arcsin
√
γ

(29)
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where γ =
∑′

v2x. The leading term in the power series expansion of R(γ) about γ = 0 is

π/(4
√
γ). All higher order terms have a negative sign. Hence, we have

R <
π

4
√
γ
, (30)

and if γ � 1, then

R �
π

4
√
γ
. (31)

For this number of iterations, the final state contains the largest possible fraction of the

component |β〉. If the form of the Boolean function is known (for example, it is known

that it is of the form xixj , but not what i, j are), then it is possible to calculate γ and the

optimal number of Grover iterations for the chosen value of k. The smaller the value of

k chosen, the larger γ is, and the fewer Grover iterations are needed. If the form of the

function is not known, then, just as for the usual Grover search algorithm, it is possible to

estimate the optimal number of Grover steps (Floess 2010). This will require more queries

of the function to be tested. However, this does not necessarily mean that a significantly

greater number of function queries is needed; this is the case for the example below.

4.1. Amplification for a single term of order k

As an example, we will consider the case where f(x1, x2, . . . xn) =
∏m

j=1 xj , and suppose

that we want to identify all variables this function depends on. As we pointed out

earlier, the success probability would remain the same for any Boolean function that

is a product of m input variables. From equation (20), we obtain γ = 2−2m+2, and

consequently the optimal number of Grover iterations needed to obtain a high probability

of identifying all input variables the function depends on is given by the integer closest to

R = π 2m−3, which is O(2m). Each iteration uses two queries of the Boolean function, so the

total number of function queries is roughly 2R = π 2m−2, which is also O(2m). Note that

this number is independent of n, which is the total number of input variables.

If the Boolean function is a product of m of the input variables, but we do not know

this, then we first need to estimate the optimal number of Grover iterations. It can be

shown (Floess 2010) that for a product of m input variables, the circuit for estimating

the optimal number of Grover steps requires O(2m) function queries. In other words, if

we are looking to amplify terms with m or more 1’s, that is, to find all variables that the

function depends on, then having to estimate the required number of Grover iterations

does not change the order of how many function queries are needed in total. To restate

this explicitly, for a function of the form f(x1, x2, . . . xn) =
∏m

j=1 xj , the complexity of the

quantum amplification step remains the same whether we know the value of m or not,

and also does not depend on the total number of input variables. Also, the comparison

with classical strategies remains the same as in the rest of this paper. That is, to reach

some specified success probability, all quantum algorithms we consider require a number

of function calls that does not depend on the total number of input variables, but only

on the form of the function tested. As far as we are aware, classical algorithms always

require a number of function calls that increases with the total number of input variables.
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But how much better is it to use the Bernstein–Vazirani algorithm together with

amplification, compared with using the same total number of function calls to repeat

the Bernstein–Vazirani algorithm without amplification? We can compare the success

probability of the quantum strategy that uses amplification to the case where we run

the unmodified Bernstein–Vazirani algorithm roughly 2R = π 2m−2 times (the number

of runs is given by the integer closest to this number). Without using amplification, the

failure probability is (1−2−m+1)2 in each round, so the probability of failing in all rounds,

learning none of the variables the function depends on, is approximately

pf = (1 − 2−m+1)π 2m−1

. (32)

The probability of obtaining at least one variable is therefore approximately 1 −pf , which

approaches 1 − e−π ≈ 0.96 when m becomes large. On the other hand, the probability

of never learning one particular variable xi that the function depends on in any of the

2R = π 2m−2 tries is equal to

p(not learn xi) =

⎛
⎝ ∑
vy:yi=0

|〈vf |vy〉|2
⎞
⎠
π2m−2

= (1 − 2−m+1)π2m−2

. (33)

This probability approaches e−π/2 ≈ 0.21 when m becomes large. For 2R function queries,

there is therefore an appreciable probability of not learning at least one variable the

function depends on when using the Bernstein–Vazirani algorithm without amplification.

The amplified procedure is very likely to obtain all variables that the function depends

on with a similar number of function queries. Amplitude amplification for terms with m

1’s has therefore improved the situation.

5. Quadratic and cubic functions

Let us now consider a particularly simple class of Boolean functions, those in which each

variable appears in at most one term. Initially, we shall suppose that the function is a

sum of linear and quadratic terms. Our task is to determine first, upon what variables

the function depends, and second, which variables appear in quadratic terms and which

appear in linear terms. We want to accomplish this with as few function queries as

possible.

Quantum mechanically this can be done with three queries. We first find the variables

in the quadratic terms. This can be done as follows. Let x be an n-bit input string and

x̄ be the string generated from x by flipping each bit, that is, if xj is the value of the

jth bit in x, then the value of the jth bit in x̄ is xj + 1. Now consider what happens

if we take f(x) + f(x̄). A variable that appears linearly is simply eliminated, because

xj + x̄j = xj + xj + 1 = 1. Quadratic terms, however, become linear terms

xjxk + (1 + xj)(1 + xk) = xj + xk + 1. (34)

So if we apply the Berstein–Vazirani algorithm to the function g(x) = f(x) + f(x̄), we will

obtain all of the variables that appear in quadratic terms. Next, we can set these variables

to zero and then apply the Bernstein–Vazirani algorithm to the original function, and
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this will tell us the variables on which the function depends linearly. So, as stated, this

procedure requires three function evaluations.

This can be accomplished easily in a quantum circuit. After the application of the f-

Controlled-NOT gate in the standard Berstein–Vazirani algorithm, the state of the system

is
1√
2N

∑
x

(−1)f(x)|x〉 ⊗ (|0〉 − |1〉). (35)

We will now apply NOT gates to the first n qubits, that is, all the input qubits except

for the ancillary qubit. This has the effect of changing |x〉 to |x̄〉. Next, we apply an

f-Controlled-NOT gate to the system, and the resulting state is

1√
2N

∑
x

(−1)f(x)+f(x̄)|x〉 ⊗ (|0〉 − |1〉). (36)

Finally, we apply a Hadamard gate to each of the first n qubits, and, if f(x) + f(x̄) is a

linear function, we will obtain an output vector |y〉 with ones in the places corresponding

to the variables on which f(x) + f(x̄) depends.

Classically, it is possible to determine which variables the function depends on linearly

and which it depends on quadratically with 2n function evaluations. First, we set all of the

variables equal to one, and then set each to zero while keeping all of the other variables

equal to one. If the function changes when we change a variable from 1 to 0, then the

function depends on that variable, though at this point we do not know if the variable

appears in a quadratic or linear term. We now set all of the variables equal to 0, and set

each variable equal to 1 in turn. If the function changes when a particular variable is set

equal to 1, then the function depends on that variable and it appears in a linear term.

When this procedure is complete, we know all of the variables the function depends on

and the ones on which it depends linearly. The variables in the first set but not in the

second are the ones that appear in quadratic terms.

Now suppose we make the function more complicated by allowing cubic terms, but keep

the restriction that each variable appears in only one term. We now want to determine

on which variables a given function depends, and which of those variables appear linearly,

which appear in quadratic terms and which appear in cubic terms. We will show that we

can turn the cubic terms into linear terms and eliminate all of the other types of terms.

We can then use the Berstein–Vazirani algorithm to find the variables in the cubic terms.

Next we set these variables equal to zero, which yields a function with quadratic and

linear terms. That case we already know how to handle.

Let us consider a single cubic term f(x) = x1x2x3 in order to see what can happen.

As a first step, we add this term to a term in which each xj has been negated, that is,

replaced by xj + 1. We find

g(x) = f(x) + f(x̄) = x1x2x3 + (1 + x1)(1 + x2)(1 + x3)

= x1x2 + x1x3 + x2x3 + x1 + x2 + x3 + 1. (37)

Therefore, the cubic term has been reduced to a sum of quadratic and linear terms in

the same variables as the ones making up the cubic term. It is tempting to try to take

g(x)+ g(x̄) in order to reduce the order of the term still further, but since g(x)+ g(x̄) = 0,
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that does not work. The reason for this is that in the quadratic part of g(x), each xi
appears not once but twice. However, what we can do is set one of the variables, say x1,

equal to either 0 or 1, and then perform this procedure. We find that

h
(0)
1 (x2, x3) = g(0, x2, x3) + g(0, x2 + 1, x3 + 1) = x2 + x3 + 1

h
(1)
1 (x2, x3) = g(1, x2, x3) + g(1, x2 + 1, x3 + 1) = x2 + x3 + 1.

(38)

For a general Boolean function, f(x), we define g(x) = f(x) + f(x̄) and

h
(m)
j (x1, . . . , xj−1, xj+1, . . . xn) = g(x1, . . . , xj−1, m, xj+1, . . . xn)

+ g(x1 + 1, . . . , xj−1 + 1, m, xj+1 + 1, . . . xn + 1), (39)

where m = 0, 1. Returning now to our simple cubic function, what we have as a result

of our procedure is a linear function that depends on two out of the three variables

contained in the cubic term. If we set each of the variables equal to 0 or 1 in turn and

then perform the above procedure, adding the function of the negated variables to the

original function, we will obtain, with some redundancy, all of the variables on which

the cubic term depends. Note that when negating all the other input variables, the variable

that was fixed to 0 or 1 should stay fixed.

However, for this procedure to be useful, it has to eliminate the linear and quadratic

terms, so that at the end we are only left with the variables appearing in the cubic terms.

Linear terms are eliminated in the first step when we form g(x) = f(x) + f(x̄), and a

quadratic term, such as x1x2, will have been turned into x1 + x2 + 1. In the next step,

one of two things will happen. If neither x1 nor x2 are set equal to 0 or 1, then the

contribution of x1 + x2 + 1 to h(m)
j will be zero. If x1 or x2 is one of the variables that is

set equal to 0 or 1, then the contribution of x1 + x2 + 1 to h(m)
j is just the constant value

1. In both cases, the function h(m)
j does not depend on the values of x1 or x2. Therefore,

the functions h(m)
j depend linearly only on the variables that appear in the cubic terms.

Applying Berstein–Vazirani n times (for j = 1, 2, . . . n) will yield all of the variables that

appear in cubic terms. The total number of function evaluations to determine which

variables appear in which terms will then be n+ 3: that is, n to determine the variables in

the cubic terms, and, after these have been set to 0, three more evaluations to determine

those appearing in the quadratic and linear terms.

We now need to demonstrate how to carry out these steps quantum mechanically. We

begin by showing how to create a superposition of two states, with one state corresponding

to x1 = 0 and the other to x1 = 1. We have already shown how to create the state

1√
N

∑
x

(−1)g(x)|x〉 =
1√
N

∑
y

[(−1)g(0,y)|0, y〉 + (−1)g(1,y)|1, y〉], (40)

where y is the n − 1 bit string x2x3 . . . xn. We now append an ancilla qubit in the state

(|0〉 − |1〉)/
√

2 and apply the f-Controlled-NOT gate. The ancilla remains disentangled

from the rest of the state, and we obtain

1√
N

∑
y

[(−1)g(0,y)+f(0,y)|0, y〉 + (−1)g(1,y)+f(1,y)|1, y〉]. (41)
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We now apply NOT gates to all but the first qubit in the state, which has the effect of

transforming y to ȳ. We then again append an ancilla qubit and apply the f-Controlled-

NOT gate. The result is

1√
N

∑
y

[(−1)h
(0)
1 (y)|0, y〉 + (−1)h

(1)
1 (y)|1, y〉]. (42)

Now for functions of the type we are considering, which are at most cubic and with each

variable appearing in only one term, the functions h(0)
j and h

(1)
j are the same. This can

be verified simply by seeing what happens to linear, quadratic and cubic terms in the

progression from f(x) to h(m)
j , m = 0, 1. Noting this, the above state can be expressed as

1√
N

(|0〉 + |1〉)
∑
y

(−1)h
(0)
1 (y)|y〉. (43)

Applying a Hadamard gate to each of the last n− 1 qubits will result in a state with ones

in the places corresponding to the variables on which h(0)
1 depends.

Most of this procedure can be repeated in the classical case. Once we have formed h(0)
j ,

however, n− 1 function calls are then needed to find the variables on which h(0)
j depends

(the function is evaluated for the bit strings in which all of the bits but one are set equal

to zero). Therefore, in the quantum case, O(n) function evaluations are required, while in

the classical case O(n2) are. Thus the quantum advantage resulting from the use of the

Bernstein–Vazirani algorithm is useful for more than just linear functions.

6. Conclusions

We have shown that the Bernstein–Vazirani algorithm may be used for testing which

input variables an unknown Boolean function depends on. This task is more general than

distinguishing between linear Boolean functions, which is the task for which the Bernstein–

Vazirani algorithm was originally devised. The success probability of finding variables a

Boolean function depends on may be further enhanced by an amplification procedure

based on Grover’s search algorithm. The success probability for the quantum algorithm

we have presented depends on the particular form of the Boolean function, but has the

general property that it is independent of the total number of input variables. It shares this

property with the algorithm presented in Atici and Serviedo (2007). Nevertheless, a full

comparison of the success probabilities of the different quantum and classical algorithms

remains to be made.

We have also outlined quantum algorithms for learning which input variables quadratic

and cubic Boolean functions depend on for the case when each input variable occurs at

most once in the form of the function. For quadratic functions, three queries are needed,

and for cubic functions, the success probability scales linearly with the number of input

variables. These algorithms are deterministic, that is, they are guaranteed to give perfect

knowledge about the exact form of the Boolean function. It would also be interesting

to investigate how the probabilistic quantum algorithms in Sections 3 and 4 could be

combined with the probabilistic algorithms for learning cubic and quadratic functions

in Section 5. Then, it should be possible to devise a probabilistic algorithm for learning
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cubic and quadratic Boolean functions, where the number of function queries needed is

independent of the number of input variables. Other variations of the Bernstein–Vazirani

algorithm may also be tailored for investigating Boolean functions of particular forms,

and this will be the subject of further investigations.
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