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CHOICE-FREE STONE DUALITY

NICK BEZHANISHVILI ANDWESLEY H. HOLLIDAY

Abstract. The standard topological representation of a Boolean algebra via the clopen sets of a Stone
space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this
article, we describe a choice-free topological representation of Boolean algebras. This representation uses
a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact
open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological
space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from
a special spectral space X via the compact regular open sets of X ; these sets may also be described as
those that are both compact open in X and regular open in the upset topology of the specialization order
of X , allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of
a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected
by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone
space endowed with the upper Vietoris topology. This connection makes clear the relation between our
point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach,
and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation
of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does
not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it
provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition
to representation, we establish a choice-free dual equivalence between the category of Boolean algebras
with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps.
We show how this duality can be used to prove some basic facts about Boolean algebras.

§1. Introduction. Stone [30] proved that any Boolean algebra (BA) A is iso-
morphic to the field of clopen sets of a Stone space (zero-dimensional compact
Hausdorff space), namely, the Stone dual of A. As the Stone dual of A is the set of
ultrafilters of A with the topology generated by {â | a ∈ A}, where â is the set of
ultrafilters containing a, Stone’s representation requires a nonconstructive choice
principle—equivalent to the Boolean Prime Ideal Theorem—asserting the existence
of sufficiently many ultrafilters.
In this article, we describe a choice-free topological representation of BAs. This
representation uses a subclass of the spectral spaces that Stone [31] used in his
representation of distributive lattices via compact open sets. It also takes advantage
of Tarski’s [33, 34] observation that the regular open sets of any topological space
form a Boolean algebra. We prove without choice principles that any Boolean
algebra arises from a special spectral space X via the compact regular open sets of
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X ; these sets may also be described as those that are both compact open in X and
regular open in the upset topology of the specialization order of X , allowing one
to apply to an arbitrary BA simple reasoning about regular opens of a separative
poset.1 Our representation is therefore a mix of Stone and Tarski, with the two
connected by Vietoris [39]: the relevant spectral spaces also arise as the hyperspace
of nonempty closed sets of a Stone space endowed with the upper Vietoris topology.
We characterize these spectral spaces, which we call UV-spaces, with several axioms
including a special separation axiom, reminiscent of the Priestley separation axiom
[27]. The connection with the Vietoris hyperspace construction makes clear the
relation between our point-set topological approach to choice-free Stone duality,
which may be called the hyperspace approach, and a point-free approach to choice-
free Stone duality using Stone locales [21,36].
Unlike Stone’s representation of BAs via Stone spaces, the choice-free topological
representation ofBAs viaUV-spaces does not show that everyBAcanbe represented
as a field of sets, with complement as set-theoretic complement and join as union.
Such a representation implies the Boolean Prime Ideal Theorem.2 However, like
Stone’s representation, ours provides the benefit of a topological perspective on
BAs, only now without choice.
In addition to representation, we establish a choice-free dual equivalence between
the category of BAs with Boolean homomorphisms and the category of UV-spaces
with special spectral maps. We show how this duality can be applied by using it to
prove some basic theorems about BAs.
The axiom of choice and its variants have traditionally been of general interest to
logicians. Interest in choice also arises specifically in connection with topology and
Stone duality as in [20–22]. In this article, we assume the motivations summarized
in [14] for investigating mathematics without the axiom of choice—in particular,
mathematics based on ZF set theory instead of only ZFC. Only starting in our
applications section (Section 8) will we go beyond ZF by using the axiom of depen-
dent choice (DC), which is widely considered to be constructively acceptable (see
[29, Section 14.76]). There we work in the style of what is called quasiconstructive
mathematics in [29], defined as “mathematics that permits conventional rules of
reasoning plus ZF + DC, but no stronger forms of Choice” (p. 404).
The article is organized as follows. Sections 2 and 3 present requisite background
and the representation to be used in the following sections, which is redescribed in
Section 4. Section 5 characterizes the resulting duals of BAs as UV-spaces; Section
6 establishes the dual equivalence result; and Section 7 contrasts our hyperspace
approach with a localic approach. Section 8 contains a “duality dictionary” for
translating between BA notions and UV notions, and Section 9 contains sample

1The consideration of two topologies is clearly related to Priestley’s [27] alternative representation
for distributive lattices using certain ordered Stone spaces: any distributive lattice arises from a Priestley
space via the sets that are both clopen in the Stone topology of the space and open in the upset topology
arising from the additional order. We consider a Priestley-like version of our representation of BAs in
Section 10.
2If a BA is isomorphic to a field F of sets over a set X , then picking any point x ∈ X gives us an

ultrafilter {S ∈ F | x ∈ S}. The statement that every BA contains an ultrafilter then implies that for
any disjoint filter-ideal pair in a BA, the filter can be extended to an ultrafilter disjoint from the ideal.
The equivalent dual statement for ideals is the Boolean Prime Ideal Theorem.
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applications of the duality. Although our focus is on choice-free duality, Section 10
considers three perspectives on UV-spaces assuming choice. Section 11 concludes
with a brief recap and look ahead.

§2. Background. The choice-free topological representation of BAs that we will
describe results from “topologizing” the choice-free representation of BAs in [16,
17].3 A possibility frame from [16] is a triple (S,�, P), where (S,�) is a poset and
P is a collection of regular open sets in the upset topology Up(S,�) of the poset,
such that P contains S and is closed under intersection and the operation ¬ defined
by

¬U = {x ∈ S | ∀x′ � x x′ �∈ U}. (1)

Recall that an open set U in a space is regular open iff U = int(cl(U )). Since the
closure and interior operations in Up(S,�) are calculated by

cl�(U ) = {x ∈ S | ∃y � x : y ∈ U}, (2)

int�(U ) = S \ cl�(S \U ) = {x ∈ S | ∀y � x y ∈ U}, (3)

an open set U in Up(S,�) is regular open iff
U = int�(cl�(U )) = {x ∈ S | ∀x′ � x ∃x′′ � x′ : x′′ ∈ U}. (4)

Also note that ¬U = int�(X \U ), so U is regular open iff U = ¬¬U .
As Tarski [33–35] observed, the regular open sets of any topological space form
a (complete) Boolean algebra with binary meet as intersection and complement as
interior of set-theoretic complement, so any subalgebra thereof is also a Boolean
algebra. Thus, for any possibility frame (S,�, P), the set P gives us a Boolean
algebra.4

Conversely, given any Boolean algebra A, we construct a possibility frame
(PropFilt(A),⊆, {â | a ∈ A}) where PropFilt(A) is the set of proper filters of
A, ordered by inclusion, and â = {F ∈ PropFilt(A) | a ∈ F }; then {â | a ∈ A} is
a collection of regular open sets from Up(PropFilt(A),⊆) that satisfies the required
closure conditions, and under the operations ∩ and ¬ it becomes a Boolean algebra
isomorphic to A.5 The possibility frames that arise (isomorphically) in this way,
called filter-descriptive in [16], are exactly those satisfying the separation property
that if x �� y, then there is a U ∈ P such that x ∈ U and y �∈ U , and the “filter
realization” property that if F is a proper filter in P, then F = {U ∈ P | x ∈ U}
for some x ∈ S. In [16, 17] it is proved without choice principles that the category
of filter-descriptive frames with appropriate morphisms (see Section 6) is dually
equivalent to the category of BAs with Boolean homomorphisms.
In Section 3, we will show that the duality just sketched can be understood
topologically as a choice-free duality between BAs and special spectral spaces. In

3The focus of [16, 17] is on modal algebras, but here we present only the Boolean side of the story.
4From the perspective of locale theory (see Section 7), the collection Up(S,�) of upsets forms a

locale with meet as intersection and join as union. Equivalently, Up(S,�) may be viewed as a complete
Heyting algebra. Then ¬U is the pseudocomplement of U in Up(S,�), i.e., the largest upset whose meet
withU is∅, and P is a subalgebra of the Boolean algebra of all regular elements (i.e., thoseU such that
U = ¬¬U ) of Up(S,�).
5It can then be proved choice-free that the complete BA of all regular opens fromUp(PropFilt(A),⊆)

is a canonical extension of A in the sense of [10] (see [17, Section 5.6] and Theorem 8.27 below).
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particular, the dual possibility frame (S,�, P) of a BA gives rise to a spectral space
X by using P as a basis for a topology on S. This makes � the specialization order
of X . We can then conveniently pick out among all regular opens in the upset
topology of� just those that give us back our original BA via P: those that are also
compact open in X . It turns out we may equivalently think of these compact sets as
regular open in X , though thinking of them as regular open in the upset topology
of � has the advantage of simplifying reasoning. The story above is our starting
point, but we go much further: we develop a full topological duality, including a
duality dictionary for many algebraic concepts, along with sample applications via
topological proofs of basic facts about BAs.
There are several precedents for the strategy of working with all proper filters
of a lattice. In the context of logic, since the early 1980s, logicians have studied
alternative semantics for classical first-order logic and classical modal logics in
which one builds a canonical model using all consistent and deductively closed sets
of formulas, rather than only maximally consistent sets of formulas [1–4,16,19,28].
Although not presented as such, these constructions are essentially applications of
the fact indicated above that any BA A embeds into the BA of regular open upsets
in the poset of proper filters of A. If A is the Lindenbaum–Tarski algebra of a
logic, then its poset of proper filters is isomorphic to the poset of consistent and
deductively closed sets of formulas. The subsets of this canonical model that are
definable by a formula then correspond to the sets â above.
The idea of topologizing the set of proper filters also appears in Goldblatt’s
[12] representation of ortholattices, discussed in Section 10.3. However, Goldblatt
uses a different topology on the set of proper filters with the consequence that his
representation is not choice free.
After completing the following work, we learned that Moshier and Jipsen [24]
propose a choice-free duality for arbitrary lattices using the space of all filters
endowed with the analogous â topology. Though we work with proper filters (since
otherwise there would be only two regular open sets with respect to �, namely, ∅
and the whole space), the more important difference is that we study what happens
in the special case of BAs.
Our approach to choice-free Stoneduality forBAs is also closely related to apoint-
free approach. The collection Filt(A) of all filters of a BA A ordered by inclusion is
an example of what we will call a Stone locale: a zero-dimensional compact locale
(see Section 7 for definitions). The category of Stone locales with localic maps6 is
dually equivalent to the category of BAs with Boolean homomorphisms. However,
our aim is to provide a choice-free duality using spaces instead of locales. We do
so by taking the nonzero elements of the Stone locale Filt(A) as the points of a
new space with an appropriate topology, namely, the upper Vietoris topology (see
Section 3). Thus, we call our approach to choice-free Stone duality the hyperspace
approach, in contrast to the localic approach using Stone locales.
The hyperspace approach allows us to retain the intuitiveness of reasoning with
a set of points, without paying the price of choice principles. But there is a cost or
at least a currency exchange: whereas standard Stone duality represents each BA
as a subalgebra of the powerset of a set, the choice-free dualities in [16] and in this

6For the definition of localic maps, see, e.g., [25, Section II.2].
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article represent each BA as a subalgebra of the regular open algebra of a separative
poset.
Definition 2.1. Let (S,�) be a poset, and, for x ∈ S, let ⇑x = {x′ ∈ S | x �
x′}. Then (S,�) is separative iff for any x, y ∈ S, x �� y implies that there is a
z ∈ ⇑y such that ⇑z ∩ ⇑x = ∅. Equivalently, (S,�) is separative iff every principal
upset ⇑x is regular open in Up(S,�).
It is easy to see that the separation property mentioned for possibility frames above
implies separativity of the underlying partial order.
Thus, with the choice-free duality for BAs that we will pursue, instead of rea-
soning about sets with intersection and set-theoretic complement, we reason about
separative posets (given by the specialization orders of our spaces) with intersection
and the operation ¬ defined in (1). A major difference is that for U ⊆ S, while
U ∪ (S \U ) = S, we often haveU ∪ ¬U � S.7 This makes reasoning with ¬more
subtle, but one can quickly get used to reasoning patterns with ¬ of the kind shown
in the following lemmas.

Lemma 2.2. Let (S,�) be a poset andU regular open in Up(S,�). If x �∈ U , then
there is an x′ � x such that x′ ∈ ¬U .
Proof. If x �∈ U , then since U is regular open, it follows by (4) that there is an
x′ � x such that for all x′′ � x′, x′′ �∈ U , which means x′ ∈ ¬U . 

Lemma 2.3. Let (S,�) be an infinite separative poset and U regular open in

Up(S,�). Then either U or ¬U is infinite.
Proof. Let x ∼ y iff ⇑x ∩ U = ⇑y ∩ U . If U is finite, then ∼ partitions the
infinite set S into finitely many cells, one of which must be infinite. Call it I , and
define f : I → ℘(¬U ) by f(x) = ⇑x ∩ ¬U . We claim that f is injective. For if
x, y ∈ I and x �� y, then by separativity, there is a z ∈ ⇑y such that ⇑z ∩ ⇑x = ∅.
It follows, since ⇑x ∩U = ⇑y ∩U , that ⇑z ∩U = ∅, so z ∈ ¬U . Thus, z ∈ f(y)
but z �∈ f(x), so f is injective. Then since I is infinite, it follows that ℘(¬U ) is
infinite and hence ¬U is infinite. 


§3. Representation ofBAs using spectral spaces. Before reviewing spectral spaces,
let us fix some notational conventions.
We will conflate a BA A and its underlying set, and we will conflate a topological
space X and its underlying set, so that we will write, e.g., ‘a ∈ A’, ‘x ∈ X ’, etc.
The top and bottom elements of a bounded lattice such as a BA are denoted ‘1’
and ‘0’, respectively, possibly with subscripts to indicate the relevant algebra. We
will often consider filters in a BA, as well as principal upsets in the specialization
order of a space. To avoid any confusion about which side a principal filter/upset
is on—the algebra side or the space side—we make the following notational
distinction.

Notation 3.1. Let A be a BA whose underlying order is ≤ and X a space whose
specialization order is �. For a ∈ A and x ∈ X :
1. ↑a = {b ∈ A | a ≤ b} and ↓a = {b ∈ A | b ≤ a};
2. ⇑x = {y ∈ X | x � y} and ⇓x = {y ∈ X | y � x}.
7From the perspective of Footnote 4, the observation that we often have U ∪ ¬U � S reflects the

fact that Up(S,�) is a Heyting algebra that is typically not Boolean.
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It will also help to distinguish between the built-in complement operation of a
BA A and the operation ¬ defined in (1) of Section 2.
Notation 3.2. Given a BA A and a space X whose specialization order is �:
1. let − be the complement operation in A;
2. let ¬ be the operation defined for U ⊆ X by ¬U = int�(X \U ).
It is important to remember that we are distinguishing two interior (resp. closure)
operations associated with a given space X .

Notation 3.3. For a space X whose specialization order is �:
1. int and cl are the interior and closure operations for X ;
2. int� and cl� are the interior and closure operations for the upset topology with
respect to �, as in (2)–(3) of Section 2.

As is well known, the operations int� and cl� coincide with int and cl, respectively,
if and only if X is an Alexandroff space.
The following notation will be used throughout.

Notation 3.4. Let X be a space. We define the following collections of subsets
of X :

1. O(X ) is the collection of sets that are open in X ;
2. C(X ) is the collection of sets that are compact in X ;
3. CO(X ) = C(X ) ∩O(X );
4. RO(X ) is the collection of sets that are regular open in X ;
5. CRO(X ) = C(X ) ∩ RO(X );
6. RO(X ) is the collection of sets that are regular open in Up(X,�), where � is
the specialization order of X ;

7. ORO(X ) = O(X ) ∩RO(X );
8. CORO(X ) = CO(X ) ∩RO(X );
9. Clop(X ) is the collection of sets that are clopen in X .

Let us now recall the notion of a spectral space and two theorems illustrating its
importance.

Definition 3.5. A topological space X is a spectral space if X is compact, T0,
coherent (CO(X ) is closed under intersection and forms a base for the topology of
X ), and sober (every completely prime filter in O(X ) is O(x) = {U ∈ O(X ) | x ∈
U} for some x ∈ X ).
Theorem 3.6 (Stone [31]). L is a distributive lattice iff L is isomorphic to the
lattice of compact open sets of a spectral space.

Theorem 3.7 (Hochster [15]). X is a spectral space iff X is homeomorphic to the
spectrum of a commutative ring.

We will show that every BA A can be represented as CORO(X ) (or equivalently
CRO(X ), as shown in Section 4) for some spectral spaceX . Using the nonconstruc-
tive Boolean Prime Ideal Theorem, one could prove this by takingX to be the Stone
space of A: since the specialization order � in a Stone space is the discrete order,
all subsets are regular open in Up(X,�), and it can be proved that the compact
open sets ofX are exactly the clopen sets used in the standard Stone representation.
However, it is also possible to provide a choice-free representation, as shown below.
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We first recall the upper Vietoris topology [39] on the hyperspace of nonempty
closed sets of a Stone space.WhereF(X ) is the collection of nonempty closed subsets
of X and U ∈ Clop(X ), let

�U = {F ∈ F(X ) | F ⊆ U}.
Observe that �U ∩ �V = �(U ∩ V ), so {�U | U ∈ Clop(X )} is closed under
binary intersection.

Definition 3.8. Given a Stone space X , define U V (X ) to be the space of
nonempty closed sets of X with the topology generated by the family {�U | U ∈
Clop(X )}.
The same idea can be applied to the space of proper filters of a BA. For a ∈ A,
let

â = {F ∈ PropFilt(A) | a ∈ F }.
Observe that â ∩ b̂ = â ∧ b, so {â | a ∈ A} is closed under binary intersection.
Definition 3.9. Given a BA A, defineUV (A) to be the space of proper filters of

A with the topology generated by {â | a ∈ A}.
Proposition 3.10. For any Stone space X , U V (X ) is homeomorphic to
UV (Clop(X )), regarding Clop(X ) as the BA of clopen subsets of X .

Proof. Let f : C �→ {U ∈ Clop(X ) | C ⊆ U}. Since X is nonempty, f(C )
is clearly a proper filter in Clop(X ), so f(C ) ∈ UV (Clop(X )). For injectivity, if
C �= C ′, then without loss of generality suppose x ∈ C \ C ′. Since X is compact
Hausdorff, it follows that there is a U ∈ Clop(X ) such that C ′ ⊆ U but x �∈ U , so
C �⊆ U . Hence U ∈ f(C ′) but U �∈ f(C ). For surjectivity, if F is a proper filter
in Clop(X ), then F has the finite intersection property, so by the compactness of
X , we have that

⋂
F is nonempty, and since

⋂
F is the intersection of closed sets,

it is closed. We claim that f(
⋂
F ) = F . That f(

⋂
F ) = {U ∈ Clop(X ) | ⋂F ⊆

U} ⊇ F is immediate. To see that f(⋂F ) ⊆ F , if U ∈ Clop(X ) and
⋂
F ⊆ U , so

X \ U ⊆ ⋃{X \ V | V ∈ F }, then by compactness there is a finite F0 ⊆ F such
that X \ U ⊆ {X \ V | V ∈ F0} and hence

⋂
F0 ⊆ U . Then since F0 is finite, it

follows that U ∈ F . For continuity of f, if Û is a basic open in UV (Clop(X )), so
U ∈ Clop(X ), then we have

f−1[Û ] = {C ∈ UV (X ) | f(C ) ∈ Û}
= {C ∈ UV (X ) | U ∈ f(C )}
= {C ∈ UV (X ) | C ⊆ U}
= �U.

For openness off, if�U is a basic open inU V (X ), soU ∈ Clop(X ), then we have

f[�U ] = {f(C ) | C ∈ �U}
= {f(C ) | C ⊆ U}
= {f(C ) | U ∈ f(C )}
= Û .
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For the last equality, the left-to-right inclusion follows from the fact that f(C )
is a proper filter, since C �= ∅, and the right-to-left inclusion follows from the
surjectivity of f. 

Remark 3.11. Assuming the Boolean Prime Ideal Theorem, one can also prove
that for any BA A, UV (A) is homeomorphic toU V (Stone(A)), where Stone(A) is
the Stone dual of A (see Section 10.1).

Proposition 3.12. For any BA A:

1. UV (A) is a spectral space;
2. the specialization order in UV (A) is the inclusion order.

Proof. We first show that each â is compact open in UV (A). Since the sets b̂
form a basis, it suffices to show that if â ⊆ ⋃

i∈I
b̂i , then there is a finite subcover. If

â ⊆ ⋃
i∈I
b̂i , then every proper filter that contains a also contains one of the bi . In

particular, the principal filter ↑a contains one of the bi , which implies a ≤ bi and
hence â ⊆ b̂i , so b̂i alone is the finite subcover. It follows that UV (A) is compact,
since X = 1̂. It also follows by the definition of UV (A) that the compact open sets
form a basis.
To see that the compact opens are closed under binary intersection, suppose U
and V are compact open, so U =

⋃
i∈I
âi and V =

⋃
j∈J
b̂j for finite I and J . Then

U ∩ V =
⋃

i∈I, j∈J
(âi ∩ b̂j) =

⋃
i∈I, j∈J

âi ∧ bj,

which is a finite union of compact opens. Hence U ∩ V is compact open.
For T0, if F �= F ′, without loss of generality suppose a ∈ F \ F ′. Then F ∈ â
but F ′ �∈ â, and â is open, so we are done.
For sobriety, we show that every completely prime filter F in O(UV (A)) is of the
form O(F ) = {U ∈ O(UV (A)) | F ∈ U} for some F ∈ UV (A). Let F be the
filter generated by {a ∈ A | â ∈ F}. Then since F is a proper filter in O(UV (A)),
it follows that F is a proper filter in A. To see that F = O(F ), the right-to-left
direction is immediate from the definition of F . For the left-to-right direction,
suppose U =

⋃
i∈I
âi ∈ F . Then since F is completely prime, there is an ai such that

âi ∈ F , which implies ai ∈ F , so F ∈ âi . Thus, âi ∈ O(F ) and hence U ∈ O(F ).
For part 2, we already saw above for T0 that if F �⊆ F ′, then F �� F ′. Conversely,
if F ⊆ F ′, then for any basic open â, if F ∈ â and hence a ∈ F , then a ∈ F ′ and
hence F ′ ∈ â, so F � F ′. 

We now provide the promised choice-free representation.

Theorem 3.13.

1. For each BA A, the map ·̂ : A → CORO(UV (A)) is an isomorphism from A to
CORO(UV (A)) ordered by inclusion.

2. CORO(UV (A)) is a BA with operations given by:
U ∧V = U∩V −U = int�(UV (A)\U ) U ∨V = int�(cl�(U ∪V )). (5)
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Proof. For part 1, we will show that

CORO(UV (A)) = {â | a ∈ A}, (6)

for then themap a �→ â is the isomorphism fromA toCORO(UV (A)), since clearly
a ≤ b iff â ⊆ b̂.
For the right-to-left inclusion of (6), we showed in the proof of Proposition
3.12.1 that each â is compact open in UV (A). Now we show that â is regular open
in Up(UV (A),�), using the fact from Proposition 3.12.2 that the specialization
order � is the inclusion order ⊆. First, â is an �-upset, for if F ∈ â and F � F ′,
so a ∈ F and F ⊆ F ′, then a ∈ F ′ and hence F ′ ∈ â. Then to see that â is regular
open, by (4) it suffices to show that if F �∈ â, then there is a proper filter F ′ ⊇ F
such that for all proper filters F ′′ ⊇ F ′, we haveF ′′ �∈ â. Indeed, if F �∈ â, so a �∈ F ,
then the filter F ′ generated by F ∪ {−a} is a proper filter with F ′ ⊇ F , and for all
proper filters F ′′ ⊇ F ′, we have a �∈ F ′′ and hence F ′′ �∈ â.
For the left-to-right inclusion of (6), suppose S is compact open, so S = â1 ∪

· · · ∪ ân for some a1, . . . , an ∈ A. Now if in addition â1 ∪ · · · ∪ ân is regular open in
Up(UV (A),�), then we claim

â1 ∪ · · · ∪ ân = a1 ∨ · · · ∨ an
∧

. (7)

First, we show
a1 ∨ · · · ∨ an
∧

= int�(cl�(â1 ∪ · · · ∪ ân)). (8)

For the left-to-right inclusion, if F ∈ a1 ∨ · · · ∨ an
∧

, so a1 ∨ · · · ∨ an ∈ F , then for
any proper filter F ′ ⊇ F , there is some ai such that −ai �∈ F ′. Thus, the filter
F ′′ generated by F ′ ∪ {ai} is proper, and ai ∈ F ′′ implies F ′′ ∈ âi and hence
F ′′ ∈ â1 ∪ · · · ∪ ân. Thus, by (4), F ∈ int�(cl�(â1 ∪ · · · ∪ ân)). Conversely, if F �∈
a1 ∨ · · · ∨ an
∧

, soa1∨· · ·∨an �∈ F , then the filterF ′ generated byF∪{−a1∧· · ·∧−an}
is a proper filter, and for every proper filter F ′′ ⊇ F ′, each ai is not in F ′′, so
F ′′ �∈ â1∪· · ·∪ ân . Thus, by (4), F �∈ int�(cl�(â1∪· · ·∪ ân)). Finally, if â1∪· · ·∪ ân
is regular open in Up(UV (A),�), then â1 ∪ · · · ∪ ân = int�(cl�(â1 ∪ · · · ∪ ân)),
which with (8) implies (7). Thus, S ∈ {â | a ∈ A}.
For part 2, since a �→ â is an isomorphism, we have:

â ∧ b̂ = â ∧ b −â = −̂a â ∨ b̂ = â ∨ b. (9)

We have already observed the first and third of the following equalities:

â ∧ b = â ∩ b̂ −̂a = int�(UV (A) \ â) â ∨ b = int�(cl�(â ∪ b̂)). (10)
For the second equality, if F ∈ −̂a, so−a ∈ F , then for every proper filter F ′ ⊇ F ,
we have −a ∈ F ′, so a �∈ F ′ and hence F ′ �∈ â. Thus, F ∈ int�(UV (A) \ â).
If −a �∈ F , then the filter F ′ generated by F ∪ {a} is a proper filter such that
F ⊆ F ′ ∈ â, so F �∈ int�(UV (A) \ â).
Combining (9) and (10), we have:

â ∧ b̂ = â ∩ b̂ −â = int�(UV (A) \ â) â ∨ b̂ = int�(cl�(â ∪ b̂)), (11)
which with (6) shows that the BA operations of CORO(UV (A)) satisfy the
equations in (5). 
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Corollary 3.14. For each Stone space X , Clop(X ) is isomorphic to
CORO(U V (X )) via the map U �→ �U .
Proof. By Theorem 3.13, we have an isomorphism between Clop(X ) and

CORO(UV (Clop(X ))) via the map that sends U ∈ Clop(X ) to Û ∈
CORO(UV (Clop(X ))). By the proof of Proposition 3.10, U V (X ) is homeomor-
phic toUV (Clop(X )) via the mapf, which satisfiesf−1[Û ] = �U . Thus, Clop(X )
is isomorphic to CORO(U V (X )) via the map U �→ �U . 


§4. Regular opens in the Alexandroff and spectral topologies. In response to the
representation in the previous section, Tomáš Jakl (p. c.) observed that in the
special case of compact open sets, being regular open in the Alexandroff space
Up(UV (A)) is equivalent to being regular open in the spectral space UV (A), i.e.,
CORO(UV (A)) = CRO(UV (A)). We have U ∈ RO(UV (A)) iff U is an open set
such thatU = int(cl(U )), where int and cl are the interior and closure operations of
UV (A). This is equivalent toU = U ∗∗, where ∗ is the pseudocomplement operation
on O(UV (A)):

U ∗ = int(UV (A) \U ).
It is then easy to see that

U ∗ =
⋃

{V ∈ O(UV (A)) | U ∩ V = ∅} =
⋃

{ĉ | U ∩ ĉ = ∅}.

Thus, we can derive CORO(UV (A)) = CRO(UV (A)) from the following more
basic facts.

Proposition 4.1. Let A be a BA.

1. If U ∈ O(UV (A)), then U ∗ ⊆ ¬U ;
2. If U ∈ CO(UV (A)), then ¬U ⊆ U ∗.

Proof. For part (1), suppose F ∈ U ∗, so there is some c such that F ∈ ĉ, i.e.,
c ∈ F , and U ∩ ĉ = ∅, i.e., no proper filter containing c belongs to U . Thus, no
proper filter extending F belongs to U , whence F ∈ ¬U .
For part (2), supposeU ∈ CO(X ), soU = â1 ∪ · · · ∪ ân for some a1, . . . , an ∈ A.
Then assumingF ∈ ¬U , wehave¬a1, . . . ,¬an ∈ F andhence c := ¬a1∧· · ·∧¬an ∈
F . Thus, F ∈ ĉ, and clearly U ∩ ĉ = ∅. Therefore, F ∈ U ∗. 

As an immediate corollary of Proposition 4.1, we have the following.

Corollary 4.2. For any BA A, CORO(UV (A)) = CRO(UV (A)).

Thus, by Theorem 3.13, A is isomorphic to CRO(UV (A)). It is also easy to check
that−â = int(UV (A) \ â) and â ∨ b̂ = int(cl(â ∪ b̂)).
If we do not restrict to compact open sets, then the operations¬ and ∗may behave
differently; however, the extent of this difference depends on one’s set-theoretic
assumptions. It is a theorem of ZF+BPI that every infinite BA contains a nonprin-
cipal ultrafilter (see, e.g., [11, p. 174]), in which case ¬ and ∗ can be distinguished
with an open set as in Proposition 4.3.2 below. On the other hand, it is consistent
with ZF that there is an infinite BA in which every filter is principal [26] (for an
overview, see [18, p. 165]), and in such a BA ¬ and ∗ cannot be distinguished with
open sets in light of Proposition 4.3.3 (plus Proposition 4.1.1).
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Proposition 4.3. Let A be a BA.

1. RO(UV (A)) ⊆ ORO(UV (A)).
2. If F is a nonprincipal ultrafilter in A and U =

⋃{−̂a | a ∈ F }, then
(a) F ∈ ¬U \U ∗;
(b) U = ¬¬U ;
(c) U � U ∗∗;
(d) ORO(UV (A)) �⊆ RO(UV (A)).

3. Let F be a principal filter in A and U ∈ O(UV (A)). If F ∈ ¬U , then F ∈ U ∗.

Proof. For part 1, suppose U ∈ RO(UV (A)), so U = U ∗∗. Since U ∗ ∈
O(UV (A)), we have U ∗ =

⋃{b̂ | b ∈ B} for some B ⊆ A. Thus,

U ∗∗ =
⋃

{ĉ |
⋃

{b̂ | b ∈ B} ∩ ĉ = ∅}
=

⋃
{ĉ | ∀b ∈ B b̂ ∩ ĉ = ∅}

=
⋃

{ĉ | ∀b ∈ B b ∧ c = 0}.

Let I := {c ∈ A | ∀b ∈ B b∧c = 0}, and observe that I is an ideal inA. To see that
U ∗∗ ∈ RO(UV (A)), suppose F is a proper filter in A such that F �∈ U ∗∗. It follows
that F ∩ I = ∅. Let F ′ be the filter generated by {a ∧−c | a ∈ F, c ∈ I }. We claim
that F ′ is a proper filter. If not, then there are a1, . . . , an ∈ F and c1, . . . , cn ∈ I
such that a1 ∧−c1 ∧ · · · ∧ an ∧−cn = 0, so a1 ∧ · · · ∧ an ≤ c1 ∨ · · · ∨ cn. Then since
F is a filter containing a1, . . . , an, we have c1 ∨ · · · ∨ cn ∈ F , and since I is an ideal
containing c1, . . . , cn, we have c1 ∨ · · · ∨ cn ∈ I , contradicting F ∩ I = ∅. Hence
F ′ is a proper filter, and clearly every proper filter F ′′ ⊇ F ′ is disjoint from I , so
F ′′ �∈ U ∗∗. It follows that F ′ ∈ ¬(U ∗∗), which with F ⊆ F ′ implies F �∈ ¬¬(U ∗∗).
Thus, ¬¬(U ∗∗) ⊆ U ∗∗, so we have U ∗∗ = U ∈ RO(UV (A)).
For part (2a), clearly F ∈ ¬U . Suppose for contradiction that F ∈ U ∗, so there
is a c such that F ∈ ĉ and U ∩ ĉ = ∅. Since F ∈ ĉ, we have c ∈ F . We claim that
F is the principal filter generated by c, i.e., c ≤ a for all a ∈ F . For if there is an
a ∈ F such that c �≤ a, then c ∧ −a �= 0, so there is a proper filter G containing
c ∧ −a. Hence c,−a ∈ G , so G ∈ ĉ and G ∈ −̂a. Since a ∈ F , G ∈ −̂a implies
G ∈ U . Then since G ∈ ĉ, we have G ∈ U ∩ ĉ, contradicting U ∩ ĉ = ∅ above.
Thus, F �∈ U ∗.
For part (2b), U ⊆ ¬¬U always holds. To see ¬¬U ⊆ U , suppose G �∈ U . It
follows by definition of U that for all a ∈ F ,G �∈ −̂a and hence −a �∈ G . We claim
that G ⊆ F . Suppose b �∈ F , so −b ∈ F since F is an ultrafilter. Then by what we
derived above, −−b �∈ G , i.e., b �∈ G . Thus, G ⊆ F . Then since F ∈ ¬U , we have
G �∈ ¬¬U .
For part (2c), again U ⊆ U ∗∗ always holds. Recall U ∗ =

⋃{ĉ | U ∩ ĉ = ∅}.
Given the definition of U , the condition that U ∩ ĉ = ∅ is equivalent to: for all
a ∈ F , −̂a ∩ ĉ = ∅. This is in turn equivalent to: for all a ∈ F , −a ∧ c = 0, i.e.,
c ≤ a. Since F is a nonprincipal ultrafilter, the only c such that c ≤ a for all a ∈ F
is given by c := 0. Thus, U ∗ =

⋃{0̂} = ⋃{∅} = ∅. It follows that U ∗∗ = UV (A).
Then since F �∈ U , we haveU � U ∗∗.
Part (2d) is immediate from parts (2b)–(2c).
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For part (3), sinceU is open,U =
⋃{âi | i ∈ I } for some I . Assuming F ∈ ¬U ,

we have ¬ai ∈ F for each i ∈ I . If F is a principal filter generated by some c, then
c ≤ ¬ai for each i ∈ I , so U ∩ ĉ = ∅. Hence F ∈ U ∗. 

Remark 4.4. The inclusions

CORO(UV (A)) = CRO(UV (A)) ⊆ RO(UV (A)) ⊆ ORO(UV (A))
can be understood in terms of the dual correspondence between these types of
regular open sets and ideals in the BA A, as we will show in Section 8:

ORO(UV (A)) corresponds to ideals of A

RO(UV (A)) corresponds to normal ideals of A

CORO(UV (A)) corresponds to principal ideals of A.

= CRO(UV (A))

Given Theorem 3.13 and the fact that CORO(UV (A)) = CRO(UV (A)), we can
reason about elements of a BA as compact open sets in UV (A) that are regular
open in either the Alexandroff space Up(UV (A)) or in the spectral space UV (A).
Since the definition of a regular open set in the Alexandroff space is especially
simple, given by the first-order condition (4) involving the specialization order �,
we will continue to use this definition of regular open for the purposes of our
calculations.

§5. Characterization of choice-free duals of BAs. We now wish to characterize
the spectral spaces X that are homeomorphic to UV (A) for some Boolean algebra
A. For the following definition, given x ∈ X , let CORO(x) = {U ∈ CORO(X ) |
x ∈ U}.
Definition 5.1. A UV-space is a T0 space X such that:

1. CORO(X ) is closed under ∩ and int�(X \ ·) and is a basis for X ;
2. every proper filter in CORO(X ) is CORO(x) for some x ∈ X .
Remark 5.2. An equivalent definition of a UV-space (in light of Section 4 and
the proof of Theorem 5.4 below) substitutes CRO for CORO and int for int� in
Definition 5.1.

The conditions in Definition 5.1 are reminiscent of conditions mentioned earlier:
compare part 1 with the statement of coherence in Definition 3.5 and part 2 with
the statement of sobriety in Definition 3.5. Note that the basis condition implies
an analogue of the Priestley separation axiom [27]: if x �� y, then there is a U ∈
CORO(X ) such that x ∈ U and y �∈ U .
Proposition 5.3. For any UV-space X , CORO(X ) ordered by inclusion is a BA
with the following operations:

U ∧ V = U ∩ V ¬U = int�(X \U ) U ∨V = int�(cl�(U ∪ V )).
Proof. Asnoted in Section 2, it is awell-known result of Tarski that the collection
of all regular open sets of a space forms a BAwith the operations∧,¬, and∨ defined
above (see, e.g., [13, Section 4]). By Definition 5.1.1, in a UV-space X , CORO(X )
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with the operations ∧ and ¬ is a subalgebra of the full regular open algebra and
therefore a BA. 

We now prove that Definition 5.1 provides our desired characterization.

Theorem 5.4. For any BA A and space X :

1. UV (A) is a UV-space;
2. X is homeomorphic to UV (CORO(X )) iff X is a UV-space.
Proof. For part 1, to see that property 1 of Definition 5.1 holds, if U,V ∈

CORO(UV (A)), then by the proof of Theorem 3.13 we have that U = â and
V = b̂ for some a, b ∈ A. We also saw in the proof of Theorem 3.13 that â ∩ b̂ =
â ∧ b ∈ CORO(UV (A)) and int�(UV (A) \ â) = −̂a ∈ CORO(UV (A)). For
property 2, if F is a proper filter in CORO(UV (A)), then by the proof of Theorem
3.13, G = {a ∈ A | â ∈ F} is a proper filter in A. Then G is an element of UV (A)
and CORO(G) = F .
For part 2, the left-to-right direction follows from part 1. For the right-to-left
direction, we will show that the map ε : x �→ CORO(x) is the desired homeomor-
phism from X to UV (CORO(X )). To see that ε is injective, if x �= y, then by T0,
either x �� y or y �� x, which by Definition 5.1.1 implies CORO(x) �= CORO(y).
That ε is surjective follows from Definition 5.1.2. To see that ε is continuous, it
suffices to show that the inverse image of each basic open is open. A basic open of
UV (CORO(X )) is Û for some U ∈ CORO(X ). Then we have

ε−1[Û ] = {x ∈ X | CORO(x) ∈ Û}
= {x ∈ X | U ∈ CORO(x)}
= {x ∈ X | x ∈ U}
= U.

Finally, to see that ε−1 is continuous, we have

ε[U ] = {CORO(x) | x ∈ U}
= {CORO(x) | U ∈ CORO(x)}
= Û .

For the last equality, the left-to-right inclusion uses thatCORO(x) is a proper filter,
whereas the right-to-left follows from the surjectivity of ε. 

For the following, recall that for a space X , its specialization order is �.
Corollary 5.5. Let X be a UV-space. Then:

1. X is a spectral space;
2. every set in CO(X ) is a finite union of sets from CORO(X );
3. (X,�) may be obtained from a complete Heyting algebra8 by deleting the top
element, and each U ∈ CORO(X ) is a filter in (X,�);

8In Section 7, we strengthen ‘completeHeyting algebra’ to ‘Stone locale’, butwe will wait to introduce
this notion.
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4. if X is finite, then (X,�) may be obtained from a Boolean algebra by deleting
the top element;

5. if U ∈ CORO(X ) and z ∈ X , then there is a unique x ∈ U and y ∈ ¬U such
that z = x � y where � is the meet operation in (X,�).

6. if U,V ∈ CORO(X ), then

U ∨V = U ∪ V ∪ {x � y | x ∈ U, y ∈ V }.

Proof. For part 1, by Theorem 5.4.2, each UV-space X is homeomorphic to
the space UV (CORO(X )), which is spectral by Proposition 3.12.1. For part 2, if
U ∈ CO(X ), then it is a finite union of basic open sets, so by Definition 5.1.1, it is
a finite union of sets from CORO(X ).
For part 3, as X is homeomorphic to the T0 space UV (CORO(X )) of proper
filters of CORO(X ), it follows that (X,�) is order-isomorphic to the poset
(UV (CORO(X )),⊆) of proper filters of CORO(X ) ordered by inclusion. As
observed by Tarski [32], the filters of any BA (indeed, any distributive lattice)
ordered by inclusion form a complete Heyting algebra, so the proper filters ordered
by inclusion form a complete Heyting algebra minus the top element. Finally,
suppose U = â for a ∈ A, and F,G ∈ UV (A) are such that F,G ∈ â. Then
a ∈ F ∩ G = F � G , so F � G ∈ â = U . It follows, given that U is an upset, that
U is a filter in (UV (A),⊆).
For part 4, if X is finite, then the BA CORO(X ) is finite. As in part 3, (X,�) is
order-isomorphic to the poset of proper filters of CORO(X ) ordered by inclusion.
Since any filter in a finite BA is principal, we obtain that (X,�) is order-isomorphic
to the poset of proper principal filters of CORO(X ) ordered by inclusion, which is
obviously isomorphic to CORO(X ) minus its top element.
For part 5, let X = UV (A). If U ∈ CORO(UV (A)), then by Theorem 5.4.2 and
the proof of Theorem 3.13, we have U = â and ¬U = −̂a for some a ∈ A, which
implies ↑a ∈ U and ↑−a ∈ ¬U . Let � and � be the meet and join operations in the
Heyting algebra arising from (UV (A),⊆), i.e., F � G = F ∩ G and F � G is the
filter generated by F ∪ G . Let � be the top element of the Heyting algebra, which
we may identify with the improper filter in A. Thus, ↑a � ↑−a = �. Now for any
F ∈ UV (A), we have F = (F � ↑a) � (F � ↑−a). Suppose G ∈ U and H ∈ ¬U ,
which implies ↑a ⊆ G and ↑−a ⊆ H , and F = G �H . Then we have

F � ↑a = (G �H ) � ↑a = (G � ↑a) � (H � ↑a) = G � � = G,

and similarly F � ↑−a = H . This completes the proof of part 5.
For part 6, we show that â∨ b̂ = â∪ b̂∪{F �G | F ∈ â, G ∈ b̂}. By the proof of
Theorem 3.13, â ∨ b̂ = â ∨ b. To see that â ∨ b ⊇ â ∪ b̂ ∪ {F �G | F ∈ â, G ∈ b̂},
obviously â ∨ b ⊇ â ∪ b̂. If F ∈ â and G ∈ b̂, so a ∈ F and b ∈ G , then
a ∨ b ∈ F ∩ G = F � G , so F � G ∈ â ∨ b. To see that â ∨ b ⊆ â ∪ b̂ ∪ {F � G |
F ∈ â, G ∈ b̂}, ifH ∈ â ∨ b, so a ∨ b ∈ H , andH �∈ â ∪ b̂, so a �∈ H and b �∈ H ,
then we claim thatH = (H �↑a)� (H �↑b). For if c is in the right-hand side, then
there are a0 ∈ H and b0 ∈ H such that a0 ∧ a ≤ c and b0 ∧ b ≤ c, which implies
a0 ∧ b0 ∧ (a ∨ b) ≤ c. Then since a0, b0, a ∨ b ∈ H , we have c ∈ H . Finally, both
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x f(x)

y′
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f(x)

y′

⇒

Figure 1. The p-morphism condition of UV-maps.

H � ↑a and H � ↑b are proper filters. For if H � ↑a is improper, then −a ∈ H ,
which with a ∨ b ∈ H implies b ∈ H , which contradicts what we derived above.
Similarly, thatH � ↑b is improper leads to a contradiction. 

Corollary 5.6. For any Stone space X , U V (X ) is a UV-space.

Proof. By Proposition 3.10, for any Stone space X , U V (X ) is homeomorphic
to UV (Clop(X )), which is a UV-space by Theorem 5.4.1. 


§6. Morphisms and choice-free duality for BAs. To go beyond representation
to categorical duality, we introduce appropriate morphisms. A spectral map [15]
between spectral spaces X and X ′ is a map f : X → X ′ such that f−1[U ] ∈
CO(X ) for each U ∈ CO(X ′), which implies that f is continuous. We combine
this definition with the standard notion (in modal logic) of a p-morphism between
ordered sets (see, e.g., [8, p. 30]).

Definition 6.1. A UV-map between UV-spaces X and X ′ is a spectral map
f : X → X ′ that also satisfies the p-morphism condition (see Figure 1):

if f(x) �′ y′, then ∃y : x � y and f(y) = y′.

Remark 6.2. A UV-map, like any continuous map, preserves the specialization
order: if x � y, then f(x) � f(y).
Fact 6.3. LetP andP′ be partial orders, and letf : P → P′ be an order-preserving
map satisfying the p-morphism condition. If U ∈ RO(P′), then f−1[U ] ∈ RO(P)
(where we regard P,P′ as spaces given by their upset topologies).
Proof. To see that f−1[U ] ∈ Up(P), suppose x ∈ f−1[U ] and x � y. Then
f(x) ∈ U , and since f is order-preserving, f(x) �′ f(y), so U ∈ Up(P′) implies
f(y) ∈ U and hence y ∈ f−1[U ]. Now to see that f−1[U ] ∈ RO(P), suppose
x �∈ f−1[U ], so f(x) �∈ U . Then since U ∈ RO(P′), there is a y′ �′ f(x) such
that for all z′ �′ y′, we have z′ �∈ U . It follows by the p-morphism condition that
there is a y such that x � y andf(y) = y′. Then for any z such that y � z, we have
f(y) �′ f(z) and hence y′ �′ f(z), which implies f(z) �∈ U by our reasoning
above, so z �∈ f−1[U ]. Thus, we have shown that if x �∈ f−1[U ], then there is a
y � x such that for all z � y, z �∈ f−1[U ]. By (4), this completes the proof that
f−1[U ] ∈ RO(P). 
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From Fact 6.3 and the definition of UV-maps as special spectral spaces, we have
the following.

Corollary 6.4. Let X and X ′ be UV-spaces and f : X → X ′ a UV-map. Then
f−1[U ] ∈ CORO(X ) for every U ∈ CORO(X ′).9

Conversely, the condition that the inverse image of a CORO set is also CORO
(or simply CO) implies that f is a spectral map.

Fact 6.5. Let X and X ′ be UV-spaces. If f : X → X ′ is such that f−1[U ] ∈
CO(X ) for every U ∈ CORO(X ′), then f is a spectral map.

Proof. Suppose f : X → X ′ satisfies the assumption, and U ∈ CO(X ′). By
Proposition 5.5.2,U is a finite union

⋃
i∈I
Ui of setsUi ∈ CORO(X ′). Thenf−1[U ] =

f−1[
⋃
i∈I
Ui ] =

⋃
i∈I
f−1[Ui ]. By the assumption, f−1[Ui ] ∈ CO(X ), so f−1[U ] is a

finite union of compact opens and is therefore compact open. Thus, f is a spectral
map. 

The following simple lemma is also useful.

Lemma 6.6. Let X and Y be spectral spaces and f : X → Y . If for each set U in
some subbasis for Y , we have f−1[U ] ∈ CO(X ), then f is a spectral map.

Proof. By definition, every open set is a union of finite intersections of subbasic
sets. Thus, every compact open set V is a finite union V1 ∪ · · · ∪ Vn of finite
intersections of subbasic sets. Then since

f−1[V ] = f−1[V1 ∪ · · · ∪Vn] = f−1[V1] ∪ · · · ∪ f−1[Vn],

we have that f−1[V ] is compact open if each f−1[Vi ] is compact open. Now each
Vi is U1 ∩ · · · ∩Un for some subbasic sets U1, . . . , Un . Then since

f−1[Vi ] = f−1[U1 ∩ · · · ∩Un] = f−1[U1] ∩ · · · ∩ f−1[Un],

we have that f−1[Vi ] is compact open if each f−1[Uj ] is compact open. By
assumption, each f−1[Uj ] is compact open, so we are done. 

One can easily check that UV-spaces with UV-maps form a category. We now
prove the promised categorical duality.

Theorem 6.7. The category of UV-spaces with UV-maps is dually equivalent to
the category of Boolean algebras with Boolean homomorphisms.

Proof. Suppose h : A → B is a BA homomorphism. Given F ∈ UV (B), let
h+(F ) = h−1[F ]. Then since h is a homomorphism, and F is a proper filter in B, it
follows that h+(F ) is a proper filter in A. Thus,

h+ : UV (B)→ UV (A).
We claim that h+ is a UV-map. First, to see that h+ is a spectral map, it suffices
by Lemma 6.6 to show that for each basic open â of UV (A), we have h−1+ [â] ∈
9Cf. the notion of an R-map in [7], which is a map between spaces such that the inverse image of each

regular open set is regular open.
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CO(UV (B)). Indeed,

h−1+ [â] = {F ∈ UV (B) | h+(F ) ∈ â}
= {F ∈ UV (B) | h−1[F ] ∈ â}
= {F ∈ UV (B) | a ∈ h−1[F ]}
= {F ∈ UV (B) | h(a) ∈ F }
= ĥ(a),

and ĥ(a) is compact open by the proof of Proposition 3.12.1.
Next, we show that h+ satisfies the p-morphism condition:

if h+(F ) �′ G ′, then ∃G : F � G and h+(G) = G ′.

If G ′ ∈ UV (A) and h+(F ) ⊆ G ′, we claim that the filter G generated by h[G ′] ∪ F
is a proper filter. If not, then there are some c1, . . . , cn ∈ h[G ′] such that −(c1 ∧
· · · ∧ cn) ∈ F . Since c1, . . . , cn ∈ h[G ′], there are some c′1, . . . , c

′
n ∈ G ′ such that

h(c′i ) = ci , so −(h(c′1) ∧ · · · ∧ h(c′n)) ∈ F . Then since h is a homomorphism,
we have h(−(c1 ∧ · · · ∧ cn)) ∈ F , so that −(c1 ∧ · · · ∧ cn) ∈ h−1[F ] = h+(F ),
which with h+(F ) ⊆ G ′ implies −(c1 ∧ · · · ∧ cn) ∈ G ′, which contradicts the fact
that c′1, . . . , c

′
n ∈ G ′ and G ′ is a proper filter. Thus, G is indeed a proper filter,

and we have both F ⊆ G and G ′ ⊆ h−1[G ] = h+(G). Finally, we claim that
h+(G) ⊆ G ′.10 For if c′ ∈ h+(G), so h(c′) ∈ G , then by definition of G there is a
b′ ∈ G ′ and a ∈ F such that h(b′) ∧ a ≤ h(c′), which implies a ≤ −h(b′) ∨ h(c′)
and hence a ≤ h(−b′ ∨ c′). Then since a ∈ F , we have h(−b′ ∨ c′) ∈ F , so
−b′∨c′ ∈ h−1[F ] = h+(F ). Since h+(F ) ⊆ G ′, it follows that−b′∨c′ ∈ G ′, which
with b′ ∈ G ′ implies c′ ∈ G ′, which completes the proof that h+(G) ⊆ G ′. Thus,
h+(G) = G ′, so h+ satisfies the p-morphism condition.
Finally, it is easy to see that (·)+ preserves the identity and composition. Thus,
together UV (·) and (·)+ give us a contravariant functor from the category of BAs
with BA homomorphisms to the category of UV-spaces with UV-maps.
In the other direction, suppose f : X → Y is a UV-map. GivenU ∈ CORO(Y ),
let f+(Y ) = f−1[Y ]. Then by Corollary 6.4,

f+ : CORO(Y )→ CORO(X ).
We claim that f+ is a BA homomorphism. First, f+(U ∧ V ) = f−1[U ∩ V ] =
f−1[U ] ∩ f−1[V ] = f+(U ) ∧ f+(V ). Second, since f is a UV-map, we have that
for all x ∈ X andU ∈ CORO(Y ), ⇑f(x)∩U = ∅ iff ⇑x ∩ f−1[U ] = ∅. It follows
that f−1[int�(Y \ U )] = int�(X \ f−1[U ]) and hence f+(¬U ) = ¬f+(U ). It is
also easy to see that (·)+ preserves the identity and composition. Thus, together
CORO(·) and (·)+ give us a contravariant functor from the category of UV-spaces
with UV-maps to the category of BAs with BA homomorphisms.
In Theorems 3.13 and 5.4.2 we showed that each BA A is isomorphic to

CORO(UV (A)) and each UV-space X is homeomorphic to UV (CORO(X )).
Finally, it is not difficult to check that the following diagrams commute for any
BA homomorphism h : A → B and UV-map f : X → Y :
10Thanks to David Gabelaia andMamuka Jibladze for pointing out this strengthening of the original

proof.
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A

CORO(UV (A))

B

CORO(UV (B))

h

(h+)+

X

UV (CORO(X ))

Y

UV (CORO(Y ))

f

(f+)+

This completes the proof. 


§7. The hyperspace approach and the localic approach. In this section, we relate
the hyperspace approach to choice-free duality using UV-spaces to the localic
approach using Stone locales.
Recall that a locale is a complete lattice L satisfying the join-infinite distributive
law for each a ∈ L and Y ⊆ L:

a ∧
∨
Y =

∨
{a ∧ y | y ∈ Y}.

The collection of open sets of any space ordered by ⊆ is a locale. In point-free
topology, it is locales rather than spaces that are the basic objects. If we ignore
choices of signature, then a lattice is a locale iff it is a complete Heyting algebra.
For more information on locales, see, e.g., [21,25].
A locale is compact if

∨
Y = 1 implies

∨
Y0 = 1 for some finiteY0 ⊆ Y . A locale

is zero-dimensional if each element of the locale is a join of complemented elements,
where an element a is complemented if there exists an element b such that a ∧b = 0
and a ∨ b = 1.
Definition 7.1. A Stone locale is a compact zero-dimensional locale.

The name ‘Stone locale’ is justified by the fact that the locale of any Stone space
is a Stone locale, and assuming the Boolean Prime Ideal Theorem, every Stone
locale L is the locale of opens of a Stone space, namely, the Stone dual of the BA
of complemented elements of L.
As mentioned in Section 2, Stone locales provide another kind of choice-free
Stone duality for BAs. A proof of the following may be found in [5].

Theorem 7.2. The category of Stone localeswith localicmaps11 is dually equivalent
to the category of BAs with Boolean homomorphisms.

The key to Theorem 7.2 is the following correspondence.

11For the definition of localic maps, see, e.g., [25, Section II.2].
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Lemma 7.3.

1. For any BA A, (Filt(A),⊆) is a Stone locale.
2. L is a Stone locale iff L is isomorphic to (Filt(Z(L)),⊆) where Z(L) is the
Boolean algebra of complemented elements of L.

Proof. (sketch) Part 1 is straightforward to check. For part 2, the right-to-left
direction follows from part 1. For the left-to-right direction, the isomorphism sends
a ∈ L to ↑a ∩ Z(L) (see [5]). 

We can characterize UV-spaces as the result of putting an appropriate topology
on the (nonmaximum) elements of a Stone locale. Given a Stone locale L, just as
Johnstone [21, Section 4.1] defines the Vietoris space of L, we may define the upper
Vietoris space of L. The starting observation is that in defining the upper Vietoris
space of a Stone space X , instead of taking the points of the new space to be the
nonempty closed sets of X , we can take the points to be the complements of such
sets, i.e., the open sets ofX not equal to X . Then forU ∈ Ω(X ), instead of defining

�U = {F ∈ F(X ) | F ⊆ U},
we define

�U = {V ∈ Ω(X ) \ {X} | V c ⊆ U}
= {V ∈ Ω(X ) \ {X} | U ∪ V = X}

and let the topology be generated by {�U | U ∈ Ω(X )}. With this change of
perspective, we can define the Vietoris space entirely in terms of the locale Ω(X ),
motivating the following definition.

Definition 7.4. The upper Vietoris space of a Stone locale L is the space whose
set of points is L− = {x ∈ L | x �= 1} and whose topology is generated by the sets

�x = {y ∈ L− | x ∨ y = 1}, x ∈ L.
Now suppose L is the Stone locale (Filt(A),⊆) for a BA A. The join F ∨ G of
two filters F,G ∈ L is the filter generated by F ∪ G , and the top element 1 of L is
the improper filter. Our UV (A) is exactly the topological space based on L− with
the topology generated by the sets

â = {F ∈ PropFilt(A) | a ∈ F }, a ∈ A.

We can now see that UV (A) is exactly the upper Vietoris space of the Stone locale
(Filt(A),⊆).
Proposition 7.5. Let L be the Stone locale of filters of a BA A. Then the topology
on L− generated by {�x | x ∈ L} is equal to the topology on L− generated by
{â | a ∈ A}.
Proof. Given a ∈ A, we have:

â = �↑−a.
For â ⊆ �↑−a, if F ∈ â, so F is a proper filter with a ∈ F , then clearly F ∨ ↑−a,
i.e., the filter generated by F ∪ ↑−a, is the improper filter, so F ∈ �↑−a. For
â ⊇ �↑−a, if F ∈ �↑−a, so F is a proper filter such that the filter generated by
F ∪ ↑−a is improper, then a ∈ F , so F ∈ â.
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Given F ∈ L, we have:
�F =

⋃
{−̂a | a ∈ F }.

For the left-to-right inclusion, suppose G ∈ �F , so G is a proper filter such that
F ∨ G is the improper filter. Hence there is some a ∈ F such that −a ∈ G ,
so that G ∈ −̂a and hence G ∈ ⋃{−̂a | a ∈ F }. From right to left, suppose
G ∈ ⋃{−̂a | a ∈ F }, so for some a ∈ F , G ∈ −̂a, which means −a ∈ G . Then
clearly F ∨ G is the improper filter, so G ∈ �F . 

Combining Proposition 7.5 with Definitions 3.9 and 7.4, we have the following
as an immediate corollary.

Corollary 7.6. For any BA A, UV (A) is the upper Vietoris space of the Stone
locale (Filt(A),⊆).
We can now justify our choice of the terminology ‘UV-space’ with the following
choice-free characterization.

Theorem 7.7. X is a UV-space iff X is homeomorphic to the upper Vietoris space
of a Stone locale.
Proof. Suppose X is a UV-space. Then by Theorem 5.4.2, X is homeomorphic
to UV (CORO(X )). By Corollary 7.6, UV (CORO(X )) is the upper Vietoris space
of the Stone locale (Filt(CORO(X )),⊆). Thus, X is homeomorphic to the upper
Vietoris space of a Stone locale.
Conversely, suppose X is homeomorphic to the upper Vietoris space of a Stone
locale L. By Lemma 7.3.2, L is isomorphic to (Filt(Z(L)),⊆). Thus, X is homeo-
morphic to the upperVietoris space of (Filt(Z(L)),⊆), which is equal toUV (Z(L))
by Corollary 7.6, which is a UV-space by Theorem 5.4.1. Thus, X is a UV-space. 

Theorem 7.7 is a choice-free point-free analogue of the statement that X is a
UV-space iff X is homeomorphic toU V (Y ) for a Stone space Y . The left-to-right
direction of that statement assumes the Boolean Prime Ideal Theorem (see Section
10.1). But by switching from Stone spaces to Stone locales, one obtains Theorem
7.7 without choice.

Remark 7.8. For a Stone locale L, in addition to defining the Vietoris space of
L, Johnstone [21, Section 4.1] defines the Vietoris locale of L, also known as the
Vietoris powerlocale of L.12 This is a purely localic construction, and the terminol-
ogy is justified by the fact that the space of points of the Vietoris locale of L is
homeomorphic to the Vietoris space of L. Similarly, one can give a purely localic
construction of the upper Vietoris locale of L, also known as the upper powerlocale
of L [37, 38], such that its space of points is homeomorphic to the upper Vietoris
space of L.

Figure 2 on the next page relates the different constructions we have discussed,
viewed as ways of constructing the dual UV-space of a given BA.

§8. Duality dictionary. In this section, we explain the dictionary in Table 1 for
translating between BA notions and UV notions.

12Johnstone studies these constructions for any compact regular locale L, but here we only need to
consider Stone locales.
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Figure 2. Routes to the dual UV-space of a BA and back.

8.1. Filters and ideals. For a filter F and ideal I in a BA A, we define:

�(F ) =
⋂

{â | a ∈ F };
�(I ) =

⋃
{â | a ∈ I }.

Fact 8.1. LetA be a BA andX its dualUV-space. Themap � is a dual isomorphism
between the poset of proper filters ofA (ordered by inclusion) and the poset of principal
upsets in the specialization order of X (ordered by inclusion).

Proof. Given a filter F in A, we have

�(F ) =
⋂

{â | a ∈ F }
= {F ′ ∈ UV (A) | ∀a ∈ F : F ′ ∈ â}
= {F ′ ∈ UV (A) | ∀a ∈ F : a ∈ F ′}
= {F ′ ∈ UV (A) | F ⊆ F ′}
= ⇑F,

where we recall that ⇑F = {G ∈ X | F � G}. By the same argument, any principal
upset ⇑F in the specialization order of the UV-space is equal to �(F ). Finally, it is
clear that F ⊆ F ′ iff �(F ) ⊇ �(F ′). 

Fact 8.2. Let A be a BA and X its dual UV-space. The map � is an isomorphism
between the poset of ideals of A (ordered by inclusion) and (ORO(X ),⊆).
Proof. First, we show that for any ideal I in A, we have �(I ) ∈ ORO(X ). The
set �(I ) is a union of basic opens and hence is open. We claim that �(I ) is also an
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Table 1. Dictionary for BA, UV, and Stone.

BA UV Stone
BA UV-space Stone space
Homomorphism UV-map Continuous map
Filter ⇑x, x ∈ X Closed set
Ideal U ∈ ORO(X ) Open set
Principal filter U ∈ CORO(X ) Clopen set
Principal ideal U ∈ CORO(X ) Clopen set
Maximal filter {x}, x ∈ Max�(X ) {x}, x ∈ X
Maximal ideal X \ ⇓x, x ∈ Max�(X ) X \ {x}, x ∈ X
Normal ideal U ∈ RO(X ) U ∈ RO(X )
Relativization Subspace U ∈ CORO(X ) Subspace U ∈ Clop(X )
Complete algebra Complete UV-space ED Stone space
Atom Isolated point Isolated point
ATomless algebra Xiso = ∅ Xiso = ∅

Atomic algebra cl(Xiso) = X cl(Xiso) = X
Homomorphic image Subspace induced by ⇑x, x ∈ X Subspace induced by closed set
Subalgebra Image under UV-map Image under continuous map
Direct product UV-sum Disjoint union
Canonical extension RO(X ) ℘(X )
MacNeille completion RO(X ) RO(X )

RO set. To see that it is an �-upset, if F ∈ �(I ), so for some a ∈ I , we have F ∈ â
and hence a ∈ F , then for any F ′ ⊇ F , we have a ∈ F ′ and hence F ′ ∈ â, so
F ′ ∈ �(I ). Then to see that �(I ) is an RO set, suppose F �∈ �(I ), so for all a ∈ I ,
F �∈ â and hence a �∈ F . Let F ′ be the filter generated by F ∪ {−a | a ∈ I }. We
claim that F ′ is proper. If not, then there are b ∈ F and a1, . . . , an ∈ I such that
b ∧−a1 ∧ · · · ∧−an = 0, so b ≤ a1 ∨ · · · ∨ an. Then since F is a filter, b ∈ F implies
a1∨· · ·∨an ∈ F . But since I is an ideal, a1, . . . , an ∈ I implies a1∨· · ·∨an ∈ I and
hence a1 ∨ · · · ∨ an �∈ F by our choice of F . From this contradiction, we conclude
that F ′ is proper. Then since −a ∈ F ′ for each a ∈ I , it follows that for any proper
filter F ′′ ⊇ F ′, we have F ′′ �∈ �(I ). This shows that �(I ) is an RO set by (4). This
in turn completes the proof that �(I ) ∈ ORO(X ), and it is easy to see that I ⊆ I ′
iff �(I ) ⊆ �(I ′).
Finally, to see that f is surjective, given any ORO subset U of UV (A), by
the proof of Theorem 3.13 we have U =

⋃{â | â ⊆ U}. We claim that the set
I = {a | â ⊆ U} is an ideal in A. If a ∈ I , so â ⊆ U , then for any b ≤ a, we
have b̂ ⊆ â and hence b̂ ⊆ U , so b ∈ I . Finally, if a, b ∈ I , so â, b̂ ⊆ U and hence
â ∪ b̂ ⊆ U , then we have int�(cl�(â ∪ b̂)) ⊆ int�(cl�(U )). Since U is an RO set,
we have int�(cl�(U )) = U , and then since int�(cl�(â ∪ b̂)) = â ∨ b, it follows that
â ∨ b ⊆ U and hence a ∨ b ∈ I . Thus, I is an ideal, and clearly �(I ) = U . 

Fact 8.3. Let A be a BA andX its dual UV-space. The restriction of � to principal
filters is a dual isomorphism between the poset of principal filters of A (ordered by
inclusion) and (CORO(X ),⊆).
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Proof. The map ↑a �→ â is the dual isomorphism, using the fact from Theorem
3.13 that â ∈ CORO(UV (A)). 

Fact 8.4. Let A be a BA andX its dual UV-space. The restriction of � to principal
ideals is a dual isomorphism between the poset of principal ideals of A (ordered by
inclusion) and (CORO(X ),⊆).
Proof. The map ↓a �→ â is the dual isomorphism. 

Fact 8.5. Let A be a BA andX its dual UV-space. The restriction of � to maximal
filters is a bijection between the collection of maximal filters of A and the collection
of singleton sets {x} for x ∈ Max�(X ).
Proof. Since the specialization order � of X is the inclusion order ⊆ on proper
filters of A, the elements of Max�(X ) are exactly the maximal filters of A. By
Fact 8.1, for any filter F , �(F ) = ⇑F , so if F is a maximal filter, then �(F ) = ⇑F =
{F }. 

Fact 8.6. Let A be a BA andX its dual UV-space. The restriction of � to maximal
ideals is a bijection between the collection of maximal ideals of A and the collection
of sets X \ ⇓x for x ∈ Max�(X ).
Proof. If I is a maximal ideal in A, then the complement F of I is a maximal
filter in A and hence an element of Max�(X ). We claim that �(I ) =

⋃{â | a ∈
I } = X \⇓F . For the⊆ inclusion, ifG ∈ �(I ), then for some a ∈ I , we haveG ∈ â
and hence a ∈ G , which implies G �⊆ F . Conversely, if G ∈ X \ ⇓F , then G �⊆ F ,
so there is an a ∈ G such that a �∈ F . Thus, we have an a ∈ I such that G ∈ â and
hence G ∈ �(I ). 

In Section 8.7 we will prove a correspondence between the normal ideals ofA and
sets in RO(UV (A)).

8.2. Relativization. As one would expect by analogywith standard Stone duality,
the operation on aUV-space dual to relativizing a BA to an element is the operation
of taking a CORO subspace of a UV-space.
Proposition 8.7. Let X be a UV-space. If U ∈ CORO(X ), then U with the
subspace topology is a UV-space.
Proof. It is well known that every compact open subspace of a spectral space is
again spectral.13 Thus, since X is a spectral space, so is the subspace induced by U .
We denote the interior and closure operations given by the restriction of � to U by
intU� and cl

U
�, respectively. It is easy to check that CO(U ) = {V ∩U | V ∈ CO(X )}.

We will now show that CORO(U ) = {V ′ ∩U | V ′ ∈ CORO(X )}. Let V ⊆ U . We
first prove that

V ∈ CORO(U ) iff V ∈ CORO(X ). (12)
Let V ∈ CORO(U ). Then clearly V ∈ CO(X ). We will show that V ∈ RO(X ).
Since V is open in U , it is open in X . So V is an �-upset, and V ⊆ int�cl�(V ).

13This fact does not use any choice. To see that an open subspace of X is sober, suppose U is such
a subspace. To prove that U is sober, it suffices to show (see [25, p. 2]) that any open V � U is meet-
irreducible iff it is the complement of the closure of a point. Let V be an open proper subset of U , and
suppose V is meet-irreducible, so for all open A, B ⊆ U , if A ∩ B ⊆ V , then A ⊆ V or B ⊆ V . But
then note that V is also a meet-irreducible proper open subset of X . So by the sobriety of X , we have
V = X \ cl{x} for some x ∈ X . Now if x ∈ X \ U and hence cl{x} ⊆ X \ U , then together V � U
and V = X \ cl{x} implyU = V , a contradiction. Thus, x ∈ U and V = U \ clU {x}.
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Now suppose x ∈ int�cl�(V ). Then for each y ∈ X with x � y, there is z ∈ X with
y � z and z ∈ V , which with V ⊆ U implies z ∈ U . Thus, x ∈ int�cl�(U ), which
implies x ∈ U since U ∈ RO(X ). Together x ∈ int�cl�(V ) and x ∈ U imply
x ∈ intU�cl

U
�(V ), which implies x ∈ V since V ∈ RO(U ). Thus, int�cl�(V ) ⊆ V ,

so V ∈ RO(X ).
Conversely, suppose V ∈ CORO(X ). Then clearly V ∈ CO(U ). To show that
V ∈ RO(U ), suppose x ∈ U but x �∈ V . Then since V ∈ RO(X ), there is a y ∈ X
such that (a) x � y and (b) for all z ∈ X with y � z, we have z �∈ V . Since U
is an �-upset with x ∈ U , (a) implies y ∈ U . In addition, (b) implies that for all
z ∈ U with y � z, we have z �∈ V . Thus, we have shown that if x �∈ V , then there
is a y ∈ U such that x � y and for all z ∈ U with y � z, we have z �∈ V . Hence
V ∈ RO(U ).
The left-to-right direction of (12) yields CORO(U ) ⊆ CORO(X ). Now let V ′ ∈

CORO(X ). Then V ′ ∩U ∈ CORO(X ) and V ′ ∩U ⊆ U , so V ′ ∩U ∈ CORO(U )
by the right-to-left direction of (12). Therefore we have proved that CORO(U ) =
{V ′ ∩U | V ′ ∈ CORO(X )}.
Next, we show that if V ∈ CO(U ), then intU�(U \ V ) ∈ CO(U ). Note that
for each W ⊆ U , we have intU�(W ) = U ∩ int�((X \ U ) ∪ W ). So intU�(U \
V ) = U ∩ int�((X \ U ) ∪ (U \ V )) = U ∩ int�(X \ V ). Since X is a UV-space,
int�(X \ V ) ∈ CORO(X ). Then as U ∈ CO(X ) and CO(X ) is closed under finite
intersections, intU�(U \ V ) ∈ CO(X ). So intU�(U \ V ) ∈ CO(U ).
Finally, let F be a filter in CORO(U ). Let F ′ be the filter in CORO(X ) generated
by F . Then F ′ = CORO(x) for some x ∈ X . But then x ∈ V for each V ∈ F . So
x ∈ U and F = CORO(x). Thus, U is a UV-space. 

Proposition 8.8. Let X be a UV-space. For any U ∈ CORO(X ), the rela-
tivization of the BA CORO(X ) to U is the dual of the subspace of X induced
by U .

Proof. The proposition follows from two facts. First, by Proposition 8.7, the
subspaceofX inducedbyU is aUV-space, sobyTheorem5.4.2,U is homeomorphic
to UV (CORO(U )). Second, CORO(U ) = {V ′ ∩ U | V ′ ∈ CORO(X )} is the
relativization of the BA CORO(X ) to U . 

8.3. Completeness. We now characterize the UV-duals of complete BAs.

Definition 8.9. A UV-space X is complete iff int(cl(U )) ∈ CORO(X ) for every
open U .

Proposition 8.10. Let A be a BA and X its dual UV-space.

1. If {Ui}i∈I ⊆ CORO(X ), then {Ui}i∈I has a meet in CORO(X ) iff

int
⋂
i∈I
Ui ∈ CORO(X ),

in which case ∧
i∈I
Ui = int

⋂
i∈I
Ui .
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2. If {Ui}i∈I ⊆ CORO(X ), then {Ui}i∈I has a join in CORO(X ) iff
int(cl

⋃
i∈I
Ui) ∈ CORO(X ),

in which case ∨
i∈I
Ui = int(cl

⋃
i∈I
Ui).

3. A is complete iff X is complete.

Proof. For part 1, if int
⋂
i∈I
Ui ∈ CORO(X ), then clearly int⋂

i∈I
Ui is the greatest

lower bound in CORO(X ) of {Ui}i∈I . Conversely, if
∧
i∈I
Ui exists in CORO(X ),

then we claim that
∧
i∈I
Ui = int

⋂
i∈I
Ui . By the proof of Theorem 3.13, for each

i ∈ I , we have Ui = âi for some ai ∈ A, so
∧
i∈I
Ui =

∧
i∈I
âi . Since a �→ â is an

isomorphism fromA to CORO(X ), we have ∧
i∈I
âi =

∧̂
i∈I
ai . Thus, it suffices to show

that
∧̂
i∈I
ai = int

⋂
i∈I
âi . Suppose F ∈ ∧̂

i∈I
ai . Then since

∧̂
i∈I
ai ⊆

⋂
i∈I
âi and

∧̂
i∈I
ai is

open, we have F ∈ int
⋂
i∈I
âi . For the reverse inclusion, suppose F ∈ int

⋂
i∈I
âi , so

there is a U ∈ CORO(X ) such that F ∈ U ⊆ ⋂
i∈I
âi . Then U = b̂ for some b ∈ A,

and b̂ ⊆ ⋂
i∈I
âi implies that b is a lower bound of {ai}i∈I in A, so b ≤ ∧

i∈I
ai . Then

we have the following chain of implications:

F ∈ b̂ ⇒ b ∈ F ⇒
∧
i∈I
ai ∈ F ⇒ F ∈

∧̂
i∈I
ai .

For part 2, if
∨
i∈I
Ui exists in CORO(X ), then we claim that ∨

i∈I
Ui = int(cl

⋃
i∈I
Ui).

By the proof of Theorem 3.13, for each i ∈ I , we have Ui = âi for some ai ∈ A,
so

∨
i∈I
Ui =

∨
i∈I
âi . Since a �→ â is an isomorphism from A to CORO(X ), we have

∨
i∈I
âi =

∨̂
i∈I
ai . Thus, it suffices to show that

∨̂
i∈I
ai = int(cl

⋃
i∈I
âi). For the right-to-left

inclusion, since
⋃
i∈I
âi ⊆

∨̂
i∈I
ai and

∨̂
i∈I
ai ∈ CORO(X ) = CRO(X ) (by Corollary

4.2), we have int(cl
⋃
i∈I
âi) ⊆ int(cl

∨̂
i∈I
ai) =

∨̂
i∈I
ai . For the left-to-right inclusion,

since
∨̂
i∈I
ai is open, it suffices to show

∨̂
i∈I
ai ⊆ cl

⋃
i∈I
âi . Consider any F ∈ ∨̂

i∈I
ai and

basic open neighborhood U of F , soU = b̂ for some b ∈ A. Then since F ∈ b̂ and
F ∈ ∨̂

i∈I
ai , we have b ∈ F and

∨
i∈I
ai ∈ F , so b ∧

∨
i∈I
ai =

∨
i∈I
(b ∧ ai) ∈ F .14 Since F

14Here we use the join-infinite distributive law for BAs, which says that if
∨
i∈I
ai exists, then

∨
i∈I
(b∧ai )

exists and b ∧ ∨
i∈I
ai =

∨
i∈I
(b ∧ ai ) [11, p. 47, Lemma 3].
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is a proper filter, it follows that for some i ∈ I , b ∧ ai �= 0 and hence b̂ ∩ âi �= ∅.
Thus, b̂ ∩ ⋃

i∈I
âi �= ∅. This shows that F ∈ cl

⋃
i∈I
âi .

For part 3, suppose X is complete. For any {ai}i∈I ⊆ A, the set
⋃
i∈I
âi is open,

so by the completeness of X , we have int(cl
⋃
i∈I
âi) ∈ CORO(X ), in which case ∨

i∈I
ai

exists by part 2. Conversely, suppose A is complete and U is an open set in X .
Then by Definition 5.1.1, we have that U =

⋃{V ∈ CORO(X ) | V ⊆ U}. Since
A is complete, so is the isomorphic CORO(X ), so ∨{V ∈ CORO(X ) | V ⊆ U}
exists. Then by part 2,

∨{V ∈ CORO(X ) | V ⊆ U} = int(cl
⋃{V ∈ CORO(X ) |

V ⊆ U}), so int(cl⋃{V ∈ CORO(X ) | V ⊆ U}) ∈ CORO(X ), i.e., int(clU ) ∈
CORO(X ). Hence X is complete. 

Remark 8.11. In contrast to the equality in Proposition 8.10.2 for arbitrary
joins, we observed in Proposition 5.3 that for finite joins, we have U1 ∨ · · · ∨ Un =
int�(cl�(U1∪· · ·∪Un)). However, we cannot assert this equality for arbitrary joins,
as it is refutable in ZF + Boolean Prime Ideal Theorem. To see this, suppose F is
a nonprincipal ultrafilter. Then

∧
F = 0. For if b is a lower bound of F , then

since F is nonprincipal, b �∈ F , and then since F is an ultrafilter, −b ∈ F . But
then b ≤ −b, so b = 0. Now since ∧F = 0, we have ∨{−a | a ∈ F } = 1, so∨{−a | a ∈ F } ∈ F . Thus, we have F ∈ ∨{−a | a ∈ F }

∧

=
∨{−̂a | a ∈ F }, yet

clearly F �∈ int�(cl�
⋃{−̂a | a ∈ F }); since F is an ultrafilter, it is maximal in �,

so F ∈ int�(cl�
⋃{−̂a | a ∈ F }) implies F ∈ ⋃{−̂a | a ∈ F }, contradicting the

fact that F is a proper filter.

Lemma 8.12. IfX is a complete UV-space andU ∈ CORO(X ), then the subspace
induced by U is a complete UV-space.

Proof. By Proposition 8.7, U with the subspace topology is a UV-space. To
show that CORO(U ) is complete, it suffices to show that all meets exist. Thus, by
Proposition 8.10.1, it suffices to show that for any {Ui}i∈I ⊆ CORO(U ), we have
intU

⋂
i∈I Ui ∈ CORO(U ). We show that intU ⋂

i∈I Ui = U ∩ int
⋂
i∈I Ui . Suppose

x ∈ intU
⋂
i∈I Ui . Then there is an open setUx ⊆ U such that x ∈ Ux andUx ⊆ Ui

for each i ∈ I . But then x ∈ U ∩ int
⋂
i∈I Ui . Conversely, if x ∈ U ∩ int

⋂
i∈I Ui ,

then x ∈ U and there is an open set Vx such that x ∈ Vx and Vx ⊆ Ui for each
i ∈ I . But then Vx ⊆ U and so x ∈ intU

⋂
i∈I Ui .

Therefore, by Proposition 8.10.1, intU (
⋂
i∈I Ui) is the intersection of two

CORO(U ) sets and thus, by Proposition 8.7, intU ⋂
i∈I Ui ∈ CORO(U ). 


8.4. Atoms. Recall that an isolated point of a space X is an x ∈ X such that {x}
is open.

Proposition 8.13. The map a �→ ↑a is a bijection from the atoms of a BA to the
isolated points of its dual UV-space.

Proof. If a is an atom of the BA A, then clearly â = {↑a}, and â is open in
UV (A), so ↑a is an isolated point. If a �= b, then ↑a �= ↑b, so the map is injective.
Finally, to see that the map is surjective, if F is an isolated point, then {F } is
open and hence {F } ∈ CORO(UV (A)) by Definition 5.1.1. Thus, by the proof of
Theorem 3.13, there is some a ∈ A such that â = {F }, which implies that a is an
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atom. For if a is not an atom, then there is a b < a with b �= 0, in which case the
proper filters ↑b and ↑a are distinct and belong to â. Since a is an atom, â = {↑a},
so F = ↑a. 

Corollary8.14. ABA is atomless iff the set of isolated points of its dualUV-space
is empty.

Let Xiso be the set of all isolated points of the space X and At(A) the set of all
atoms of the BA A.

Proposition 8.15. Let A be a BA and X its dual space. The following are
equivalent:

1. A is atomic;
2. int(clXiso) = X ;
3. the set of isolated points is dense in X , i.e., clXiso = X .

Proof. 1⇒ 2. If A is atomic, then 1 = ∨{a ∈ A | a ∈ At(A)}. Then X = 1̂ =∨{a ∈ A | a ∈ At(A)}
∧

=
∨{â ∈ A | a ∈ At(A)} = int(cl

⋃{â | a ∈ At(A)}) =
int(clXiso) by Propositions 8.10.2 and 8.13.
2⇒ 3. Since int(clXiso) ⊆ clXiso, int(clXiso) = X implies clXiso = X .
3 ⇒ 1. We need to show that 1 = ∨{a ∈ A | a ∈ At(A)}. In dual terms this
means that X = 1̂ =

∨{a ∈ A | a ∈ At(A)}
∧

. By Propositions 8.10.2 and 8.13, we

have
∨{a ∈ A | a ∈ At(A)}
∧

= int(clXiso). As cl(Xiso) = X , we have int(clXiso) =
intX = X . 

8.5. Subalgebras and homomorphic images. Wenowcharacterize subalgebras and
homomorphic images of BAs in terms of UV-spaces.

Definition 8.16. Let X and Y be UV-spaces. An injective UV map f : X → Y
is a UV-embedding if for every U ∈ CORO(X ) there is a V ∈ CORO(Y ) such that
f[U ] = f[X ] ∩ V .
Fact 8.17. Let A and B be BAs and h : A → B a homomorphism. Let h+ :
UV (B)→ UV (A) be the UV-map dual to h. Then:
1. if h is injective, then h+ is surjective;
2. if h is surjective, then h+ is a UV-embedding.

Proof. For part 1, consider a proper filter F ∈ UV (A), and let G = {b ∈ A |
∃a ∈ h[F ] : a ≤ b}. We show that G is a proper filter such that h−1[G ] = F .
Suppose 0B ∈ G . Then 0B ∈ h[F ], so there is an a ∈ F such that h(a) = 0B. As
F is proper, a �= 0A, which is a contradiction as h is injective and h(0A) = 0B.
Now if c, d ∈ G , then there are a, b ∈ F such that h(a) ≤ c and h(b) ≤ d .
Since F is a filter, a, b ∈ F implies a ∧ b ∈ F , so h(a ∧ b) ∈ h[F ]. Then since
h(a ∧ b) = h(a) ∧ h(b) ≤ c ∧ d , we have c ∧ d ∈ G . It is also obvious that G is an
upset. Thus, G is a proper filter.
We now show that h−1[G ] = F . Clearly F ⊆ h−1[G ]. Suppose a ∈ h−1[G ].

Then h(a) ∈ G , so there is a b ∈ F such that h(b) ≤ h(a). If a /∈ F , then b � a
and so a ∧ b �= b. On the other hand, h(a ∧ b) = h(a) ∧ h(b) = h(b), which is
a contradiction as h is injective. Therefore, h−1[G ] = F . As h+(G) = h−1[G ], we
obtain that h+ is a surjective UV-map.
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For part 2, let F andG be proper filters in B such that F �= G . Then without loss
of generality there is a b ∈ F such that b /∈ G . As h is surjective there is an a ∈ A
such that h(a) = b. Obviously, a ∈ h−1[F ] and a /∈ h−1[G ]. So h−1[F ] �= h−1[G ],
implying that h+ is injective. Finally, we check the UV-embedding condition. Each
U ∈ CORO(UV (B)) is of the form b̂ for some b ∈ B. Since h is surjective,
there is an a ∈ A such that h(a) = b, so h+[b̂] = h+[ĥ(a)]. Now it suffices to
show

h+[ĥ(a)] = h+[UV (B)] ∩ â.
From left to right, suppose F ∈ h+[ĥ(a)], so there is aG ∈ ĥ(a) such that h+(G) =
F . Since G ∈ ĥ(a), we have h(a) ∈ G . Since h+(G) = F , we have h−1[G ] = F .
From h(a) ∈ G and h−1[G ] = F , we have a ∈ F , so F ∈ â. From right to left,
suppose F ∈ h+[UV (B)] ∩ â. Since F ∈ h+[UV (B)], there is a G ∈ UV (B) such
that h+(G) = F and hence h−1[G ] = F . Since F ∈ â, we have a ∈ F and hence
h(a) ∈ G . Thus, G ∈ ĥ(a), which with h+(G) = F implies F ∈ h+[ĥ(a)]. This
completes the proof. 

Fact 8.18. Let X and Y be UV-spaces and f : X → Y a UV-map. Let f+ :

CORO(Y )→ CORO(X ) be the homomorphism dual to h. Then:
1. if f is surjective, then f+ is injective;
2. if f is UV-embedding, then f+ is surjective.
Proof. For part 1, suppose for U,V ∈ CORO(Y ) that U �= V . Suppose y ∈
U \V . Sincef is surjective, there is an x ∈ X such thatf(x) = y, so x ∈ f−1[U ] =
f+[U ] but x �∈ f−1[V ] = f+(V ). Hence f+ is injective.
For part 2, supposeU ∈ CORO(X ). Then since f is a UV-embedding, there is a
V ∈ CORO(Y ) such thatf[U ] = f[X ]∩V . Thenf−1[f[U ]] = f−1[f[X ]∩V ] =
f−1[f[X ]] ∩f−1[V ] = X ∩f−1[V ] = f−1[V ]. Since f is injective, f−1[f[U ]] =
U . Hence U = f−1[V ] = f+[V ]. 

Corollary 8.19.
1. There is a one-to-one correspondence between subalgebras of a BA A and images
via onto UV-maps of its dual UV-space XA.

2. There is a one-to-one correspondence between homomorphic images of a BA A
and subspaces induced by principal upsets in the specialization order of the dual
UV-space XA.

Proof. Part 1 follows from Facts 8.17.1 and 8.18.1 and Theorem 6.7.
Since there is a one-to-one correspondence between homomorphic images of A
and filters ofA, part 2 follows directly fromFact 8.1.However, we also sketch amore
direct argument. By Facts 8.17.2 and 8.18.2 and Theorem 6.7, there is a one-to-one
correspondence between homomorphic images of A and UV-embeddings into its
dual XA. Let B be a homomorphic image of A via h. Then h+ : XB → XA is a UV-
embedding. First, since h+ is an injective p-morphism, h+[XB] is a principal upset
in the specialization order of XA. Second, if Y is the subspace of XA induced by
h+[XB], we claim thatXB and Y are homeomorphic via the bijection h+ : XB → Y .
Since h+ is a continuous map from XB to XA, it follows that h+ is a continuous map
from XB to Y , and since h+ is a UV-embedding from XB to XA, it follows that h+ is
an open map from XB to Y . 
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8.6. Products. The operation on UV-spaces dual to taking direct products of
BAs is the following.

Definition 8.20. TheUV-sum of disjoint UV-spacesX andY is the spaceX©Y
whose underlying set is X ∪ Y ∪ (X × Y ) and whose topology is generated by the
collection of sets

U ∪ V ∪ (U × V )
for U ∈ CORO(X ) and V ∈ CORO(Y ).

The following lemma is helpful for visualizing UV-sums.

Lemma 8.21. Given UV-spaces X and Y with specialization orders �X and �Y ,
respectively, the specialization order in X © Y is given by:

�X ∪ �Y ∪
{〈〈x, y〉, x′〉 | x �X x′} ∪ {〈〈x, y〉, y′〉 | y �Y y′} ∪
{〈〈x, y〉, 〈x′, y′〉〉 | x �X x′, y �Y y′}. (13)

Proof. Suppose 〈z, z′〉 belongs to the set in (13), and z belongs to an open set
U ∪ V ∪ (U × V ) of X © Y . We must show that z′ also belongs to the set. There
are five cases. If z �X z′ (resp. z �Y z′), then z ∈ U (resp. z ∈ V ), which with
U ∈ CORO(X ) (resp. V ∈ CORO(Y )) implies z′ ∈ U (resp. z′ ∈ V ) and hence
z′ ∈ U ∪ V ∪ (U × V ). On the other hand, if z = 〈x, y〉, then 〈x, y〉 ∈ U × V , so
x ∈ U and y ∈ V . Therefore, if x �X z′ (resp. y �Y z′), then z′ ∈ U (resp. z′ ∈ V )
and hence z′ ∈ U ∪ V ∪ (U × V ). Similarly, if z′ = 〈x′, y′〉, and x �X x′ and
y �Y y′, then x′ ∈ U and y′ ∈ V , so z′ ∈ U × V . This completes the proof that
z �X©Y z′.
Conversely, suppose 〈z, z′〉 does not belong to the set in (13). Again there are five
cases. For example, if z, z′ ∈ X , it follows that z ��X z′, so there is an open set U of
X such that z ∈ U but z′ �∈ U , andU is open inX©Y , so z ��X©Y z′. Similarly, if
z = 〈x, y〉 and z′ ∈ X , it follows that x ��X z′, so there is an open set U of X such
that x ∈ U but z′ �∈ U . Thus, 〈x, y〉 ∈ U ∩Y ∪ (U ×Y ) but z′ �∈ U ∪Y ∪ (U ×Y ),
so 〈x, y〉 ��X©Y z′. The other cases are analogous. 


Example 8.22. For finite UV-spaces, the UV-sum is easily drawn. Figure 3
shows the UV-sum of the UV-duals of the four-element and two-element BAs,
4 and 2 (recall Corollary 5.5.4). Solid lines indicate the specialization order � in
UV (4), so x � y1 and x � y2. Dashed lines indicate the new part of the rela-
tion defined in Lemma 9.2. Note that UV (4)© UV (2) = UV (4 × 2) in line with
Proposition 8.23.

Proposition 8.23. For any BAs A and B, UV (A)© UV (B) is homeomorphic to
UV (A× B).

Proof. Given F ∈ UV (A×B), so that F is a proper filter in A×B, we have that
FA = {a | ∃b : 〈a, b〉 ∈ F } and FB = {b | ∃a : 〈a, b〉 ∈ F } are filters in A and
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B, respectively, at least one of which is a proper filter. We define a function h from
UV (A× B) to UV (A)©UV (B) as follows:

h(F ) =

⎧⎪⎨
⎪⎩
FA if FB is improper,
FB if FA is improper,
〈FA, FB〉 otherwise.

We claim that h is a homeomorphism fromUV (A×B) toUV (A)©UV (B). Clearly
h is injective. For surjectivity, supposeG ∈ UV (A)©UV (B). If G ∈ UV (A), then
for F = {〈a, b〉 | a ∈ G, b ∈ B} ∈ UV (A × B), we have that G = FA and FB is
improper, soG = h(F ). Similarly, ifG ∈ UV (B), then for F = {〈a, b〉 | a ∈ A, b ∈
G} ∈ UV (A×B), we have thatG = FB and FA is improper, so G = h(F ). Finally,
if G = 〈GA, GB〉 forGA ∈ UV (A) andGB ∈ UV (B), thenGA ×GB ∈ UV (A×B)
and G = h(GA ×GB), since (GA ×GB)A = GA and (GA ×GB)B = GB. Thus, h is
surjective.
To show that h is continuous, it suffices to show that the inverse image of each
basic open is open. By Definition 8.20, each basic open in UV (A)© UV (B) is of
the formU ∪V ∪ (U ×V ) forU ∈ CORO(UV (A)) and V ∈ CORO(UV (B)). By
the proof of Theorem 3.13, U = â and V = b̂ for some a ∈ A and b ∈ B, so our
basic open in UV (A)©UV (B) is â ∪ b̂ ∪ (â × b̂). Then we have:

h−1[â ∪ b̂ ∪ (â × b̂)] = h−1[â] ∪ h−1[b̂] ∪ h−1[â × b̂]
= 〈̂a, 0〉 ∪ 〈̂0, b〉 ∪ 〈̂a, b〉,

so h−1[â ∪ b̂ ∪ (â × b̂)] is a union of basic opens in UV (A× B).
Finally, to see that h−1 is continuous, for any basic open set 〈̂a, b〉 ofUV (A×B),
we have:

〈̂a, b〉 = {F ∈ PropFilt(A× B) | 〈a, b〉 ∈ F and FB improper} ∪
{F ∈ PropFilt(A× B) | 〈a, b〉 ∈ F and FA improper} ∪
{F ∈ PropFilt(A× B) | 〈a, b〉 ∈ F and FA, FB proper},

which implies

h[〈̂a, b〉] = â ∪ b̂ ∪ (â × b̂),

UV (4)

x

y1 y2

UV (2)

z

UV (4)©UV (2)
UV (4× 2)

〈x, z〉

x 〈y1, z〉 〈y2, z〉

y1 y2 z

Figure 3. UV-sum of the UV-duals of the BAs 4 and 2.
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so that h[〈̂a, b〉] is basic open in UV (A)©UV (B). 

Corollary 8.24. For any UV-spaces X and Y , X © Y is a UV-space.
Proof. By Theorem 5.4.2, X and Y are respectively homeomorphic to
UV (CORO(X )) andUV (CORO(Y )), which implies thatX©Y is homeomorphic
to UV (CORO(X ))© UV (CORO(Y )). By Proposition 8.23, UV (CORO(X ))©
UV (CORO(Y )) is homeomorphic to UV (CORO(X ) × CORO(Y )), which is a
UV-space by Theorem 5.4.1. Thus, by the two homeomorphisms, X © Y is a
UV-space. 

Corollary 8.25. For any UV-spacesX and Y , CORO(X ©Y ) is isomorphic to

CORO(X )× CORO(Y ).
Proof. Apply Proposition 8.23 and duality (Theorem 6.7). 


Remark 8.26. Another natural question is how one can characterize products in
the category of UV-spaces with UV-maps, which will be the duals of coproducts in
the category of BAs with BA homomorphisms. We cannot characterize the product
of UV-spaces X and Y as a topological space based on the Cartesian product of
the underlying sets of X and Y . E.g., if we take the Cartesian product of two copies
of the three-element set underlying UV (4) (Figure 3), then we obtain a set with
nine elements; this cannot be the underlying set of any poset obtained from a BA
by deleting its top element, so by Corollary 5.5.4 it cannot be the underlying set of
a UV-space. We leave for future work the problem of characterizing products in the
category of UV-spaces, which is reminiscent of the open problem of characterizing
products in the category of Esakia spaces [9].

8.7. Completions. The canonical extension of a BA A, as defined in [10], is the
unique (up to isomorphism) complete BAB forwhich there is a Boolean embedding
e of A into B such that every element of B is a join of meets of e-images of elements
of A, and for any sets S and T of elements of A, if

∧
e[S] ≤ ∨

e[T ], then there are
finite sets S′ ⊆ S andT ′ ⊆ T such that∧S′ ≤ ∨

T ′. It is shown in [17, Section 5.6]
that the canonical extension of a BA A can be constructed without choice as the BA
of all regular open upsets in the poset of proper filters of A ordered by inclusion.
Putting this in terms of UV-spaces, we have the following.

Theorem 8.27. Let A be a BA and X its dual UV-space. Then RO(X ) is (up to
isomorphism) the canonical extension of A.

TheMacNeille completion of a BAA is the unique (up to isomorphism) complete
BA B for which there is a Boolean embedding e of A into B such that every
nonminimum element of B is above the e-image of some nonminimum element of
A (see, e.g., [11, Chapter 25]). The MacNeille completion of B may be constructed
as the lattice of normal ideals of B ordered by inclusion; an ideal I of B is normal
iff I = I u� , where for any A ⊆ B, Au is the set of upper bounds of A, and A� is the
set of lower bounds of A.15

15The MacNeille completion of a BA A can also be constructed as the BA of all regular open upsets
in the poset that results from deleting the bottom element of A and reversing the restricted order [17,
Section 5.6].
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Theorem 8.28. Let A be a BA and X its dual UV -space. Then RO(X ) is (up to
isomorphism) the MacNeille completion of A.

Proof. We show an order isomorphism between RO(X ) and the set of normal
ideals of A ordered by inclusion. It suffices to define an inclusion-preserving map
r from normal ideals to RO(X ) and an inclusion-preserving map i from RO(X ) to
normal ideals such that i(r(I )) = I and r(i(U )) = U .
Suppose I is a normal ideal, so I = I u� . Let r(I ) :=

⋃{ĉ | c ∈ I }. To see that
r(I ) ∈ RO(X ), let U :=

⋃{−̂a | a ∈ I u}. Then as in the proof of Proposition 4.3,
we have

U ∗ =
⋃

{ĉ | ∀a ∈ I u −a ∧ c = 0}
=

⋃
{ĉ | ∀a ∈ I u c ≤ a}

=
⋃

{ĉ | c ∈ I u�}
=

⋃
{ĉ | c ∈ I } = r(I ).

Thus, r(I ) ∈ RO(X ). Clearly I ⊆ J implies r(I ) ⊆ r(J ).
In the other direction, suppose V ∈ RO(X ). Let i(V ) = {−b | b̂ ⊆ V ∗}� . It is
easy to see that for any S ⊆ A, S� is a normal ideal, so i(V ) is a normal ideal. Also
observe that i is inclusion-preserving:

V ⊆ U
⇒ U ∗ ⊆ V ∗

⇒ {−b | b̂ ⊆ U ∗} ⊆ {−b | b̂ ⊆ V ∗}
⇒ {−b | b̂ ⊆ V ∗}� ⊆ {−b | b̂ ⊆ U ∗}�
⇒ i(V ) ⊆ i(U ).

Next, observe:

i(r(I )) = i
(⋃{ĉ | c ∈ I })

= {−b | b̂ ⊆ (⋃{ĉ | c ∈ I })∗}�
= {−b | b̂ ⊆

⋃
{d̂ | ∀c ∈ I c ∧ d = 0}}�

= {−b | b̂ ⊆
⋃

{d̂ | ∀c ∈ I c ≤ −d}}�

= {−b | ↑b ∈
⋃

{d̂ | ∀c ∈ I c ≤ −d}�

= {−b | ∃d : b ≤ d and ∀c ∈ I c ≤ −d}�
= {−b | ∀c ∈ I c ≤ −b}�
= I u� = I.

Finally, observe:

r(i(U )) = r({−b | b̂ ⊆ U ∗}�)
=

⋃
{ĉ | c ∈ {−b | b̂ ⊆ U ∗}�}.

=
⋃

{ĉ | ∀b (b̂ ⊆ U ∗ ⇒ c ≤ −b)}
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=
⋃

{ĉ | ∀b (b̂ ⊆ U ∗ ⇒ b ∧ c = 0)}
= U ∗∗ = U.

This completes the proof. 


§9. Example applications. In this section, we apply our duality to prove some
basic theorems about BAs in Propositions 9.1, 9.3, and 9.8.

9.1. Chains and antichains in BAs. By an antichain in a BA, wemean a collection
C of elements such that for all x, y ∈ C with x �= y, we have x ∧ y = 0.
Proposition 9.1. Every infinite BA contains infinite chains and infinite antichains.

Proof. By duality, it suffices to show that in any infinite UV-space X , there is
an infinite descending chain U0 � U1 � · · · of sets from CORO(X ), as well as an
infinite family of pairwise disjoint sets from CORO(X ). For this it suffices to show
(�): for any n ∈ N, there is a descending chain U0 ⊇ U1 ⊇ · · · ⊇ Un of infinite
sets from CORO(X ) such that Ui ∩ ¬Ui+1 �= ∅ for each i ∈ n. For then by DC,
there is an infinite descending chain U0 ⊇ U1 ⊇ · · · of sets from CORO(X ) with
Ui ∩ ¬Ui+1 �= ∅ for each i ∈ N, in which case {U0 ∩ ¬U1, U1 ∩ ¬U2, . . . } is our
antichain.
We prove (�) by induction. LetU0 = X . For the inductive step, sinceUn is infinite
and X is T0, there are x, y ∈ Un such that x �� y. Then by the separation property
of UV-spaces, there is a V ∈ CORO(X ) such that x ∈ V and y �∈ V , which with
y ∈ Un and Un,V ∈ RO(X ) implies that there is a z � y such that z ∈ Un ∩ ¬V .
Since Un,V ∈ CORO(X ), we have Un ∩ V,Un ∩ ¬V ∈ CORO(X ) by Definition
5.1.1; and since z ∈ Un ∩ ¬V and x ∈ Un ∩ V , we have z ∈ Un ∩ ¬(Un ∩ V ) �= ∅
and x ∈ Un ∩ ¬(Un ∩ ¬V ) �= ∅. Thus, if Un ∩ V is infinite, then we can set
Un+1 := Un ∩V , and otherwise we claim thatUn ∩ ¬V is infinite, in which case we
can set Un+1 := Un ∩ ¬V . Since Un ∈ RO(X ), we may regard Un as a separative
partial order. Given V ∈ RO(X ), we have Un ∩ V,Un ∩ ¬V ∈ RO(Un) and
Un ∩ ¬V = ¬n(Un ∩ V ), where ¬n is the complement operation in RO(Un). Then
since Un is infinite, by Lemma 2.3 either Un ∩ V or ¬n(Un ∩ V ) is infinite, as
desired. 

9.2. Products of BAs. Before our second example application in Proposition 9.3,
we prove a preliminary lemma. Recall from Proposition 8.7 that a subspace of a
UV-space induced by a CORO set is also a UV-space.
Lemma 9.2. If X is a UV-space and U ∈ CORO(X ), then X is homeomorphic to
the UV-sum of the subspaces induced by U and ¬U , respectively.
Proof. ByCorollary 5.5.3, (X,�) has ameet x�y for any two elements x, y ∈ X .
We define f : U ©¬U → X as follows: if z ∈ U ∪ ¬U , then f(z) = z; otherwise
z = 〈x, y〉 for x ∈ U and y ∈ ¬U , so we define f(〈x, y〉) = x � y. That f is a
bijection follows from Corollary 5.5.5. To see that f is continuous, we show that
the inverse image of each basic open is open. Given V ∈ CORO(X ), we have:

f−1[V ] = (U ∩ V ) ∪ (¬U ∩ V ) ∪ {〈x, y〉 | x ∈ U, y ∈ ¬U,x � y ∈ V }
= (U ∩ V ) ∪ (¬U ∩ V ) ∪ ((U ∩ V )× (¬U ∩ V )),
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where we have used the fact that V is a filter with respect to � (Corollary 5.5.3).
Since U ∩ V ∈ CORO(U ) and ¬U ∩ V ∈ CORO(¬U ), it follows from the above
equation and Definition 8.20 that f−1[V ] is open in U ©¬U .
Finally, to see that f−1 is continuous, each basic open of U ©¬U is of the form
V ∪V ′ ∪ (V ×V ′) for V ∈ CORO(U ) and V ′ ∈ CORO(¬U ) by Definition 8.20.
Then V,V ′ ∈ CORO(X ) and

f[V ∪V ′ ∪ (V × V ′)] = f[V ] ∪ f[V ′] ∪ f[V × V ′]
= V ∪ V ′ ∪ {x � y | x ∈ V, y ∈ V ′}
= V ∨ V ′ ∈ CORO(X ),

where the last equality uses Corollary 5.5.6. 

Proposition 9.3. Any complete BA is isomorphic to the product of a complete and
atomless BA and a complete and atomic BA.

Proof. By duality, it suffices to show that any complete UV-space X is the
UV-sum of a complete UV-space with no isolated points and a complete UV-
space in which the isolated points form a dense subset. Since X is complete, U :=
int(clXiso) ∈ CORO(X ). Form the subspaces induced by U and ¬U . By Lemma
9.2, X is homeomorphic to the UV-sum of these subspaces. By Lemma 8.12, both
subspaces are complete UV-spaces. Clearly (¬U )iso ⊆ Xiso, and Xiso = Uiso, which
with ¬U ∩U = ∅ implies (¬U )iso = ∅. Thus, the subspace induced by ¬U has no
isolated points. Finally, in the subspace induced by U , we have

intU clUUiso = U ∩ int(clUiso) = U ∩U = U,
which implies clUUiso = U by Proposition 8.15. 

9.3. Subalgebras of BAs. Let Bn be the finite Boolean algebra with n atoms. As
our final example, we will prove using our duality that every infinite BA contains
subalgebras isomorphic to Bn for each positive integer n. First, we prove some
preliminary results about UV-spaces.

Definition 9.4. Let X be a UV-space and {U0, . . . , Un} a family of CORO(X )
sets. We say that {U0, . . . , Un} is a regular partition of X iff U0, . . . , Un are pairwise
disjoint and X = U0 ∨ · · · ∨Un.
Proposition 9.5. Let X be an infinite UV-space. For each n ∈ �, there is a family

{V0, . . . , Vn} of CORO sets that is a regular partition of X .
Proof. Consider the antichain {U0 ∩ ¬U1, U1 ∩ ¬U2, . . . , Un−1 ∩ ¬Un} con-
structed in the proof of Proposition 9.1. Let Un+1 = ∅. We claim that the antichain
{U0 ∩ ¬U1, . . . , Un−1 ∩ ¬Un,Un ∩ ¬Un+1} is a regular partition, i.e., its join is X .
Using the equation for join in terms of int�cl� and union (Proposition 5.3), it
suffices to show that for every x ∈ X , there is a y � x such that y ∈ Ui ∩Ui+1 for
some i ∈ {0, . . . , n}. If x ∈ ¬U1, then since U0 = X , we have x ∈ U0 ∩ ¬U1, so
we take y = x and i = 0. If x �∈ U1, then there is an x1 � x such that x1 ∈ U1.
Now if x1 ∈ ¬U2, then x1 ∈ U1 ∩ ¬U2, so we take y = x1 and i = 1. If x1 �∈ ¬U2,
then there is an x2 � x1 such that x2 ∈ U2. By transitivity, x2 � x. If x2 ∈ ¬U3,
then x2 ∈ U2 ∩ ¬U3, so we take y = x2 and i = 2. If x2 �∈ U3, then there is an
x3 � x2 such that x3 ∈ U3, etc. If we do not find our y and i in this way by n − 1,
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then we reason as follows: given xn−1 �∈ ¬Un, there is an xn � xn−1 such that
xn ∈ Un. Then since Un+1 = ∅, we have xn ∈ Un ∩ ¬Un+1, so we set y = xn and
i = n. 

To obtain Corollary 9.7 below from Proposition 9.5, we use the following
topological fact.
Fact 9.6. For any space X , V ⊆ X , and open U ⊆ X , if U ∩ V = ∅, then
U ∩ int(cl(V )) = ∅.
Corollary9.7. LetX be aUV-space. For each positive integerm, there is a family

{U1, . . . , Um} of pairwise disjoint CORO sets such that:
1. for every x ∈ X , there is a unique K ⊆ {1, . . . , m} such that x ∈ ∨

k∈KUk and
x �∈ ∨

j∈JUj for each J � K ;
2. for every K ⊆ {1, . . . , m} such that K �= ∅, there is an x ∈ X such that
x ∈ ∨

k∈K
Uk and x �∈ ∨

j∈J
Uj for each J � K ;

3. for every K ⊆ {1, . . . , m}, if x �∈ ¬∨
k∈K Uk ∨

∨
j∈J Uj for each J � K , then

there is a y � x such that y ∈ ∨
k∈KUk and y �∈ ∨

j∈JUj for each J � K .

Proof. By Proposition 9.5, there is a family {U1, . . . , Um} of pairwise disjoint
CORO(X ) sets such thatX = U1∨· · ·∨Um. It follows that for each x ∈ X , there is a
K ⊆ {1, . . . , m} such thatx ∈ ∨

k∈K Uk and such thatx �∈ ∨
j∈J Uj for each J � K .

It remains to show that thisK is unique. Suppose not, so there is aK ′ ⊆ {1, . . . , m}
such that K ′ �= K , x ∈ ∨

k∈K ′ Uk , and x �∈ ∨
j∈J ′ Uj for each J

′ � K ′. Since
K ′ �⊆ K , pick k′ ∈ K ′ \ K . Since x ∈ ∨

k∈K ′ Uk but x �∈ ∨
j∈K ′\{k′}Uj , it follows

that there is some y � x such that y ∈ Uk′ . Since Uk′ is disjoint from
⋃
k∈K Uk , we

have y �∈ ∨
k∈K Uk by Fact 9.6 and the equation for join in terms of int�cl� and

union (Proposition 5.3). But then since y � x, we havex �∈ ∨
k∈K Uk , contradicting

our assumption. Thus, K is unique.
For part 2, letK ⊆ {1, . . . , m} andK �= ∅. Since {V ∈ CORO(X ) | ∨k∈K Uk ⊆
V } is a proper filter in CORO(X ), it follows by the definition of a UV-space
(Definition 5.1.2) that there is some x ∈ X such that CORO(x) = {V ∈
CORO(X ) | ∨k∈K Uk ⊆ V }. Now suppose J � K and consider some i ∈ K \ J .
Hence by Fact 9.6, Ui is disjoint from

∨
j∈J Uj . Thus,

∨
k∈K Uk �⊆ ∨

j∈J Uj ,
which with CORO(x) = {V ∈ CORO(X ) | ∨

k∈K Uk ⊆ V } implies that∨
j∈J Uj �∈ CORO(x), i.e., x �∈ ∨

j∈J Uj .
For part 3, let K ⊆ {1, . . . , m}, and suppose x �∈ ¬∨

k∈K Uk ∨
∨
j∈J Uj for

each J � K . It follows that the filter F in CORO(X ) generated by CORO(x) ∪
{∨k∈K Uk} is a proper filter such that ∨j∈J Uj �∈ F for each J � K . Then by
the definition of a UV-space (Definition 5.1.2), there is some y ∈ X such that
CORO(y) = F . Hence CORO(x) ⊆ CORO(y), which implies x � y by the
definition of a UV-space (Definition 5.1.1), and y ∈ ∨

k∈K Uk . Finally, for J � K ,
from

∨
j∈J Uj �∈ F and F = CORO(y), we have y �∈ ∨

j∈J Uj . 

Theorem 9.8. Every infinite BA B contains subalgebras isomorphic to Bn for each
positive integer n.

Proof. Let X be the infinite UV-space dual to B andXn the finite UV-space dual
toBn . By duality, it suffices to show there is a surjective UV-mapf fromX ontoXn.
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Let x1, . . . , xm be the maximal elements of Xn. By Corollary 5.5.4, x1, . . . , xm are
the co-atoms of a Boolean algebra obtained by adding a top node toXn. Therefore,
we have that (a) for every y ∈ Xn, there is a unique K ⊆ {1, . . . , m} such that
y =

∧
k∈K xk .

Take a family {U1, . . . , Um} of CORO(X ) sets as in Corollary 9.7. By Corollary
9.7.1, for each x ∈ X , there is a unique K ⊆ {1, . . . , m} such that x ∈ ∨

k∈K Uk
and x �∈ ∨

j∈J Uj for each J � K . Letf(x) =
∧
k∈K xk . Then by (a) and Corollary

9.7.2, f is surjective.
Now we show that f is a UV-map. First note that the compact opens of Xn
are exactly the upsets of Xn with respect to �. Now let y ∈ Xn be such that
y =

∧
i∈I xi for some I ⊆ {1, . . . , m}. Then it follows from the definition of f

that f−1[⇑y] = ∨
i∈I Ui ∈ CORO(X ). Now let U ⊆ Xn. Then U =

⋃
y∈U ⇑y and

f−1[U ] = f−1[
⋃
y∈U ⇑y] = ⋃

y∈U f
−1[⇑y]. Since the collection of compact open

sets is closed under finite unions, we obtain that f−1[U ] is compact open in X .
Therefore, f is a spectral map.
Finally, suppose f(x) � y′. Then there are I,K ⊆ {1, . . . , m} such that I ⊆ K ,
y′ =

∧
i∈I xi , f(x) =

∧
k∈K xk , andK is the unique subset of {1, . . . , m} such that

x ∈ ∨
k∈K Uk and (b) x �∈ ∨

j∈J Uj for each J � K . We claim there is a y � x such
that (c) y ∈ ∨

i∈I Ui and y �∈ ∨
�∈L U� for eachL � I . By Corollary 9.7.3, it suffices

to show that x �∈ ¬∨
i∈I Ui ∨

∨
�∈L U� for each L � I . For contradiction, suppose

x ∈ ¬∨
i∈I Ui ∨

∨
�∈L U� for some L � I . Then since I ⊆ K and x ∈ ∨

k∈K Uk , it
follows that x ∈ ∨

k∈K\(I\L)Uk , which contradicts (b). By (c) and the definition of
f, we have f(y) =

∧
i∈I xi = y

′. Thus, f is a UV-map. 


§10. Perspectives on UV-spaces assuming choice. In this penultimate section,
we briefly discuss some results about UV-spaces that can be proved under the
assumption of the Boolean Prime Ideal Theorem (BPI).

10.1. UV-spaces as upper Vietoris spaces of Stone spaces. Recall from Definition
3.10 that for a Stone space X , U V (X ) is the hyperspace of nonempty closed
subsets of X endowed with the upper Vietoris topology. We already observed
(Corollary 5.6) that U V (X ) is a UV-space. Assuming the BPI, every UV-space
arises homeomorphically in this way.

Proposition 10.1. Assuming the BPI, every UV-space is homeomorphic to
U V (X ) for some Stone space X .
Proof. Let Y be a UV-space. LetX be the Stone dual of CORO(Y ), so Clop(X )
is isomorphic to CORO(Y ). By Proposition 3.10, U V (X ) is homeomorphic to
UV (Clop(X )). Combining the previous two facts, we have that U V (X ) is home-
omorphic to UV (CORO(Y )), which is homeomorphic to Y by Theorem 5.4.2.
Thus, Y is homeomorphic to U V (X ). 

10.2. Equivalent Priestley spaces assuming choice. In this subsection, we relate
UV-spaces to Priestley spaces [27]. For convenience, we now keep track of the
topology 	 of a space explicitly.
For a spectral space (X, 	), its corresponding Priestley space (X,≤, 	+) is defined
as follows: 	+ is the patch topology of 	, i.e., the topology generated by 	 ∪{X \U |
U ∈ 	} as a subbasis, and≤ is the specialization order of 	. Note that the BPI, in its
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equivalent formas theAlexander Subbasis Theorem, is used already in showing that
the patch topology of a spectral topology is compact. Conversely, if (X,≤, 	) is a
Priestley space, thenX together with the topology given by open upsets of (X,≤, 	)
is a spectral space. It is well known that U ⊆ X is compact open in a spectral
space iff U is a clopen upset in the associated Priestley space, with the right-to-left
direction using the BPI.
Since UV-spaces are spectral, given a UV-space (X, 	) we can consider the corre-
sponding Priestley space (X,≤, 	+). It is easy to see thatU ⊆ X is CORO in (X, 	)
iffU is a clopenRO subset of (X,≤, 	+), whereRO is now taken with respect to≤.
Let ClopRO(X ) be the set of clopen RO subsets of (X,≤, 	). Then the definition
of a UV-space easily translates into the following definition in terms of Priestley
spaces.

Definition 10.2. A Priestley space (X,≤, 	) is a UV-Priestley space iff:
1. ClopRO(X ) is closed under int≤(X \ ·);
2. if x � y, then there is a U ∈ ClopRO(X ) such that x ∈ U and y /∈ U .16
3. every proper filter in ClopRO(X ) is ClopRO(x) for some x ∈ X , where

ClopRO(x) = {U ∈ ClopRO(X ) | x ∈ U}.

It is easy to verify that if (X, 	) is a UV-space, then (X,≤, 	+) is a UV-Priestley
space, and if (X,≤, 	) is a UV-Priestley space, then X together with the topology
given by open upsets of (X,≤, 	) is a UV-space. Moreover, given a UV-Priestley
space (X,≤, 	), it is easy to see that ClopRO(X ) is a BA with meet as intersection
and ¬U = int�(X \ U ). Conversely, given a BA A, we obtain a dual UV-Priestley
space X based on the set of proper filters in A by defining ≤ as ⊆ and generating
a topology by declaring {â,PropFilt(A) \ â | a ∈ A} as a subbasis. It is easy
to see that this is the same as taking the UV-space dual to A and considering its
corresponding UV-Priestley space. Then A is isomorphic to the BA ClopRO(X ),
and each UV-Priestley spaceY is order-homeomorphic to the dual of ClopRO(Y ).
Next we discuss morphisms, which are the obvious adaptation of the UV-maps
of Definition 6.1 to the Priestley setting.

Definition 10.3. A map f : X → X ′ between UV-Priestley spaces is called a
UV-Priestley morphism iff it is a Priestley morphism (i.e., continuous and order-
preserving) satisfying the p-morphism condition:

if f(x) ≤′ y′, then ∃y: x ≤ y and f(y) = y′.

Assuming the BPI, it is easy to show that the category ofUV-spaces andUV-maps
is isomorphic to the category of UV-Priestley spaces and UV-Priestley morphisms,
which is therefore dually equivalent to the categoryof BAs andBAhomomorphisms
by Theorem 6.7.
One can also develop a duality dictionary for this duality similar to the one
discussed in Section 6. But we will not do so here, as our primary goal is to study
the setting of choice-free dualities for BAs.

16Note that if we had only required thatU be a clopen upset, then part 2 would be exactly the Priestley
separation axiom.
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Just as one canmove freely between Priestley spaces and the pairwise Stone spaces
of [6], one can alsomove freely betweenUV-Priestley spaces and analogous pairwise
UV-spaces. We omit the details, as they are straightforward to reconstruct based on
the information above and in [6].

10.3. Goldblatt’s representation of ortholattices. Our choice-free duality for BAs
is related to Goldblatt’s [12] representation of ortholattices. An ortholattice is a
bounded lattice equipped with an additional unary operation ′ such that a∧a′ = 0,
a ∨ a′ = 1, a′′ = a, and a ≤ b only if b′ ≤ a′. Goldblatt showed that ortholattices
can be represented using a Stone spaceX equipped with a symmetric and irreflexive
relation ⊥. A subset U ⊆ X is ⊥-regular iff U = U⊥⊥ where V⊥ = {x ∈ X |
x⊥y for all y ∈ V }. The collection of all ⊥-regular subsets ordered by inclusion
forms a complete ortholattice with ′ as ⊥. Conversely, every complete ortholattice
is isomorphic to the collection of ⊥-regular subsets with ⊥ coming from a set with
a symmetric and irreflexive relation ⊥. To represent an arbitrary ortholattice L,
Goldblatt defined a space X with a binary relation ⊥ as follows:
1. the underlying set of X is the set of all proper filters of L;
2. for F,G ∈ X , let F⊥G iff there is some a ∈ F such that a′ ∈ G ;
3. the topology of X is generated by the collection of sets â and X \ â as a
subbasis, i.e., the patch topology associated with 	 = {â | a ∈ L}.

Assuming the BPI, Goldblatt proved that X is a Stone space and L is isomorphic
to the collection of clopen⊥-regular sets ordered by inclusion with the operation ⊥.
Since every BA is an ortholattice with ′ as Boolean complement, this representation
applies to BAs. Like our representation of BAs, it uses the proper filters of L.
Indeed, Goldblatt’s representation applied to BAs is essentially the UV-Priestley
representation discussed in Section 10.2 but using the incompatibility relation ⊥
between proper filters instead of the inclusion order on proper filters, which is the
specialization order of 	. It is easy to see that for a BA, the⊥-regular sets are exactly
the regular open sets with respect to the inclusion order.
There are two important differences between Goldblatt’s representation applied
to BAs and ours. First, because we work with the spectral topology 	 instead of the
patch topology, we do not need the extra datum of the relation ⊥; the regular sets
can be defined simply in terms of the specialization order of the space. Thus, we
can work with spaces instead of spaces plus a binary relation. Second, because we
work with the spectral topology 	 instead of the patch topology, we do not require
the nonconstructive BPI.

§11. Conclusion. We have developed a full choice-free duality for BAs in terms
of UV-spaces. We showed how to translate, via this duality, the main algebraic
concepts and constructions into topological terms. We also gave several sample
applications of this duality in the form of choice-free proofs, using spatial intuition
essentially, of some basic facts about BAs.
The distinguishing features of the duality for BAs in this article are that (a) the
duals of BAs are topological spaces and (b) the duality is choice-free. Standard Stone
duality satisfies (a) but not (b). The pointfree duality using Stone locales satisfies
(b) but not (a). To draw a contrast with the localic approach, we characterized
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our approach to choice-free Stone duality as the hyperspace approach. The choice-
freeness is achieved by not working with Stone spaces, but rather with UV-spaces,
examples of which are given by the upper Vietoris hyperspace of a Stone space.
Assuming choice, all UV-spaces arise homeomorphically in this way; but we do not
need this assumption to carry out our duality for BAs.
Though we have concentrated on BAs, we believe that choice-free duality does
not end here. In future work, we aim to generalize the strategy of this article to
obtain choice-free spatial dualities for other classes of algebras (connecting with
work in [23]), giving rise to choice-free completeness proofs for nonclassical logics.
We hope that this can be the beginning of a new area of choice-free duality in
nonclassical logic and beyond.
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Posiedzeń Towarzystwa NaukowegoWarszawskiego, Wydział III, NaukMatematyczno-fizycznych, vol. 30
(1937), pp. 151–181.
[34] ,Der Aussagenkalkuül und die Topologie. Fundamenta Mathematicae, vol. 31 (1938), no.

1, pp. 103–134, English translation as Chapter 17 of [35].
[35] ,Logic, Semantics,Metamathematics:Papers from1923 to 1938, ClarendonPress,Oxford,

1956, Translated by J. H. Woodger.
[36] S. Vickers, Topology via Logic, Cambridge University Press, Cambridge, 1989.
[37] , Constructive points of powerlocales. Mathematical Proceedings of the Cambridge

Philosophical Society, vol. 122 (1997), no. 2, pp. 207–222.
[38] , Localic completion of generalized metric spaces II : Powerlocales. Journal of Logic &

Analysis, vol. 1 (2009), pp. 1–48.
[39] L. Vietoris, Bereiche zweiter ordnung.Monatshefte für Mathematik und Physik, vol. 32 (1922),

no. 1, pp. 258–280.

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION
UNIVERSITY OF AMSTERDAM
1090 GE AMSTERDAM, THE NETHERLANDS

E-mail: n.bezhanishvili@uva.nl

DEPARTMENT OF PHILOSOPHY AND
GROUP IN LOGIC AND THEMETHODOLOGYOF SCIENCE
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CA 94720, USA

E-mail: wesholliday@berkeley.edu

https://doi.org/10.1017/jsl.2019.11 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.11

