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We study the nonlinear mode competition of various spiral instabilities in magnetised
Taylor–Couette flow. The resulting finite-amplitude mixed-mode solution branches
are tracked using the annular-parallelogram periodic domain approach developed
by Deguchi & Altmeyer (Phys. Rev. E, vol. 87, 2013, 043017). Mode competition
phenomena are studied in both the anticyclonic and cyclonic Rayleigh-stable regimes.
In the anticyclonic sub-rotation regime, with the inner cylinder rotating faster than the
outer, Hollerbach et al. (Phys. Rev. Lett., vol. 104, 2010, 044502) found competing
axisymmetric and non-axisymmetric magneto-rotational linearly unstable modes within
the parameter range where experimental investigation is feasible. Here we confirm the
existence of mode competition and compute the nonlinear mixed-mode solutions that
result from it. In the cyclonic super-rotating regime, with the inner cylinder rotating
slower than the outer, Deguchi (Phys. Rev. E, vol. 95, 2017, 021102) recently found
a non-axisymmetric purely hydrodynamic linear instability that coexists with the
non-axisymmetric magneto-rotational instability discovered a little earlier by Rüdiger
et al. (Phys. Fluids, vol. 28, 2016, 014105). We show that nonlinear interactions of
these instabilities give rise to rich pattern-formation phenomena leading to drastic
angular momentum transport enhancement/reduction.

Key words: Taylor–Couette flow, magnetohydrodynamics, bifurcation

1. Introduction
The objective of this study is the nonlinear interactions between various instability

modes occurring in magnetised Taylor–Couette flow, i.e. the fluid flow between
independently rotating concentric cylinders. The purely hydrodynamic Taylor–Couette
flow, in the absence of a magnetic field, has long served as a theoretical, numerical
and experimental test bench for the study of centrifugal and shear instability
mechanisms. Keeping the outer cylinder stationary, Taylor (1923) observed that
the flow is destabilised by purely hydrodynamic axisymmetric perturbations at a
certain critical speed of the inner cylinder. The balance between rotational and shear
effects can be modified by further introducing a rotation of the outer cylinder.
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fernando.mellibovsky@upc.edu, alvaro.meseguer@upc.edu
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FIGURE 1. The Ri–Ro parameter space representation of Taylor–Couette flow. The
plane is divided into the counter-rotation and the co-rotation regimes. This latter is
further subdivided into sub-rotation and super-rotation by the solid-body rotation line
defined by equal angular speeds of both cylinders. The shaded regions denote inviscid
instability of circular Couette flow following the Rayleigh criterion. The portion of the
sub-rotation regime between the Rayleigh and solid-body rotation lines goes by the name
of anticyclonic regime (also called quasi-Keplerian), while the rest of the plane is called
cyclonic.

The independent variation of the inner and outer cylinder speeds results in a
rich diversity of secondary nonlinear flow patterns, as reported by Andereck, Liu
& Swinney (1986). The stability and nonlinear states of Taylor–Couette flow are
commonly studied in the Ri–Ro parameter space schematically depicted in figure 1,
where Ri and Ro are the Reynolds numbers associated with the inner and outer
cylinder speeds, respectively.

In accordance with the symmetries of the problem, the Ri–Ro parameter plane
is invariant to π rotation about the origin, such that only the upper half-plane
needs to be explored. The right/left of the half-plane corresponds to cylinders
rotating in the same/opposite direction (i.e. co-rotation/counter-rotation). The first
quadrant (co-rotation regime) is divided into sub-rotation and super-rotation by the
solid-body rotation line (equal angular speed of the cylinders), depending on whether
the outer cylinder rotates slower or faster than the inner. For any given speed of
the outer cylinder, Rayleigh’s inviscid stability criterion establishes that circular
Couette flow remains centrifugally stable to infinitesimal axisymmetric perturbations
as long as the inner cylinder is steady or in co-rotation up to a certain speed,
delimited by the so-called Rayleigh line (the wedge-shaped white region in figure 1
between the Rayleigh line and the horizontal Ri = 0 line). Taking viscous effects and
non-axisymmetric perturbations into account affects the stability boundaries, but it is
widely accepted that the Rayleigh line acts as a fairly approximate threshold below
which circular Couette flow remains the only stable state, given that no experimental
or numerical evidence of nonlinear flow states has been found to date (see Ji et al.
2006; Edlund & Ji 2014; Lopez & Avila 2017). Note, however, that no first-principles
theory has been advanced so far to support the nonlinear hydrodynamic stability in
the quasi-Keplerian flow regime (see Balbus (2017), for a summary on the matter).

The Rayleigh-stable region is further subdivided into the anticyclonic and
super-rotation cyclonic regimes by the solid-body rotation line, corresponding to both

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.365


Nonlinear mode competition in magnetised Taylor–Couette flow 897 A14-3

cylinders rotating at the same angular speed. Immediately to the right of the Rayleigh
line and all the way down to solid rotation, co-rotation and sub-rotation are said to
be anticyclonic and laminar Couette flow is allegedly linearly stable. This region is
of utmost astrophysical interest, since Keplerian rotational flow, a vastly used model
for accretion disks, is precisely anticyclonic. The rate at which angular momentum is
radially transported in observation of astrophysical accretion disks requires the flow to
be turbulent. This has motivated a wealth of studies (see the review paper by Rüdiger
et al. (2018a)) exploring magneto-rotational instabilities (henceforth referred to as
MRI) as a possible alternative source for turbulence in a flow that appears otherwise
to always revert back to laminar in the absence of magnetic fields. The pioneering
works by Velikhov (1959) and Chandrasekhar (1960) showed that a uniform external
magnetic field in the axial direction indeed destabilises the anticyclonic regime, while
the importance of the instability in the astrophysical context was noted for the first
time by Balbus & Hawley (1991). This type of MRI is nowadays called the standard
type of MRI, SMRI for short.

A different approach was nevertheless taken in the first experimental observation
of the MRI (Stefani et al. 2006). The SMRI is actually very difficult to reproduce
in liquid-metal experiments where the magnetic Prandtl number Pm is very small,
as magnetic induction is essential in this case. As shown by Goodman & Ji (2002),
the critical Reynolds number of the SMRI is inversely proportional to the magnetic
Prandtl number Pm for small Pm, meaning that the cylinders must rotate at an
extremely fast rate to trigger the SMRI in the experimental apparatus. The crux in
reproducing a MRI at relatively small Reynolds numbers was the numerical finding by
Hollerbach & Rüdiger (2005) that, when both azimuthal and axial external magnetic
fields are applied simultaneously, the critical Reynolds number saturates at a finite
value even in the inductionless limit of Pm → 0. Soon after the discovery of this
helical MRI (henceforth referred to as HMRI), growth of axisymmetric perturbations
was confirmed in the series of PROMISE experiments (Rüdiger et al. 2006; Stefani
et al. 2006, 2007). Later on, Hollerbach, Teeluck & Rüdiger (2010) found that
non-axisymmetric modes arise instead when purely azimuthal magnetic fields are
considered in the sub-rotation regime just below the Rayleigh line. They further
showed that these so-called azimuthal magneto-rotational instability (AMRI) modes
persist when a small axial magnetic field is added to the predominantly azimuthal
field, thus implying that they could potentially interact with the axisymmetric HMRI
mode. In fact, when the strengths of the azimuthal and axial external magnetic
fields are suitably adjusted, the critical Reynolds numbers for the axisymmetric and
non-axisymmetric modes become comparable. The competition of these modes may
yield rich nonlinear flow patterns at this particular HMRI regime. This nonlinear
mode interaction is the first subject we will tackle in this study.

In the early years of the pattern-formation theoretical studies in purely hydrodynamic
Taylor–Couette flow, weakly nonlinear analysis was employed to investigate mode
interactions among multiple linear instability modes near criticality (e.g. Davey,
DiPrima & Stuart 1968; Iooss 1986; Golubitsky, Stewart & Schaeffer 1988; Chossat
& Iooss 1994). The simplest mode interaction occurs between two identical but
mutually symmetric, with respect to an axial reflection, spiral modes. In this case, the
fully nonlinear mixed-mode solution can be computed in numerical simulations using
a periodic axial–azimuthal orthogonal domain (Tagg et al. 1989). However, when the
interacting spirals are not mutually symmetric and have a different absolute pitch,
as are indeed the two mode interactions studied here, the numerical computation
of the fully nonlinear mixed mode is no longer straightforward. The periodic
computational domain must fit an integer number of both constituent modes in
order to faithfully reproduce the mixed mode, which may lead to unaffordably large
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domains. This may be feasible on some occasions (Avila, Meseguer & Marques
2006; Pinter, Lücke & Hoffmann 2006; Altmeyer & Hoffmann 2010), but it is
at the very least inefficient from a computational point of view, if not altogether
prohibitive. A convenient methodology for the computation of general mixed-mode
states was provided by Deguchi & Altmeyer (2013), who realised that the infinite
annulus might be subdivided into a regular tiling of a suitable parallelogram-shaped
periodic box that can be chosen optimally small for any flow pattern arising from
nonlinear interaction of two modes, as we are considering here. Extension of the
nonlinear code to magnetised problems might prove highly valuable to the study of
MRI, as nonlinear simulations in cylindrical/annular domains have only recently been
undertaken (Guseva et al. 2015, 2017).

In the second half of this paper we shall also study the nonlinear mode competition
occurring in the other Rayleigh-stable regime, i.e. the super-rotation regime seen in
figure 1. Recently, magnetohydrodynamic (MHD) instabilities in this regime have
attracted much attention as they are thought to be relevant for turbulence generation
in a part of the Sun’s tachocline. In this second subject we shall investigate the
nonlinear competition of two recently discovered linear instability modes.

For the purely hydrodynamic problem, non-laminar flow patterns in the inviscidly
stable super-rotation regime were first reported several decades ago in Taylor–Couette
experiments by Wendt (1933) and Coles (1965), but at the time it was not clear
whether the instability was legitimate or an endwall effect induced by the cylinder lids.
Advances in computational power eventually allowed numerical confirmation of the
existence of subcritical spiral turbulence and intermittency found experimentally (Van
Atta 1966; Hegseth et al. 1989; Prigent et al. 2002; Burin & Czarnocki 2012) in the
counter-rotation regime in the absence of endwall effects (Dong 2009; Meseguer et al.
2009). Nonlinear coherent states have indeed been followed into the super-rotation
regime, crossing the Ri = 0 boundary, as illustrated by the computation of the
first rotating wave in cyclonic super-rotation (Deguchi, Meseguer & Mellibovsky
2014) and by direct numerical simulation (Ostilla-Monico, Verzicco & Lohse 2016).
All non-trivial flow patterns hitherto observed in super-rotation are finite-amplitude
and highly nonlinear, such that they by no means belie the widely assumed linear
stability of super-rotating hydrodynamic Taylor–Couette flow, in view of countless
numerical studies of the neutral curve (see the review article by Grossmann, Lohse
& Sun (2016)). The recent unexpected discovery by Deguchi (2017) of a linear
instability in the super-rotation regime therefore came as a big surprise. Considering
non-axisymmetric perturbations and a relatively long axial wavelength were key
ingredients to the finding. This instability mode of a purely hydrodynamic nature,
hereafter called the D17 mode, is the first of the two modes we shall consider in our
second mode competition study.

The other mode at play inherently originates from the MRI mechanism and is called
the super-AMRI (Rüdiger et al. 2016, 2018b), where the prefix ‘super’ refers to the
super-rotation regime. This mode belongs, along with the usual forms of HMRI and
AMRI for sub-rotation, to the class of inductionless MRI. It has long been known that
MRI is not easily triggered in the super-rotation regime for the axisymmetric case. For
ideal fluids, Velikhov’s condition states that the axial magnetic field cannot destabilise
this regime (Velikhov 1959), while according to Michael’s condition (Michael 1954),
an azimuthal field can only be destabilising provided its modulus increases outwards at
a sufficiently fast rate. Moreover, when the azimuthal magnetic field is current-free, it
can be formally shown that axisymmetric MRI are impossible in spite of the diffusive
effect (Herron & Soliman 2006). A breakthrough regarding instability in the cyclonic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.365


Nonlinear mode competition in magnetised Taylor–Couette flow 897 A14-5

super-rotation regime is due to Stefani & Kirillov (2015), who pointed out that for
sufficiently narrow gaps the non-axisymmetric instability could be continued into the
super-rotation regime using the so-called local approximation and the inductionless
limit (Pm→ 0). However, the existence of the super-AMRI was not conclusive at this
stage given that a local approximation does not always necessarily provide accurate
insight into the global problem. Soon after, conclusive numerical evidence of the
super-AMRI was reported by Rüdiger et al. (2016, 2018b), who concluded that the
destabilisation seems to occur for fairly arbitrary magnetic field profiles as long as
the flow is double-diffusive, i.e. Pm 6= 1.

The paper is organised as follows. Section 2 formulates the problem based on
the inductionless limit of the MHD equations. The section addresses in detail the
numerical discretisation of the equations in annular-parallelogram periodic domains
and, in particular, describes the Newton solver for the computation of nonlinear
mixed-mode travelling waves using the transformed coordinate system and a suitable
co-moving reference frame. Section 3 is devoted to the anticyclonic regime. The
helical magnetic field is imposed to find the nonlinear mixed-mode solutions that
arise from the mode competition advanced by Hollerbach et al. (2010). The first
part of § 4 deals with the interaction between the classical non-axisymmetric and
the D17 modes in purely hydrodynamic counter-rotating Taylor–Couette flow. In the
second half of § 4 we shall see how an imposed azimuthal magnetic field alters the
nature of this interaction. Finally, in § 5, we briefly summarise the results and present
concluding remarks.

2. Formulation of the problem
Consider an electrically conducting fluid of density ρ∗, kinematic viscosity ν∗ and

magnetic diffusivity η∗, confined between two concentric cylinders of inner and outer
radii r∗i and r∗o , independently rotating at angular speeds Ω∗i and Ω∗o , respectively. In
addition, the fluid is subject to the action of a magnetic field of typical strength B∗0.
Throughout the paper we use the length d∗ = r∗o − r∗i , time d∗2/ν∗, velocity ν∗/d∗
and magnetic field ν∗

√
ρ∗µ∗/d∗ scales for non-dimensionalisation, where µ∗ is the

magnetic permeability. As a consequence of using the viscous time scale, the Reynolds
numbers are absorbed into the expression for the base-state flow fields and disappear
from the non-dimensional equations for the perturbation. The key parameters of the
flow are the radius ratio η, the inner Ri and outer Ro Reynolds numbers, along with
the magnetic Prandtl number Pm and the Hartmann number H:

η=
r∗i
r∗o
, Ri =

Ω∗i r∗i d∗

ν∗
, Ro =

Ω∗o r∗od∗

ν∗
, Pm =

ν∗

η∗
, H =

B∗0d∗
√
ρ∗µ∗η∗ν∗

. (2.1a−e)

The non-dimensional external magnetic field is proportional to P−1/2
m H. The reason for

using H is that we will consider the so-called inductionless limit Pm→ 0 where H is
typically fixed as a constant.

Non-dimensionalisation of the velocity field v= uer + veθ +wez and magnetic field
B = Aer + Beθ + Cez, expressed here in cylindrical coordinates (r, θ, z), yields the
incompressible viscous–resistive MHD equations:

∂tv + (v · ∇)v − (B · ∇)B=−∇p+∇2v, (2.2a)
∂tB+ (v · ∇)B− (B · ∇)v = P−1

m ∇
2B, (2.2b)

∇ · v =∇ ·B= 0, (2.2c)
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where p is the total pressure and t is time. Equation (2.2a) expresses momentum
conservation, while equation (2.2b) is the induction equation. Equation (2.2c)
corresponds to continuity and Gauss’ law. Along the cylinder walls at radii

ri =
η

1− η
, ro =

1
1− η

, (2.3a,b)

we assume no-slip and perfectly insulating boundary conditions. In our formulation,
the velocity and magnetic fields are decomposed into the base and the perturbation
flows following

v = vb(r)eθ +Gwp(r)ez + ṽ(r, θ, z, t), (2.4a)

B= P−1/2
m H{Bb(r)eθ +Cb(r)ez} + B̃(r, θ, z, t), (2.4b)

where the tilde denotes perturbation quantities. The pressure perturbation is therefore
written as p̃. Here vb(r) = Rsr + Rpr−1 is the laminar Couette flow solution, with
coefficients

Rs =
Ro − ηRi

1+ η
, Rp =

η−1Ri − Ro

1+ η
r2

i , (2.5a,b)

where the subscripts denote the solid-body rotation (s) and the potential (p)
components of the flow. External magnetic mechanisms induce the base magnetic
fields Bb(r) and Cb(r), which will be duly introduced in (3.1) and (4.1) for the two
types of predominantly azimuthal fields that will be considered throughout the paper.

We will assume further that there is no axial net mass flux. This is accomplished
by imposing an external instantaneously adjustable axial pressure gradient that induces
the well-known base annular Poiseuille flow profile:

wp(r)= (r2
− r2

i ) ln ro + (r2
o − r2) ln ri − (r2

o − r2
i ) ln r. (2.6)

The product Gwp in (2.4a) represents the axial flow induced by the external pressure
gradient, whose strength is measured by the coefficient G. That coefficient is a
time-dependent additional unknown in the constant-mass flux problem. For travelling
wave states G is merely a constant. Moreover, it is easy to show that, when the flow
possesses some symmetry in z, G must vanish.

For liquid metals used in laboratory experiments Pm is very small (10−5–10−7).
It is therefore reasonable to apply the inductionless limit approximation Pm → 0 to
the governing equations (see e.g. Davidson 2017). The magnetic field perturbation
is rescaled as b̃= P−1/2

m H−1B̃ and the size of the variables ṽ, b̃, p̃ and Ri, Ro, H
are fixed as O(P0

m) quantities during the limiting process. The resulting leading-order
equations are (∂t + r−1vb∂θ + Rpwp∂z)ũ− 2r−1vbṽ

(∂t + r−1vb∂θ + Rpwp∂z)ṽ + r−1(rvb)
′ũ

(∂t + r−1vb∂θ + Rpwp∂z)w̃


−H2

 (r−1Bb∂θ +Cb∂z)ã− 2r−1Bbb̃
(r−1Bb∂θ +Cb∂z)b̃+ r−1(rBb)

′ã
(r−1Bb∂θ +Cb∂z)c̃

+ (ṽ · ∇)ṽ =−∇p̃+∇2ṽ, (2.7a)
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and

−

 (r−1Bb∂θ +Cb∂z)ũ
(r−1Bb∂θ +Cb∂z)ṽ − r(r−1Bb)

′ũ
(r−1Bb∂θ +Cb∂z)w̃

=∇2b̃, (2.7b)

along with the solenoidal conditions ∇ · ṽ =∇ · b̃= 0. The time derivative drops out
from the induction equations on account of applying the inductionless limit, and (2.7b)
becomes a mere linear system linking the velocity and the magnetic field. It can thus
be used, as will be shown shortly, to eliminate the magnetic perturbation from the
momentum equation (2.7a).

2.1. Spectral discretisation on a parallelogram domain
We shall be looking here for nonlinear travelling wave solutions of the above resulting
equations. The hydrodynamic and magnetic perturbation fields ṽ and b̃ are both
solenoidal, so they admit a toroidal–poloidal decomposition of the form

ṽ(r, θ, z, t)= eθv(r)+ ezw(r)+∇×∇× {erφ(r, θ, z, t)} +∇× {erψ(r, θ, z, t)},
(2.8a)

b̃(r, θ, z, t)=∇×∇× {erf (r, θ, z, t)} +∇× {erg(r, θ, z, t)}, (2.8b)

where v(r) and w(r) are the azimuthal and axial components, respectively, of the
mean velocity field. It can be easily shown that no mean magnetic field can be
generated in the inductionless limit. The poloidal and toroidal potentials φ, f and
ψ, g introduced in (2.8a) and (2.8b) uniquely determine the physical hydrodynamic
and magnetic perturbation fields ṽ and b̃, except for the obvious gauge freedom
(addition of a constant).

The coherent flows addressed in this work are mixed modes resulting from the
nonlinear interaction of pairs of spiral waves propagating in the θ–z plane. Following
Deguchi & Altmeyer (2013), we introduce the two phase variables

ξ1 =m1θ + k1z− c1t, ξ2 =m2θ + k2z− c2t, (2.9a,b)

describing the wavefronts of the two interacting spirals, which propagate at speeds
c1 and c2, and whose azimuthal and axial wavenumbers are the integer (m1, m2)

and real (k1, k2) constant pairs, respectively. Travelling mixed modes resulting from
the nonlinear interaction of spiral modes of the form given by (2.9) are naturally
represented on doubly 2π-periodic parallelogram domains of the form

(r, ξ1, ξ2) ∈ [ri, ro] × [0, 2π] × [0, 2π], (2.10)

unwrapped and outlined in figure 2 for any given value of the radial coordinate.
Straightforward algebraic manipulation shows that any function of ξ1 and ξ2 can also
be written in terms of θ − cθ t and z− czt with

cθ =
k2c1 − k1c2

m2k1 −m1k2
, cz =

m2c1 −m1c2

m2k1 −m1k2
. (2.11)

The solutions sought are therefore travelling waves propagating both azimuthally and
axially with the phase speeds cθ and cz just given, respectively.
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z

m
1 œ + k1 z = 2π

m
1 œ + k1 z = 0

œ

≈ 2

≈ 2 =
 2π

≈ 1 =
 2π

≈ 1 =
 ≈ 2 =

 0

≈1

m2œ + k2z = 2π
m2œ + k2z = 0

FIGURE 2. Sketch of the parallelogram domain introducing the new variables (ξ1, ξ2) that
replace the usual azimuthal and axial coordinates (θ, z).

The initial–boundary value problem (2.7a)–(2.7b) is reformulated in the new phase
variables assuming 2π-periodicity of the toroidal and poloidal potentials introduced in
(2.8a)–(2.8b):

[φ, ψ, f , g](r, ξ1 + 2π, ξ2)= [φ, ψ, f , g](r, ξ1, ξ2 + 2π)= [φ, ψ, f , g](r, ξ1, ξ2). (2.12)

The potentials are then discretised using spectral Fourier expansions of the form

φ(r, ξ1, ξ2)=
∑
n1,n2

φ̂n1n2(r)e
i(n1ξ1+n2ξ2), ψ(r, ξ1, ξ2)=

∑
n1,n2

ψ̂n1n2(r)e
i(n1ξ1+n2ξ2), (2.13a)

f (r, ξ1, ξ2)=
∑
n1,n2

f̂n1n2(r)e
i(n1ξ1+n2ξ2), g(r, ξ1, ξ2)=

∑
n1,n2

ĝn1n2(r)e
i(n1ξ1+n2ξ2), (2.13b)

where the Fourier radial functions φ̂n1n2(r), ψ̂n1n2(r), f̂n1n2(r) and ĝn1n2(r) are identically
zero for n1 = n2 = 0. For n1 6= 0 or n2 6= 0, these radial functions are suitable
expansions of modified Chebyshev polynomials satisfying homogeneous no-slip
boundary conditions at the inner and outer cylinder walls:

φ = ∂rφ =ψ = v =w= 0. (2.14)

The hydrodynamic radial functions are thus

φ̂n1n2(r)=
∑

l

X(1)
ln1n2

(1− y2)2Tl(y), ψ̂n1n2(r)=
∑

l

X(2)
ln1n2

(1− y2)Tl(y), (2.15a)

v(r)=
∑

l

X(1)
l00(1− y2)Tl(y), w(r)=

∑
l

X(2)
l00(1− y2)Tl(y), (2.15b)

where Tl(y) is the lth Chebyshev polynomial and y ≡ 2(r − ri) − 1 ∈ [−1, 1] is
the rescaled radial coordinate. Similarly, the magnetic radial functions are expanded
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employing Chebyshev polynomials modified to satisfy perfectly insulating conditions:

f̂n1n2(r)=
∑

l

X(3)
ln1n2
{(1− y2)Tl(y)+ αln1n2 + βln1n2y}, (2.16a)

ĝn1n2(r)= γn1n2(r) f̂n1n2(r)+
∑

l

X(4)
ln1n2

(1− y2)Tl(y). (2.16b)

A detailed description of the coefficients αln1n2 and βln1n2 and of the function γn1n2(r)
can be found in appendix A.

For computational purposes, the Fourier–Chebyshev expansions (2.15a)–(2.16b) are
truncated at l= L, |n1| =N1 and |n2| =N2. After substituting the truncated expansions
into system (2.7a)–(2.7b), these are then evaluated at the Chebyshev nodes

y= cos
(

l+ 1
L+ 2

π

)
, l= 1, . . . , L. (2.17)

This procedure leads to a system of nonlinear algebraic equations of the form

0= L1

[
X(1)

ln1n2

X(2)
ln1n2

]
+H2L2

[
X(3)

ln1n2

X(4)
ln1n2

]
+ [X(1)

ln1n2
, X(2)

ln1n2
]N

[
X(1)

ln1n2

X(2)
ln1n2

]
, (2.18a)

L3

[
X(1)

ln1n2

X(2)
ln1n2

]
= L4

[
X(3)

ln1n2

X(4)
ln1n2

]
. (2.18b)

Here L1, L2, L3 and L4 are matrices, and N is a third-order tensor, whose form
is unchanged from the purely hydrodynamic case. Isolating the magnetic unknowns
by solving the linear system (2.18b) and substituting into (2.18a) yields a nonlinear
system of equations for the hydrodynamic unknowns X(1)

ln1n2
and X(2)

ln1n2
:

0= (L1 +H2L2L−1
4 L3)

[
X(1)

ln1n2

X(2)
ln1n2

]
+ [X(1)

ln1n2
, X(2)

ln1n2
]N

[
X(1)

ln1n2

X(2)
ln1n2

]
. (2.19)

Matrix L1 depends implicitly on the unknown speeds c1 and c2 appearing in
(2.9), which correspond to the co-moving reference frame in which the mixed
mode remains a steady solution. Since these two speeds are also unknown, two
additional phase-locking conditions are required to lift the rotational/travelling
degeneracy of solutions from the system of equations. Similarly, system (2.19) must
also be complemented with an additional constraint to allow determination of the
unknown axial pressure gradient G required to ensure the zero-mass-flux condition.
The nonlinear system (2.19), along with the aforementioned constraints, is solved
numerically using Newton’s method. The hydrodynamic part of the code is identical
to that used in Deguchi & Altmeyer (2013), and more detailed documentation of the
computational methodology can be found in Deguchi & Nagata (2011).

For the purely hydrodynamic problem, we have also computed and continued
in parameter space the bifurcating mixed modes using an independent numerical
formulation. This alternative methodology is based on a solenoidal Petrov–Galerkin
scheme described in Meseguer et al. (2007), suitably adapted to the annular
parallelogram domain (2.10). In this formulation, the solenoidal velocity perturbation
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ṽ is approximated by means of a spectral expansion ṽs of order N in ξ1 =m1θ + k1z,
order L in ξ2 =m2θ + k2z, and order M in r:

ṽs(r, ξ1, ξ2, t)=
∑

n1, n2,m

an1n2m(t)Φn1n2m(r, ξ1, ξ2). (2.20)

The Φn1n2m are trial bases of solenoidal vector fields of the form

Φn1n2m(r, ξ1, ξ2)= ei(n1ξ1+n2ξ2)vn1n2m(r), (2.21)

where the radial fields vn1n2m(r) are suitably constructed to satisfy ∇ ·Φn1n2m= 0. Since
ṽs represents the perturbation of the velocity field, it must therefore vanish at the inner
(r = ri) and outer (r = ro) walls of the cylinders. Therefore, vn1n2m must also satisfy
homogeneous boundary conditions:

vn1n2m(ri)= vn1n2m(ro)= 0. (2.22)

These radial fields are built from suitable expansions of modified Chebyshev
polynomials. After introducing the expansion

ṽs(r, ξ1, ξ2, t)=
∑

n1, n2,m

aTW
n1n2mein1(ξ1−c1t)ein2(ξ2−c2t)vn1n2m(r) (2.23)

into the hydrodynamic equations, the weak formulation described in Meseguer et al.
(2007) leads to a system of nonlinear algebraic equations for the unknown coefficients
aTW

n1n2m, similar to (2.19), to which the zero-mass-flux constraint is also imposed. The
resulting system of equations were solved using a matrix-free Newton–Krylov method
(Kelley 2003). The converged nonlinear solutions were then continued in parameter
space using pseudo-arclength continuation schemes (Kuznetsov 2004). To avoid
cluttering the paper with unnecessary detail and because of the intricacies that are
inherent to the numerical approach undertaken, a detailed description of the method
will be published separately.

In the classic rectangular domain, the Petrov–Galerkin solenoidal discretisation
has been successfully used in the numerical approximation of transitional flows in
cylindrical geometries (Mellibovsky & Meseguer 2006) and in the computation of
subcritical rotating waves in annular domains (Deguchi et al. 2014). In the latter
study, the code was cross-checked against the codes used in the aforementioned
Deguchi & Nagata (2011) and Deguchi & Altmeyer (2013). In § 4, the favourable
comparison of the nonlinear results produced by the annular-parallelogram extension
of the two independent codes based on completely different formulations serves as an
unbeatable procedure for code validation. The results for the linear magnetic part of
(2.19) has instead been checked against the linear results by Hollerbach et al. (2010)
in the next section.

For a travelling wave solution, the absolute values of torque on the inner and outer
cylinders are always equal and represent the angular momentum transport. The torque
on the inner cylinder can be computed indistinctly as

T ≡ {−r3∂r(r−1v)}|r=ri =−{r
3∂r(r−1v)}|r=ro, (2.24)

while the torque on the outer cylinder is −T to keep the inner and outer cylinders
rotating at constant speeds. We have characterised all Newton-converged nonlinear
solutions throughout by their torque normalised by the corresponding base-flow torque
Tb = {−r3∂r(r−1vb)}|r=ri =−{r

3∂r(r−1vb)}|r=ro :

τ =
T
Tb
=
∂r(r−1v)

∂r(r−1vb)

∣∣∣∣
r=ri,ro

, (2.25)

such that the normalised torque τ is unity for laminar circular Couette flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.365


Nonlinear mode competition in magnetised Taylor–Couette flow 897 A14-11

3. The anticyclonic regime

Let us consider the normalised base magnetic fields

Bb(r)=
ri

r
, Cb(r)= δ, (3.1a,b)

to reproduce both the axisymmetric HMRI and non-axisymmetric AMRI modes found
in the anticyclonic regime by Hollerbach et al. (2010). The constant δ represents the
strength of the axial magnetic field relative to the azimuthal field, which is induced
by a current running through the inner cylinder, parallel to its axis.

Following Hollerbach et al. (2010), we fix the rotation ratio to µ̂ = Ω∗o/Ω
∗

i =

Roη/Ri = 0.26. Note that for the anticyclonic regime µ̂ must remain in the interval
[0.25, 1], where the lower bound corresponds to the Rayleigh line µ̂ = η2

= 0.25,
while the upper bound embodies solid-body rotation. The quasi-Keplerian rotation
regime frequently used in astrophysical studies on accretion disks is characterised by
µ̂ = η3/2

≈ 0.35. This rotation law results from applying Kepler’s law to both the
inner and outer cylinder angular velocities, which results in a fair approximation of a
strictly Keplerian flow across the gap. The choice µ̂= 0.26, used in the experimental
demonstration of AMRI by Seilmayer et al. (2014), places the flow in the anticyclonic
regime but very close to the boundary set by the Rayleigh line. Liu et al. (2006)
used a locally periodic approach to show that there is a limiting value µ̂ ≈ 0.3
above which HMRI halts, and the analysis was later extended by Kirillov, Stefani
& Fukumoto (2012) to AMRI. To what extent this limit is actually relevant to fully
cylindrical flows is, however, still under debate (see Rüdiger & Hollerbach 2007;
Child, Kersalé & Hollerbach 2015). The radius ratio of the cylinders is set to η= 0.5.
For this particular value of η, our definitions of Ri and H become identical to
the hydrodynamic Reynolds number and the Hartmann number, respectively, used
by Hollerbach et al. (2010). Most importantly, the parameter range studied there is
feasible in the PROMISE experiments, where both axisymmetric (Rüdiger et al. 2006;
Stefani et al. 2006, 2007) and non-axisymmetric (Seilmayer et al. 2014) modes were
actually realised. Travelling waves similar to those predicted in the numerical studies
were indeed observed. These waves originate from absolute instability (even global),
rather than mere convective, as shown by the comprehensive experimental study on
HMRI by Stefani et al. (2009).

Having fixed µ̂ and η, we have performed a linear stability analysis of the base
flow by exploring the eigenspectrum of the linearised hydromagnetic equations for
combinations of Ri, H, δ and azimuthal–axial pairs (m, k) of the associated spiral
eigenfunctions. We started by reproducing the neutral curves in the H–Ri plane
for δ = 0, 0.02, 0.03, 0.04, 0.05, and for the optimal axial wavenumber k > 0 that
maximises the growth rate. For δ = 0, the instability originates from the symmetric
spirals with opposite tilt (m = ±1). The primal effect of finite δ is the breaking
of that reflection symmetry. Moreover, the axisymmetric mode (m = 0) emerges
and for sufficiently large δ ≈ 0.05 it dominates over the non-axisymmetric modes.
The non-axisymmetric modes are of AMRI origin, while the axisymmetric mode
only becomes dominant for distinctly helical fields, which leaves a finite range of δ
where all three modes compete. The neutral curves we have computed are in perfect
agreement with figure 3 of Hollerbach et al. (2010), where it was already pointed
out that, for δ ≈ 0.04, the critical Reynolds numbers of all three modes become
comparable. Here we have identified that at δ = 0.0413 there is a point where all
three modes become neutral simultaneously, as clearly shown in figure 3.
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FIGURE 3. Linear stability analysis and continuation of bifurcated nonlinear solution
branches in the anticyclonic regime for (δ, η)= (0.0413, 0.5). (a) Neutral stability curves
along the line Ro= 0.26Ri/η (black curves) for modes m= 0 (solid) and m=±1 (dashed
for +1, dotted for −1). Wavenumber k is the one that maximises growth rate. The black
circle indicates the triple critical point at (H, Ri) = (128, 1896). (b) Bifurcation diagram
along Ri = (1896/128)H (green line in panel a). The black circle corresponds again to
the triple-critical point, whence three spiral (SPI0, SPI±1; solid, dashed and dotted black
lines) and three mixed (MIX−1

1 , MIX0
1, MIX−1

0 ; solid, dashed and dotted red lines) modes
are issued.

For the sake of clarity, we shall focus on the computation and continuation of
nonlinear solutions along the straight line across parameter space Ri = (1896/128)H
(green solid line in figure 3a) that passes through the triple critical point at
(H, Ri) = (128, 1896). Figure 3(b) depicts the bifurcation diagram corresponding
to the six different nonlinear solution branches, as characterised by torque as a
function of the Hartmann number. At the triple critical point, the three eigenmodes,
(m, k) = (0, 5.672), (m, k) = (1, 4.672) and (m, k) = (−1, 2.818), become neutral
simultaneously. As anticipated by weakly nonlinear analysis, bifurcation of various
mixed modes is therefore expected. The Newton method described in § 2 does indeed
converge to one or another of the nonlinear pure- or mixed-mode solutions when a
suitably weighted superposition of the three neutral eigenmodes is taken as an initial
guess. Solutions have initially been computed in this way in the close neighbourhood
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Figure no. Abbreviation Solution type (m1, k1) (m2, k2)

3(b) SPI0 Spiral (0, 5.672) N/A
SPI1 Spiral (1, 4.672) N/A

SPI−1 Spiral (−1, 2.818) N/A
MIX−1

0 Mixed mode (0, 5.672) (−1, 2.818)
MIX0

1 Mixed mode (1, 4.672) (0, 5.672)
MIX−1

1 Mixed mode (1, 4.672) (−1, 2.818)

7(a) SPI Spiral (1, 40.6) N/A
SPID17 Spiral (1, 1.002) N/A
RIB Ribbon (1, 40.6) (−1, 40.6)

RIBD17 Ribbon (1, 1.002) (−1, 1.002)
MIX+ Mixed mode (1, 40.6) (1, 1.002)
MIX− Mixed mode (1, 40.6) (−1, 1.002)

7(b) SPID17 Spiral (1, 0.616) N/A
SPIMRI Spiral (1, 1.984) N/A
RIBD17 Ribbon (1, 0.616) (−1, 0.616)
RIBMRI Ribbon (1, 1.984) (−1, 1.984)
MIX+ Mixed mode (1, 1.984) (1, 0.616)
MIX− Mixed mode (1, 1.984) (−1, 0.616)

TABLE 1. Abbreviations used to describe the various nonlinear solution branches. Note
that SPI0 is a zero-pitch spiral, and therefore a toroidal-vortex-pair solution.

of the triple critical point and then continued as a function of H using either natural or
pseudo-arclength continuation algorithms. Three of the solution branches, converged
from single-mode initial guesses fed into the Newton method, correspond to helically
invariant travelling spiral waves (black curves in figure 3b). These solutions we have
dubbed as SPIm, with the subscript m (solid black line for m= 0, dashed for m= 1,
dotted for m = −1) denoting the azimuthal wavenumber of the mode (see table 1).
All three branches bifurcate supercritically from the base laminar flow. Since these
solutions can be computed in the usual rectangular domain using regular coordinates
(θ, z), we omit a detailed analysis.

Suitable proportions of the weights applied to the critical eigenmodes in generating
the initial seeds for the Newton method have allowed computation of all three possible
mixed-mode nonlinear solution branches (red curves in figure 3b). These mixed
modes have been labelled as MIXm2

m1
, with the sub- and superscripts representing the

azimuthal wavenumber of the two interacting modes, and duly reported in table 1.
As mentioned earlier, these mixed modes can only be identified using an appropriate
annular-parallelogram domain, as the superposition of the two modes does not fit any
rectangular domain of affordable size.

All three mixed-mode branches bifurcate supercritically. A very remarkable feature
of these mixed modes is that some of them have larger torque than the spirals. This
aspect is of special relevance to the study of astrophysical accretion disks, as it is a
paramount requirement for the large outward angular momentum flux that is believed
to be the key to the observed rate of inward mass accretion. The MIX0

−1 mode
possesses the largest torque of all mixed modes, as is also clear from the azimuthal
mean flow distortion shown in figure 4 for H= 140, (Ri,Ro)≈ (2074, 1078). Figure 5
shows the corresponding total azimuthal vorticity distribution of the three mixed
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FIGURE 4. Azimuthal mean flow distortion (v − vb) of the three different mixed modes
shown in figure 3(b) for H = 140, and (Ri, Ro)≈ (2074, 1078).
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FIGURE 5. Colour maps of the total azimuthal vorticity (ωθ = ∂zu− ∂rw) distribution at the
mid-radial-plane r= ri+0.5 of the three mixed-mode MRI solutions: (a) MIX0

1, (b) MIX0
−1

and (c) MIX1
−1.

modes, represented through θ–z plane colour maps at mid-gap r = ri + 0.5. As
expected, mode MIX0

−1 has the strongest flow field perturbation, clearly reflected in
the colour bar range of the panels. The visualisations shown in figure 5(a) and (b)
for MIX1

0 and MIX0
−1, respectively, are reminiscent of wavy Taylor vortex flow (see

e.g. Andereck et al. (1986)) except that the patterns are tilted and wavy vortex pairs
accumulate an azimuthal phase shift as they pile up in the axial direction. The reason
for this is that one of its constituents is a zero-pitch spiral, which corresponds to
a toroidal-vortex-pair solution much like Taylor vortices, while the superposition of
a spiral mode generates the tilted azimuthal modulation. Meanwhile, the structure
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FIGURE 6. Neutral curves for H= 0, 40, 60, 84 (black, green, blue, red, respectively) and
η=0.1. The wavenumber pairs (k,m) are optimised to detect the most unstable eigenvalue.
The neutral curve for the classical non-axisymmetric hydrodynamic mode (dashed black)
is shown alongside those for the D17 mode (solid black) and the MRI mode (dotted).
While m is large and obeys the asymptotic result by Deguchi (2016) for the classical
neutral curve, the D17 and MRI neutral curves have typically m=±1. Bicritical points,
where direct bifurcation of mixed-mode solution branches are expected, are indicated with
filled circles.

of the MIX−1
1 mode shown in figure 5(c) is evocative of the wavy spiral solution

found in the hydrodynamic studies by Altmeyer & Hoffmann (2010) and Deguchi &
Altmeyer (2013).

4. From counter-rotation to the cyclonic super-rotation regime
In this section we focus our attention on the bifurcations arising on the left

half-plane of figure 1, as some of the instabilities carry on to the super-rotation
regime. For η= 0.1, figure 6 outlines the neutral curves obtained from linear stability
analyses corresponding to different levels of magnetisation. We begin our analysis by
first focusing on the purely hydrodynamic case in the absence of magnetic effects.
Shown in figure 6 are the classical neutral curve (dashed black) alongside the neutral
curve for the D17 mode (solid black), recently discovered by Deguchi (2017) through
linear stability analysis.

Along the classical boundary, the critical value of Ri increases with |Ro|, which is
consistent with extensive numerical evidence as well as physical insights and the large-
Reynolds-number formal asymptotic result (Esser & Grossmann 1996; Deguchi 2016;
Grossmann et al. 2016). As a consequence, the neutral curve, which corresponds to
a non-axisymmetric leading mode with large m (a spiral), cannot be continued across
the line Ri = 0 into the super-rotation regime.

In contrast, the neutral curve for the D17 mode, typically with m = ±1, does
indeed extend to the cyclonic super-rotation regime. The reason for choosing such a
low value of the radius ratio (η = 0.1) follows from the observation that the curve
shifts to very high counter-rotation rates as η is increased and narrower gaps are
considered. For instance, taking Ri = 0 and η = 5/7 pushes the critical Ro value to
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FIGURE 7. Bifurcation diagrams of spirals, ribbons and mixed nonlinear modes in super-
and counter-rotation configurations. (a) Purely hydrodynamic case, in counter-rotation with
Ro=−10 434 and H= 0. The black circle indicates the linear bicritical point at Ri= 1045.
A bunch of mixed-mode solutions computed with the alternative Petrov–Galerkin code are
marked with triangles. (b) Magnetised case in the super-rotation regime with Ro=−35 150
and H = 84. The bicritical point at Ri =−231.5 is indicated with a filled black circle.

O(107), whereas for η= 0.1 it remains within order O(104). In figure 6, the classical
stability threshold (dashed black) and the new one set by the neutral curve of the
D17 mode (solid black) meet at a bicritical point (black filled circle) located at
(Ri, Ro)≈ (1045,−10 434), with associated critical wavenumbers (m1, k1)= (1, 40.6)
and (m2, k2) = (1, 1.102), respectively. The critical axial wavenumbers k1 and k2
associated with either mode differ significantly, which explains why the latter, mode
D17, escaped detection for so long. The asymptotic theory provided by Deguchi
(2016) formally proved that the critical axial wavenumber of the classical mode gets
asymptotically large for increasing Reynolds numbers, while that for the D17 mode
seems to be insensitive to Reynolds-number variations.

The various nonlinear solution branches that bifurcate from the bicritical point
(black filled circle in figure 6) are shown in figure 7(a). All branches bifurcate
supercritically. The black curves correspond to the spiral solutions for the classical
spiral mode (SPI, dashed) and the D17 mode (SPID17, solid). The structure of the
single-mode solutions, the nonlinear spirals, are qualitatively identical to the linear
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neutral mode (see Deguchi 2017). Since the system is symmetric with respect to axial
reflections (z→−z), spiral modes become neutral in pairs, with exactly opposite pitch.
As a result, there are actually four modes that simultaneously become neutral at the
linear bicritical point (the black filled circle in figure 7a). Consequently, there exist
six mixed modes arising from all possible combinations of modes taken in pairs. Two
of them merely correspond to ribbon solutions (blue curves in figure 7a), labelled as
RIB (dashed, SPI–SPI interaction) and RIBD17 (solid, SPID17–SPID17 interaction), and
listed in table 1. While ribbon solutions can be computed in a rectangular domain, all
other mixed modes require the use of the annular-parallelogram domain. In fact, only
two of the four remaining modes actually require computation, as the other two can
be easily obtained from simple z reflection and, since the torque is invariant under
this symmetry operation, the solution branches are exactly coincident. The branches
corresponding to these mixed-mode solutions are shown in red in figure 7(a). The
branch labelled as MIX+ originates from the interaction of two modes with pitches
of the same sign, while the one labelled MIX− arises from the nonlinear coupling of
modes with opposite sign, as reported in table 1.

All hydrodynamic results reported in this work and initially computed with a code
based on the hydromagnetic-potential formulation (2.13) have been reproduced using
the independently developed solenoidal Petrov–Galerkin parallelogram formulation
(2.20). A few nonlinear solutions at selected values of the parameters have been
chosen and indicated with triangles in figure 7(a) to convey the excellent qualitative
agreement between the two methods employed for the computations. Quantitative
comparison shows that the torque discrepancy stays below 0.06 % for all the purely
hydrodynamic nonlinear mixed-mode solutions computed. Figure 8(a) represents the
azimuthal mean flow distortion for the mixed modes at (Ri, Ro) = (1100, −10 434).
The distortion is the most significant in the vicinity of the inner cylinder, which
indicates that the perturbation is strongest in this region. For the same values of the
parameters, figure 9 shows azimuthal vorticity colour maps for both mixed modes
on an unwrapped radial plane at r = ri + 0.05. The observed flow structure is very
different from any of the mixed-mode solutions reported by Deguchi & Altmeyer
(2013). The observed small–large scale interaction reminds one of the stripe pattern
that is characteristic of intermittent spiral turbulence (Dong 2009; Meseguer et al.
2009). While the Reynolds numbers and the gap are too large to claim there exists
any relation between the mixed modes presented here and spiral turbulence, the
similarity of the patterns indicates that spiral turbulence might indeed be supported
by mixed-mode solutions of very different pitches as the ones investigated here in a
completely different setting.

Now we turn our attention to the magnetised problem, where we will impose an
external magnetic field with a strictly azimuthal orientation. For the MRI studies in
an annulus, the azimuthal base magnetic field is typically the weighted superposition
of r−1 and r components. The respective coefficients can be tuned by an appropriate
uniform current imposed within the inner and outer cylinders. Rüdiger et al. (2016,
2018b) considered two extreme cases: Bb(r)∝ r−1 (i.e. there is no current between the
cylinders) and Bb(r)∝ r (i.e. the axial current is homogeneous between the cylinders).
The latter also has the alternative name z pinch, and is known to become unstable
for sufficiently large Hartmann number even with both cylinders at rest (Tayler 1957).
As the Taylor instability does not exist for the current-free case, the behaviour of the
neutral curve for small Reynolds numbers must necessarily be quite different from that
for the homogeneous current case. Rüdiger et al. (2016, 2018b) found that, for η&0.8,
the neutral curves behave qualitatively alike in both cases when Reynolds numbers
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FIGURE 8. Azimuthal mean flow distortion (v− vb) of mixed-mode solutions. (a) Purely
hydrodynamic case at Ri = 1100 from figure 7(a). (b) Magnetised case at Ri =−280 and
H = 84 from figure 7(b).

are moderately large, thereby suggesting that super-AMRI is rather insensitive to the
choice of the azimuthal magnetic field profile.

We have confirmed that the D17 mode is stabilised by both the current-free and
the z-pinch cases. Nonetheless, when the two azimuthal magnetic field components
exist simultaneously, the D17 mode can be destabilised, as clearly illustrated by the
behaviour of the neutral stability curves in figure 6. Here the specific magnetic field
profile used is

Bb(r)=
ri

r
−

r
ro
, Cb(r)= 0. (4.1a,b)

Although the arguments by Rüdiger et al. (2016, 2018b) for the current-free case may
not be applicable to the large gap η= 0.1 we tackle here, an MRI does indeed arise
when a current is considered. This phenomenon had already been anticipated by a
locally periodic approach (see Liu et al. 2006; Kirillov, Stefani & Fukumoto 2014),
but the nature of the method used renders the approximation rather crude in view of
the not-so-large critical wavenumbers we encounter here. As the Hartmann number
is increased, the super-AMRI mode eventually takes over the classical mode, and
hence changes the character of the bicritical point. In view of figure 6 at H = 60,
the double critical point is already the result of the interaction of the D17 and the
super-AMRI modes. The base flow remains stable within the region bounded by their
respective stability thresholds. Along the combined neutral curve, the critical axial
wavenumber experiences a discontinuous leap across the bicritical point, whence it
must be inferred that the two instability mechanisms are indeed distinct. By further
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FIGURE 9. Visualisation of the total azimuthal vorticity (ωθ = ∂zu− ∂rw) at r= ri + 0.05
for the purely hydrodynamic mixed-mode solutions at Ri= 1100 in figure 7(a). Here Λ=
2π/1.002≈ 6.27: (a) MIX− and (b) MIX+. The corresponding mean flow distortion was
shown in figure 8(a).

increasing the Hartmann number, the bicritical point moves towards and eventually
crosses into the super-rotation regime. We have determined that the bicritical point
crosses the Ri = 0 line somewhere between H = 80 and H = 84.

The nonlinear solution branches issued from the bicritical point (Ri, Ro) ≈
(−231.5, −35 150) at H = 84 have been computed in the same way they were
for the strictly hydrodynamic case studied above. The critical wavenumbers of the
magnetised D17 mode at this point are (m, k) = (1, 0.616), while those for the
super-AMRI modes are (m, k) = (1, 1.984), which entails flow structures of similar
sizes. The bifurcation diagram of figure 7(b) has been obtained by varying Ri at
constant Ro. To the right (left) of the linear critical point, the base flow is unstable to
the D17 (super-AMRI) mode. The imposed azimuthal magnetic field does not break
any of the inherent symmetries of the hydrodynamic Taylor–Couette system so that,
as in the hydrodynamic case discussed above, there still arise two spirals (along with
their mirror images), two ribbons and two mixed modes (and mirror images). See
table 1 for an account of all modes. Both nonlinear spiral branches (black curves:
solid for SPID17, dashed for SPIMRI) bifurcate subcritically, in the sense that they
exist when the corresponding linear mode is stable. However, this is only true while
their amplitude remains small, and the branch associated with the D17 mode turns
back in a saddle-node bifurcation towards lower |Ri|. The RIBD17 (solid blue) and
RIBMRI (dashed blue) solution branches both exist to the right of the critical point
(blue curves in figure 7b).

We note in passing that the super-AMRI-type ribbon solutions found by Rüdiger
et al. (2016) were shown to be stable by direct numerical simulation. The mixed-mode
solution branches (red curves) come in two types, namely MIX+ and MIX−,
depending on whether the interacting modes have the same or opposite pitch,
respectively. Unlike all other solution branches issued from the bicritical point,
these extend to large |Ri|, and may thus govern the dynamics within the region of
the super-rotation regime closest to solid-body rotation.
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As is clear from figure 7(b), the nonlinear solution branches associated with the
super-AMRI instability have the unforeseen property that the torque is reduced
with respect to the laminar base value. The dependence of torque on Reynolds
number associated with the two mixed modes follows very similar trends. The torque
initially grows away from the bifurcation point as the branches dive deep into the
super-rotation regime, but the trend is soon reversed and the torque eventually drops
below laminar values.

The reason for torque reduction can be understood from the energy balance, since
torque corresponds to one of the energy input mechanisms. The perturbation energy
budget can be found by integrating ṽ · (2.7a)+H2b̃ · (2.7b). For travelling-wave-type
solutions, perturbation energy must be time-independent and thus the balance〈

r
(vb

r

)′
ũṽ
〉
−H2
〈r−1(rBb)

′(ãṽ − ũb̃)〉 = 〈ṽ ·∇2ṽ〉 +H2
〈b̃ ·∇2b̃〉 (4.2)

should be satisfied. Here the angle brackets denote integration over the annular-
parallelogram domain. The first terms on the right- and left-hand sides are related to
the torque, since integration of vbeθ · (2.7a) yields

−

〈
r
(vb

r

)′
ũṽ
〉
= 〈vbeθ ·∇2ṽ〉 (4.3)

and integration by parts of the first term on the right-hand side results in

〈v ·∇2v〉 = (r−1
o Ro − r−1

i Ri)T − 〈|∇v|2〉. (4.4)

The energy balance equation (4.2) then becomes

−H2
〈b̃ ·∇2b̃〉 −H2

〈r−1(rBb)
′(ãṽ − ũb̃)〉 = (r−1

o Ro − r−1
i Ri)T − 〈|∇v|2〉. (4.5)

Showing that torque cannot decrease below the laminar value for purely hydro-
dynamic Taylor–Couette flow is a straightforward exercise, because the terms on the
left-hand side are identically zero. The calculus of variations can then be used to prove
that the minimum value of the functional F(v) = 〈|∇v|2〉 under the divergence-free
constraint for v is realised by the solution to the Stokes equation (see e.g. Doering
& Gibbon 1995), namely the laminar Couette solution. Imposing 〈|∇v|2〉> 〈|∇vb|

2
〉=

(r−1
o Ro − r−1

i Ri)Tb on (4.4) demands that τ > 1 for the purely hydrodynamic case.
Moreover, the balance equation further leads to the conclusion that torque reduction

cannot occur at all if the base magnetic field is current-free, as this entails that the
second term on the left-hand side of (4.5) is absent. The proof is again straightforward,
as integration by parts shows that −H2

〈b̃ · ∇2b̃〉 is positive definite. The resulting
inequality,

(r−1
o Ro − r−1

i Ri)T > (r−1
o Ro − r−1

i Ri)T +H2
〈b̃ ·∇2b̃〉 = 〈|∇v|2〉

> (r−1
o Ro − r−1

i Ri)Tb, (4.6)

yields again τ > 1. This outlines the necessity of a base current field if torque
reduction is to be observed.

As seen in figure 7(b), the torque reduction is stronger for the MIX+ mode,
reflecting the fact that the perturbation is slightly larger for that mode. This is
evidenced by figure 8(b), where the azimuthal mean flow distortion across the gap is
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FIGURE 10. Visualisation of the total azimuthal vorticity (ωθ = ∂zu − ∂rw) at r = ri +

0.05 for the magnetised mixed-mode solutions at Ri = −280 in figure 7(b). Here Λ =
2π/0.616≈ 10.2: (a) MIX− and (b) MIX+. The corresponding mean flow distortion was
shown in figure 8(b).

plotted at Ri =−280. The oscillatory modulation of the flow near the inner cylinder
is responsible for the torque reduction and is driven by the vortex structure near
the inner cylinder, as shown in the θ–z sections of figure 10. Here again we choose
r= ri+ 0.05, very close to the inner cylinder, as the reference radius. As expected, the
perturbation of the MIX+ mode has larger amplitude than that for the MIX− mode.
The flow patterns are similar to those of the wavy spiral computed by Altmeyer &
Hoffmann (2010) and Deguchi & Altmeyer (2013), because the critical wavenumbers
of the interacting modes are of comparable size.

5. Conclusions
We have investigated nonlinear mode competition in MHD Taylor–Couette flow

subject to predominantly azimuthal magnetic fields. For this purpose, a Newton
solver devised by Deguchi & Altmeyer (2013) for the Navier–Stokes equations
in annular-parallelogram domains has been extended for its application to the
inductionless limit of the MHD equations.

For the anticyclonic regime (see figure 1), a suitably adjusted weak axial magnetic
field in addition to the azimuthal field stimulates linear instability modes with
m = −1, 0, 1, as anticipated by Hollerbach et al. (2010). Consistent with their
results, we find particularly rich nonlinear dynamics for δ ' 0.04. In § 3, we
identified that there is a triple critical point involving all three modes for δ≈ 0.0413.
We have tracked the three nonlinear mixed-mode solution branches that bifurcate
simultaneously at the triple critical point using the purposely devised Newton solver
and arclength continuation. Some of the mixed-mode solutions possess a larger angular
momentum transport (they require application of higher driving torque to keep the
cylinders rotating) than the single-mode solutions they result from. This increased
transport of angular momentum makes these mixed-mode solutions an interesting
target for future study, as they might be relevant in astrophysical flows involving
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accretion disks. In particular, a better understanding of what their role might be in
the nonlinear dynamics of such flows will require direct numerical simulations and
experiments such as those by PROMISE (Rüdiger et al. 2006; Stefani et al. 2006,
2007).

In § 4, we have studied mode competition involving the D17 mode. In the purely
hydrodynamic case, there is a point where both the classical spiral mode and the
D17 mode become neutral simultaneously. This bicritical point lies within the
counter-rotation regime (see figure 1). The corresponding mixed-mode solutions
consist of an interesting stripe pattern where the small-scale classical spirals are
modulated by the larger-scale structure of the D17 mode. All purely hydrodynamic
results presented here are in excellent agreement with analogous computations done
with an independently developed Petrov–Galerkin code devised by Meseguer et al.
(2007) and presently extended to allow computation of mixed-mode travelling–rotating
wave solutions in annular-parallelogram domains. This code is better suited for
the study of large-scale pattern formation in Taylor–Couette flow and includes
not only a travelling–rotating wave Newton–Krylov matrix-free solver (thus being
capable of handling a much larger number of degrees of freedom), but also stability
analysis, a solver for modulated travelling–rotating waves and pseudo-arclength
continuation of solution branches adapted from Mellibovsky & Meseguer (2015), and
also direct numerical simulation. Details of this second code and its adaptation to
annular-parallelogram domains will be presented in our future work on the study of
large-scale pattern formation in Taylor–Couette flow. The intricacies of the method
reach beyond the scope of the present study.

The application of an external azimuthal magnetic field alters the picture obtained in
the purely hydrodynamic case completely. The non-axisymmetric super-AMRI mode
found by Rüdiger et al. (2016, 2018a,b) appears at moderate Hartmann numbers and
eventually outweighs the classical mode for sufficiently strong magnetic fields. We
clearly show that the mechanisms behind the magnetised D17 mode and the super-
AMRI mode are distinct. Destabilisation of the D17 mode occurs for a given external
magnetic field profile (4.1). As a result, an increase of the Hartmann number gradually
shifts the bicritical point at which both modes are simultaneously destabilised towards
the super-rotation regime. This fact renders this mode interaction interesting from an
astrophysical point of view. Several nonlinear solution branches are issued from the
bicritical point in both Ri directions at fixed Ro. While spirals and ribbons return
towards the counter-rotation regime, the mixed-mode solution branches plunge deep
into the super-rotation regime.

The solutions computed in § 4 show how the complex interplay between the
nonlinear shear–Coriolis and the magneto-rotational instabilities can sometimes lead
to torques lower than that of the base flow. This surprising result is in sharp contrast
with what is typically assumed in purely hydrodynamic shear-flow studies, where
nonlinearity is known to invariably enhance angular momentum transport. This torque
reduction occurs even for finite Pm and sub-rotation of the cylinders; see appendix B.
In view of this result, torque reduction might be a generic property of MHD flows
in the presence of shear and Coriolis forces. A particularly interesting potential
application of this phenomenon would be to design control strategies to reduce drag
on the curved boundary layers by imposing suitable magnetic fields.

We have analysed the D17/super-AMRI mode interaction for a large gap η = 0.1.
Interesting as it would be, we have not attempted here to track these modes to
smaller annulus gaps in the order η∼ 0.8 and test the robustness of the coalescence
point of both instabilities. The extremely large Reynolds numbers at which the D17
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mode bifurcates in the narrow annulus case renders the task overly demanding from
a computational point of view, if not altogether unaffordable.

Imposing more intense helical magnetic fields might also be an appealing topic
for future research. The two axisymmetric super-HMRI modes found recently by
Mamatsashvili et al. (2019), in combination with some of the modes studied
here, may also yield rich interaction patterns worth exploring. While their type
2 super-HMRI mode belongs to the class of MRI requiring induction together with
SMRI, the type 1 super-HMRI mode is inductionless and might therefore coexist with
the super-AMRI mode and interact nonlinearly. Both types of super-HMRI modes
might of course interact with the D17 mode. For HMRI, the further consideration of
current in the fluid brings about even richer instability phenomena as anticipated by
a locally periodic approach (Liu et al. 2006; Kirillov & Stefani 2013; Kirillov et al.
2014). The interaction of short-wavelength modes found using the locally periodic
approach with longer-wavelength modes such as D17 or super-AMRI modes would
generate band-like patterns much as those in figure 9.
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Appendix A. Basis function for the magnetic potentials
Following Roberts (1964), we first determine the magnetic field for the outer zones

r< ri and r> ro. Within the perfectly insulating walls, the magnetic field must have
a potential ϕ because there is no current:

ã= ϕr, b̃= r−1ϕθ , c̃= ϕz. (A 1a−c)

Since the magnetic field is solenoidal, the outer potential must satisfy Laplace’s
equation. Using the expansion

ϕ =
∑
n1,n2

ϕ̂n1n2(r)e
i(n1ξ1+n2ξ2), (A 2)

it is easy to find that the solution ϕ̂n1n2(r) can be written down using the modified
Bessel functions of the first and second kinds, Iν(x) and Kν(x), both of which satisfy
x2f ′′ + xf ′ − (x2

+ ν2)f = 0. The requirement that the potential is analytic at r = 0
determines the solution for r< ri as

ϕ̂n1n2 =

{
I|An1n2 |

(|Bn1n2 |r) if |Bn1n2 | 6= 0,

r|An1n2 | if |Bn1n2 | = 0,
(A 3a)

whilst if the amplitude of the potential decays for large r, the solution for r> ro is

ϕ̂n1n2 =

{
K|An1n2 |

(|Bn1n2 |r) if |Bn1n2 | 6= 0,

r−|An1n2 | if |Bn1n2 | = 0.
(A 3b)
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Here we have used the shorthand notation An1n2 = n1m1 + n2m2 and Bn1n2 = n1k1 + n2k2.
Note that the mean part ϕ̂00 must be zero, from the boundary conditions.

Across the cylinder walls, the magnetic field must be continuous. Thus from (A 1)
and the outer potential solutions (A 3), the boundary conditions are found as

b̂n1n2 =
An1n2

riBn1n2

ĉn1n2 and ân1n2 +
iQ−n1n2

Bn1n2

ĉn1n2 = 0 at r= ri, (A 4a)

b̂n1n2 =
An1n2

roBn1n2

ĉn1n2 and ân1n2 +
iQ+n1n2

Bn1n2

ĉn1n2 = 0 at r= ro. (A 4b)

Here Q±n1n2
denotes the value of ∂rϕ̂n1n2/ϕ̂n1n2 on the walls:

Q−n1n2
=


|An1n2 |

ri
+
|Bn1n2 |I|An1n2 |+1(|Bn1n2 |ri)

I|An1n2 |
(|Bn1n2 |ri)

if |Bn1n2 | 6= 0,

|An1n2 |

ri
if |Bn1n2 | = 0,

(A 5a)

Q+n1n2
=


|An1n2 |

ro
−
|Bn1n2 |K|An1n2 |+1(|Bn1n2 |ro)

K|An1n2 |
(|Bn1n2 |ro)

if |Bn1n2 | 6= 0,

−
|An1n2 |

ro
if |Bn1n2 | = 0.

(A 5b)

After some algebra, we can find the boundary conditions for the poloidal and
toroidal potentials as

f̂ ′n1n2
+M−n1n2

f̂n1n2 = 0 and ĝn1n2 − γn1n2(ri) f̂n1n2 = 0 at r= ri, (A 6a)

f̂ ′n1n2
+M+n1n2

f̂n1n2 = 0, and ĝn1n2 − γn1n2(ro) f̂n1n2 = 0 at r= ro, (A 6b)

where

γn1n2(r)=
2An1n2Bn1n2

B2
n1n2

r2 + A2
n1n2

, (A 7a)

M−n1n2
=

r2
i B2

n1n2
− A2

n1n2

r2
i B2

n1n2
+ A2

n1n2

−
r2

i B2
n1n2
+ A2

n1n2

r2
i Q−n1n2

, (A 7b)

M+n1n2
=

r2
oB2

n1n2
− A2

n1n2

r2
oB2

n1n2
+ A2

n1n2

−
r2

oB2
n1n2
+ A2

n1n2

r2
oQ+n1n2

. (A 7c)

The second boundary conditions in (A 6) suggest that the functions ĝn1n2 − γn1n2 f̂n1n2

must vanish on the walls, and thus we can use (1 − y2)Tl(y) to expand them. The
function f̂n1n2 satisfies Robin’s conditions on the walls as seen in the first boundary
conditions in (A 6). As shown in Deguchi (2019b), we can use the following modified
basis functions

(1− y2)Tl(y)+ αln1n2 + βln1n2y, (A 8)

where

αln1n2 = 2
(−1)l(1+M+n1n2

)+ (1−M−n1n2
)

(1−M−n1n2
)M+n1n2

− (1+M+n1n2
)M−n1n2

, (A 9a)

βln1n2 =−2
(−1)lM+n1n2

+M−n1n2

(1−M−n1n2
)M+n1n2

− (1+M+n1n2
)M−n1n2

. (A 9b)
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FIGURE 11. The narrow-gap computation for Pm= 1, R= 400, and the axial wavenumber
k= 3.117. Dashed curve: Taylor-vortex flow. Solid curves: the wavy-vortex flow branches.
The streamwise wavenumber (i.e. m/rm at the narrow-gap limit) is 2.2. The values of B0
are indicated by the arrows. The horizontal axis is the rotation number ω. In the vertical
coordinate, the shear on the wall is normalised by its laminar value (i.e. τ at the narrow-
gap limit).

Appendix B. Drag reduction of the wavy vortex flow

Here we show that the significant drag reduction observed in § 4 occurs even for the
Rayleigh-unstable sub-rotation regime (see figure 1). Moreover, the Prandtl number is
not necessarily small to observe this phenomenon; here we choose Pm = 1. The base
magnetic field (4.1) is used.

We employ the narrow-gap limit η→ 1 in order to use the full MHD Cartesian
code developed in Deguchi (2019a). Now we write x= rmθ and y= (r− rm) using the
mid-gap rm. When η is close to unity, noting that y/rm� 1, we have approximations

vb(r)−Ωr=−Ry+ · · · , HBb(r)=−B0Ry+ · · · , (B 1a,b)

while keeping Ω = r−1
m vb(rm), R = 2r−2

m Rp and B0 = H/Rp as O((1 − η)0) constants.
(Note that the definition of R differs by factor of 4 from that used in Deguchi (2019a),
because in this paper the gap is 2.) The limiting system is the rotating plane Couette
flow in Cartesian coordinates (x, y, z) with the rotation rate ω= 2Ω/R. The Rayleigh-
unstable region is ω ∈ [0, 1]. For B0 6= 0, the flow is subjected to a linear magnetic
field pointing in the streamwise direction.

The first few bifurcation sequence of hydrodynamic rotating plane Couette flow is
widely acknowledged (see e.g. Nagata 1986, Daly et al. 2014). Near the Rayleigh line
ω=1, the Taylor-vortex flow bifurcates with the well-known axial critical wavenumber
k=3.117 as depicted by the dashed curve in figure 11. Further bifurcation of the green
solid curve is due to the three-dimensional secondary instability of the Taylor vortex
and called the wavy-vortex flow.

The other solid curves in figure 11 (blue for B0=0.5, red for B0=1) show that with
increasing B0 the shear associated with the wavy-vortex flow is eventually reduced
even below the laminar value. Here note that this reduction only occurs when the
flow is dependent on x (i.e. azimuthal direction). For example, Taylor-vortex flow is
x-independent, and thus the shear is unchanged whatever the value of B0 is. This is
because the cross-streamwise components of the magnetic field needed to modify the
mean flow remains zero under the influence of the streamwise magnetic field.
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