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In this work we provide sufficient conditions for the arrival times of a renewal process
so that the number of its events occurring before a randomly distributed time, T,
independent of the process preserves the aging properties of T.

1. INTRODUCTION

Aging concepts constitute by far one of the most challenging issues in reliability
theory. Thus, the consequences derived from an increasing failure rate (IFR) in
maintenance problems have caused many researchers to address their efforts to
study this condition. The books of Barlow and Proschan [1,2] are pioneers in this
field and have become classical references. In a recent work, Ross, Shanthikumar,
and Zhu [12] also focus on this issue, providing conditions for different types of
random variable to be IFR.

Stochastic orders play an essential role in reliability problems to assess how a system
deteriorates or not with age. Thus, they can be used to describe notions of aging.
Nevertheless, stochastic orders turn out to be a valuable tool in applied probability,
with important applications in engineering, economics, and others. Müller and Stoyan
[10] as well as Shaked and Shanthikumar [14] provide a comprehensive treatment of sto-
chastic orders. The work of Lai and Xie [9] is devoted to both stochastic aging and
dependence concepts and constitutes a useful reference in reliability engineering.

Lately, researchers are concerned with the reversed hazard rate function in assess-
ing system reliability. This function represents the probability that the maintenance of
a system is fulfilled by a given period, providing a measure of its reparability [16].
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The works of Block, Savits, and Singh [4], Finkelstein [8], Chandra and Roy [5],
among others, deal with this function.

In this work we deal with renewal processes and the number of events occurring
before a certain random time, T, independent of the process. We focus on the
reliability properties of T which are preserved under the renewal process.

As far as we know, one of the first works dealing with such preservation properties
is by Esary, Marshall, and Proschan [7]. This work is mainly concerned with the pres-
ervation of reliability classes under shock models, although Sections 4 and 5 consider
preservation properties of the so-called cumulative damage models along with the
obvious application to the underlying renewal processes. Moreover, a counterexample
proves that T being IFR, does not necessarily imply that N(T ) is also IFR. In a recent
work, Ross et al. [12 Thm. 3.1.] showed that for a general renewal process under certain
stochastic order conditions, if T is IFR so is N(T ). This property constitutes the starting
point to prove the IFR property for random variables arising under different stochastic
models. The particular case of mixed Poisson models, which has attracted much of
researchers’ attention, should also be mentioned (Grandell [6, Chap. 7], and the refer-
ences therein). Thus, it is known that these models preserve the classical reliability
classes of T (Vinogradov [17] and Block and Savits [3]).

This work aims at analyzing the preservation of reliability classes under mixtures
of renewal processes. Previous works focus on the failure rate and positive aging
(Esary et al. [7]); however, negative aging and the reversed hazard rate are now
subject to more attention. Ross et al. [12] provided some results related to the reversed
hazard ratio ordering in renewal processes and Markov chains. Following Ross et al.
[12] and the stochastic orders theory, we obtain reliability classes that are preserved
when the renewal times verify appropriate ordering conditions.

The article is organized as follows. Section 2 contains definitions and results on
aging classes to be used throughout the article; new results are stated in Sections 3
and 4. Thus, in Section 3 is shown that both properties—the logconvexity and the
decreasing failure rate (DFR)—are, in general, preserved. Section 4 deals with the
preservation of reliability classes when certain order conditions for the renewal
periods are imposed. In particular, if such periods are ordered in the likelihood
ratio order, both properties—the increasing and decreasing failure rate average
(IFRA and DFRA, respectively)—are preserved. We also give some insight into
the preservation of the IFR property when the renewal periods are ordered in the
reversed hazard rate order (Ross et al. [12]), providing a different proof for the par-
ticular case of a renewal process. Then, we carry out a similar study on the preser-
vation of the decreasing reversed hazard rate (DRHR), provided that the renewal
times are ordered in the hazard rate order.

2. PRELIMINARIES

This section contains a list of definitions (Barlow and Proschan [2]) used in the article
to simplify its reading. The terms “increasing” and “decreasing” mean, as usual,
“nondecreasing” and “nonincreasing,” respectively.
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DEFINITION 2.1: Let X be a nonnegative random variable with G and Ḡ the corre-
sponding distribution and reliability functions, respectively. G is said to be

(i) logconcave if G has a density g such that log g is concave, that is,

g(axþ (1� a)y) � g(x)ag(y)1�a, x, y . 0, 0 � a � 1:

(ii) increasing failure rate if

�G(zþ 1)= �G(t) is decreasing in t for G(t) , 1, for all z . 0:

(iii) increasing failure rate average if [Ḡ(t)]1/t is decreasing in t . 0.
(iv) New better than used (NBU) if

Ḡ(z)Ḡ(t) � Ḡ(zþ t) for all z, t . 0:

The following implications hold among the foregoing classes:

(i)) (ii)) (iii)) (iv):

Further classes can be defined by reversing the direction of monotonicity and the
appropriate change in the signs of inequalities. These properties are (i)0 logconvex,
(ii)0 decreasing failure rate, (iii)0 decreasing failure rate average, and (iv)0 new
worse than used (NWU).

Remark 2.2: IFR distributions can show a jump only at the right-hand end of its
interval, whereas DFR distributions show a jump only at the origin [1, p. 26]. We
will assume that a constant nonnegative random variable belongs to the IFR class
to be coherent with Definition 2.1 and Theorem 4.7(i).

There exist different ways of defining the corresponding counterparts of the
preceding classes for discrete random variables (cf. Lai and Xie [9]). We will
follow the definitions usually considered in renewal processes (Esary et al. [7] or
Grandell [6, Chap. 7]).

DEFINITION 2.3: Let X be a nonnegative integer-valued random variable and pn its
corresponding probability mass function

pn :¼ P(X ¼ n), n ¼ 0, 1, . . . :

The distribution function is said to be

(i) discrete logconcave if the probability mass function satisfies

p2
nþ1 � pnpnþ2, n ¼ 0, 1, . . . :

(ii) Discrete increasing failure rate (d-IFR) if P(X ¼ n)/P(X � n) is increasing
in n or, equivalently, if

P(X � nþ 1)2 � P(X � n)P(X � nþ 2), n ¼ 0, 1, . . . :
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(iii) Discrete increasing failure rate average (d-IFRA) if [P(X �n)1/n is decreas-
ing in n ¼ 1, 2, . . . .

(iv) Discrete new better than used (d-NBU) if

P(X � nþ m) � P(X � n)P(X � m):

As in the previous case, no other implications apart from the following ones hold:
(i)) (ii)) (iii)) (iv).

As earlier, the corresponding discrete classes reversing the direction of monoto-
nicity and the signs of the inequalities are also defined.

Additional classes concerning the reversed hazard rate are presented next. This
function exhibits a more recent use in reliability analysis and turns out to be more
natural when the timescale is reversed (Shaked and Shanthikumar [14], Block et al.
[4], Sengupta and Nanda [13], and Nanda and Sengupta [11]).

DEFINITION 2.4: A distribution function G is said to be decreasing reversed hazard
rate if log G is concave, namely if G(z þ t)/G(t) is decreasing in t for all z . 0.

Remark 2.5: Note that in the case that G has no density, Definition 2.4 is still valid
although the reversed hazard rate cannot be defined (Sengupta and Nanda [13]). In
addition, a DRHR random variable is absolutely continuous except, at most, at the
left end point of its interval of support [13, p. 427]. As in the IFR case, we assume
that a nonnegative constant random variable is DRHR, which turns out to be coherent
with the proof of Theorem 4.7(ii). Observe that there is no nonnegative random vari-
able having an IRHR distribution. If a reversed hazard rate is increasing, its interval of
support must have a finite upper point.

Next, the concept of discrete reversed hazard rate is presented (Nanda and
Sengupta [11]).

DEFINITION 2.6: Let X be a nonnegative integer-valued random variable with distri-
bution function G. X is said to have discrete decreasing reversed hazard rate if

G(nþ 1)� G(n)
G(nþ 1)

is decreasing in n:

This is equivalent to the following two statements: G(n)/G(n þ 1) is increasing
in n, or

G(nþ 1)2 � G(n)G(nþ 2), n ¼ 0, 1, . . . : (1)

The next section is devoted to reliability classes preserved under renewal pro-
cesses when general conditions are assumed.
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3. PRESERVATION OF RELIABILITY PROPERTIES UNDER
RENEWAL PROCESSES

Consider now a renewal process fN(t) : t � 0g, with (Sn)n¼1, 2, . . . being the time of the
nth event; that is,

Sn ¼
Xn

i¼1

Xi, n ¼ 1, 2, . . . (S0 ¼ 0): (2)

(Xn)n¼1,2,. . . constitute a set of independent and identically distributed nonnegative
random variables with common distribution function F. In what follows, we
assume that the interarrival times cannot be concentrated at zero. Thus, P(Xn ¼

0) , 1, n ¼ 1, 2, . . ..
N(t) represents the number of events by time t; therefore,

N(t) :¼ max{n ¼ 0, 1, . . . : Sn � t}, t � 0: (3)

In addition, let T be a nonnegative random variable, independent of (Xn)n¼1,2,. . ., with
GT and ḠT being the corresponding distribution and reliability functions, respec-
tively. For technical purposes we assume that GT has no common discontinuity
points with the distribution functions corresponding to (Sn)n¼1,2,. . .. Hence, it can
be proved that (see Esary et al. [7, p. 642])

P(N(T) � n) ¼ E[ḠT (Sn)], n ¼ 0, 1, . . . , (4)

and, therefore,

P(N(T) � n) ¼ E[GT (Snþ1)], n ¼ 0, 1, . . . : (5)

Esary et al. [7] analyzed the preservation of reliability classes for a system subject
to shocks with immediate applications to renewal processes. In particular, these
authors show that N(t) is IFRA for all t . 0 [7, Lemma 4.1]. Moreover, it is also
proved, by means of a counterexample, that is not possible for N(t) to be IFR
without strengthening the hypotheses [7, Example 4.6].

In the case of T being IFR or logconcave, N(T ) does not necessarily preserve
such properties [7, p. 645]. However, the following results show that when the direc-
tion of the monotonicity is reversed, N(T ) inherits some aging properties of T in
particular, the logconvexity and the DFR condition.

THEOREM 3.1: Consider T a random variable with density gT independent of
(Sn)n¼1, 2,. . .. If T is logconvex, then N(T ) is discrete logconvex.

PROOF: Recall first that (0, 1) is the interval of support for logconvex distributions
[2, p. 79, Exercise 11]. Let X1, X2, . . . , Xn, X1

*, X2
*, . . . Xn

*, U, V, X, and Y be
independent, identically distributed random variables with common distribution F.
Let Sn be as in (2) and define S*

n :¼
P

i¼1
n X*

i . From (5), it follows that for all
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n ¼ 0, 1, . . . ,

P(N(T) ¼ n) ¼ E[GT (Sn þ X)� GT (Sn)] ¼ E

ðX

0
gT (xþ Sn) dx

� �
(6)

as well as

P(N(T) ¼ nþ 1)2 ¼ E

" ðX

0

ðY

0
gT (xþ Sn þ U) gT ( yþ S�n þ V) dx dy

#
: (7)

Note that

xþ Sn þ U ¼ V

U þ V
(xþ Sn)þ U

U þ V
xþ Sn þ U þ Vð Þ,

yþ S �n þ V ¼ U

U þ V
(yþ S �n )þ V

U þ V
yþ S �n þ U þ V
� �

:

In the above expressions, consider that U/(U þ V ) :¼ V/(U þ V ) :¼ 1/2 if U ¼
V ¼ 0.

Applying the logconvexity of gT first and then the inequality zaw12a �
az þ (1 2 a)w, z, w � 0 and 0 � a � 1, we have that for all x � 0 and y � 0,

gT (xþ SnþU)gT (yþ S�n þV)

� (gT (xþ Sn)gT (yþ S�n þUþV))V=ðUþVÞ(gT (yþ S�n )gT (xþ SnþUþV))U=ðUþVÞ

� V

UþV
gT (xþ Sn)gT (yþ S�n þUþV)þ U

UþV
gT (yþ S�n )gT (xþ SnþUþV):

Next, calculations aim at obtaining a bound for the expression in (7). By first
taking the conditional expectation with respect to Sn, S*

n, X, Y, and U þ V and
using the foregoing inequality, we get

E

ðX

0

ðY

0
gT (xþ SnþU)gT (yþ S�n þV) dx dy jSn, S�n , X, Y , UþV

� �

� E
V

UþV
jUþV

� �ðX

0

ðY

0
gT (xþ Sn)gT (yþ S�n þUþV) dx dy

þE
U

UþV
jUþV

� �ðX

0

ðY

0
gT (yþ S�n )gT (xþ SnþUþV) dx dy

¼ 1
2

ðX

0

ðY

0
gT (xþ Sn)gT (yþ S�n þUþV) dx dy

þ 1
2

ðX

0

ðY

0
gT (yþ S�n)gT (xþ SnþUþV) dx dy:
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Next, note that both summands in the last expression are identically distributed,
so taking expectations in the previous inequality leads to

E

ðX

0

ðY

0
gT (xþ SnþU)gT (yþ S�nþV) dx dy

� �

� E

ðX

0
gT (xþ Sn) dx

� �
E

ðY

0
gT (yþ S�nþUþV) dy

� �
:

Expressions in (6) and (7) yield

P(N(T)¼ nþ 1)2 � P(N(T)¼ n)P(N(T)¼ nþ 2), n¼ 0,1, . . . ,

and the result in Theorem 3.1 holds. B

The following result is concerned with the DFR property.

THEOREM 3.2: Let N(t) be a renewal process, as defined in (3), and T a random vari-
able independent from (Sn)n¼1,2,. . . given in (2). Consider that the distribution func-
tion of T has no common discontinuity points with the distribution functions
corresponding to (Sn)n¼1,2,. . .. If T is DFR, then N(T) is d-DFR.

PROOF: The assertion follows by induction on n. From (4), it follows that
N(T ) is d-DFR if and only if for all n ¼ 0, 1, . . . , the following inequality is
satisfied:

E2[ḠT (Snþ1)] � E[ḠT (Sn)]E[ḠT (Snþ2)]: (8)

For n ¼ 0, the above inequality follows immediately from the fact that T being
DFR implies that T is also NWU and, therefore,

ḠT (X1)ḠT (X2) � ḠT (X1 þ X2):

Taking expectations, both the independence and the identical distribution assump-
tions yield (8).

Hence, assume that (8) holds for n. Take b :¼ supfx � 0 : ḠT(x) . 0g. Then

E[ḠT (Snþ2)] ¼
ðb

0
E ḠT (Snþ1 þ x)ð Þ dF(x)

¼
ðb

0
E

ḠT (Snþ1 þ x)
ḠT (x)

� �
ḠT (x) dF(x):
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Note that ḠT(. þ x)/ḠT(x) is a DFR distribution for all 0 � x , b. Using first
the induction hypothesis and then the Cauchy-Schwartz inequality, it follows that

E[ḠT (Snþ2)] �
ðb

0
E1=2 ḠT (Sn þ x)

ḠT (x)

� �

� E1=2 ḠT (Snþ2 þ x)
ḠT (x)

� �
ḠT (x) dF(x)

�
ðb

0
E[ḠT (Sn þ x)] dF(x)

� �1=2

�
ðb

0
E[ḠT (Snþ2 þ x) dF(x)

� �1=2

¼ E1=2[ḠT (Snþ1)]E1=2[ḠT (Snþ3)]:

Therefore, the result in (8) also holds for n þ 1 and the proof of Theorem 3.2 is
complete. B

4. PRESERVATION OF RELIABILITY CLASSES UNDER SOME ORDER
CONDITIONS OF THE RENEWAL PERIODS

Regarding the IFRA property, Esary et al. [7, p. 643] showed that T being IFR implies
that N(T ) is IFRA. As far as we know, the question of whether N(T ) is IFRA provided
that T is also IFRA remains open. It is shown in Theorem 4.3 that this property holds
if (Sn)n¼1,2,. . . are ordered in the likelihood ratio order.

Next, we recall the following definition of the likelihood ratio order (Müller and
Stoyan [10, p. 12]) or Shaked and Shanthikumar [14, p. 27]), so that our results hold
either in continuous, discrete, or more general conditions of the arrival times.

DEFINITION 4.1: Let X and Y be two absolutely continuous random variables with
respect to some dominating measure m, with fX and fY its respective density functions.
X is said to be smaller than Y in the likelihood ratio order (denoted X �lr Y ) if

fY (t)
fX(t)

increases on the union of the supports of X and Y

(a/0 is assumed to be 1 if a . 0). A sequence of random variables (Sn)n¼1,2,. . . is said
to be increasing in the likelihood ratio order if Sn �lr Snþ1 for all n ¼ 1, 2, . . . .

Note that in the foregoing definition, the absolutely continuous case is obtained
provided that m is the Lebesgue measure, whereas the discrete case turns out by taking
m as the counting measure on the nonnegative integers.
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https://doi.org/10.1017/S0269964808000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000016


Remark 4.2: From the previous definition it follows that if X �lr Y, then for any t0 that
is not in the support of X and that is less than the supremum of the support of X, it
follows that t0 is not in the support of Y. This fact will be used in proof of the following
theorem.

THEOREM 4.3: Let N(t) be a renewal process as in (3) and (Sn)n¼1,2,. . . an increasing
sequence in the likelihood ratio order. Consider T a random variable, independent of
(Sn)n¼1,2,. . . and assume that the distribution function of T has no common disconti-
nuity points with the distribution functions corresponding to (Sn)n¼1,2,. . .. If T is IFRA
(DFRA), then N(T ) is d-IFRA (d-DFRA).

PROOF: Let us consider the IFRA case. According to the definition, we will prove that

P(N(T) � n)1=n � P(N(T) � nþ 1)1=(nþ1), n ¼ 1, 2, . . . : (9)

From now on, we will assume that 0 , P(N(T ) � n) , 1 because condition (9) is
trivially verified otherwise. Let 0 , ln , 1 be such that

P(N(T) � n)1=n ¼ E(e�lnX1 ), (10)

implying that

E ḠT (Sn)½ � ¼ P(N(T) � n) ¼ E(e�lnSn ) (11)

and, therefore,

E ḠT (Sn)� e�lnSn
� 	

¼ 0: (12)

Next, it is shown that

E ḠT (Snþ1)� e�lnSnþ1
� 	

� 0: (13)

Recall that T being IFRA implies that 2log ḠT is star-shaped. ḠT and e2lx change
sign at most once on (0, 1) and from þ to 2 if this happens [2, p. 89]. Therefore,
there exist some t0 � 0 such that

ḠT (x)� e�lnx . 0 for 0 , x , t0;
ḠT (x)� e�lnx � 0 for x � t0:




Note that t0 ¼ 0 (resp. t0 ¼1) means that ḠT (x) � e2lnx, x . 0 (resp. ḠT (x) . e2lnx,
x . 0). Observe first that (12) implies that Sn cannot be concentrated at [0, t0). The
preliminary hypotheses showed that the interarrival times cannot be concentrated at
zero, so P(Sn ¼ 0) , 1. Assume that P(0 , Sn , t0) ¼ 1 2 P(Sn ¼ 0) and denote
by f *n the density function of Sn. Thus,

E ḠT (Sn)� e�lnSn
� 	

¼
ð

(0,t0)
(ḠT (x)� e�lnx)f �n(x) dm(x) . 0:
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The last integral concerns a strictly positive function over a set of strictly positive
probability; hence, the last inequality holds, contradicting (12). Therefore, P(Sn �
t0) . 0. Now define

An :¼ {x � 0 : f �n(x) . 0} and sn :¼ sup{x [ An}:

Denote by 1A(.) the indicator function of the set A and by Ac its complementary. Since
sn � t0, then ḠT (x) 2 e2lnx � 0, x � sn, and, therefore,

E (ḠT (Snþ1)� e�lnSnþ1 )1[sn,1)
T

Ac
n
(Snþ1)

h i
� 0: (14)

On the other hand, taking into account Remark 4.2, we also have

E (ḠT (Snþ1)� e�lnSnþ1 )1[0,sn)
T

Ac
n
(Snþ1)

h i
¼ 0: (15)

From (14) and (15) we deduce that

E ḠT (Snþ1)� e�lnSnþ1
� 	
� E (ḠT (Snþ1)� e�lnSnþ1 )1An (Snþ1)

� 	
¼
ð

An

(ḠT (x)� e�lnx)
f �(nþ1)(x)

f �n(x)
f �n(x) dm(x)

¼ E (ḠT (Sn)� e�lnSn )
f �(nþ1)(Sn)

f �n(Sn)

� �
: (16)

Since (Sn)n¼1,2,. . . are ordered in the likelihood ratio order, then f �(nþ1)(�)=f �(n)(�) is
an increasing function on An. Set t00 :¼ inffx � t0 : f *n(x) . 0g. If t 00 � An, then
define

f �(nþ1)(t00)
f �n(t00)

:¼ lim
x[An, x#t00

f �(nþ1)(x)
f �n(x)

:

From (12) and (16) along with the fact that f �(nþ1)(�)=f �n(�) is an increasing function,
we get

E ḠT (Snþ1)� e�lnSnþ1
� 	
� E (ḠT (Sn)� e�lnSn )

f �(nþ1)(Sn)
f �n(Sn)

� �

¼ E (ḠT (Sn)� e�lnSn )
f �(nþ1)(Sn)

f �n(Sn)
� f �(nþ1)(t00)

f �n(t00)

� �� �
� 0:

The two factors inside the expectation always have opposite signs; hence, the last
inequality holds and, thus, the proof of (13) is completed. Finally, (10) and (13)

F. G. Badı́a and C. Sangüesa10
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lead to

P(N(T) � nþ 1) ¼ E ḠT (Snþ1)½ � � E e�lnSnþ1
� �

¼ P(N(T) � n)ðnþ1Þ=n

and the d-IFRA property is shown. An analogous proof can be carried out for the
d-DFRA case by reversing the signs of inequalities. B

Remark 4.4: Theorem 4.3 includes the mixed Poisson model as a particular case.
Since in this case the interarrival times (Xn)n¼1,2,. . . are exponential random variables
that have logconcave density functions, Theorem 1.C.5 in Shaked and Shanthikumar
[14, p. 30] yields

Sn ¼
Xn

i¼1

Xi �lr

Xnþ1

i¼1

Xi :¼ Snþ1: (17)

This section is also concerned with the preservation of the IFR property. Being
more precise, we prove that if (Sn)n¼1,2,. . . are ordered in the reversed hazard rate order,
then T being IFR implies that N(T ) is also IFR. It should be pointed out that this result
follows from Theorem 3.1. in Ross et al. [12], who showed this property for a more
general definition of renewal process than that considered in (3). Dealing with this
particular case, we make use of the general definition for T being IFR (see Remark
2.2), as well as the general definitions for both the hazard rate and reversed hazard
rate order (see Definition 4.5). A similar approach lead us to prove that if
(Sn)n¼1,2,. . . are ordered in the hazard rate order and T is DRHR, then N(T ) is also
DRHR.

First, we recall the definitions of both the hazard rate order and the reversed
hazard rate order.

DEFINITION 4.5: Let X and Y be two random variables with distribution functions FX

and FY and survival functions F̄X and F̄Y, respectively.

(i) X is said to be smaller than Y with respect to the hazard rate order (X �hr

Y) if

F̄Y (t)
F̄X(t)

is increasing in t,

for t in the union of the intervals of support of X and Y.
(ii) X is said to be smaller than Y with respect to the reversed hazard rate order

(X �rh Y) if

FY (t)
FX(t)

is increasing in t,

for t in the union of the intervals of support of X and Y.
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A sequence of random variables (Sn)n¼1,2,. . . is said to be increasing with respect
to the hazard rate order (resp. the reversed hazard rate order) if Sn �hr Snþ1 (resp.
Sn�rh Snþ1) for all n ¼ 1, 2, . . . .

Regarding the previous orders, we will make use of the characterization below
[10]. Part (i) is due to Shanthikumar and Yao [15].

THEOREM 1.9.3 (Müller and Stoyen [10, p. 53]):

(i) X �hr Y if and only if

Eg(X�, Y�) � Eg(Y�, X�),

for all g : R2! R such that Dg(x, y) :¼ g(x, y) 2 g( y, x) is increasing in x
for all x � y with X* and Y* being independent with X* ¼st X and Y* ¼st Y
(¼st denotes identical distribution).

(ii) X �rh Y if and only if

Eg(X�, Y�) � Eg(Y�, X�),

for g : R2! R such that Dg(x, y) :¼ g(x, y) 2 g( y, x) is increasing in x for
all x � y with X* and Y* being independent with X* ¼st X and Y* ¼st Y.

The following lemma aims at providing technical aid to prove the preservation of
both IFR and DRHR properties.

LEMMA 4.6: Let T be a nonnegative random variable with survival function ḠT and
h � 0.

(i) Define the function

ḡh(x, y) ¼ ḠT (x)ḠT ( yþ h), x [ R, y [ R, (18)

and assume that T is IFR; then

Dḡh(x, y) :¼ ḡh(x, y)� ḡh(y, x)

is increasing in x for x � y.
(ii) Define the function

gh(x, y) ¼ GT (x)GT (yþ h), x [ R, y [ R, (19)

and assume that T is DRHR; then

Dgh(x, y) ¼ gh(x, y)� gh(y, x)

is increasing in x for x � y.
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PROOF:

(i) Set h � 0 and y [ R. It has to be shown that

Dḡh(x1, y) � Dḡh(x2, y), x1 � x2 � y: (20)

If ḠT ( y) ¼ 0, then (20) holds since ḠT(y þ h) � ḠT ( y) ¼ 0 and, hence, Dḡh (x1, y) ¼
0 ¼ Dḡh (x2, y). Assume that ḠT ( y) . 0; then ḠT (x1) � ḠT (x2) � ḠT ( y) . 0. Since
T is IFR from part (ii) in Definition 2.1, it follows that

ḠT (x1 þ h)
ḠT (x1)

� ḠT (x2 þ h)
ḠT (x2)

� ḠT (yþ h)
ḠT (y)

:

Then, by taking into account the above inequalities, it can be stated that

Dḡh(x1, y) ¼ ḠT (x1)ḠT (y)
ḠT (yþ h)

ḠT (y)
� ḠT (x1 þ h)

ḠT (x1)

� �

� ḠT (x1)ḠT (y)
ḠT (yþ h)

ḠT (y)
� ḠT (x2 þ h)

ḠT (x2)

� �

� ḠT (x2)ḠT (y)
ḠT (yþ h)

ḠT (y)
� ḠT (x2 þ h)

ḠT (x2)

� �

¼ Dḡh(x2, y),

thus showing (20).

A similar approach leads to the proof of part (ii), replacing the survival function
by the distribution function and using Definition (2.4). B

The next assertions refer to the preservation of the IFR and DRHR properties.

THEOREM 4.7: Let N(t) be a renewal process as in (3) and T a random variable,
independent of (Sn)n¼1,2,. . .. Consider that the distribution function of T and the
corresponding (Sn)n¼1,2,. . . have no common discontinuity points. The following state-
ments hold:

(i) T being IFR implies that N(T) is also IFR, provided that (Sn)n¼1,2,. . . are
increasing in the reversed hazard rate order.

(ii) T being DRHR implies that N(T) is also DRHR, provided that (Sn)n¼1,2,. . .

are increasing in the hazard rate order.

PROOF:

(i) Let h � 0 and y [ R. Consider ḡh(x, y) as in (18). Since T is IFR, part (i) in
Lemma 4.6 yields

Dḡh(x, y) :¼ ḡh(x, y)� ḡh(y, x) is increasing in x for all x � y:
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Consider Snþ1
* a random variable identically distributed to Snþ1 and inde-

pendent of the initial interarrival times. Since Sn �rh Snþ1, from part (ii) in
Theorem 1.9.3, it follows that

E ḡh(Sn, S �nþ1)
� 	

� E ḡh(S �nþ1, Sn)
� 	

,

further implying

E ḠT (Sn)ḠT (S�nþ1 þ h)
� 	

� E½ḠT (S�nþ1)ḠT (Sn þ h)�, h � 0:

By using the foregoing expression with h :¼ Xnþ1 and taking expectations
with respect to h, it can also be written that

E ḠT (Sn)ḠT (S�nþ1 þ Xnþ1)
� 	

� E ḠT (S�nþ1)ḠT (Sn þ Xnþ1)
� 	

: (21)

As the interarrival times are identically distributed, then Snþ2
* ¼st Snþ1

* þ
Xnþ1. Then

E[ḠT (Sn)ḠT (S�nþ2)] ¼ E ḠT (Sn)ḠT (S�nþ1 þ Xnþ1)
� 	

: (22)

From (4), (21), and (22) we deduce that

P(N(T) � n)P(N(T) � nþ 2) � P(N(T) � nþ 1)2, n ¼ 0, 1, 2, . . . ,

thus concluding that N(T ) is IFR.
(ii) A similar proof yields the result in this part. Let h � 0 and y [ R.

Consider gh(x, y) as in (19). Since T is DRHR, from part (ii) in Lemma 4.6,
it follows that

Dgh(x, y) :¼ gh(x, y)� gh(y,x) is increasing in x for all x � y:

Consider Snþ1
* a random variable identically distributed to Snþ1 and indepen-

dent of the initial interarrival times. Since Sn �hr Snþ1, from part (i) in
Theorem 1.9.3,

E[GT (Sn)GT (S�nþ1 þ h)] � E[GT (S�nþ1)GT (Sn þ h)], h � 0,

is derived and, as in the proof of part (i), we obtain

E[GT (Sn)GT (S�nþ1 þ Xnþ1)] � E[GT (S�nþ1)GT (Sn þ Xnþ1)]: (23)

As Snþ2
* ¼st Snþ1

* þ Xnþ1, we also have

E[GT (Sn)GT (S�nþ2)] ¼ E[GT (Sn)GT (S�nþ1 þ Xnþ1)]: (24)

Then, (5), (23), and (24) lead to

P(N(T) � n� 1)P(N(T) � nþ 1) � P(N(T) � n)2, n ¼ 1, 2, . . . ,

thus implying that N(T ) is the discrete decreasing reversed hazard rate [follow-
ing the formula in (1)]. B

F. G. Badı́a and C. Sangüesa14
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Remark 4.8: The proof of Theorem 4.7 can be easily extended to the case of
renewal processes with interarrival times Xn independent but not necessarily identi-
cally distributed. However, for the IFR property, we need the additional assumption
that

Xn �st Xnþ1, n ¼ 1, 2, . . . , (25)

whereas for the DRHR property, we need that

Xn �st Xnþ1, n ¼ 1, 2, . . . :

As both proofs follow a parallel treatment, we focus our attention on the IFR property.
The proof of part (i) would be the same up to (21). We need condition (25), as it
ensures us that S*

nþ1 þ Xnþ1 �st S*
nþ2 and then we can replace (22) by

E[ḠT (Sn)ḠT (S�nþ2)] � E ḠT (Sn)ḠT (S�nþ1 þ Xnþ1)
� 	

:

Afterward, the proof remains the same. Note that (25) is equivalent to condition (c) in
Theorem 3.1 in Ross et al. [12] for the case of independent interarrival times.

In fact, if (25) is not verified, the preservation of the IFR property is not guaran-
teed. Take, for instance, T a uniform random variable on (0, 1) (which, according to
Definition 2.1(i) is an IFR random variable) and take constant interarrival times X1 ¼

1/4 and X2 ¼ 1/8. Clearly, 1/4 ¼ S1 �hr S2 ¼ 3/8. Moreover, we deduce from (4) that

P(N(T) � 2) ¼ P T .
3
8

� �
¼ 5

8
and P(N(T) � 1) ¼ P T .

1
4

� �
¼ 3

4
:

In this case,

5
8
¼ P(N(T) � 2) . P(N(T) � 1)2 ¼ 9

16
,

and, therefore, N(T ) is not an IFR random variable, as Definition 2.3(ii) is not satisfied
for n ¼ 0.

Remark 4.9: Recall that the hazard rate and the reversed hazard rate orders are weaker
conditions than the likelihood ratio order. Therefore, taking into account (17), it
follows that the renewal periods of a Poisson process, (Sn)n¼1,2,. . ., are increasing in
both the hazard rate order and the reversed hazard rate order. Thus, the preservation
of the IFR property (Vinogradov [17]) and the DRHR property for a mixed Poisson
model can be respectively deduced as a consequence of parts (i) and (ii) in Theorem
4.7.

The next corollary is immediately derived from Theorem 4.7.

COROLLARY 4.10: Let fN(t) : t � 0g be a renewal process as in (3):

(i) If (Sn)n¼1,2,. . . are increasing in the reversed hazard rate order, then, for
each t . 0, N(t) is IFR.
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(ii) If (Sn)n¼1,2,. . ., are increasing in the hazard rate order, then, for each t . 0,
N(t) is DRHR.

PROOF:

(i) For every t . 0, the constant random variable t is IFR (see Remark 2.2). As
a consequence of part (i) in Theorem 4.7, if (Sn)n¼1,2,. . . is increasing in the
reversed hazard rate order, then N(t) is IFR, provided that t does not belong
to the set of discontinuity points of (Sn)n¼1,2,. . ., thus showing (i) in this
case. Nevertheless, observe that the discontinuity points of (Sn)n¼1,2,. . .

constitute a numerable set. Then if t is a discontinuity point of
(Sn)n¼1,2,. . ., we can take a decreasing sequence of nonnegative numbers
(tk)k¼1,2,. . . such that tk # t, with tk not belonging to the set of discontinuity
points of (Sn)n¼1,2,. . .. Since for each k ¼ 1, 2, . . . , N(tk) satisfy the IFR
property, it can be written that

P(N(tk) � nþ 1)2 � P(N(tk) � n)P(N(tk) � nþ 2);

that is

P(Snþ1 � tk)2 � P(Sn � tk)P(Snþ2 � tk):

Thus, by taking limits in the expression above the discrete IFR property for
N(t) is deduced and, hence, part (i) is completed.

(ii) The proof is shown by similar means. B

Corollary 4.10 provides an extension for some well-known results concerning the
duality in the relationship of N(t) and the distribution function of interarrival times.
This is pointed out in the next remark.

Remark 4.11: Sengupta and Nanda [13, Thm. 6] showed that if (Xn)n¼1,2,. . . are IFR
(resp. DRHR), then N(t) is DRHR (resp. IFR) for each t . 0. Note that this is a
particular case of Corollary 4.10 since if (Xn)n¼1,2,. . . are IFR (resp. DRHR), from
Theorem 1.C.8 in Shaked in Shanthikumar [14], it can be deduced that

Sn :¼
Xn

i¼1

Xi �hr [�rh ]
Xnþ1

i¼1

Xi :¼ Snþ1:
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