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SUMMARY
This paper presents the Genetic Algorithm Optimized
Fourier Series Formulation (GAOFSF) method for stable gait
generation in bipedal locomotion. It uses a Truncated Fourier
Series (TFS) formulation with its coefficients determined
and optimized by Genetic Algorithm. The GAOFSF method
can generate human-like stable gaits for walking on flat
terrains as well as on slopes in a uniform way. Through
the adjustment of only a single or two parameters, the step
length and stride-frequency can easily be adjusted online, and
slopes of different gradients are accommodated. Dynamic
simulations show the robustness of the GAOFSF, with stable
gaits achieved even if the step length and stride frequency are
adjusted by significant amounts. With its ease of adjustments
to accommodate different gait requirements, the approach
lends itself readily for control of walking on a rough terrain
and in the presence of external perturbations.

KEYWORDS: Truncated Fourier Series; Genetic algorithm; Biped;
Gait generation and adjustment.

1. Introduction
Walking robots’ locomotion control architecture and
algorithm design is on a roll.1 Bipedal locomotion control,
an important part of intensive research into humanoid
robots in recent years, investigates the fundamentals of
how a biped can achieve stable and adaptive walking on
different terrains. The difficulty of bipedal robot locomotion
control can be attributed to the nonlinearity of its dynamics,
interaction with an unknown environment, and the existence
of underactuation at the ankle joint during the stance phase.2

Many approaches have been proposed for the bipedal
gaits generation. To reduce the complexity of the analysis,
some researchers adopted a simplified dynamic model such
as the inverted pendulum with certain assumptions on the
robot’s motion and structure.3,4 Nakanishi et al. made use
of recorded human gaits as the reference for robot trajectory
planning.5 Although human walking data are useful for gait
analysis, there still exist significant differences between the
dynamics of a bipedal robot and its human counterpart.2

*Corresponding author. Email: yanglin@nus.edu.sg

Some other researchers adopted a biologically inspired
approach using the idea of the CPG (Central Pattern
Generator).6–11 In the CPG-based approach, bipedal trajec-
tory generation has been achieved with the use of a network of
neural oscillators.12 Each neural oscillator can be implemen-
ted using a set of nonlinear coupled equations.13 It has the
desirable property of adaptation to the environment through
entrainment. However, it is difficult not only to design
the interconnection and feedback pathways of the neural
oscillators, but also to manually tune the required parameters
in order to achieve the desired walking characteristics.
The advantage of the CPG-based approach is the possibility
for real-time motion generation with a general method.

A popular approach used for joint trajectory planning
for bipedal locomotion is based on the ZMP (zero moment
point) stability indicator.14–16 In many ZMP-based trajectory
planning approaches, motion planning is presupposed and
performed in the Cartesian space.17–19 These motions
typically have “bent-knee” postures in order to avoid the
singularity problem when solving the inverse kinematics. The
bent-knee posture has the disadvantage that it tends to require
more effort from the joints and the resulting motion is not as
natural as the human gait.5 On the other hand, previous ZMP-
based works give some motion assumptions but do not give
much freedom for online motion adjustments, for example,
one joint or body part is predetermined,20 or trunk or waist
compensatory motions are used to reduce the error between
the desired ZMP and actual ZMP trajectory.21

The motivation for this research is to combine the ZMP
stability indicator with the CPG concept to develop a ZMP-
based CPG model, which can clarify the relationship between
mathematical model and robot dynamics. Furthermore, it is
aimed to give a uniform motion generation method with
adjustable parameters for the universal locomotion stability.
With this approach, stable bipedal walking gaits can be
generated which also allows adjustments of the step length
during walking, the walking rhythm, and adaptation to
the environment. Referring to the knowledge gained from
human gaits research on the function of the CPG in rhythm
generation, it can be summarized that walking is just a
basic function stored in our biological neural networks.
During walking on different terrains, this function is modified
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automatically according to human sense about the nature of
the terrain.

In this paper, a Genetic Algorithm Optimized Fourier
Series Formulation (GAOFSF) method is presented for
generating joint trajectories for stable bipedal locomotion.
In this approach, each joint angle trajectory is first modeled
using a special Truncated Fourier Series (TFS). A set of
constraints and objective functions is then identified and
recurrently computed by Genetic Algorithm (GA)22 to search
for an optimal set of parameters for the TFS for a given biped.
The resulting joint trajectories are then used to achieve both
flat and sloped terrain locomotion with online adjustments of
certain parameters to adapt to the nature of the terrain.

The algorithm is very general, which combines the
knowledge of ZMP and CPG, and can be applied for motion
generations besides the typical human-pattern walking. In
addition, there is always space for adding trunk or waist
compensatory motions to further improve the stability or
generalize the approach to a 3D space. One of the advantages
of GAOFSF is that trajectory generation is done directly in the
joint space. As such, inverse kinematics computation is not
required thus avoiding the singularity problem. The walking
rhythm, step length, and walking pattern can also be adjusted
online through tuning either a single or two parameters.
Those parameters chosen as adjustable in GAOFSF have
clear physical meanings for its walking patterns. Therefore, it
brings the straightforward relationships between mathematic
model and robotic dynamics. Furthermore, by using this
designed TFS function here, fewer mathematic constraints
are required than in other function approximations in the
gaits generation, which will be discussed in Section 2.

The conceptual scheme of bipedal locomotion control
using GAOFSF is shown in Fig. 1.

The offline part, consisting of block 1, 2, 3, 4, is responsible
for the generation of walking pattern, and then giving
adjustable walking pattern parameters to get the TFS pattern
generator. Then, the online loop uses the elaborated generator
to adjust walking motions automatically.

1. Robot Model

2. Genetic
Algorithm tuned

TFS model

7. Supervisory
Controller

3. Adjustable
walking pattern

parameters

4. TFS walking
pattern

generator

5. Implemented
Robot

(simulated or
real robot)

6. Sensory
feedback

Off-line loop: 1 -> 2 -> 3 -> 4

On-line loop: 5 -> 6 -> 7 -> 3 -> 4 -> 5

Fig. 1. Bipedal locomotion control scheme.

In this paper, we present the GAOFSF and its uses
for motion adjustments. Some supervisory controllers will
be discussed in the following reports. Section 2 describes
the TFS, which generates the hip and knee joint angle
trajectories. In Section 3, details of the objective functions,
constraints, and the optimization process using GA are
discussed. The resulting motions when the method is applied
on a seven-link planar biped for flat-terrain walking, and
for uphill and downhill terrains are presented in Section 4.
Section 5, 6, and 7 discuss the joint position control and
evaluate the results obtained from the dynamic simulation
using Yobotics!, which demonstrates the validity of the
proposed algorithm.

2. Truncated Fourier Series (TFS) Formulation
In the GAOFSF approach, a TFS formulation is used for
the synthesis of hip and knee joint angle trajectories. It
differs from the former work23 representing joint trajectories
of human walking by Fourier series function at the
usage of parameters in Fourier series for real-time motion
adjustments. Furthermore, it provides a way that the cosine
part of Fourier series might not be necessary and thus can be
tailored. In the presented approach, GA is used to search for
the optimal values of the parameters in these formulations
so as to achieve stable walking behavior with desirable
characteristics for a given biped.

The bipedal robot used to illustrate the application of the
proposed approach is a seven-link planar robot, as shown in
Fig. 2. Its geometrical and inertial properties are given in
Table I. It is made up of a trunk and two legs, with each leg
comprising a thigh, a shank, and a foot. Each leg has three
degrees of freedom, i.e., the hip–pitch joint H, the knee–
pitch joint K, and the ankle-pitch joint A. T is the mid-point
between the left and the right hip joints.

Gait synthesis for this bipedal robot involves first
determining the hip–pitch and knee–pitch angle trajectories
for each of the legs. The ankle-pitch angle trajectory of the
swing leg is then determined based on the condition that it is
always compliant with the ground surface. The ankle-pitch
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OXZ is the ZMP frame
TXZ is the Trunk frame
HXZ is the Thigh frame
 KXZ is the Shank frame
AXZ is the Foot frame

Fig. 2. Seven-link bipedal robot and coordinate systems.
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Table I. Geometrical and inertial properties of the biped.

Link Mass distribution Mass (kg)
Moment of Inertia

(kg·m2) about y-axis
Size (m) (L × W × H)

or (L × d)

Trunk Uniform 12 0.97 0.2 × 0.2 × 0.45
Thigh Uniform 6 0.0456 0.3 × 0.02
Shank Uniform 5 0.038 0.3 × 0.02
Foot Uniform 1 0.03012 0.3 × 0.1 × 0.02

angle of the stance leg is used to maintain the body-pitch
angle, which is set to be zero in this work.

The coordinate frames attached to the trunk (TXZ), the right
thigh (HXZ), the right shank (KXZ), and the right foot (AXZ)
are defined as shown in Fig. 2. An additional coordinate
frame (OXZ) attached to the ankle joint of the stance foot
is used as the reference frame for the zero-moment-point
(ZMP). Referring to Fig. 2, define for the right leg,

Right Hip Angle, θrh = the angle of axis HZ from axis TZ
in clockwise direction.

Right Knee Angle, θrk = the angle of axis KZ from axis
HZ in clockwise direction.

The corresponding angles for the left leg, θlh and θlk , are
similarly defined.

2.1. Basic features of human gait
In the literature, materials illustrating typical shapes of
trajectories for hip and knee angles in one cycle of locomotion
is easy to get,24 but for a deeper insight into human motion
properties we recorded and processed human gait using 3D
VICON motion registration system and POLIYGON human
motion analysis software. Fig. 3a gives the hip and knee
trajectories for a 1.83 m tall person (74 kg weight). The
reference frames are the same as defined for the biped
model aforementioned. The gait analysis software verified
the obtained data comparing it with the stored norms. From
the gaits recorded by VICON, considering the fact that human
body is physically different from a robot’s rigid links, we
elaborated Fig. 3b, which has captured the main features of

Fig. 3a but gives a general form to make it applicable to
robots. The trajectories for both legs are identical in shape
but are shifted in time relative to each other by half of the
walking period. For example, θlh for the left hip is identical
to θrh for the right hip, except that θlh is time shifted by
(t6 − t0)/2 w.r.t. θrh. The gait period is given by 2π/ωh where
ωh is defined as the gait frequency in radians per second
(rad/s). It can also be noted that the joint angle trajectories
can be separately looked by “offsets.” The values of the
defined offsets actually influence the biped’s posture during
walking. ch denotes the hip angle offset. This is the value of
both hip joint angles at the point they become equal, or at
which the two thighs cross each other. ck denotes the knee
angle offset. This is the value of the knee angle when the knee
is locked during part of the support phase. t1 and t2 denote
the start and end time, respectively, of the lock phase. To
give a freedom of the lock phase (from t1 to t2), which is not
obviously shown in the human gait, is required because the
physical pattern of the stance leg is tending to lift up the body
and then be straightened. However due to the physical body
constraints, it could be bent or overstretched a little referring
to Fig. 3a, from t = 0.14 to 0.4 s, but the peak value is small;
thus, it can be simplified in the robot whose links are all
rigid as a lock phase. Nevertheless, Fig. 3b is still considered
general because it will exactly resemble the human walking
features if t1 and t2 in the TFS model optimization turn out
to be coincided. Then there will be no lock phase, but it may
ask a higher order TFS to give a curve with two different
peaks, alternatively, another set of TFS for the period from
t1 to t2 can be added into the computation.

Fig. 3. (a) Human gaits on flat-terrain recorded by VICON. (b) Uniform gaits elaborated from human gaits features. Right support: [t2, t5];
right swing: [t0, t2] and [t5, t6]; left support: [t0, t2] and [t5, t6]; left swing: [t2, t5].
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Consider first the hip angle trajectories. They can be
divided into an upper portion, θ+

h , for which θh ≥ ch, and
a lower portion, θ−

h , for which θh < ch. Thus, referring to
Fig. 3b, for the two portions of the walking cycle, the hip
joint angles for the two legs are given by

t ∈ [t0, t3] θrh = θ−
h (t) θlh = θ+

h (t)
t ∈ [t3, t6] θrh = θ+

h (t − t3) θlh = θ−
h (t − t3)

(1)

here θrh and θlh are the right and the left hip joint angles,
respectively.

Similarly, the right knee joint angle trajectory for different
portions of the walking cycle is given by

t ∈ [t0, t4] θrk = θk1(t + t6 − t5)
t ∈ [t4, t5] θrk = θk2

t ∈ [t5, t6] θrk = θk1(t − t5)
(2.1)

where θ k1 is the knee joint trajectory from the beginning of
swing phase, denoted by t5 for the right knee in Fig. 3b, to
the instant in the support phase when the knee joint is locked,
denoted by t4 in Fig. 3b. θ k2 is the locked knee joint angle.

Similarly, referring to Fig. 3b, the joint angle for the left
knee is given by

t ∈ [t0, t1] θlk = θk1(t + t6 − t2)
t ∈ [t1, t2] θlk = θk2

t ∈ [t2, t6] θlk = θk1(t − t2)
(2.2)

where t1 is the instant when the stance knee is locked and
t2 is the instant when the walking phases of the two legs are
switched.

θrh, θlh =

⎧⎪⎪⎨
⎪⎪⎩

θ+
h =

n∑
i=1

R · Ai sin iωh(t − t+h ) + ch, where ωh = π/(t3 − t0) = π/(t6 − t3)

θ−
h =

n∑
i=1

R · Bi sin iωh(t − t−h ) + ch

(5)

2.2. Joint trajectory representation using TFS
The Fourier Series of a periodic function of time f(t) can be
written as

f (t) = 1

2
a0 +

∞∑
i=1

ai sin

(
2πi

T
t

)
+

∞∑
i=1

bi cos

(
2πi

T
t

)
(3)

cθrk, θlk =
⎧⎨
⎩θk1 =

n∑
i=1

R · Ci sin iωk(t − tk) + ck, where ωk = π/((t6 − t2) + (t1 − t0))

θk2 = ck ≥ 0
(6)

where ai and bi are constant coefficients and T is the period.
The fundamental frequency is given by ω1 = 2π/T .

As discussed in the previous section, all the joint
trajectories during a gait cycle can be divided into two
portions. Each portion can be viewed as an odd function
output according to the intersection with the angle axis.

Therefore the sine series in the Fourier series function is
simplified; a TFS is used to model each portion as follows

f (t) =
n∑

i=1

ai sin iωt + cf (4)

where ai and cf are constants to be determined and ω is
the fundamental frequency determined by the desired period
of the gait. The parameter n, which determines the number
of terms in the Fourier series, is chosen as a trade-off
between the accuracy of the approximation required and the
computational load. The formulation as shown in Eq. (4) is
used for the joint angles θ+

h (t), θ−
h (t), and θk1(t) as given in

Eqs. (1) and (2). Although the function is periodic, only the
first half of the period is needed for the joint angles. It is
noted here that since the shapes of the upper and the lower
portions are not symmetrical about the (0, ch) point, even if
the full Fourier series is used, this cannot automatically give
an equal time period for the upper and the lower portions of
a walking motion. The use of the full Fourier series, as with
other approximation functions, will therefore also require an
additional mathematical constraint to fix the profile so that
the upper and the lower portions intersect at the points (0, ch)
and (Ts, ch), Ts being the step period. As can be seen from the
foregoing, the use of TFS allows for a reduced series with
fewer parameters for the same approximation accuracy, and
with fewer constraints required. This significantly reduces
the subsequent computational load in the search for feasible
and optimal solutions using GA.

Using Eqs. (1–4), and by inspection of the curves in
Fig. 3b, the TFS for the hip–pitch angles are formulated as

where Ai and Bi are constant coefficients, θ+
h and θ−

h are
the upper and the lower portions, respectively, of the hip
joint angle trajectory, and t+h and t−h are time-shift values
according to Eq. (1). R is an amplitude scaling parameter
used for changing the step length. Initially, R is set to 1.

Similarly, the trajectories for the knee joint angles are
expressed as

where Ci are constant coefficients and tk is the time shift.
Compared with other approximation approaches,18,25–28

the advantages of using the TFS to synthesize the walking
gait for bipedal robots are as follows:

1. With only a few terms in the series, it can represent quite
accurately the shapes of the required joint trajectories
for human-walking-inspired biped robot gait, for which
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the upper and the lower portions are not symmetrical but
individually are similar to half a sinusoid.

2. Each TFS used here is a simple expression that makes no
mathematical assumption when considered as half of an
odd function. The gait period is included directly. Other
functions such as the Spline, Gaussian, or the full Fourier
series function will add additional constraints to regulate
the motion period as mentioned above.

3. Key parameters of the TFS can be easily adjusted online
during walking to change the walking gait, either to
change the desired pace or in response to external
perturbations.

3. Gait Generation Algorithm Implementation Factors
In this section, the necessary algorithm implementation tools
are discussed. The ZMP is used to ensure that the generated
gait is feasible and stable, and the GA is used to search for
the desired feasible and optimal gaits according to specified
objective functions and within specified constraints.

3.1. Dynamic stability criterion—ZMP
The ZMP stability indicator is used for evaluating the
feasibility of the generated gait. In the GAOFSF approach,
the biped gait is directly given in the joint coordinates. The
existence issue of the inversed kinematics solution is thus
avoided.

The coordinates, (Px, Py), of the ZMP (with reference to
the ZMP frame) can be determined as 13,14,24

Px =
(

n∑
i=1

mi(z̈i + g)xi −
n∑

i=1

miẍizi −
n∑

i=1

Iiy�̈iy

)/

n∑
i=1

(z̈i + g)mi (7.1)

Py =
(

n∑
i=1

mi(z̈i + g)yi −
n∑

i=1

miÿizi −
n∑

i=1

Iix�̈ix

)/

n∑
i=1

(z̈i + g)mi (7.2)

where xi, yi, and zi are the coordinates of the centroid of link i;
mi is the mass of link i; Iix and �ix are the centroidal moment
of inertia and angular displacement, respectively, about the
X-axis; Iiy and �iy are the corresponding parameters about
the Y-axis; and g is the acceleration due to gravity. Here, for
the planar robot used, only Eq. (7.1) is needed since only
motion in the sagittal plane is considered.

For a given set of joint angle trajectories, if the trajectory
of the ZMP remains strictly within the area covered by the
supporting convex hull of the robot, the given locomotion will
be physically feasible and the robot will not topple over while
executing the motion. Thus, ensuring that the trajectory of
the ZMP remains within a small region of the robot’s support
polygon is used as one of the key criteria in the objective
function for the optimization process.

3.2. Optimization method—genetic algorithm
In order to generate the desired joint angle trajectories
for stable walking, a suitable set of coefficients Ai, Bi,
Ci and parameters ch, ck, t1, t2 (refer to Fig. 3b) need
to be obtained. t1 is the instant when the knee of the
stance foot starts to lock and t2 is the instant when the
walking phases of the two legs are switched. Because
all performance indices can be expressed explicitly, GA22

provides a very straightforward way to search for the required
parameters. This will be discussed in the following sections.
The sequence of GA implementation is summarized as
follows:

1. Select a fitness function (the goal for the optimization
process).

2. Code the parameters to be varied for optimization into
genes to form a chromosome.

3. Randomly generate a fixed population of chromosomes
and evaluate their fitness values.

4. Apply the reproduction operator to generate a new
population of chromosomes with the ones having better
fitness values from the previous generation being given
higher probabilities of being selected.

5. Randomly choose the mating gene pair and the
crossover site. Apply the crossover operator to generate
the new pair of chromosomes. Apply the mutation
operator.

6. Repeat Step (5) until a fixed number of generations has
been generated.

In the demonstration example used here, it was found,
through experimentation, that a value for n in both Eqs. (6)
and (7.1) as low as 5 gives good performance. This value
was thus used. In this case, there will be altogether 19
parameters to be determined. These parameters are coded
in a chromosome, which has 19 genes. The chromosome
representation can be in binary, integer, or real numbers.
Here, the real number representation22 was adopted which,
from experiments performed, is more efficient than the other
representations. It takes about 1 min on a Pentium 4, 2.8 GHz
computer to find out the solution that fulfils all motion
requirements.

The next step is to implement appropriate GA operators,
which will yield successful outcomes for the optimization
process. The GA operators usually include selection,
crossover, and mutation. The properties and parameters given
to the GA operators for this work are given in the Appendix
(Tables A1–A3).

3.3. Fitness function
One of the most important steps of GA is the formulation of
the fitness function. To achieve a natural walking gait while
maintaining adequate walking stability, an objective function
(to be minimized) is formulated as

fT = w1f1 + w2f2 + w3f3 + w4f4 (8)

where w1, w2, w3, and w4 are weighting factors, and f1 is
the sum of the distances from the ZMP to the center of the
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support polygon over a walking step

f1 =
m∑

i=1

|PiQ| (9)

where Pi is the ZMP position at the ith sampling instant; Q

is the position of the center of the support zone, and m is the
total number of samples in one walking step.

f2 is the standard deviation of the distance from the ZMP
to the average ZMP position

f2 =
√

(x1 − x̄)2 + (x2 − x̄)2 + · · · (xm − x̄)2

m
(10)

where xi = |PiQ|, i = 1, 2, . . . , m and x̄ = (1/m)
∑m

i=1|PiQ|. With f1 and f2, the ZMP is aimed to be located in a
specific area, which is as small as possible. They also reduce
the chance of having a sudden change in the ZMP position.

f3 is the standard deviation of the trunk velocity from the
resulting average velocity over a walking cycle

f3 =
√

(v1 − v̄)2 + (v2 − v̄)2 + · · · (vm − v̄)2

m
(11)

where vi , i = 1, 2, . . . , m, is the trunk’s velocity at the ith
sampling instant and v̄ is the resulting average trunk velocity
over a walking cycle.

f4 = swing foot ground strikes velocity, vs (12)

which prevents any instability from larger ground impacts on
landing.

In addition to the above four components of the objective
function to be minimized, there are six penalty functions for
motion constraints to ensure a valid and natural walking
motion. Motion constraints work differently from the
previous motion objectives. For a motion constraint, there
is no penalty if the constraint is not violated. A penalty
is only imposed when the motion violates the constraint.
The six motion constraint penalty functions are described
below.

s1 constrains the ZMP to be within the support polygon,
with PiQ ⊆ [ − L1, L2] (according to the ZMP coordinate
frame origin O) where L1 is the distance of the heel from the
ankle joint and L2 is that of the toe from the same.

s1 = max

((
|PiQ| − 1

2
Lf

)
, 0

)
(13)

where Lf = L1 + L2s is the length of the robot foot.
s2 constrains the swing height to be above a specified

minimum value except the phase-switch moment so that the
swing foot does not hit the ground prematurely or drag on
the ground.

Let m be the number of the sampling instances within
one walking step; d1 and d2 be the sums of the differences
between the desired swing height and the actual height for
one walking step; Hr and Hl be the length projections of
the right and the left leg, respectively, to the vertical plane

with respect to the terrain surface; and Hmin be the minimum
swing height. With this constraint, although the swing height
cannot be always above the minimum height, the problem of
the swing foot dragging on the ground for a long time will
be avoided.

for i = 1 : m

if(t(i) <= t2)
d1 = d1 + max((Hr − Hl − Hmin), 0);
else if(t(i) > t2)
d2 = d2 + max((Hl − Hr − Hmin), 0);

end
s2 = d1 + d2

(14)

s3 constrains the trunk’s velocity to be always positive

s3 = max(−vi, 0) (15)

where vi is the trunk velocity, and the max function is taken
over all the sampling instances for the walking step.

s4 constrains the swing foot’s velocity to be always
positive except during the short time period before swing
foot touchdown

s4 = max(−vf , 0) (16)

where vf is the swing foot velocity, and the max function is
taken over all the sampling instances for the walking step.

s5 constrains the deviation of the step length to be within
a small specified value

s5 = |L − L0| (17)

where L and L0 are the actual and the desired step lengths,
respectively. It can be regarded as a soft motion constraint.

s6 constrains the deviation of the foot’s touch-down instant,
td, from the planned phase switching time, t2, to be within a
small specified value

s6 = |t2 − td |. (18)

Based on these constraints, a penalty function is defined as

P =
6∑

i=1

pisi (19)

where pi, i = 1, . . . , 6, are assigned penalty weighting
factors.

Using Eqs. (8) and (19), the fitness function for the GA
algorithm is established as

F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if
n∑

i=1
|Ai | = 0 or

n∑
i=1

|Bi | = 0

or
n∑

i=1
|Ci | = 0

Cmax − fT − P, otherwise

.

(20)
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Table II. Two flat-terrain walking examples.

Example 1 Example 2

Step length 0.33 m 0.28 m
Walking speed 0.45 m/s 0.37 m/s

The first expression of Eq. (20) is used to avoid the possible
situation of standing still which can give a very good
performance on the ZMP-based stability objective. The
parameter Cmax is chosen to be as small as possible in
order to have a better differentiation among various possible
solutions. However, it should also be such that the fitness
value for most, if not all, possible solutions are positive.
Suitable values are chosen by trial and error.

In some cases, it is still possible for the fitness values to be
negative, indicating a very weak chromosome. However, it
is also possible for a bad chromosome to evolve to be better
and better. To cater to these possibilities, if the fitness value
for a chromosome works out to be negative, a small value is
assigned to it considering a small probability of survival. If
it continues to be weak after crossover and mutation, it will
be discarded eventually.

In selecting the values for the weight factors wi and
pi, consideration was given to balance all objectives and
constraints, usually through estimating f1 to f4 and s1 to
s6 values of a normal performance and then estimating the
weight factors to make them almost equally important.

4. Gait Patterns Generated by GAOFSF
The aforementioned GAOFSF approach was applied to the
planar biped illustrated in Fig. 2, with the geometrical and
inertial properties as given in Table I. The TFS, with n = 5,
was used for the joint angle trajectories described in Eqs. (5)
and (6). Walking gaits for flat-terrains (two examples), one
with a 10◦ up-slope and another with a 10◦ down-slope, were
then generated.

4.1. Flat-terrain walking
To achieve a natural human-like gait, do not take the small
stance knee angle change as significant, the knee joint
angle offset value, ck = 0. The appendix gives the set of
parameters used for the GA initialization and the weights
for the objective and penalty functions. The step lengths and
walking speeds used for the two flat-terrain walking examples
are shown in Table II.

The format of the chromosome is set as [Ai, Bi, Ci, ch, ck,
t1, t2]. The chromosome solutions, x1 and x2, obtained for
flat-terrain walking Examples 1 and 2, respectively, are

x1 = [0.277 −0.087 0.022 −0.008 −0.000

−0.397 −0.118 −0.024 −0.017 −0.006

0.457 0.200 −0.038 −0.077 −0.046

−0.036 0.000 0.050 0.44]

x2 = [0.238 −0.057 0.012 −0.004 0.0003

−0.356 −0.043 0.042 0.004 −0.003

0.469 0.074 −0.050 0.008 −0.017

−0.021 0.000 0.065 0.47]
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Fig. 4. Generated joint angle trajectories (Example 1, flat terrain).

Dash line indicates
the instant when the
support exchange
occurs.

Fig. 5. ZMP trajectory (Example 1, flat terrain).

For the above two examples, ωh = 4.28 and ωh = 4.15,
respectively. The value of Cmax used for the GA is 1400 and
the fitness function values for the two solutions are 1287
and 1309, respectively, indicating good optimization perfor-
mances. What follows will show that the generated gaits
results are in accordance with the objectives and constraints.

From the solution obtained for Example 1, the corres-
ponding hip and knee joint angle trajectories, generated using
the TFS, are shown in Fig. 4. Figure 5 shows the trajectory of
the ZMP for one walking cycle and Fig. 6 shows the position
of the centroid of the trunk versus time. It can be observed that
the ZMP trajectory is confined within the safe area (−0.08,
0.12) m of the footprint (−0.1, 0.2) m, which is fair enough
for such a step length and speed walking for a robot of the
size shown in Table I. From Fig. 6, it is observed that an even
walking speed of 0.45 m/s has also been achieved via the
estimation of the inclination of the position–time plot. Fig. 7
shows the difference (fl − fr − hr) between the lengths of the
vertical projections of the left and the right legs. The results
show that the swing foot is kept above the ground during the
swing phase. The instant of swing leg touchdown occurs at td
= 0.44 s (with fl = fr; hr = 0 for flat-terrain). This is equal to t2
in the x1 chromosome. Checking whether td, the touch down
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Dash line indicates
the instant when the
support exchange
occurs.

Fig. 6. Trunk speed seen from the inclination (Example 1, flat
terrain).

instant of the swing foot, is equal to t2, the planned switching
instant between the two legs, is important for the validity of
the calculation of the ZMP trajectory. Referring to Fig. 7, if
fl and fr are the vertical projections of the left and right legs,
respectively, and hr is the vertical height of the slope at the
point above the stance foot (for flat-terrain walking, hr is set
to be zero), then the following relationship applies{

fl ≥ fr + hr (t ≤ t2) left leg is stance leg
fr > fl + hl (t > t2) right leg is stance leg

Figure 8 shows the stick diagram of the final resulting motion
pattern. From the motion data obtained, the swing foot
touchdown strike velocity [vx, vz] is found to be [0.15, −0.2]
m/s. The resulting ground impact is found to be acceptable
from the subsequent dynamic simulations to be discussed in a
later section. The step length is found to be equal to 0.327 m,
very close to the set target.

The resulting motion obtained for Example 2 is illustrated
in Figs. 9–11. Due to a smaller step length, the ZMP is as
expected confined to a smaller range compared to Example 1.
The swing foot touchdown strike velocity is found to be vx =
0.12 m/s and vz =−0.2241 m/s; the step length to be
0.27062 m; the average walking speed to be around 0.36 m/s,
and the first foot touchdown instant to be td = 0.47 s, which
is also equal to t2 in the GA solution.

Fig. 8. Stick diagram of the motion (Example 1, flat terrain).
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Fig. 9. Generated joint angle trajectories (Example 2, flat terrain).

Therefore, the results obtained for those two examples of
flat-terrain walking confirm that the proposed approach can
be used to synthesize reliable and overall optimal (in the

Fig. 7. (a) fl − fr (m) versus time. (b) fl, fr and hr illustrations.
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Fig. 10. ZMP Trajectory (Example 2, flat terrain).

Fig. 11. Stick diagram of the motion (Example 2, flat terrain).

sense of objective functions) trajectories with stable human-
like walking gaits.

From these solutions, which resembled the typical hip and
knee joint trajectories and satisfied all performance indices,
it can be noted that coefficients for all the fifth-order term
in the TFS are very small in comparison to that for the first
term. Therefore, it shows that the fifth-order TFS used is
sufficient for the gait synthesis and higher-order TFS are not
significantly necessary. To demonstrate the generality of the
proposed GAOFSF approach, it is applied to generate gaits
for walking on slopes or on stairs. The results for these are
presented in the following sections.

4.2. Slope-terrain walking
The “footprint” in the case of inclined terrain walking is
the projection of the footprint of the stance foot onto the
horizontal plane.

In the first slope walking example, the GAOFSF approach
was used to generate the joint trajectories for the robot to
walk up a 10◦ slope. The desired step length is set to 0.26 m
and the average walking speed along the horizontal plane is
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Fig. 12. Generated joint angle trajectories (up-slope).

set to 0.27 m/s (ωh = 3.2623). The GA parameters are shown
in the Appendix.

The best chromosome, [Ai, Bi, Ci, ch, ck, t1, t2],
corresponding to a fitness value of 2860 and with Cmax =
3000, was found by GA to be

xup = [0.222 −0.041 −0.011 0.014 −0.005

−0.500 −0.035 0.097 0.039 0.004

0.650 −0.096 −0.087 0.085 0.024

−0.144 0.267 0.001 0.540].

Figure 12 shows the resulting joint angle trajectories,
which are similar in form as those shown in Fig. 3. Figure 13
shows the trajectory of the ZMP. It is clear that the ZMP
trajectory is well restricted within the safe area (−0.0985,
0.197) m of the footprint. The resulting walking speed is
0.265 m/s and the swing foot strike velocity, [vx, vz], is found
to be [0.042, −0.28] m/s which will not cause an unduly
large ground impact as confirmed by the subsequent dynamic
simulation. The step length obtained is 0.261 m, which is
also very close to the target value. The actual strike instant,

Dash line indicates
the instant when the
support exchange
occurs.

Fig. 13. ZMP trajectory (up-slope).
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Fig. 14. Stick diagram of 10◦ up motion.
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Fig. 15. Generated joint angle trajectories (down-slope).

at t = 0.54 s, is the same as t2 in the solution. Figure 14 shows
the stick diagram of the locomotion.

The second case involved walking down a 10◦ slope. The
step length was set to 0.35 m and the average walking speed
to 0.6 m/s (ωh = 2π ). The GA parameters used are shown
in the Appendix. The best chromosome obtained by GA, in
the form of [Ai, Bi, Ci, ch, ck, t1, t2], with Cmax = 3000 and
corresponding to a fitness value of 2935, is

xdown = [0.312 −0.076 0.018 −0.005 −0.004

−0.327 −0.190 −0.096 −0.031 −0.009

0.144 0.118 −0.007 −0.114 −0.033

−0.194 0.799 0.147 0.220].

Figure 15 shows the resulting joint angle trajectories.
Figure 16 shows that the ZMP trajectory is also well restricted
within the safe area of the footprint. For this motion, the
swing foot strike velocity [vx, vz] is [−0.15, −0.5] m/s,

Dash line indicates
the instant when the
support exchange
occurs.

Fig. 16. ZMP trajectory (down-slope).

Fig. 17. Stick diagram of the motion (10◦ down-slope).

respectively. The actual step length is 0.35 m and the walking
speed is about 0.625 m/s. The first leg strike instant is at t =
0.21 s, which is also very close to t2 in the GA solution. The
resulting motion is shown in Fig. 17.

The results obtained for flat-terrain, up-slope, and down-
slope motions show that the GAOFSF is effective and
uniform in generating gaits that meet all the constraints and
which maximize the objectives. The resulting motions are
feasible and have similar forms as in the natural human gait.

From the results, it is noted that although the general shapes
of the joint angle trajectories obtained as similar in form to
that shown in Fig. 3b, there is a significant difference in the
value of t1, the instant when the stance knee starts to lock
for the different slopes. For both flat terrains and up-slope
walking, t1 is negligible but for down-slope walking, the
period from t0 to t1 is quite significant. This shows that, in
the latter case, the stance knee joint is locked for only a very
short duration or may not be locked at all.

In the following section, the dynamic simulations for the
generated stable locomotion with human-like gaits will be
presented.

https://doi.org/10.1017/S026357470700344X Published online by Cambridge University Press

https://doi.org/10.1017/S026357470700344X


A uniform biped gait generator with offline optimization and online adjustable parameters 559

5. Dynamic Simulation of Generated Gaits
For the joint angle trajectories generated by GAOFSF,
dynamic simulations were then performed using the seven-
link bipedal robot modeled as Table I. The simulation
software used is Yobotics!.29 In this simulation environment,
the dynamics of the robot, based on Newton–Euler equations,
are performed automatically and the user only needs to set up
the robot structure based on a high level constructor and the
ground contact behavior. The latter is essentially based on a
spring-damper model which has both horizontal and vertical
components. In the simulation, Yobotics! models the ground
properties and gives the sensed dynamic information like
velocity, acceleration, and ground reaction forces directly.

The hip and knee joints’ trajectories are generated by
the GAOFSF approach. The swing ankle joint trajectory is
generated in real-time by using the fact that the swing foot
is desired to be parallel to the ground at all time. The stance
ankle joint trajectory is generated in real-time by using the
fact that the body pitch is desired to be zero at all times.
To further ensure a smooth switching of the stance phase
between the legs, the ankle joint was loosened at the point
when either the toe or heel touches the ground. This ensures
that the swing foot is parallel to the ground at touchdown
and, thereafter, as the stance foot it is always compliant and
in full contact with the ground. This makes the ZMP criterion
always applicable as a check on gait feasibility. On the other
hand, if the actual motion gets the right track as the planned
one, the stance foot is not supposed to flip during the motion.
For hip and knee joint control, local PD controllers are used,
for example, the stance hip joint control law is given as

τsth = Ksth

(
θd
sth − θsth

) + Dsth

(
θ̇ d
sth − θ̇sth

)
(21)

where τ sth denotes the stance hip joint torque; Ksth and
Dsth are the proportional and derivative gains, respectively;
θ sth and θd

sth are the actual and desired stance hip angles,
respectively; and θ̇sth and θ̇ d

sth are the actual and desired
stance hip angular velocities, respectively.

There are three reasons to choose PD control to test the
GAOFSF. Firstly, if PD control can achieve the desired
motion well, the planned motion is very confident to be
achieved by other more complicated nonlinear controllers.
Secondly, in the biological sense, it is said that PD controller
can achieve the muscular motions well enough.30 Lastly,
with a properly designed high-level, automatic, rhythmic
step length and pattern adjustment according to the real-time
information (i.e., trunk CG position), the tracking accuracy
is a secondary factor.

To further prove the proposed motion generation method
GAOFSF mimics human-like patterns, the ground reaction
forces were investigated. Here, the flat-terrain walking is
taken to give a comparison with real human walking recorded
by VICON system. Figure 20 shows the measured orientation
and the magnitude of reaction force in human walking using
the VICON system.

The reaction forces (shear force and vertical reaction
force) of two flat-terrain walking examples are acceptable,31

considering the robot weight (Figs. 18 and 19). The lack of
visible force impact of the end of support phase, similar to the
human gait, suggests there is no obvious dynamic impulse

Fig. 18. Ground reaction force of flat-terrain walking 1.

Fig. 19. Ground reaction force of flat-terrain walking 2.

to push the biped. Referring to Figs. 18 and 19, the shear
forces are negative at first and then becomes positive. This
is exactly what is measured in human gaits. The negative
part is the braking phase of touching down and the positive
part is the motion propulsion phase when the supporting leg
pulls the ground to drive the body. The peak value of shear
forces is about 15% of body weight, comparable to 16–20%
in human walking. For a better illustration of the changing
orientation and magnitude of ground reaction force, a human
walking experiment are displayed at once with two different
timings (dark gray and light gray), shown in Fig. 20. The
length of vector is related to its force magnitude. Comparing
the orientation and the magnitude of reaction force in human
walking, a good coincidence between the generated gaits
and the human counterpart is noticed. The force vectors’
orientations rotate clockwise with the progress of the support
phase. The value of vertical ground reaction force near the
body weight mostly during the support confirms that the
robot is supported well.

From Figs. 21 and 22, note that the calculated required
friction coefficient is small (<0.25). It means that normal
surfaces (PCV floor, wooden floor, brick path, asphalt)
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Fig. 20. Orientation and the magnitude of reaction force in human
walking.

Fig. 21. Required friction coefficient for flat-terrain walking 1.

Fig. 22. Required friction coefficient for flat-terrain walking 2.

toward robot feet with shoe-type sole (for those materials
friction coefficient ranges from 0.5 to 0.9)32 can easily satisfy
the compensation of shear force without slip. Figures 23 and

Fig. 23. Dynmic simulation of walking Example 1.

Fig. 24. Dynamic simulation of walking Example 2.

Fig. 25. Ground reaction force of going-up motion.

24 show the stick diagrams for the corresponding walking
motions under the environment of Yobotics!.

The up-hill and down-hill motions also have been achieved
well comparing the following stick diagrams with Figs. 15
and 19. Similarly, the orientation and magnitude of the
ground reaction force for up-slope and down-slope motions
are shown in Figs. 25 and 26, respectively. For going down
a slope, it is quite natural to have a bigger impact when
the swing foot touches the ground comparing with the up-
slope or flat-terrain motions.23 Figures 27 and 28 give the
required friction coefficient during the up-slope and down-
slope motions, respectively, showing that it is still safe
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Fig. 26. Ground reaction force of going-down motion.

Fig. 27. Required friction coefficient of going-up motion.

Fig. 28. Required friction coefficient of going-down motion.

Fig. 29. Stick diagram of actual up motion.

Fig. 30. Stick diagram of actual down-slope motion.

enough to walk on normal grounds. Figures 29 and 30 show
the stick diagrams of the up-slope and down-slope walking,
respectively.

All the simulation results show that the generated gaits
from the GAOFSF approach can be applied directly to the
simulated robot without any modification. This implies that
the objective function and the motion constraints chosen for
the GAOFSF are valid.

6. Gait Adjustment During Walking
Effective control in robotics usually require an online
adjustment in the presence of environment change such as
disturbance and noise.33 The foregoing sections present an
approach, using truncated Fourier Series (TFS) to represent
joint angle and GA to search for optimal trajectories, which
has been demonstrated, through dynamic simulations, to
be capable of generating stable human-like walking gaits
for various specified walking rhythms and for terrains of
different specified slopes. In this section, the extent to which
the generated gaits can be adjusted, by adjusting certain
parameters in the TFS, to accommodate different walking
rhythms and terrains of different slopes is discussed. Here,
some results are given to show the feasibility of adjusting the
parameters of TFS model online.
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6.1. Step length and rhythm adjustment
From Eqs. (5) and (6), it can be noted that, with the TFS
formulation used, the step length can be easily adjusted by
changing just the value of the scaling parameter R. The period
of the walking cycle can also be simply adjusted by changing
ωh. Both these two parameters directly change the walking
speed and gait rhythm of the resulting locomotion.

As noted earlier, changing the step length of the gait
can be achieved easily by changing just the value of a
single parameter R in the TFS obtained by GAOFSF. In
the meantime, with the amplitude of TRS increased, the
swing leg lifts higher. It actually also helps to avoid ground
obstacles to some degree and resembles what human-beings
do. However, there is no guarantee that this will result in
stable locomotion. To investigate this, the value of R was
varied in the joint angle trajectories obtained earlier by
GAOFSF for walking on all the three types of terrains:
flat, 10◦ up-slope, and 10◦ down-slope. The stability of
the resulting gaits was then investigated through dynamic
simulations using Yobotics!.

The dynamic simulation results show that different step
lengths were achieved and the locomotions were stable and
the gaits natural and human-like for all the three types of
terrains when the value of R was varied. As an example,
the stick diagrams of the resulting motion obtained from the
dynamic simulation when R is varied for the down-slope
walking are shown in Figs. 31 and 32, for which R = 0.7
and R = 1.1, respectively. As expected, a big step length also
brings a much more obvious swing height.

To investigate the robustness of the trajectories obtained to
changes in the stride frequency, similar dynamic simulation
experiments were conducted with the value of ωh varied.
Simulation results show that the walking rhythm changes
with changes in ωh and the resulting gaits were confidently
stable for variation of ωh within the range of 2–6. Figures 33
and 34 are stick diagrams illustrating the locomotion obtained
for ωh = 2 and ωh = 6, respectively. It is noted that these

Fig. 31. Down-slope walking with R = 0.7.

Fig. 32. Down-slope walking with R = 1.1.

Fig. 33. The slowest walking with ωh = 2.

Fig. 34. The fastest walking with ωh = 6.
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Fig. 35. Walking on an up-slope with changing gradient.

values are 61% and 184% of the value of ωh used in the
solution obtained by GAOFSF.

6.2. Walking on different slopes
The gaits obtained by GAOFSF for walking on slopes
were optimized for stable walking only for a slope with a
specific gradient. The gaits obtained earlier, for example, are
optimized for stable walking on a terrain with a gradient of
10◦ up-slope and 10◦ down-slope. Here we investigate how
the TFS obtained by GAOFSF can be adjusted for stable
walking on slopes with different gradients.

From dynamic simulation experiments, it is found that by
appropriately changing only the values of ch and ck in the
TFS of Eqs. (5) and (6), stable gaits can be obtained for
walking on different slopes. The rules for changing these
two parameters are as follows (the derivation of those rules
will be discussed in the sequent report)

{
ch = 6.3e−005α3 − 1.2e−003α2 − 1.8e−002α + 0.039
ck = −1.2e−004α3 + 2.5e−003α2 + 2.6e−002α + 0.12

for up-hill motion adjustment{
ch = 1.7e−005α3 + 3.6e−004α2 + 3.9e−003α − 0.22
ck = 1.2e−005α3 − 4.5e−005α2 − 2e−002α + 0.69

for down-hill motion adjustment

where α is the gradient of the slope terrain. Figure 35 shows
the stick diagram obtained from dynamic simulations for
stable walking up a sloped terrain for which the gradient
changes from +4◦ to +11◦ to +15◦.

Figure 36 shows the corresponding stick diagram for
walking down a slope with the gradient changing from −15◦
to −7◦ to −2◦.

Fig. 37. Instability resulting from an external impulsive disturbance.

7. A TFS-Based Approach for Gait Generation in a
Changing Environment
As can be seen from the foregoing sections, the TFS model
for the joint angles generated by the GAOFSF approach can
be easily adjusted, through the adjustment of only a few
parameters, to accommodate for a range of step lengths,
stride frequencies, and different slopes, and still maintain
a stable gait. Depending upon the range of step lengths and
stride frequencies desired, more than one set of TFS could
be generated by GAOFSF and stored as reference sets, each
for a different range of step lengths and stride frequencies.
Because of the robustness of the generated TFS to changes
in both step lengths and stride frequencies as discussed in
the previous section, only a few sets will be needed for any
particular biped. Depending upon the step length and stride
frequency desired, and the slope of the terrain encountered,
the appropriate set of TFS with suitable values of R, ωh, ch,

and ck can then be used to generate the necessary joint angle
trajectories for the gait required.

The approach can also be used effectively to achieve stable
walking in an uncertain external environment if suitable

Fig. 36. Walking on a down-slope with changing gradient.
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Fig. 38. Maintaining stability by increasing walking rhythm ωh.

sensing of the external environment and perturbations are
available. For example, if the robot should experience an
external applied force which requires it to speed up in order
to maintain stable walking, this could readily be achieved by
a simple upwards adjustment to both R and ωh in the TFS,
thereby increasing its step length as well as stride frequency.

As an example, a dynamic simulation was performed to
study the effect of the application of an external impulse, in
the form of a 160 N force acting for 0.1 s, on a robot walking
on a flat terrain. If the walking rhythm is not adjusted to ac-
commodate for this external impulse, the robot’s rhythmic
motion will be disrupted resulting in instability. The stick
diagram obtained from the dynamic simulation is as shown
in Fig. 37.

However, if in response to the external impulsive force,
the walking pace is appropriately increased, the robot can
maintain balance and continue with its stable walking.
Figure 38 shows the results of the dynamic simulation of
such an example. In this case, the same impulsive force was
applied but this time, in response, the stride frequency, ωh,
was increased to 5 from 3.2 and the step length increased
from R = 1 to R = 1.1.

8. Conclusions
In this paper, the GAOFSF approach using a truncated
Fourier Series (TFS) to model the joint angle trajectories
for a biped is proposed. Genetic Algorithm (GA) is used to
search for an optimal set of trajectories according to some
specified objective functions and constraints. The approach
was applied for generating stable gaits for a seven-link biped
walking on flat terrains, and on terrains with different slopes.
Dynamic simulations using the generated gaits demonstrate
the viability of the approach for generating stable gaits.

The proposed approach, using TFS to represent the joint
angle trajectories, has several advantageous features. It does
not require inverse kinematics, thus avoiding the attendant
singularity problem. The approach is general and can be
readily applied to different motions such as marching or
braking to standing still by motion descriptions, and can
be easily applied to a biped with different geometrical and
inertial properties because the computation cost of the offline
GA is low, taking only a couple of minutes at most for
a motion result using a normal equipped Pentium IV PC.
The generated gaits captured some human walking features.
Through changing the value of only one parameter in the TFS,
stable gaits with different step lengths and stride frequencies
can be readily generated. As has been demonstrated through
dynamic simulations, the TFS representation also proved to

be robust to changes in step lengths and stride frequencies.
The gaits generated remained stable even for fairly obvious
changes in both step length and stride frequency. The TFS
can also be readily adjusted, by changing the values of only
two parameters, to produce stable gaits for walking on slopes
with different gradients.

With the ease with which TFS can be adjusted to produce
stable gaits with different step lengths, stride frequencies,
and for slopes with different gradients, the approach lends
itself readily for the generation of stable gaits which can
adapt to changes in the terrain and in response to external
disturbances. To enable stable walking on terrains with
changing slopes, sensors giving estimates of the slopes will
be necessary. To adapt to external disturbances and uncertain-
ties and to maintain stable walking, some means of sensing
and estimation of the dynamic state of the robot will be
necessary in order to determine the required optimal step
length and stride frequency. This is the subject of current
research, extending the application of this approach.
Furthermore, future work will illustrate the supervisory
control giving reasonable stride frequency and step length
automatically when walking on a rough terrain or under
perturbations. Moreover, our aim is also to extend the method
to the 3D, not only planar model, and to analyze more in
detail about the motion synchronization between the other
body links such as trunk, upper limbs, and legs.
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Appendix

Table A1. Parameters of GA, objective and penalty functions for
flat-terrain walking Example 1 and 2.

Chromosome representation Real-valued GA

Initial population M 150
Generation number T 250
Crossover22 Heuristic crossover

Simple crossover
Artistic crossover

Mutation22 Multi-nonuniform mutation
Nonuniform mutation
Uniform mutation
Boundary mutation

Weights (objectives) wi = [15 50 10 40]
Weights (penalty) pi = [15 20 20 30 100 70]

Table A2. Parameters of GA, objective and penalty functions for
10◦ up-sloped terrain walking.

Chromosome representation Real-valued GA

Initial population M 150
Generation number T 250
Crossover22 Heuristic crossover

Simple crossover
Arithmetic crossover

Mutation22 Multi-nonuniform mutation
Nonuniform mutation
Uniform mutation
Boundary mutation

Weights (objectives) wi = [15 500 10 100]
Weights (penalty) pi = [10 50 20 30 500 80]

Table A3. Parameters of GA, objective and penalty functions for
10◦ down-sloped terrain walking.

Chromosome representation Real-valued GA

Initial population M 150
Generation number T 250
Crossover22 Heuristic crossover

Simple crossover
Arithmetic crossover

Mutation22 Multi-nonuniform mutation
Nonuniform mutation
Uniform mutation
Boundary mutation

Weights (objectives) wi = [12 500 10 100]
Weights (penalty) pi = [15 80 20 30 800 500]
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