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Abstract

We address the problem of belief revision of logic programs (LPs), i.e., how to incorporate

to a LP P a new LP Q . Based on the structure of SE interpretations, Delgrande et al.

(2008. Proc. of the 11th International Conference on Principles of Knowledge Representation

and Reasoning (KR’08), 411–421; 2013b. Proc. of the 12th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’13), 264–276) adapted the well-known

AGM framework (Alchourrón et al. 1985. Journal of Symbolic Logic 50, 2, 510–530) to LP

revision. They identified the rational behavior of LP revision and introduced some specific

operators. In this paper, a constructive characterization of all rational LP revision operators

is given in terms of orderings over propositional interpretations with some further conditions

specific to SE interpretations. It provides an intuitive, complete procedure for the construction

of all rational LP revision operators and makes easier the comprehension of their semantic

and computational properties. We give a particular consideration to LPs of very general

form, i.e., the generalized logic programs (GLPs). We show that every rational GLP revision

operator is derived from a propositional revision operator satisfying the original AGM

postulates. Interestingly, the further conditions specific to GLP revision are independent

from the propositional revision operator on which a GLP revision operator is based. Taking

advantage of our characterization result, we embed the GLP revision operators into structures

of Boolean lattices, that allow us to bring to light some potential weaknesses in the adapted

AGM postulates. To illustrate our claim, we introduce and characterize axiomatically two

specific classes of (rational) GLP revision operators which arguably have a drastic behavior.

We additionally consider two more restricted forms of LPs, i.e., the disjunctive logic programs

(DLPs) and the normal logic programs (NLPs) and adapt our characterization result to

disjunctive logic program and normal logic program revision operators.

KEYWORDS: belief revision, logic programming, characterization theorems

� This is a revised and full version (including proofs of propositions given in the online appendix of the
paper) of Schwind and Inoue (2013).
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1 Introduction

Logic programs (LPs) under the answer set semantics are well-suited for modeling

problems which involve common sense reasoning (e.g., biological networks, diagnosis,

planning, etc.) Due to the dynamic nature of our environment, beliefs represented

through an LP P are subject to change, i.e., because one wants to incorporate to it a

new LP Q . Since there is no unique, consensual procedure to revise a set of beliefs,

Alchourrón et al. (1985) introduced a set of desirable principles w.r.t. belief change

called AGM postulates. Katsuno and Mendelzon (1992) adapted these principles to

the case of propositional logic, distinguished two kind of change operations, i.e.,

revision and update (Katsuno and Mendelzon 1991), and characterized axiomatically

each one of these change operations by a set of so-called KM postulates. Revision

consists in incorporating a new information into a database that represents a static

world, i.e., new and old beliefs describe the same situation but new ones are more

reliable. In the case of update, the underlying world evolves w.r.t the occurrence of

some events i.e., new and old beliefs describe two different states of the world.

Our interests focus here on the problem of revision of LPs. Most of works dealing

with belief change in logic programming are concerned with rule-based update

(Zhang and Foo 1997; Alferes et al. 2000; Eiter et al. 2002; Sakama and Inoue

2003; Zhang 2006; Delgrande et al. 2007), and they do not lie into the AGM

framework, particularly due to their syntactic essence.

Indeed, given the non-monotonic nature of LPs the AGM/KM postulates can

not be directly applied to LPs (Eiter et al. 2002). However, the notion of SE models

introduced by Turner (2003) provided a monotonic semantical characterization of

LPs, which is more expressive than the answer set semantics. Initially, SE models

were used to characterize the strong equivalence between LPs (Lifschitz et al. 2001):

precisely, two LPs have the same set of SE models if and only if they are strongly

equivalent, that is to say, they admit the same answer sets, and will still do even

after adding any arbitrary set of rules to them.

Based on these structures, Delgrande et al. (2008, 2013b) adapted the AGM/KM

postulates in the context of logic programming. They focused on the revision of LPs,

i.e., they proposed several revision operators and investigated their properties w.r.t.

the adapted postulates. Slota and Leite (2010, 2014) exploited the same idea for

update of LPs by adapting the KM postulates in a similar way. These semantical-

based belief change operations (revision and update) changed the focus from the

dynamic evolution of a syntactic, rule-based representation of beliefs previously

proposed in the literature to the evolution of its semantic content; these works

covered a serious drawback in the field of belief revision in logic programming. In

the context of update, Slota and Leite also proposed a constructive representation of

such update operators. Such a result provides a sound and complete model-theoretic

construction of the rational LP update operators, i.e., a “generic recipe” to construct

all operators that fully satisfy the adaptation of the AGM/KM postulates to LPs.

It is indeed crucial when defining a logical operator in an axiomatic way to give

an intuitive constructive characterization of it in order to aid the analysis of its

semantic and computational properties.
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In this paper, we give a particular consideration to the revision of generalized logic

programs (GLPs) (Inoue and Sakama 1998) which are of very general form. Revising

a GLP P by an other GLP Q should result in a new GLP that satisfy the adapted

set of AGM postulates. We provide a characterization of the set of all GLP revision

operators by associating each GLP with a certain structure, called GLP parted

assignment, which consists of a pair of assignments that are independent from each

other. Interestingly, the first one, called here LP faithful assignment, is similar to the

structure of faithful assignment defined in Katsuno and Mendelzon (1992) and used

to characterize the (rational) KM revision operators in the propositional setting; the

second one, called here well-defined assignment, can be defined independently from

the first one. As a consequence, the benefit of our approach is that:

(i) every rational LP revision operator � can be derived from a propositional

revision operator ◦ satisfying the KM postulates, with some additional

conditions that are independent from ◦;
(ii) there is a one-to-one correspondence between the set of rational LP revision

operators and the set of all pairs of such assignments.

Our characterization makes the refined analysis of LP revision operators easier.

Indeed, we can embed the GLP revision operators into structures of Boolean lattices,

that allows us to bring out some potential weaknesses in the original postulates and

pave the way for the discrimination of some rational GLP revision operators.

The next section introduces some preliminaries about belief revision in propo-

sitional logic. We provide in Section 3 some necessary background on GLPs, and

we also introduce the notion on LP revision, an axiomatic characterization of GLP

revision operators, and some preliminary results. Section 4 provides our main result,

i.e., a constructive characterization of the axiomatic description of the GLP revision

operators. We formally compare our characterization result with another recent

one proposed in Delgrande et al. (2013a); the benefit of our approach is that our

construction is one-to-one, as opposite to Delgrande et al.’s one. In Section 5, we

partition the class of GLP revision operators into subclasses of Boolean lattices,

then we introduce and axiomatically characterize two specific classes of (rational)

GLP revision operators, i.e., the skeptical and brave GLP revision operators, and

lastly we provide some complexity results which are direct consequences of existing

results in the propositional case. In Section 6, we consider the revision of more

restricted forms of LPs, i.e., the disjunctive logic programs (DLPs) and normal logic

programs (NLPs). We adapt our characterization result to DLP revision operators

and NLP revision operators. Though DLP revision operators and NLP revision

operators can also be viewed as extensions of propositional revision operators, in

contrast with GLP revision operators their construction does not provide us with

two independent structures. We conclude in Section 7.

This version of the paper is a revised and extended version of a published

LPNMR’13 paper (Schwind and Inoue 2013). The main extensions include a

comparison of our main characterization result with the one proposed in Delgrande

et al. (2013a), some complexity results, characterization results for DLP and NLP
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revision operators and the proofs of propositions given in the online appendix of

the paper.

2 Belief revision in propositional logic

2.1 Formal preliminaries

We consider a propositional language L defined from a finite set of propositional

variables (also called atoms) A and the usual connectives. ⊥ (resp. �) is the

Boolean constant always false (resp. true). A (classical) interpretation over A is a

total function from A to {0, 1}. To avoid heavy expressions, an interpretation I

is also viewed as the subset of atoms from A that are true in I . For instance, if

A = {p, q}, then the interpretation over A such that I (p) = 1 and I (q) = 0 is also

represented as the set {p}. For the sake of simplicity, set-notations will be dropped

within interpretations (except for the case where the interpretation is the empty set),

e.g., the interpretation {p, q} will be simply denoted pq . The set of all interpretations

is denoted Ω. An interpretation I is a model of a formula φ ∈ L, denoted I |= φ, if

it makes it true in the usual truth functional way. A consistent formula is a formula

that admits a model. The set mod (φ) denotes the set of models of the formula φ, i.e.,

mod (φ) = {I ∈ Ω | I |= φ}. Two formulae φ,ψ are said to be equivalent, denoted

by φ ≡ ψ if and only if mod (φ) = mod (ψ).

2.2 Propositional revision operators

We now introduce some background on propositional belief revision. We start by

introducing a revision operator as a simple function, that considers two formulae (the

original formula and the new one) and that returns the revised

formula:

Definition 1 (Propositional revision operator, equivalence between operators)

A (propositional) revision operator ◦ is a mapping associating two formulae φ,ψ

with a new formula, denoted φ ◦ ψ. Two revision operators ◦, ◦′ are said to be

equivalent (denoted ◦ ≡ ◦′) when for all formulae φ,ψ, φ ◦ ψ ≡ φ ◦′ ψ.

The AGM framework (Alchourrón et al. 1985) describes the standard principles

for belief revision (e.g., consistency preservation and minimality of change), which

capture changes occurring in a static domain. Katsuno and Mendelzon (1991)

equivalently rephrased the AGM postulates as follows:

Definition 2 (KM revision operator)

A KM revision operator ◦ is a propositional revision operator that satisfies the

following postulates, for all formulae φ,φ1, φ2, ψ, ψ1, ψ2:

(R1) φ ◦ ψ |= ψ.

(R2) If φ ∧ ψ is consistent, then φ ◦ ψ ≡ φ ∧ ψ.

(R3) If ψ is consistent, then φ ◦ ψ is consistent.

(R4) If φ1 ≡ φ2 and ψ1 ≡ ψ2, then φ1 ◦ ψ1 ≡ φ2 ◦ ψ2.
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(R5) (φ ◦ ψ1) ∧ ψ2 |= φ ◦ (ψ1 ∧ ψ2).

(R6) If (φ ◦ ψ1) ∧ ψ2 is consistent, then φ ◦ (ψ1 ∧ ψ2) |= (φ ◦ ψ1) ∧ ψ2.

These so-called KM postulates capture the desired behavior of a revision operator,

e.g., in terms of consistency preservation and minimality of change. We now draw the

reader’s attention to the following important detail. The KM postulates also tell us

that the outcome of a revision operator relies on an arbitrary syntactic distinction:

one can see that a revision operator ◦ is a KM revision operator (i.e., it satisfies

postulates (R1–R6)) if and only if any revision operator equivalent to ◦ is also a

KM revision operator. In this paper, since we are only interested in whether an

operator satisfies a set of rationality postulates or not, only the semantic contents of

the revised base play a role, that is, relevance is considered only within the models

of a revised base rather than on its explicit representation. This is why from now on,

abusing terms we identify a revision operator modulo equivalence, that is, we actually

refer to any revision operator equivalent to it. It becomes then harmless to define the

resulting revised base in a modelwise fashion, as a set of models implicitly interpreted

disjunctively. As a consequence, given two propositional revision operators ◦, ◦′, one

can switch between the notations ◦ ≡ ◦′ and ◦ = ◦′ since there is no longer danger

of confusion.

KM revision operators can be represented in terms of total preorders over

interpretations. Indeed, each KM revision operator is associated with some faithful

assignment (Katsuno and Mendelzon 1991). For each pre-order �, 
 denotes

the corresponding indifference relation, and < denotes the corresponding strict

ordering; given a binary relation � over a set E and any set F ⊆ E , the

set min(F ,�) denotes the subset of “minimal” elements from F w.r.t. �, i.e.,

min(F ,�) = {a ∈ F | ∀b ∈ F , b � a ⇒ a � b}.

Definition 3 (Faithful assignment)

A faithful assignment is a mapping which associates with every formula φ a pre-

order �φ over interpretations such that for all interpretations I , J , and all formulae

φ, φ1, φ2, the following conditions hold:

(a) If I |= φ and J |= φ, then I 
φ J .

(b) If I |= φ and J �|= φ, then I <φ J .

(c) If φ1 ≡ φ2, then �φ1
=�φ2

.

Theorem 1 (Katsuno and Mendelzon 1992 )

A revision operator ◦ is a KM revision operator if and only if there exists a faithful

assignment associating every formula φ with a total preorder �φ such that for all

formulae φ,ψ, mod (φ ◦ ψ) = min(mod (ψ),�φ).

Example 1

Consider the propositional language defined from the set of atoms A = {p, q}. Let

φ = p ⇔ ¬q . Consider the total preorder �φ defined as p 
φ q <φ pq <φ ∅. It can

be easily checked that the conditions of a faithful assignment are satisfied by �φ.

Then denote by ◦ the corresponding KM revision operator. Now, let ψ1 = ¬p ∧ q

and ψ2 = p ⇔ q . Figure 1 illustrates the total preorder �φ and graphically identifies

the models of ψ1 and ψ2. We get following:
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mod(ψ1)

mod(ψ2)

≤φ

p q

pq

∅

Fig. 1. The total preorder �φ over interpretations associated with some faithful assignment.

• mod (φ ◦ ψ1) = min(mod (ψ1),�φ) = mod (ψ1). Hence, φ ◦ ψ1 ≡ ψ1;

• mod (φ ◦ ψ2) = min(mod (ψ2),�φ) = {pq}. Hence, φ ◦ ψ2 ≡ p ∧ q .

In fact, an implicit consequence of Theorem 1 is that every KM revision operator

is represented by a unique faithful assignment, and conversely, every faithful

assignment represents a unique KM revision operator (modulo equivalence):

Proposition 1

There is a one-to-one correspondence between the KM revision operators and the

set of all faithful assignments.

KM revision operators include the class of distance-based revision operators (see,

for instance, (Dalal 1988)), i.e., those operators characterized by a distance between

interpretations:

Definition 4 (Distance-based revision operators)

Let d be a distance between interpretations1, extended to a distance between every

interpretation I and every formula φ by

d (I , φ) =

{
min{d (I , J ) | J |= φ} if φ is consistent,

0 otherwise.

The revision operator based on the distance d is the operator ◦d satisfying for all

formulae φ,ψ, mod (φ ◦d ψ) = min(mod (ψ),�d
φ) where the preorder �d

φ induced by

φ is defined for all interpretations I , J by I �d
φ J if and only if d (I , φ) � d (J , φ).

The following result is a direct consequence of Theorem 1:

Corollary 1

Every distance-based revision operator is a KM revision operator, i.e., it satisfies the

postulates (R1–R6).

The result of revising old beliefs (a propositional formula φ) by new beliefs (a

propositional formula ψ) is any propositional formula whose models are models of

ψ having a distance to a model of φ which is minimal among all models of ψ.

It is clear from Definition 4 that a distance fully characterizes the induced revision

operator, that is, different choices for the distance induce different revision operators.

Usual distances are dD , the drastic distance (dD (I , J ) = 1 if and only if I �= J ), and

dH the Hamming distance (dH (I , J ) = n if I and J differ on n variables). One can

1 Actually, a pseudo-distance is enough, i.e., triangular inequality is not mandatory.
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remark that when the drastic distance dD is used, the induced faithful assignment

associates with every formula φ a two-level preorder �φ; indeed, it can be easily

verified that the revision operator based on the drastic distance dD is equivalent to

the so-called drastic revision operator, which is defined syntactically as follows:

Definition 5 (Drastic revision operator)

The drastic revision operator, denoted ◦D , is the revision operator defined for all

formulae φ,ψ as

φ ◦D ψ =

{
φ ∧ ψ if φ ∧ ψ is consistent,

ψ otherwise.

This operator was first introduced in Alchourrón et al. (1985) under the name of

full meet revision function. Though “fully rational” in the sense that it satisfies all

the KM rationality postulates (i.e., all AGM postulates in Alchourrón et al. (1985)),

it is often considered as unreasonable because it throws away all the old beliefs if

the new formula is inconsistent with them.

Likewise, the revision operator based on Hamming distance dH is equivalent to

the well-known Dalal revision operator (Dalal 1988). In fact, in Dalal (1988) the

Dalal revision is also defined in a modelwise fashion, i.e., there is no syntactic

definition of it (as opposite to the drastic revision operator, cf. Definition 5):

Definition 6 (Dalal revision operator)

A Dalal revision operator, denoted ◦Dal , is any revision operator based on the

Hamming distance.

From now on, the revision operator based on the Hamming distance (i.e., the revision

operator ◦dH ) will simply be referred as the Dalal revision operator, and thus will

be denoted ◦Dal .

Example 2

Let A = {p, q , r}, φ = p ∧ q ∧ ¬r , and ψ = r . We have

• φ ◦D ψ = r .

• φ ◦Dal ψ ≡ p ∧ q ∧ r .

It is clear from Example 2 that the Dalal revision operator has a more parsi-

monious behavior than the drastic revision operator, because it integrates the new

information while keeping as much previous beliefs as possible.

Before concluding this section, let us remark that distance-based revision operators

as defined above do not fully characterize KM revision operators: this comes from

the fact that given two formulae φ,φ′ such that φ �≡ φ′, one can associate within

the same faithful assignment two preorders �φ,�φ′ in an independent way; given

that observation, one can easily build �φ,�φ′ using two different distances, whereas

Definition 4 requires that the same distance is used to define the total preorder �φ

associated with any formula. However, as far as we know there does not exist in the

literature any “fully rational” (with respect to postulates (R1–R6)) revision operator

of interest that is not distance-based.
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3 Belief revision in logic programming

3.1 Preliminaries on logic programming

We define the syntax and semantics of GPLs. We use the same notations as in

Delgrande et al. (2008). A GLP is a finite set of rules of the form

a1; . . . ; ak ;∼ b1; . . . ;∼ bl ← c1, . . . , cm ,∼ d1, . . . ,∼ dn ,

where k , l ,m , n � 0.
Each ai , bi , ci , di is either one of the constant symbols ⊥, �, or an atom from A;

∼ is the negation by failure; “;” is the disjunctive connective, “,” is the conjunctive

connective of atoms. The right-hand and left-hand sides of r are respectively called

the head and body of r . For each rule r , we define H (r)+ = {a1, . . . , ak}, H (r)− =

{b1, . . . , bl}, B (r)+ = {c1, . . . , cm}, and B (r)− = {d1, . . . , dn}. For the sake of simplicity,

a rule r is also expressed as follows:

H (r)+;∼ H (r)− ← B (r)+,∼ B (r)−·

A LP is interpreted through its preferred models based on the answer set semantics.

A (classical) model X of a GLP P (written X |= P ) is an interpretation from Ω that

satisfies all rules from P according to the classical definition of truth in propositional

logic. mod (P ) will denote the set of all models of a GLP P . An answer set X of a

GLP P is a minimal (w.r.t. set inclusion) set of atoms from A that is a model of

the program PX , where PX is called the reduct of P relative to X and is defined as

PX = {H (r)+ ← B (r)+ | r ∈ P ,H (r)− ⊆ X ,B (r)− ∩X = ∅}. The classical notion of

equivalence between programs corresponds to the correspondence of their answer

sets. Recall that we denote an interpretation by dropping set-notations except for

the case of the interpretation corresponding to the empty set; for instance, the set

of interpretations {∅, {p}, {pq}} will be simply denoted {∅, p, pq}.

Example 3

Consider the LP P = { p ←∼ q ,
⊥ ← p, q }. To determine AS (P ), the set of answer sets of

P , we need to check for each interpretation X whether X is a minimal (w.r.t. set

inclusion) model of PX , the reduct of P relative to X :

• P∅ = { p ← �,
⊥ ← p, q }, and mod (P∅) = {p}. Since ∅ is not a model of P∅, we get

that ∅ /∈ AS (P ).

• Pp = P∅, so mod (Pp) = {p}. Since p is a minimal (w.r.t. set inclusion) model

of Pp , we get that p ∈ AS (P ).

• Pq = {⊥ ← p, q}, so mod (Pq ) = {∅, p, q}. Hence, q is a model of Pq but is

not minimal w.r.t. set inclusion, since ∅ ∈ mod (Pq ). Thus, q /∈ AS (P ).

• Lastly, Ppq = Pq , so mod (Ppq ) = {∅, p, q}. Hence, pq is a not a model of Ppq ,

so we get that pq /∈ AS (P ).

Therefore, AS (P ) = {p}.

SE interpretations are semantic structures characterizing strong equivalence be-

tween LPs (Turner 2003), they provide a monotonic semantic foundation of LPs

under answer set semantics. An SE interpretation over A is a pair (X ,Y ) of
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interpretations over A such that X ⊆ Y . An SE model (X ,Y ) of a LP P is an SE

interpretation over A that satisfies Y |= P and X |= PY , where PY is the reduct of

P relative to Y . The set SE denotes the set of all SE interpretations over A; given

a LP P , the set SE (P ) denotes the set of SE models of P .

Example 4

Consider again the LP P defined in Example 3. We have mod (P ) = {p, q}. Hence

SE (P ) = {(X , p) ∈ SE | X ∈ mod (Pp)} ∪ {(X , q) ∈ SE | X ∈ mod (Pq )}
= {(X , p) ∈ SE | X ∈ {p}} ∪ {(X , q) ∈ SE | X ∈ {∅, p, q}}
= {(p, p), (∅, q), (q , q)}·

Through their SE models, LPs are semantically described in a stronger way than

through their answer sets, as shown in the following example.

Example 5

Let P1 = {p ←∼ q} and P2 = { p ←∼ q ,
p; q ← � }, and consider again the LP P defined in

Example 3. Then, we get that

AS (P ) = AS (P1) = AS (P2) = {p},

that is, P , P1, and P2 admit the same answer sets. However, their SE models differ:

SE (P ) = {(p, p), (∅, q), (q , q)} (cf. Example 3),

SE (P1) = {(p, p), (∅, q), (q , q), (∅, pq), (p, pq), (q , pq), (pq , pq)},
SE (P2) = {(p, p), (p, pq), (q , pq), (pq , pq)}·

A program P is consistent if SE (P ) �= ∅. Two programs P and Q are said to

be strongly equivalent, denoted P ≡s Q , whenever SE (P ) = SE (Q). We also write

P ⊆s Q if SE (P ) ⊆ SE (Q). Two programs are equivalent if they are strongly

equivalent, but the other direction does not hold in general (cf. Example 5). Note

that Y is an answer set of P if and only if (Y ,Y ) ∈ SE (P ) and no (X ,Y ) ∈ SE (P )

with X � Y exists. We also have (Y ,Y ) ∈ SE (P ) if and only if Y ∈ mod (P ). A set

of SE interpretations S is well-defined if for every interpretation X ,Y with X ⊆ Y ,

if (X ,Y ) ∈ S , then (Y ,Y ) ∈ S . Every GLP has a well-defined set of SE models.

Moreover, from every well-defined set S of SE models, one can build a GLP P such

that SE (P ) = S (Eiter et al. 2005; Cabalar and Ferraris 2007).

We close this section by introducing two further notations. For every GLP P , α2
P is

any propositional formula satisfying mod (α2
P ) = mod (P ), and α1

P is any propositional

formula satisfying mod (α1
P ) = {X ∈ Ω | (X ,Y ) ∈ SE (P )}.

3.2 Logic program revision operators

We now consider belief revision in the context of LPs. Given two programs P ,Q the

goal is to define a program P �Q which is the revision of P by Q . Delgrande et al.

(2008, 2013b) proposed an adaptation of the KM postulates (cf. Definition 2) in the

context of logic programming; this can be done using the monotonic characterization

of LPs through their SE models. First, they considered the operation of expansion

of two LPs:
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Definition 7 (Expansion operator (Delgrande et al. 2008))

Given two programs P ,Q , the expansion of P by Q , denoted P + Q is any program

R such that SE (R) = SE (P ) ∩ SE (Q).

Though the expansion of LPs trivializes the result whenever the two input LPs

admit no common SE models, this operation is of interest in its own right. For

instance, it can be observed that the intersection of two well-defined sets of SE

interpretations leads to a well-defined set of SE interpretations, and thus the

expansion of two GLPs is always defined as a GLP.

Example 6

Consider again the program P from Example 3, and recall that SE (P ) = {(p, p),

(∅, q), (q , q)}. Let Q be the GLP Q = {q ← �}, we have SE (Q) = {(q , q), (q , pq),

(pq , pq)}. Furthermore, the GLP R = { q ← �,
⊥ ← p } is such that SE (R) = {(q , q)} =

SE (P ) ∩ SE (Q). Therefore

P + Q =

{
p ←∼ q ,

⊥ ← p, q

}
+ {q ← �} ≡s

{
q ← �,
⊥ ← p

}
·

We refer the reader to Delgrande et al. (2013b), Section 3.1 for further examples

of the use of the expansion operator.

Expansion of programs corresponds to the model-theoretical definition of ex-

pansion expressed through the KM postulates R2, R5, and R6. Delgrande et al.

rephrased the full set of KM postulates (R1–R6) in the context of GLPs. Beforehand,

we define a LP revision operator as a simple function, that considers two GLPs (the

original one and the new one) and returns a revised GLP:

Definition 8 (LP revision operator, equivalence between LP revision operators)

A LP revision operator � is a mapping associating two GLPs P ,Q with a new GLP,

denoted P � Q . Two LP revision operators �, �′ are said to be equivalent (denoted

� ≡ �′) when for all GLPs P ,Q , P � Q ≡s P �′ Q .

Definition 9 (GLP revision operator (Delgrande et al. 2008))

A GLP revision operator � is an LP revision operator that satisfies the following

postulates, for all GLPs P ,P1,P2,Q ,Q1,Q2,R:

(RA1) P � Q ⊆s Q .

(RA2) If P + Q is consistent, then P � Q ≡s P + Q .

(RA3) If Q is consistent, then P � Q is consistent.

(RA4) If P1 ≡s P2 and Q1 ≡s Q2, then P1 � Q1 ≡s P2 � Q2.

(RA5) (P � Q) + R ⊆s P � (Q + R).

(RA6) If (P � Q) + R is consistent, then P � (Q + R) ⊆s (P � Q) + R.

As to the case of (propositional) KM revision operators, an LP revision operator

� is a GLP revision operator if and only if any LP revision operator equivalent

to � is also a GLP revision operator. This is why in the rest of the paper, as

we identify a propositional revision operator modulo equivalence, we also identify

an LP revision operator modulo equivalence. This allows us to define a revised

https://doi.org/10.1017/S1471068415000101 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000101


Characterization of logic program revision 121

program in a modelwise fashion, i.e., as its set of SE models, and given two LP

revision operators �, �′, the notations � ≡ �′ and � = �′ are confounded with no

harm.

Delgrande et al. (2008) proposed a revision operator inspired from Satoh’s

propositional revision operator (Satoh 1988). This operator, based on the set

containment of SE interpretations, satisfies postulates (RA1–RA5). Though it seems

to have a good behavior on some instances, this operator does not satisfy (RA6),

so that it does not fully respect the principle of minimality of change (see Katsuno

and Mendelzon (1989), Section 3.1 for details on this postulate). However, the whole

set of postulates is consistent, as they later introduce the so-called cardinality-

based revision operator (Delgrande et al. 2013b) that reduces to the Dalal revision

scheme over propositional models and that satisfies all the postulates (RA1–RA6).

The following definition is a concise, equivalent reformulation of the original one

introduced in Delgrande et al. (2013b), Definition 3.10:

Definition 10 (Cardinality-based revision operator)

Given a GLP P and an interpretation Y , let formY be any propositional formula

satisfying mod (formY ) = {Y }, let α(P ,Y ) be any propositional formula satisfying

mod (α(P ,Y )) = {X ∈ Ω | (X ,Y ′) ∈ SE (P ),Y ′ |= formY ◦Dal α
2
P}, and let αY be any

propositional formula satisfying mod (αY ) = {X ∈ Ω | X ⊆ Y }. The cardinality-

based revision operator, denoted �c , is defined for all GLPs P ,Q by any program

P �c Q satisfying

SE (P �c Q) = {(X ,Y ) ∈ SE (Q) | Y |= α2
P ◦Dal α

2
Q

and if X � Y then X |= α(P ,Y ) ◦Dal αY }}·

Theorem 2 (Delgrande et al. 2013b)

�c is a GLP revision operator.

In addition, we introduce below a simple, syntactically defined LP revision

operator which also satisfies the whole set of postulates (RA1–RA6):

Definition 11 (Drastic LP revision operator)

The drastic LP revision operator �D is defined for all GLPs P ,Q as

P �D Q =

{
P + Q if P + Q is consistent,

Q otherwise.

Proposition 2

�D is a GLP revision operator.

Note that the drastic LP revision operator is the counterpart of the propositional

drastic revision operator (cf. Definition 5) for LPs: the old program is thrown away if

the new program is inconsistent with it. The cardinality-based revision operator has

a more parsimonious behavior. However, Theorem 2 and Proposition 2 show that

these operators are both fully satisfactory in terms of revision principles; this raises

the problem on how to discard some rational operators from others. Moreover, it is
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not clear whether there even exist other GLP revision operators than the cardinality-

based and the drastic LP revision operators. In the next section, we fill the gap and

we give a constructive, full characterization of the class of GLP revision operators,

that provides us a clear and complete picture of it.

4 Characterization of GLP revision operators

4.1 Characterization result

We now provide the main result of our paper, i.e., a characterization theorem for

GLP revision operators. That is, we show that each GLP revision operator (i.e., each

LP revision operator satisfying the postulates (RA1–RA6)) can be characterized in

terms of preorders over the set of all classical interpretations, with some further

conditions specific to SE interpretations.

Definition 12 (LP faithful assignment)

An LP faithful assignment is a mapping which associates with every GLP P a total

preorder �P over interpretations such that for all GLPs P ,Q and all interpretations

Y ,Y ′, the following conditions hold:

(1) If Y |= P and Y ′ |= P , then Y 
P Y ′.

(2) If Y |= P and Y ′ �|= P , then Y <P Y ′.

(3) If mod (P ) = mod (Q), then �P=�Q .

Please note the similarities between an LP faithful assignment and a faithful

assignment (cf. Definition 3). That is as follows:

Remark 1

Let Φ1 be an assignment that associates with every GLP P a total preorder �P over

interpretations, and Φ2 be and assignment that associates with every formula φ a

total preorder �φ over interpretations. If for every GLP P , we have Φ1(P ) = Φ2(α
2
P ),

then Φ1 is an LP faithful assignment if and only if Φ2 is a faithful assignment.

Definition 13 (Well-defined assignment)

A well-defined assignment is a mapping which associates with every GLP P and

every interpretation Y a set of interpretations, denoted by P (Y ), such that for all

GLPs P ,Q and all interpretations X ,Y , the following conditions hold:

(a) Y ∈ P (Y ).

(b) If X ∈ P (Y ), then X ⊆ Y .

(c) If (X ,Y ) ∈ SE (P ), then X ∈ P (Y ).

(d) If (X ,Y ) /∈ SE (P ) and Y |= P , then X /∈ P (Y ).

(e) If P ≡s Q , then P (Y ) = Q(Y ).

Definition 14 (GLP parted assignment)

A GLP parted assignment is a pair (Φ,Ψ), where Φ is an LP faithful assignment

and Ψ is a well-defined assignment.
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Fig. 2. The total preorder �P over SE interpretations, and the sets P (Y ) enclosed in boxes

for all Y ∈ Ω, associated with some GLP parted assignment.

We are ready to bring to light our main result:

Proposition 3

An LP operator � is a GLP revision operator if and only if there exists a GLP

parted assignment (Φ,Ψ), where Φ associates with every GLP P a total preorder �P ,

Ψ associates with every GLP P and every interpretation Y a set of interpretations

P (Y ), and such that for all GLPs P ,Q ,

SE (P � Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod (Q),�P ),X ∈ P (Y )}·

Note that there is no relationship between the LP faithful assignment Φ and the

well-defined assignment Ψ forming a GLP parted assignment, that is, each one of

these two mappings can be defined in a completely independent way.

Example 7

Let us consider again the GLP P = { p ←∼ q ,
⊥ ← p, q } from Example 3, and recall that

SE (P ) = {(p, p), (∅, q), (q , q)}. Note that the (classical) models of P (i.e., mod (P ) =

{p, q}) correspond to the models of the propositional formula φ given in Example

1 (i.e., mod (φ) = {p, q}). Hence, due to Remark 1 the total preorder �P=�φ, i.e.,

defined as p 
P q <P pq <P ∅ satisfies the conditions of an LP faithful assignment

(denoted Φ). Furthermore, let us consider the mapping Ψ associating with P and

every interpretation Y the following sets of interpretations: P (∅) = {∅}, P (p) = {p},
P (q) = {∅, q}, and P (pq) = {p, pq}. One can also check that Ψ satisfies the conditions

(a–e) from Definition 13, so Ψ is a well-defined assignment. Hence, (Φ,Ψ) is a GLP

parted assignment. Figure 2 gives a graphical representation of the total preorder

�P and the sets P (Y ) for each Y ∈ Ω. In the figure, all interpretations are ordered

w.r.t. �P (similarly to Figure 1), and for each such interpretation Y , the set of circle

interpretations next to Y corresponds to the set P (Y ).

Now, let us denote � the GLP revision operator corresponding to this GLP

parted assignment, and let Q1 and Q2 be two GLPs defined as Q1 = {q ←∼ p} and

Q2 = { ⊥ ← p,∼ q , ⊥ ← q ,∼ p,
p;∼ p ← �, q;∼ q ← �· }· We get that:

• SE (Q1) = {(∅, p), (p, p), (q , q), (∅, pq), (p, pq), (q , pq), (pq , pq)}; then according to

Proposition 3, we get that SE (P �Q1) = {(p, p), (q , q)}. Furthermore, the GLP
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(b)

Fig. 3. The SE models of Q1 and Q2 highlighted within �P and sets P (Y ) for each

interpretation Y . (a) The SE models of Q1 are highlighted. We have SE (Q1) = {(∅, p), (p, p),

(q , q), (∅, pq), (p, pq), (q , pq), (pq , pq)} and SE (P � Q1) = {(p, p), (q , q)}. (b) The SE models of

Q2 are highlighted. We have SE (Q2) = {(∅, ∅), (pq , pq)} and SE (P � Q2) = {(pq , pq)}.

R1 = {
p ←∼ q ,
q ←∼ p,
⊥ ← p, q

} is such that SE (R1) = {(p, p), (q , q)} = SE (P �Q1). Therefore

P � Q1 =

{
p ←∼ q ,

⊥ ← p, q

}
� {q ←∼ p} ≡s

⎧⎨
⎩

p ←∼ q ,

q ←∼ p,

⊥ ← p, q

⎫⎬
⎭ ·

• SE (Q2) = {(∅, ∅), (pq , pq)}; then according to Proposition 3, we get that SE (P �

Q2) = {(pq , pq)}. Furthermore, the GLP R2 = { p ← �,
q ← � } is such that SE (R2) =

{(pq , pq)} = SE (P � Q2). Therefore

P � Q2 =

{
p ←∼ q ,

⊥ ← p, q

}
�

{
⊥ ← p,∼ q , ⊥ ← q ,∼ p,

p;∼ p ← �, q;∼ q ← �·

}
≡s

{
p ← �,
q ← �

}
·

The SE models of Q1 and Q2 are respectively illustrated in Figures 3(a) and (b).

Due to the similarities between an LP faithful assignment (cf. Definition 12) and

a faithful assignment (cf. Definition 3), an interesting consequence from Theorem 1

and Proposition 3 is that every GLP revision operator can be viewed as an extension

of a (propositional) KM revision operator:

Definition 15 (Propositional-based LP revision operator)

Let ◦ be a propositional revision operator and f be a mapping from Ω to 2Ω such

that for every interpretation Y , Y ∈ f (Y ) and if X ∈ f (Y ), then X ⊆ Y . The

propositional-based LP revision operator w.r.t. ◦ and f , denoted �◦,f , is defined for

all GLPs P ,Q by

SE (P �◦,f Q) =

{
SE (P + Q) if P + Q is consistent,

{(X ,Y ) ∈ SE (Q) | Y |= α2
P ◦ α2

Q ,X ∈ f (Y )} otherwise.

�◦,f is said to be a propositional-based GLP revision operator if ◦ is a KM

revision operator (i.e., satisfying postulates (R1–R6)).
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Fig. 4. The GLP parted assignments corresponding to the cardinality-based and drastic

GLP revision operators, focusing on the GLP P . (a) The GLP parted assignment (for P )

corresponding to the cardinality-based revision operator �c . (b) The GLP parted assignment

(for P ) corresponding to the drastic GLP revision operator �D .

Proposition 4

An LP revision operator is a GLP revision operator if and only if it is a propositional-

based GLP revision operator.

In the previous section, we noticed that there is a one-to-one correspondence

between the KM revision operators (modulo equivalence) and the set of all faithful

assignments (cf. Proposition 1). Interestingly, we get a similar result in the case of

GLP revision operators with respect to propositional-based GLP revision operators

(cf. Corollary 2 below). Let us introduce an intermediate result:

Proposition 5

For all propositional-based GLP revision operators �◦1 ,f1 , �◦2 ,f2 , we have �◦1 ,f1 = �◦2 ,f2

if and only if ◦1 = ◦2 and f1 = f2.

This proposition tells us that if ◦1 �= ◦2 or f1 �= f2, then for some pair of GLPs P ,Q

we will get P �◦1 ,f1 Q �≡ P �◦2 ,f2 Q , that is to say, different choices of parameters for

a propositional-based LP revision operator lead to different propositional-based LP

revision operators. As a direct consequence of Propositions 4 and 5, we get that:

Corollary 2

There is a one-to-one correspondence between the set of GLP revision operators

and the set of propositional-based GLP revision operators.

Note that the cardinality-based revision operator �c (cf. Definition 10) corresponds

to the propositional-based GLP revision operator �◦Dal ,f1 , where ◦Dal is the Dalal

revision operator (cf. Definition 6) and f1 is defined for every interpretation Y as

f1(Y ) = {X ∈ Ω | X ⊆ Y and if X � Y , then X |= α(P ,Y ) ◦Dal αY }, where αY

is any propositional formula such that mod (αY ) = {X ∈ Ω | X ⊆ Y }, α(P ,Y ) is

any propositional formula satisfying mod (α(P ,Y )) = {X ∈ Ω | (X ,Y ′) ∈ SE (P ),Y ′ |=
formY ◦Dal α

2
P}, and formY is any propositional formula satisfying mod (formY ) = {Y }.

In addition, the drastic GLP revision operator (cf. Definition 11) corresponds to the

propositional-based GLP revision operator �◦D ,f2 , where ◦D is the drastic revision

operator (cf. Definition 5) and f2 is defined for every interpretation Y as f2(Y ) = 2Y .

Figures 4(a) and (b) provide the graphical representation of these two operators in

terms of parted assignments similarly to Figure 2, focusing on the GLP P from

Example 3.

Remark that in the case where P and Q have no common SE models, then

a (propositional-based) GLP revision operator �◦,f “rejects” as candidates for the
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SE models of the revised program P �◦,f Q those SE interpretations whose second

component is not a classical model of α2
P ◦ α2

Q ; that is to say, as an upstream

selection step the potential resulting SE models are chosen with respect to their

second component by the underlying propositional revision operator ◦. Then, one

can see from Definition 15 that the function f is used as a second filtering step that

is made with respect to the first component of those preselected SE interpretations,

and that this final selection becomes independent of the underlying input program

P . Then it becomes questionable whether the postulates (RA1–RA6) sufficiently

describe the rational behavior of LP revision operators. Indeed, we will show in

the next section that this “freedom” on the definition of the function f raises some

issues for some specific subclasses of fully rational LP revision operators.

4.2 Comparison with other existing works

As we already briefly mentioned in the introduction, Delgrande et al. (2013a) also

recently proposed a constructive characterization of belief revision operators for

LPs that satisfy the whole set of postulates (RA1–RA6). They considered various

forms of LPs, i.e., generalized, disjunctive, normal, positive, and Horn, so we shall

now compare our characterization with the one given in Delgrande et al. (2013a)

for the case of GLPs:

Definition 16 (GLP compliant faithful assignment (Delgrande et al. 2013a))

A GLP compliant faithful assignment is a mapping which associates every GLP P

with a total preorder �∗P over SE interpretations such that for all GLPs P ,Q , and

all SE interpretations (X ,Y ), (X ′,Y ′), the following conditions hold:

(1) If (X ,Y ) ∈ SE (P ) and (X ′,Y ′) ∈ SE (P ), then (X ,Y ) 
∗P (X ′,Y ′).

(2) If (X ,Y ) ∈ SE (P ) and (X ′,Y ′) �∈ SE (P ), then (X ,Y ) <∗P (X ′,Y ′).

(3) If P ≡s Q , then �P=�Q .

(4) (Y ,Y ) �∗P (X ,Y ).

The following theorem is expressed as a combination of Theorems 4 and 5 from

Delgrande et al. (2013a) applied to GLPs:

Theorem 3 (Delgrande et al. 2013a)

An LP revision operator � is a GLP revision operator (i.e., it satisfies postulates

(RA1 - RA6)) if and only if there exists a GLP compliant faithful assignment

associating every GLP P with a total preorder �∗P such that for all GLPs P ,Q ,

SE (P � Q) = min(SE (Q),�∗P ).2

Since both our GLP parted assignments and Delgrande et al.’s GLP compli-

ant faithful assignments characterize the class of GLP revision operators, there

must exist a relationship between the two structures. We denote by GLPpart the

2 In Delgrande et al. (2013a), an additional postulate is considered in the characterization theorems,
namely (Acyc). However, it is harmless to omit this postulate here since (Acyc) is a logical consequence
of the postulates (RA1 - RA6) in the case of generalized logic programs (cf. (Delgrande et al. 2013a),
Theorem 2).
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set of all GLP parted assignments and GLPfaith the set of all GLP compliant

faithful assignments. We now formally establish a correspondence between the two

sets.

Definition 17

Let σpart→faith be a binary relation on GLPpart×GLPfaith defined as follows. For every

(Φ,Ψ) ∈ GLPpart (where Φ associates every GLP P with a total preorder �P , and

Ψ associates every GLP P and every interpretation Y with a set of interpretations

P (Y )), and for every Γ ∈ GLPfaith (where Γ associates every GLP P with a total

preorder �∗P ), we have ((Φ,Ψ),Γ) ∈ σpart→faith if and only if for every GLP P , for

all interpretations X ,Y ,Y ′, X ⊆ Y , the following conditions are satisfied:

(i) (Y ,Y ) �∗P (Y ′,Y ′) if and only if Y �P Y ′, and

(ii) (X ,Y ) �∗P (Y ,Y ) if and only if X ∈ P (Y ).

We show now that a pair of assignments from GLPpart × GLPfaith satisfies the

relation σpart→faith if and only if represent both assignments represent the same GLP

revision operator:

Proposition 6

For every (Φ,Ψ) ∈ GLPpart and every Γ ∈ GLPfaith , ((Φ,Ψ),Γ) ∈ σpart→faith if

and only if for all GLPs P ,Q , min(SE (Q),�∗P ) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈
min(mod (Q), �P ),X ∈ P (Y )}.

Whereas our GLP parted assignments are formed of two structures which are

independent from each other (an LP faithful assignment used to order the second

components of SE interpretations, and a well-defined assignment selecting the

first component of SE interpretations), Delgrande et al.’s GLP compliant faithful

assignments consist of a single structure, i.e., a set of total preoders over SE

interpretations. Though it may look simpler to represent a GLP revision operator

through a single assignment, it turns out that the induced characterization (cf.

Theorem 3) is not a one-to-one correspondence; more precisely, σpart→faith is not a

function and as a consequence, a given GLP revision operator can be represented

by different GLP compliant faithful assignments. Roughly speaking, this is due

to the fact that totality required by preorders �∗P is actually not needed. Many

comparisons between pairs of SE interpretations within a total preorder �∗P are

irrelevant to the GLP revision operator they correspond to. This is illustrated in the

following example:

Example 8

Consider again the GLP P from Example 3 and the GLP parted assignment (Φ,Ψ)

focusing on P depicted in Figure 2. Then Figure 5 depicts three total preorders

�1
P , �2

P , and �3
P induced from three different GLP compliant faithful assignments

Γ1, Γ2, and Γ3 which both correspond to the GLP parted assignment (Φ,Ψ), i.e.,

((Φ,Ψ),Γ1), ((Φ,Ψ),Γ2), ((Φ,Ψ),Γ3) ∈ σpart→faith . It can be easily checked that for any

GLP Q , min(SE (Q),�1
P ) = min(SE (Q),�2

P ) = min(SE (Q),�3
P ). The SE interpreta-

tions enclosed in dashed boxes correspond to those (X ,Y ) ∈ {(∅, p), (∅, pq), (q , pq)}
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Fig. 5. Three total preorders corresponding to three different GLP compliant faithful

assignments which correspond to the same GLP parted assignment. (a) The total preorder

�1
P associated with Γ1. (b) The total preorder �2

P associated with Γ2. (c) The total preorder

�3
P as-sociated with Γ3.

whose comparison with other SE interpretations is irrelevant to the represented

GLP revision operator, as far as one has (Y ,Y ) <i
P (X ,Y ) for i ∈ {1, 2, 3}.

In fact, one can see that as soon as the language contains at least two propositional

variables, e.g., {p, q} ⊆ A with p �= q , then the GLP P satisfying (p, p), (q , q)

∈ SE (P ), and (∅, p), (∅, q) /∈ SE (P ) can be associated through a GLP compliant

faithful assignment with at least three different total preorders; an arbitrary relative

ordering between the SE interpretations (∅, p) and (∅, q) will have no effect on the

corresponding GLP revision operator.

Removing the property of totality from preorders involved in a GLP compliant

faithful could be an alternative towards establishing another one-to-one corre-

spondence with GLP revision operators. However, our GLP parted assignments

make clear the different roles played by the first and second components of SE

interpretations in terms of GLP revision. On the one hand the second components

are totally ordered, on the other hand the first components are arbitrarily selected

as possible candidates for SE interpretations. This allows us to make precise the link

with propositional faithful assignments and propositional revision operators, which

would not be clear with a slight adjustment of GLP compliant faithful assignments.

The next section shows how our propositional-based GLP revision operator facilitate

the comprehension and analysis of GLP revision.

5 GLP revision operators embedded into Boolean lattices

For every propositional revision operator ◦, let GLP (◦) denote the set of all

propositional-based LP revision operators w.r.t. ◦. One can remark that from

Proposition 5, the set {GLP (◦) | ◦ is a KM revision operator} forms a partition

of the class of all GLP revision operators. Let us now take a closer look to the

set of GLP revision operators GLP (◦) when we are given any specific KM revision

operator ◦:
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Definition 18

Let ◦ be a propositional revision operator. We define the binary relation �◦ over

GLP (◦) as follows: for all propositional-based LP revision operators �◦,f1 , �◦,f2 ,

�◦,f1 �◦ �◦,f2 if and only for every interpretation Y , we have f2(Y ) ⊆ f1(Y ).

One can see that for each revision operator ◦, the set (GLP (◦),�◦) forms a

structure that is isomorphic to a Boolean lattice3, and the careful reader will notice

that (GLP (◦),�◦) precisely corresponds to the product of the Boolean lattices

{(�Y ,⊆) | Y ∈ Ω}, where �Y = {Z ∪ {Y } | Z ∈ 22Y \Y }. The following result shows

that this lattice structure can be used to analyse the relative semantic behavior of

GLP revision operators from (GLP (◦),�◦).

Proposition 7

Let ◦ be a KM revision operator. It holds that for all GLP revision operators

�1, �2 ∈ GLP (◦), �1 �◦ �2 if and only if for all GLPs P ,Q , we have AS (P �1 Q) ⊆
AS (P �2 Q).

This result paves the way for the choice of a specific GLP revision operator

depending on the desired “amount of information” provided by the revised GLP

in terms of number of its answer sets. Precisely, any GLP revision operator �◦,f

can be specified from an answer set point of view by the following roadmap. Since

in the case where P + Q is consistent, we always have P �◦,f Q = P + Q , the

intuition underlying this procedure only applies when the programs considered for

the revision have no common SE model. First, one chooses a KM revision operator

◦ whose role is to filter the undesired answer sets of the resulting revised program:

only the models Y of the formula resulting from the revision of P by Q in the

propositional sense should be selected as “potential answer set candidates”. Then,

the function f plays a role in filtering those preselected candidates Y , so that f can

be defined according to the following intuition: the more interpretations X � Y are

included in f (Y ), the less likely the interpretation Y will actually be an answer set of

the resulting revised program. More precisely, the presence of a given interpretation

X � Y in f (Y ) is enough to discard Y as being an answer set of the resulting

revised program when (X ,Y ) is an SE model of Q .

This brings in light that, depending on the “position” of the GLP revision operator

�◦,f in the lattice (GLP (◦),�◦), when revising P by Q one may expect divergent

results for AS (P �◦,f Q). We illustrate this claim by considering two specific classes of

GLP revision operators that correspond respectively to the suprema and infima of

lattices (GLP (◦),�◦) for all KM revision operators ◦. The first “extreme” operators

are defined as follows:

Definition 19 (Skeptical GLP revision operators)

The skeptical GLP revision operators, denoted �◦S are the propositional-based GLP

revision operators �◦,f where f is defined for every interpretation Y by f (Y ) = 2Y .

3 A Boolean lattice is a partially ordered set (E ,�E ) which is isomorphic to the set of subsets of some
set F together with the usual set-inclusion operation, i.e., (2F ,⊆).
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Note that skeptical GLP revision operators include the drastic GLP revision

operator �D (cf. Definition 11), i.e., �D = �◦DS where ◦D is the (propositional)

drastic revision operator. For each propositional revision operator ◦, we clearly

have �◦S = inf (GLP (◦),�◦). We provide now an axiomatic characterization of the

skeptical GLP revision operators in order to get a clearer view of their general

behavior:

Proposition 8

The skeptical GLP revision operators are the only GLP revision operators � such

that for all GLPs P ,Q , whenever P +Q is inconsistent, we have AS (P �Q) ⊆ AS (Q).

Remark that the drastic GLP revision operator (cf. Definition 11), i.e., the skeptical

GLP revision operator based on the propositional drastic revision operator �◦DS , is

a specific case from the result given in Proposition 8 where AS (P �◦DS Q) = AS (Q)

whenever P + Q is inconsistent.

We now introduce another class of GLP revision operators which correspond to

the other “extreme cases” w.r.t lattices (GLP (◦),�◦):

Definition 20 (Brave GLP revision operators)

The brave GLP revision operators, denoted �◦B are the propositional-based GLP

revision operators �◦,f where f is defined for every interpretation Y by f (Y ) = {Y }.

We get now that for each propositional revision operator ◦, �◦B = sup(GLP (◦),
�◦). The brave operators are axiomatically characterized as follows:

Proposition 9

The brave GLP revision operators are the only GLP revision operators �◦,f such

that for all GLPs P ,Q , whenever P + Q is inconsistent, we have AS (P �◦,f Q) =

mod (α2
P ◦ α2

Q ).

Let us remark as a specific case that the brave GLP revision operator based on the

propositional drastic revision operator, i.e., the operator �◦DB , satisfies AS (P �◦DB Q) =

mod (Q) whenever P + Q is inconsistent.

The following representative example illustrates how much the behavior of

skeptical and brave GLP revision operators diverge:

Example 9

Consider ◦D , i.e., the propositional drastic revision operator. Let P = {
p ← �,
q ← �,
⊥ ← r

} and

Q = {⊥ ← p, q ,∼ r}. We have AS (P ) = {p, q}, AS (Q) = {∅}, and{
AS (P �◦DS Q) = {∅},
AS (P �◦DB Q) = {∅, p, q , r , pr , qr , pqr}·

Though they are rational LP revision operators w.r.t. the postulates (RA1–RA6),

skeptical and brave operators have a rather trivial, thus undesirable behavior.

Consider first the case of skeptical operators and assume that the proposition p is
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believed to be false, then learned to be true. That is, {⊥ ← p} ⊆ P and Q = {p ← �}.
Then one obtains that AS (P �◦S Q) ⊆ AS (Q), that is, AS (P �◦S Q) ⊆ {p}, i.e., for any

such program P , on learning that p is true the revision states that only p may be true,

which holds independently from the choice of the KM revision operator ◦. On the

other hand, brave operators only focus on classical models of LPs P ,Q to compute

P �◦B Q (whenever P + Q is inconsistent), thus they do not take into consideration

the inherent, non-monotonic behavior of LPs. As a consequence, programs P �◦B Q

will often admit many answer sets that are actually irrelevant to the input programs

P and Q .

Stated otherwise, skeptical and brave GLP revision operators are dual sides of a

“drastic” behavior for the revision. These operators are representative examples that

provide some “bounds” of the complete picture of GLP revision operators GLP (◦),
for each KM revision operator ◦. Discarding such drastic behaviors may call for

additional postulates in order to capture more parsimonious revision procedures

in logic programming, as for instance the cardinality-based revision operator (cf.

Definition 10) which is neither brave nor skeptical. Then it seems necessary to refine

the existing properties that every rational revision operator should satisfy so that

the answer sets of the revised program P �◦,f Q fall “between” these two extremes

(i.e., between AS (Q) and mod (P ◦ Q) in the sense of set inclusion).

Another benefit from our characterization result is that one can easily derive

computational results by exploiting existing ones from propositional revision. We

assume that the reader is familiar with the basic concepts of computational

complexity, in particular with the classes P, NP, and coNP (see Papadimitriou (1994)

for more details). Higher complexity classes are defined using oracles. In particular,

PC corresponds to the class of decision problems that are solved in polynomial time

by deterministic Turing machines using an oracle for C in polynomial time. For

instance, Θp
2 = PNP[O(log n)] is the class of problems that can be solved in polynomial

time by a deterministic Turing machine using a number of calls to an NP oracle

bounded by a logarithmic function of the size of the input representation of the

problem.

We focus here on the the model-checking problem (Liberatore and Schaerf 2001)

for LP revision operators. In the propositional case, the model-checking problem

consists in deciding whether a (propositional) interpretation is supported by a revised

formula:

Problem 1 (MC(◦))
• Input: A propositional revision operator ◦, two formulae φ,ψ, and an inter-

pretation I ,

• Question: Does I |= φ ◦ ψ hold?

The model-checking problem for the drastic revision operator (cf. Definition 5)

is coNP-complete, while it is Θp
2-complete for the Dalal revision operator (cf.

Definition 6):
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Proposition 10

MC(◦D ) is coNP-complete.

Theorem 4 (Liberatore and Schaerf 2001 )

MC(◦Dal ) is Θp
2-complete.

Similarly, one can consider the model-checking problem for LP revision operators

which consists in deciding whether an SE interpretation is an SE model of a revised

program:

Problem 2 (MCSE (�))

• Input: An LP revision operator �, two GLPs P ,Q and an SE interpretation

(X ,Y ),

• Question: Does (X ,Y ) belong to SE (P � Q)?

Remark that given an SE interpretation (X ,Y ) and a LP P , checking whether

(X ,Y ) is an SE model of P is in P: computing the program PY , i.e., the reduct of P

relative to Y , is performed in polynomial time; then it is enough to check whether

Y |= P and X |= PY which is performed in polynomial time. Interestingly, when

f is computed in polynomial time the model-checking problem for propositional-

based LP revision operators �◦,f is not harder than the counterpart problem for the

propositional revision operator ◦. Obviously enough, this applies for both skeptical

and brave GLP revision operators, so Proposition 10 and Theorem 4 provide us

with the following complexity results:

Corollary 3

• MCSE (�◦DS ) and MCSE (�◦DB ) are coNP-complete.

• MCSE (�◦Dal

S ) and MCSE (�◦Dal

B ) are Θp
2-complete.

6 The case of disjunctive and normal logic programs

In this section, we take a look at more restrictive forms of programs, i.e., the DLPs

and the NLPs. A DLP is a GLP where rules are of the form

a1; . . . ; ak ← b1, . . . , bl ,∼ c1, . . . ,∼ cm ,

where k , l ,m � 0. A NLP is a DLP where k = 1.
Let us recall that every GLP has a well-defined set S of SE models, which requires

that (Y ,Y ) ∈ S for every (X ,Y ) ∈ S , and that conversely, for every well-defined

set S of SE interpretations one can build a GLP P such that SE (P ) = S . Since

NLPs and DLPs are syntactically more restrictive than GLPs, these programs are

characterized by sets of SE models satisfying stronger conditions. A set of SE

interpretations S is said to be:

• complete if it is well-defined and for all interpretations X ,Y ,Z , if Y ⊆ Z and

(X ,Y ), (Z ,Z ) ∈ S , then also (X ,Z ) ∈ S ;

• closed under here-intersection if it is complete and for all interpretations

X ,Y ,Z , if (X ,Z ), (Y ,Z ) ∈ S , then also (X ∩ Y ,Z ) ∈ S .
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Each DLP (respectively, NLP) has a complete (respectively, closed under here-

intersection) set of SE models. Conversely, if a set of SE interpretations S is

complete (respectively, closed under here-intersection) then one can build a DLP

(respectively, NLP) P such that SE (P ) = S (Eiter et al. 2005; Cabalar and Ferraris

2007). For instance, one can easily check that:

• the LP P = { p ←∼ q ,
⊥ ← p, q } from Example 3 is a NLP and SE (P ) is well-defined,

complete, and closed under here-intersection;

• the LP P2 = { p ←∼ q ,
p; q ← � } from Example 5 is a DLP and SE (P2) is well-defined,

and complete, but not closed under here-intersection;

• the LP Q2 = { ⊥ ← p,∼ q , ⊥ ← q ,∼ p,
p;∼ p ← �, q;∼ q ← �· } from Example 7 is a GLP and SE (Q) is

well-defined but not complete.

When revising a LP by another one, one expects the resulting revised program to

be expressed in the same language as the input programs.

Definition 21 (DLP/NLP revision operator)

A DLP revision operator (respectively, a NLP revision operator) � is an LP revision

operator associating two DLPs (respectively, two NLPs) P ,Q with a new DLP

(respectively, a new NLP) P � Q , and which satisfies postulates (RA1–RA6).

We first remark that both sets of DLP revision operators and NLP revision

operators are not empty. Indeed, one can observe that the intersection of two

complete sets of SE interpretations is also complete, thus the expansion of two

DLPs leads to a DLP. This also applies for NLPs. As a direct consequence, the

drastic LP revision operator (cf. Definition 11) is both a DLP revision operator and

a NLP revision operator. In fact, we have the more general result:

Proposition 11

The skeptical GLP revision operators are both DLP revision operators and NLP

revision operators.

However, the above result does not apply for all GLP revision operators. That

is to say, there exist some GLP revision operators which associate two NLPs with

a GLP which is not a DLP. Hence, our sound and complete construction of GLP

revision operators does not hold anymore for DLP and NLP revision operators.

For instance, brave GLP revision operators are neither DLP revision operators nor

NLP revision operators, as shown in the following example:

Example 10

Let P = {
⊥ ←∼ p,∼ q ,
⊥ ← q ,∼ p,
⊥ ← p, q

} and Q = {q ← �} be two NLPs. We have that SE (P ) =

{(∅, p), (p, p)} and SE (Q) = {(q , q), (q , pq), (pq , pq)}. Consider the brave GLP revision

operator �◦DB based on the propositional drastic revision operator. Then one can verify

that SE (P �◦DB Q) = {(q , q), (pq , pq)} is not a complete set of SE interpretations, thus

P �◦DB Q cannot be represented as a DLP.

As a consequence, our characterization result from Proposition 3 does not

hold anymore for DLP/NLP revision operators. Nevertheless, we provide below a
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representation of both DLP and NLP revision operators in terms of two structures

where the first one is an LP faithful assignment adapted to DLPs/NLPs and the

second one is a well-defined assignment “strengthened” by some further conditions.

Definition 22 (DLP/NLP faithful assignment)

A DLP faithful assignment (respectively, a NLP faithful assignment) is a mapping

which associates every DLP (respectively, every NLP) with a total preorder over

interpretations such that conditions (1–3) of an LP faithful assignment are satisfied.

Definition 23 (Complete assignment)

Let Φ be a DLP faithful assignment which associates every DLP P with a total

preorder �P . A Φ-based complete assignment is a mapping which associates with

every DLP P and every interpretation Y a set of interpretations denoted by PΦ(Y ),

such that conditions (a–e) of a well-defined assignment are satisfied as well as the

following further condition, for all interpretations X ,Y ,Z :

(f) If X ∈ PΦ(Y ), Y 
P Z , and Y ⊆ Z , then X ∈ PΦ(Z ).

A pair (Φ,ΨΦ), where Φ is a DLP faithful assignment and ΨΦ is a Φ-based complete

assignment, is called a DLP parted assignment.

Definition 24 (Normal assignment)

Let Φ be a NLP faithful assignment. A Φ-based normal assignment is a mapping

which associates with every NLP P and every interpretation Y a set of interpreta-

tions denoted by PΦ(Y ), such that conditions (a–f) of a complete assignment are

satisfied as well as the following further condition, for all interpretations X ,Y ,Z :

(g) If X ,Y ∈ PΦ(Z ), then X ∩ Y ∈ PΦ(Z ).

A pair (Φ,ΨΦ), where Φ is a NLP faithful assignment and ΨΦ is a Φ-based normal

assignment, is called a NLP parted assignment.

We are ready to provide our characterization results for DLP revision operators

and NLP revision operators:

Proposition 12

An LP operator � is a DLP (resp. NLP) revision operator if and only if there

exists a DLP (resp. NLP) parted assignment (Φ,ΨΦ), where Φ associates with every

DLP (resp. NLP) P a total preorder �P , ΨΦ is a Φ-based complete (resp. normal)

assignment which associates with every DLP (resp. NLP) P and every interpretation

Y a set of interpretations PΦ(Y ), and such that for all DLPs (resp. NLPs) P ,Q ,

SE (P � Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod (Q),�P ),X ∈ PΦ(Y )}·

As to the case of our characterization of GLP revision operators, Proposition 12

provides us with sound and complete constructions of DLP and NLP revision opera-

tors in terms of total preorders over propositional interpretations and some further

conditions specific to SE interpretations. Furthermore, because both constructions
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are similar to the one of GLP revision operators, without stating it formally one

can straightforwardly establish a one-to-one correspondence between DLP/NLP

revision operators and propositional-based LP revision operators (cf. Definition 15)

satisfying some further conditions on the function f very similar to conditions (f)

and (g). Indeed, one can see from Definition 23 and 24 that the two structures

involved in DLP/NLP parted assignments are not independent anymore, since by

condition (f) the Φ-based complete and normal assignments should both be aligned

with the corresponding faithful assignment. As a consequence, these structures are

more complex than those of GLP parted assignments and similar embeddings

of DLP/NLP revision operators into Boolean lattices are no more applicable. A

deeper investigation of the type of ruling structures for Φ-based complete and

normal assignments is out of the scope of this paper, but constitutes an interesting

direction to explore in a future work.

7 Conclusion

In this paper, we pursued some previous work on revision of LPs, where the adopted

approach is based on a monotonic characterization of LPs using SE interpretations.

We gave a particular attention to the revision of GLPs and characterized the class

of rational GLP revision operators in terms of total orderings among classical

interpretations with some further conditions specific to SE interpretations. The

constructive characterization we provided facilitates the comprehension of the

semantic properties of GLP revision operators by drawing a clear, complete picture

of them. Interestingly, we showed that a GLP revision operator can be viewed as an

extension of a rational propositional revision operator: each propositional revision

operator corresponds to a specific subclass of GLP revision operators, and a GLP

revision operator from a particular subclass can be specified independently of the

propositional revision operator under consideration. Moreover, we showed that each

one of these subclasses can be embedded into a Boolean lattice whose infimum and

supremum, the so-called skeptical and brave GLP revision operators, have some

relatively drastic behavior. In addition, we adjusted our representation structures

and provided sound and complete constructions for two more specific classes of

LPs, i.e., the disjunctive and NLPs.

Our results make easier the improvement of the current AGM framework in the

context of logic programming. Indeed, though the subclasses of skeptical and brave

revision operators are fully satisfactory w.r.t. the AGM revision principles, their

behavior is shown to be rather trivial. This may call for additional postulates which

would aim to capture more parsimonious, “balanced” classes of revision operators.

As to the case of update of LPs Slota and Leite (2014) argued that semantic rule

updates based on SE models seem to be inappropriate. Indeed they showed that

in presence of the irrelevance-of-syntax postulate (whose counterpart in the context

of revision is (RA4)), semantic rule update operators based on SE models violate

some reasonable properties for rule updates, i.e., dynamic support and fact update

(see Slota and Leite (2014) for more details). The property of dynamic support can

be expressed informally as follows: an rule update operator ⊕ satisfies dynamic
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support if every atom true in an answer set from any updated program P ⊕ Q

should be supported by a rule in P ∪ Q , i.e., it should have some “justification” in

either the original program or the new one. The property of fact update requires

some notion of atom inertia when updating a consistent set of facts (i.e., a set of

rules of the type p ← � where p is an atom) by a consistent set of facts. Both

of these properties require rule update operators to have a reasonable “syntactic”

behavior, away from the purely semantic approach represented by the adapted AGM

postulates. In Slota and Leite (2012) the same authors successfully reconciliate

semantic-based and syntax-based approaches to updating LPs: they considered

different characterizations of LPs in terms of RE models (standing for robust

equivalence models) that proved to be a more suitable semantic foundation for rule

updates than SE models. A straightforward direction of research is to investigate

whether these richer characterizations of LPs suit to revision operators.

Additionally, we will investigate the case of LP merging operators (merging can be

viewed as a multi-source generalization of belief revision, see for instance (Konieczny

and Pino Pérez 2002)). Indeed, it is not even known whether there exists a fully

rational merging operator, i.e., that satisfies the whole set of postulates proposed by

Delgrande et al. (2009, 2013b) for LP merging operators based on SE models.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068415000101.
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