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We suggest a sequential monitoring scheme to detect changes in the parameters
of a GARCH p,q) sequenceThe procedure is based on quasi-likelihood scores
and does not use model residudslike for linear regression modelhe squared
residuals of nonlinear time series models such as generalized autoregressive con-
ditional heteroskedasticity{GARCH) do not satisfy a functional central limit theo-

rem with a Wiener process as a ligsb its boundary crossing probabilities cannot

be usedOur procedure nevertheless has an asymptotically controlled iz
moreovefthe conditions on the boundary function are very simjtlean be cho-

sen as a constani/e establish the asymptotic properties of our monitoring scheme
under both the null of no change in parameters and the alternative of a change in
parameters and investigate its finite-sample behavior by means of a small simu-
lation study

1. INTRODUCTION

The assumption that the parameters remain stable over time plays a crucial role
in statistical modeling and inferendé the parameters have changed within the
observed sampjethen e.g., forecasts lose accuracy and the parameter esti-
mates no longer provide meaningful informati@ecause of the importance of
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parameter stabilitythe detection of possible changes in the data generating pro-
cess has become an active area of reseditére are hundreds of papers study-
ing various aspects of change-point detection in econometric setiivigdist
those most closely related to the present work later in this sedfmmsurveys
concerned with the general statistical methodology for change-point detection
we refer to Besseville and Nikifiroy1993, Brodsky and Darkhovsky1993
2000, and Csorgaand Horvath(1997).

The present paper is motivated by the work of C&tinchcombgand White
(1996, who pose the following probleniGiven a previously estimated model
the arrival of new data invites the questias yesterday’s model capable of
explaining today’s data?” These authors develop fluctuation and cumulative sum
(CUSUM) monitoring procedures for linear regression mod®lsr paper focuses
on generalized autoregressive conditional heteroskedas(tlB®RCH) mod-
els which are important in financial applicatiorisee e.g., Gouriéroux 1997
and as explained latediffer from linear models in ways that make a direct
application of the approach of Chu et 81996 not readily possible

Before outlining the central ideas of Chu et 61996 and contrasting our
approach with theitswe note that procedures for detecting parameter changes
in a GARCH specification may have a number of useful applicatibosexam-
ple, risk managers use GARCH for calculating portfolio risk measures such as
value at risk GARCH parameters are typically estimated over a rolling win-
dow of returns and change points in this window will introduce hig&&imi-
larly, option traders use GARCH to make up for the well-known biases in Black—
Scholes option priceA detection of parameter changes may lead to a more
cautious interpretation of the calculated option pricsishough our paper is
not concerned with such applied issue® do hope that it will make a contri-
bution to the important problem of monitoring for changes in GARCH models

As argued convincingly in Chu et.al1996, the sequential analysis of eco-
nomic and financial data is somewhat different from engineering applications
The sampling is costless under the no change null hypothesisno action is
required if the observed processes is “in contrak., there is no change in the
parameters of the data generating procBsgause it is impossible to eliminate
false alarm due to chancthe probability of stopping under the no change null
hypothesis should be less than a given level @ < 1. On the other handt is
desirable to stop with probability one if a change occiéth these goals in
mind, Chu et al (1996 propose to consider decisions functions of the form

W= > &, te[00), (1.1)

m+1=si<m+mt

wherem denotes the number of initial observations used to estimate the model
and thew; are model residuals that are estimated sequentilly idea of their
procedure is as followsdenoting byW(-) the standard Wiener processip-
pose it can be shown thasm — oo,

https://doi.org/10.1017/50266466604206041 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206041

1142 ISTVAN BERKES ET AL.

m +2Q™ — W(t) in D[0,00) (1.2)
and that a functiorg can be found such that

lim P(]S,| = ¥Ymg(n/m), for somen = m)

m—oo

= P(|W(t)| = g(t) forsomet=1), (1.3)

provided the sequend satisfies a functional central limit theorethcan then
be concluded fronil.2) and(1.3) that

lim P(]Q{™| = vmg(n/m), for somen=m)

= P(JW(t)| = g(t) forsomet=1). 1.4)

For several judicious choices @f the probability on the right-hand side of
(1.4) can be computed analyticallgnd consequently a monitoring scheme can
be developed such that asymptoticalgm — oo, the decision functiomQt(m)|
crosses the boundanymg(n/m) at some future date with a prescribed prob-
ability «, provided the parameters have not changed

The present paper is concerned with the detection of changes in GARGH
processes that are used to model volatilByatistics designed for detecting
changes in volatility are typically based on the squares of observations or the
squares of residual¥he squares of residuals from a GARQbiq) process do
not satisfy a functional limit theorem with the Wiener process in the limit because
of the presence of extra terms in their covariance strudtsee e.g., Boldin,
1998 Horvath Kokoszka and Teyssiér,e2001; Koul, 2002 Ch. 8; Berkes and
Horvath 2003 Kulperger and Yu2003. Thus the approach of Chu et 81996
cannot be readily appliedn this paperwe put forward a different approach
that does not use model residuals but relies more directly on the quasi-likelihood
function Suppose we have observed..., y,, for which we have postulated a
model withd parametersDenote byu a generic element of the parameter space
and by¢; (u) the conditional quasi-likelihood of giveny;_4,..., ys, so that the
quasi-likelihood function i (u) = Xi-i=mfi(u). For time series models
the ¢;(u) typically cannot be computed exactly because of the dependence on
the unobserved,, k = 0, and some approximationg(u) must be used in-
stead Denote by?i’(u) the d-dimensional row vector of partial derivatives with
respect to the model parameters and consider the matrix

Dm=— 2 ({(6,)7¢(8y), (1.5)

whered,,, is the quasi-maximum likelihood parameter estimae can now
construct thed-dimensional process

Gn(t)= > 4/(6,)D;Y2, t€[0,00). (1.6)

m<i=mt
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Our approach relies on the realization that the proGgs) can be well approx-
imated by the process

t t
((1+t)W1<ﬁ>’~--’(1+t)Wd<m>>’ t € [0,00), 1.7)
whereW(.),j = 1,...d are independent standard Wiener procesBgsaking
appropriate functionajst is then easy to construct a monitoring scheme with a
controlled probability of a false rejection of the null hypothe3ilse details are
presented in Section. 3

Although the preceding idea is applicable to essentially any parametric model
for which a reasonable approximate quasi-likelihood function can be faund
rigorous verification for a complex nonlinear model requires some effarst
of all, appropriate approximation&(u) must be usedTo obtain themwe use
an expansion developed in Berkd$orvath and Kokoszka2003, which is
described in Section.Becondasymptotics for the matri®,, in (1.5) must be
established that allow us to approximate the pro@isgby a bridge-type multi-
dimensional Gaussian procesee Lemma & in Section . The correspond-
ing result is stated in Proposition13which is proved in Section.F-inally, the
partial sum procesg m-i=m: £/(8,,) must be carefully approximatedhich is
accomplished in several stages presented in Section 6

By considering the quasi-likelihood scoresir approach is related to that of
Nyblom (1989, but it is different in that our focus is on controlling the prob-
ability of false alarmswhereas Nyblom(1989 concentrates on constructing
locally most powerful tests against alternatives that assume that the parameter
changed®, — 6,_, from timek — 1 to timek form a martingale sequence with
known covariance matriceG, = E[(6, — 6,_1)(8c — 6_1)"]. Such assump-
tions are not appropriate in the context of on-line monitoring for a change in
the GARCH p,q) parametersMoreover to prove a functional limit theorem
similar to our relation(6.53), Nyblom (1989 needs to impose a number of
additional technical assumptions on the asymptotic properties of the likelihood
scores Our assumptions pertain only to model parameters and the distribution
of the model errors and are very weassentially necessary for the consis-
tency and asymptotic normality of the quasi—-maximum likelihood estimator
Another important contribution to the theory of optimal a posteriorsample
change-point tests under local alternatives is made by S¢t@96, who con-
siders a much more general settiitis assumptionshowever also impose var-
ious conditions on scorelike objects rather than on the model parameters and
errors

There has been a growing literature concerned with the change-point prob-
lem specifically in GARCH setting or with a more general problem of detect-
ing changes in volatilityLamoureux and Lastrapg4990 and Mikosch and
Staica (2002, among othersshow that change points in a GARCH specifica-
tion may lead to the presence of spurious persistence in volaMigosch and
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Staica (2002 also propose a periodogram-based on-line change-point detec-
tion procedure but do not develop it theoreticallhne following papers deal
with change-point detection in a historical samf@eosteriori methodsinclan

and Tiao(1994), Kokoszka and Leipu&l999 2000, Kim, Cha and Leg(2000,

and Andreou and Ghysel2002 study CUSUM type tests based on squared
observationsTests based on the empirical distribution function of the squared
residuals are studied by Horvath et &€001) and Kokoszka and Teyssiere
(2002. Inoue (2001 proposes a simulation-based method based on the empir-
ical distribution function of the observations and applies it to stochastic vola-
tility models CUSUM tests based on the partial sums of powers of residuals
are developed by Kulperger and ¥2003. Kokoszka and Teyssief@002 also
study a generalized likelihood ratio te§thu (1995 and Lundbergh and Teras-
virta (2002 investigate Lagrange multiplier tesfhe preceding list is not meant

to be exhaustive but is intended to indicate a recent interest in and a variety of
approaches to the problem of change-point detection in GARCH procésses

a review of sequential testing strategies in the case of independent observa-
tions, see e.g., Gombay(1996 2002.

The paper is organized as follow Section 2 we present the necessary
technical background on GARCH processegich includes very weak assump-
tions on the model parameters and errdmsparticulay we do not require that
the innovationg; have a smooth density or that the observatigrzave finite
expected valueSection 3 describes the monitoring scheme and contains results
establishing its asymptotic behavior under the null and under the alternative
Results of a small simulation study are presented in Sectidrabfs are col-
lected in Sections 5=7

2. DEFINITIONS AND ASSUMPTIONS

In this section we present the general framework used throughout the. paper
We recall the definition of a GARCH, ) process and present recursions needed
to define the quasi-maximum likelihood estimatde state the conditions for
the existence of a stationary solution to the GAR@H)) equations and for
the consistency and asymptotic normality of the maximum likelihood estima-
tor. The section is based primarily on the results of Bougerol and P{d&@Ra
1992h and Berkes et al2003.

We assume that

Yk = Ok€k (2.8)

and under the no change null hypothesis

ol=w+ X aYeit X Biod, (2.9)

1=i=p 1=j=q
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wheref = (w,ay,...,ap, By, ..., By) is the parameter of the processnder the

alternative
o+ D ayit X Biody, —wo<k=k
1=i= 1=j=
ol = - " (2.10)
0t D aYEit Y Biog;, k*<k<oo,
1=i=p 1=j=q

i.e,, a change in the parameters occurred at tkh@nd the new parameter is
0" = (0", af,..., ap,B1,...,B4). In the following discussionwe refer to the
specification(2.9) as the null hypothesikl, and to(2.10) for some integek*
as the alternative hypothedit,.

Throughout this paper we assume that

€, —o0 < k < oo are independenidenticallydistributed random variables
(2.11)

Note that like Bougerol and Picafd992a we do not assume that the errefs
have mean zerdur procedure is not based on the deviations of residuals from
zera Additional assumptions on the distribution of theare stated in condi-
tions (2.17)—(2.19).

Our procedure is based on the quasi—-maximum likelihood estimator of the
parameters of a GARCH process developed by Lee and H4%86#d), Lums-
daine(1996), and Berkes et al2003. (For a more general method we refer to
Berkes and Horvat2004) To define this estimator for general GARCHl g)
processesienote byu = (X,s;,...,S,, t,..., {y) the generic element of the param-
eter spacdJ, which, following Berkes et al(2003, is defined as followslet
0<u<0,0<py<lqu<pg Then

U={u:t;+t+ - +t;=poandu < min(x, s, S,,...,S, t, b, ..., tg)

= max(X,$;, S, ..., S, t1, b, ..., ty) = O
We assume that
6 <€ U. (2.12)
Define now the log quasi-likelihood function as
= 1 3 = floam + 251,

M <k=m Wi (u)

where

W (u) = co(u) + 2 c(u)yZ,.

1=i<k
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The functionsc;(u), 0 =i < oo are defined by recursiorf g = p, then
Co(u) =x/(L—(tg + -+ +tg)),
ci(u) = sy,
C(u) = s, +t1¢4(u),

Cp(U) = 8+ 1,Coq(U) + -+ + 151 C1(U),

Cp+1(u) = tlcp(u) toeee t tpcl(u)v

Cq(u) =ty Cqq(U) + -+ + tq_1 C1(U),

and if g < p, the preceding equations are replaced with
Go(U) = X/(1= (ty+ -+ + 1)),
ci(u) = sy,

C(u) = s, + ¢y (u),

Cqr1(U) = Sguq + 11C4(U) + -+ + t5Cq(U),

Co(Uu) =8, + 1€, 4(U) + -+ +t,Cy_g(U).
In generalif i > R = max(p,q), then
Gi(U) = tyG_a(U) + ¢ o(U) + -+ + 1, g(U).

The preceding recursions ensure that for the true value, = co(6) +
215i<oo Ci(o)YEfr

To formulate a necessary and sufficient condition for the existence of a unique

stationary sequence satisfyiig.8) and(2.9) we must introduce further nota-
tion. Let

Th = (181 + aler%,:Bz,---qu—l) S qul’

£,=(€2,0,...,00 e RI Y,
and

a=(ay...,ap 1) € RP2
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(Clearly, without loss of generality we may and shall assume (mpjg) = 2.)
Define the(p + g — 1) X (p + g — 1) matrix A,, written in block form by

T By @ a

A_lq,lo 0 0
"¢ 0 0 of

0 0 1,, O

wherel,_, andl,_, are the identity matrices of sizp— 1 andp — 2, respec-
tively. The norm of anyd X d matrix M is defined by

IM] = sup{[Mx]l4/Ix]l4: x € RS, x # O},
where| - |4 is the euclidean norm iiRY. The top Lyapunov exponent_ asso-

ciated with the sequendé\,,—oco < n < oo} is

) 1
yo = inf —Elog|AjA;...Adl,
1=n<co N

assuming that

E(log|Ao) < co. (2.13)

(We note that| Aq|| = 1; cf. Berkes et al 2003) Bougerol and Picard1992a
1992h show that if(2.13) holds then(2.8) and(2.9) have a unique stationary
solution if and only if

v <0. (2.14)

We note that2.14) implies; + --- + B4 < 1 (cf. Bougerol and Picardl992h.
The next two conditions are needed to uniquely identify the paranfeter

the polynomialsy; x + a,x? + -+ + ,xP and

1— B1X— Bax? — --- — B,x% are coprimes on the set of polynomials

with real coefficients (2.15)
and
€2 is anondegenerate random variable (2.16)

We also assume

limt “P{e2=t}=0 with someu >0, (2.17)
t—0

which will be needed to estimate the momentsvgfu)/wy(8) (cf. Berkes et al
2003.
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Finally, the last set of conditions concerns the moments,of

Ee2 = (2.18)
and
E|e2|?"® < oo with somes > 0. (2.19)

Berkes et al(2003 show tham/2(6,, — 6) is asymptotically normal if2.8),
(2.9), and(2.13)—(2.19) hold.

3. MAIN RESULTS

Suppose we have observed..., ym, Which represent available historical data
The estimator for the unknown parameéebased on these data is defined by

6., = argmaxL,,(u):u € U}, (3.20)

whereU is a suitably chosen compact set defined in Sectiddsing the nota-
tion introduced in Section,2ve also define the conditional likelihoods

N 1 y?
G =—-3 [Iog Wi (u) + = w ]

and the matrix

A 1 A I
Dm=— 2 (£/(6,)7¢/(8y).

1<i=m

(Here ™ denotes the transpose of vectors and matrices
Let|-| denote the maximum norm of vectors and matrits can now define

the stopping time,,, as
k k
> mw(1+ _>b(->}.
m m

If kn, < oo, we say that a change occurralfe choose the boundary function
b(t) so that

2 éi,(ém)f)%l/z

m<i=m+k

Ky, = min{k:

lim Py {ky < oo} =a, (3.21)
m—oo
where 0< a < 1 is a prescribed number and
lim Py, {ky, < oo} =1 (3.22)
m—oo

Recall thatH, is defined by(2.8) and (2.9) and H, by (2.8) and (2.10).
Conditions on the boundary functidm(-) are specified in the following two

sectionswhich study the asymptotic behavior of the monitoring schemspec-
tively, underHy and Ha. Unlike for the scheme of Chu et.al1996, which
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requires more complex boundary functipirs our setting the simplest choice
satisfying all the assumptions is to take a constgh} = b > 0.

3.1. Monitoring Scheme under H,

Throughout this section we assume tk&aB) and(2.9) hold.

It follows from the definition that the matri®,,, is nonnegative definitaNe
show in Proposition 3, which follows thatDm is nonsingular with probability
tending to one as1 — co. HenceD;,/2 exists with probability tending to one
asm — oo.

To formulate Proposition.2, we define

Wi(U) = co(u) + X G (U)yE

1=i<oo

and

1 2
0. (u) = |
K(U) (ogwk(U) + k(u)>

Finally, define
D(u) = E[(€£5(u)T€5(u)]
and
D = D(#).
PROPOSITION 3L. If (2.8), (2.9), and (2.13)—(2.19) are satisfied, then
D,—Das
Also, D is a positive definite, nonsingular matrix.

The proof of Proposition .3 is presented in Section 5
We impose the following conditions on the boundary functigt):

b(t) is continuous orf0,c0) (3.23)
and

inf b(t) > 0. (3.24)
0<t<oo

THEOREM 31. If (2.8), (2.9), (2.13)—(2.19), and conditions (3.23) and (3.24)
are satisfied, then

lim Py {k,,<oo}=1-— (P{ sup & = 1}>p+q+1
m— oo Ho L7m O=t<1 b(t/(l_t)) ’

where{W(t), 0 =t = 1} denotes a Wiener process.
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The proof of Theorem .3 is presented in Section 6

Choosingb(t) = b, a constant functignand using the well-known formula
for the distribution function of sup=;|W(t)| (cf. Csérgoand Révész1981,
p. 43) we obtain the following corollary

COROLLARY 31. If (2.8), (2.9), (2.13)—(2.19), and conditions (3.23) and
(3.24) are satisfied, then

lim Py {kn < oo} = 1— (P{ sup [W(t)| = b})p*q“
m—oo O=t=1

(—DF [ wk+ D2\ | P
1Pl T .

SRES

T oskee 2K+ 1

Corollary 31 allows us to specify the critical levdd for any significance
level a in (3.21).

3.2. Monitoring Scheme under H,

Under the alternativ€2.10) the parameter changes frahto 6 at timek™ > m.
We define the sequende,, —co < k < oo}, which represents the model after a
change in parameterby the equations

Zk = Yk€k (325)

and

ve=o't X &'+ X BivE (3.26)
1=i=p 1=j=q

The error sequencg has not changed

Our first condition is that the paramet@t defines a GARCHip, q) process
The vectors 7, = (Bi + aiel,pBs,....B;-1) € RI! and a* =
(a3,...,ap_1) € RP~2 are defined as, anda in Section 2 but«; andg; are
replaced byn;" andgf". Similarly to A, we define

T By a” ap

l.y O O 0
A=

&, 0O O 0

0 0 I,, O

The top Lyapunov exponent of the sequede —co < n < oo is denoted by
v{. As in Section 2the equation$3.25) and (3.26) have a unique stationary
solution if and only if

Y <0, (3.27)
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assuming that

E(log|Ajl) < co. (3.28)

Similarly to €;(u) we define

fosno+ 35
gi(u) = — - 1{loguv;(u) +

2 v (u)
where
vi(u) =co(u) + X g(wzZ,.
1=j<oo
Hence

1, 2 uw s
W=\ 0w W)

Let

g(u) = Ego(u).

We assume that

g'(e) #0 (3.29)
and

there isU*, a neighborhood of, such thaig(u), §'(u), §" (u)
exist and are continuous for eaghe U ™. (3.30)

We note that under some regularity conditia@risu) = 0 if and only ifu = 6*
(cf. Berkes et al 2003 Lemma 55). We also assume that

k* =k*(m) and limsugk®*m) < oo (3.31)
m—oo
and
sup b(t) < co. (3.32)
0<t<oo

THEOREM 32. If (2.8), (2.10), (2.13)—(2.19), (3.23), (3.24), and (3.25)-
(3.32) hold, then

lim Py, {kn < o0} = 1.
m—oo

The proof of Theorem .2 is presented in Section 7
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4. SIMULATIONS

In this section we report the results of a simulation study intended to assess the
behavior of the procedure in finite samplésven before we commenced the
numerical experimentst was clear to us that much larger sample sizes than
those considered by Chu et 61996 would be needed for the asymptotic behav-
ior to manifest itself There are two main reasons for thisrst, the required
model estimation in Chu et .atonsists essentially in estimating the mean of
normal variablesand it is well known that already for samples of size 50 such
estimates are very accurate our contextwe have to estimate the parameters
of a GARCH process via nonlinear optimizatidhis well known that although
these estimates are optimal when the innovations are ndtheatase we con-
sidered in the simulation stuglthey may have large biases and standard errors
even for samples as large a®Q0. For a sample size of,Q00, these estimators
are accurate for a wide range of parametérg for some choices of param-
eters they exhibit large biaseSecond our procedure requires the estimation
of the covariance matri®,,. Because there is no close formula fay,, it would
have to be estimated even if the parameters were knderconducted a num-
ber of experimentsnot reported here in a systematic way which we used
the exact values of the GARCH parameters rather than their estinkatess in
this situation samples of size aboutd00 are required to obtain relatively sta-
ble estimates 0D,y

We now proceed with a detailed description of our simulation study and the
conclusions it leads tdMe focused on the popular GARGH1) models and
considered a wide range of the parameters,, andB;. The GARCH models
were simulated and estimated using the 8iodule GARCH whereas for the
estimation ofD,, it was necessary to write a much fastet € code and inter-
face it with St.

We report the results for three GARCH1) models

Model I: w = 005, g = 0.4, Bl = 03,
Model II: @ = 0.05, a; = 0.5, B; = 0.0;
Model lll: w = 1.0, &y = 0.3, B; = 0.2.

The results for these three models are fairly representative of the overall
conclusions

To facilitate the graphical presentation of the resulte work with the nor-
malized decision function

C(k)—<1+ 5>1i { > 1 )5-1/2}
- m \/ﬁ i\Ym m

m<i=m+k
A change in parameters is signaleddtk) > c(a), wherec(a) satisfies

, l=k<oo.

1- P( sup [W(t)| = C(a)>3 — a (4.33)

o<t<1
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TaBLE 1. Critical values calculated according to relatighl)

o 0.10 005 001
c(a) 2.382 2632 3150

Table 1 gives the critical values for the conventional significance levels

In Table 2 we report the empirical rejection probabilities of the null hypoth-
esis of no change in the model parameters assuming this hypothesis. i true
is seen that for models with pronounced GARCH characteristies param-
etersa, andB; much larger tham, the procedure has correct size for monitor-
ing horizons of about 500 time units with the 10% bound being somewhat more
reliable By a monitoring horizon we understand here the length of time we are
willing to use the procedure without updating the paramei#esnote that the
theory developed in this paper shows that the empirical size tends to the nom-
inal size aan — oo, so for any finitem size distortions will be presenthis is
particularly visible if the GARCH parameters are difficult to estimade in
Model Il (the process looks more like a white noiséne procedure has a high
probability of type | errarWe conjecture that in such situationsmuch larger
than 1000 would be required to obtain empirical size close to the nominal size
Using the true values aot,, 81, andw, leads to entries about half the size of
those reported in Table 2Vith m = 1,000 the method is not accurate for mon-
itoring horizons longer than 500 and cannot be used in an automaticAsay
we mention in the discussion toward the end of this sectovisual real-time
inspection of the graph of(k) following an alarm(critical level exceeded
might indicate that there is no reason to suspect a change in model parameters

TaBLE 2. Empirical sizes for monitoring horizoris

k 100 200 300 400 500 600 700 800 900,000

Model I: @ = 0.05,¢; =0.4,8, =0.3
a=0.10 0001 Q008 Q021 Q045 Q072 Q099 Q132 Q146 Q165 Q183
a=0.05 0001 Q003 Q009 Q028 Q052 Q070 Q095 Q112 Q127 Q139

Model Il: @ = 0.05,a; = 0.5,8;, =0.0
a =010 0013 Q027 Q041 Q054 Q068 Q080 Q099 Q116 Q129 Q137
a=0.05 0013 Q026 Q038 Q051 Q066 Q076 Q090 Q109 Q120 Q128

Model lll: @ =1.0,@; =0.3,8;,=0.2
a =010 0047 Q146 Q237 Q329 Q407 Q465 0519 0561 0593 Q616
a=0.05 0029 Q101 Q190 Q256 Q334 Q390 0440 0483 0516 0539

Note: Simulations were done witth = 1,000 and are based orn0B0 replications
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(see Figure B Alternatively finite-sample corrections could be obtained by sim-
ulation for specific values of and monitoring horizons of interessuch sim-
ulations would be specific to a problem at hand and have not been conducted

The power of the procedure for three change-point scenarios is reported in
Table 3 As can be expectedarge changes in parameters are detected more
reliably.

From a practical point of viewt is more useful to study the distribution of
the detection delay time pequivalently the distribution of the random time
when the decision functio@(k) first exceeds a critical leveln Table 4 we
report selected descriptive statistics for such distributiding estimated den-
sities are depicted in Figure 1

Focusing first on the first three change-point models reported in Tahie 4
note that the distribution of the delay time is fairly symmetric but its spread
increases as the change point moves further away from the point where the
monitoring was initiatedSimilar findings were reported in Chu et &1996.
However unlike for the fluctuation monitoring scheme investigated in Chu.gt al
the average delay time does not appear to increase with the distance of the
change point from the initiation poinand it is about 20 for a change from
Model | to Model lll. For relatively less significant changes in parametsush
as the change from Model | to Model the delay time is much longeEven in
such situationshowever a visual real-time inspection of the graph 6fk)
may suggest that something is happening to the parameters of the. imotthe!
panel in the right-bottom corner of Figure fdve randomly selected trajecto-
ries of C(k) for the change from Model | to Model Il are showA picture of
this type may be fairly typical in real-data applications as the parameters need

TABLE 3. Empirical power of the test

k 100 200 300 400 500 600 700 800 900,000

Model | changes to Model Il at k* = 50
a=0.10 0975 1 1 1 1 1 1 1
a =0.05 0962 1 1 1 1 1 1 1 1 1

[EEN
[EEN

Model | changes to Model IIl at k* = 250
a =010 0002 Q004 Q947 1 1 1 1 1 1 1
a =0.05 0000 Q003 0932 1 1 1 1 1 1 1

Model | changes to Model Il at k* = 500
a=0.10 0000 Q009 Q020 Q037 Q055 Q999 1 1 1 1
a=0.05 0000 Q005 Q012 Q024 Q034 Q998 1 1 1 1

Model | changes to Model Il at k* = 250
a=0.10 0002 Q004 Q017 Q071 Q0252 0523 Q735 Q859 0927 Q966
a=0.05 0000 Q003 Q008 Q045 Q177 Q407 Q646 Q796 0892 0946

Note: For eachk, the fraction of trajectories crossing the critical levels from Table 1 is repoBedulations
were done withm = 1,000 and are based on0DO replications
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TaBLE 4. Elementary statistics for the distribution of the first exceedance of
the 10% critical level

Mean SE Min Q1 Med Q3 Max
Model | changes to Model Il at k* = 50
714 124 50 63 71 79 135
Model | changes to Model Ill at k* = 250
2723 181 89 262 271 282 338
Model | changes to Model Il at k* = 500
5164 547 121 511 523 538 618

Model | changes to Model Il at k* = 250
6129 1665 89 498 589 710 ,000

Note: The estimated densities are graphed in FigurBifhulations were done wittn = 1,000 and are based on
1,000 replications

not switch immediately into a new regime but may evolve gradually through a
number of smaller changek contrast as shown in Figure ,3f there is no
changethe trajectory ofC(k) may occasionally exceed the critical valbeit it

will not show a pronounced upward trend such as that manifest in Figure 2

I>IIl at k*=50 I>IIl at k* =250
0.015 0.015
0.005 0.005
0.0 0.0
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Il at k*=500 |-l at k*=250
0.015 0.0030
0.010 0.0020
0.005 0.0010
0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1,000

FIGURE 1. Estimated densities of the first exceedance of the 10% critical .|&sdi-
mates were obtained using the cosine kernel with support of lengtBimilations were
done withm = 1,000 and are based on0DO replications
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=1l at k*=50 =1l at k* =250
100 28 f——’;f;
80 T
60 30 Retadl
40 20 /
20 10 A
0 0 l=—
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time
=1l at k* =500 =1l at k* =250
6
30 5
4
7
20 3 i
y .
10 2 el
1 kY adve
0 USSR 0 ﬂ "
0 200 400 600 800 1000 0 200 400 600 800 1000

Time Time

FiGuRE 2. Five randomly selected realizations of the sequedde for the data sum-
marized in Table 4The vertical lines correspond to 10% critical valu®lse correspond-
ing estimated densities of the first hitting time are depicted in Figure 1

5. PROOF OF PROPOSITION 3.1
Let
B 1 pr Tpr
Dm(u) = — > (&/(u)7¢ (u)
Maci=m
and
1 ! Tpr
Dm(u) = — > (€/(u)7¢/(u).
M i<i=m

In the proof of their Lemma B, Berkes et al(2003 show that there is a con-
stant 0< p < 1 and a positive random variabfesuch that

sup| i(u) — €y(u)| = 0" (5.34)

ueuy

Berkes et al(2003 also show that syp|¢;(u)| is a stationary sequence and

E sup|€y(u)| < co.
ueu
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2.0

1.51

1.01

0.51

0.0

0 200 400 600 800 1,000
Time

Ficure 3. Five randomly selected realizations of the seque@le) for Model | and
m=1,000. The two horizontal lines correspond to 5 and 10% critical values from Table 1
The fractions of trajectories crossing these lines before kraee reported in Table.2

Hence

R 1 ) )
sup|D,,(u) — D, (u)| = a(zg > P sug\fi(u)| +&2 ) p2'>

ueu 1<i=m ue 1<i=m

as. 1
of1) 559

m

by Lemma 22 of Berkes et al(2003.
Next we show that

E ng|(€6(u))T€6(u)| < . (5.36)

By (6.49) we have that

sup| (£5(u) T€o(u)| = sup|€’(u)|?

ueu ueyu
a2 \? Iwj(u)| )2 [wo(u)| )2
=¢e2| su 0 su 0 + | su .
EO(ueSWo(U)> <ueg Wo(U) uELFJ) Wo(U)
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Using the independence ef and(w,(u), &), u € U we get that

Eeg| sup o5\ sup—‘wé(u)| i
0 ueu Wo(U) ueu Wo(Uu)
2 2 ’ 2
) [Wo(u)]
= EedE| su sup————
€ (uEEWO(U)> (ueLFJ) Wo(U)

0.02 2+8/2\ 2/(2+8/2) | Wé(u) | 2(4+8)/6 \ 8/(4+8)
=Ee{E(E|( sup E( sup———— .
ueu Wo(U) ueu Wo(U)

Lemma 51 of Berkes et al(2003 yields that

0_02 2+6/2
E| su < oo, 5.37
SR (W) (5:37)

and Lemma 3 of Berkes and Horvatt2004) gives

wh(u 2(4+68)/8
E<sup| ol )) < oo.

ueu WO(U)

Hence the proof 0f5.36) is complete For eachu € U, ¢/(u) is a stationary
and ergodic sequenc®o by(5.36) we can use the ergodic theorgrasulting in

D (u) - D(u) as. foranyu & U. (5.38)
Next we show that there are a const@htandU* C U, a neighborhood of

@, such that

|E(€o(u)T€o(u) — E(£5(V)T€o(V)| = Cilu—v|, if u,veE U™ (5.39)

Using (6.49) we can write

ESUP{ | (€o(u) T (€5(u) — €o(V))]: u,v € U} =ALtE A

lu—v|
where

o

[u = V[ wo(u)

A = Eea‘Esup{

wo(w) \T [/ w(u)  wp(v) Cveus
wow ) O\ wew ~wew )| ’
ob (oW \" (wew) we\|
WO(U)("VO(U)) (Wo(u) - wo(v)>"“"’€U }

wg(u) \" wh(w)  wpw) \ | *
<W0<U>> U°2<w§(u) - W&(v))“ uveu }

A, = EegEsup{ T

1
[u—v|

A; = E€2E sup{
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Wo(u) \™ (wo(u)  wo(v)
— u,ve Ut ).
Wo(u) /| \ wo(u) — wp(v)
Using the mean value theorem coordinate-wise we get that
2 2
A, =GCE||supi ——,ue U
o( u)’
[wo(u)| Wo(V)
X su :ueU;su uve ur
p[ Wo(U) P Wo(U)
|wo(u)] 2 Wo (V) Y
+ (su ueu su u,veur .
( p{ wo(u) Pl wo(u)
By the Holder inequality we have

0.2 2+8/2)2/(4+6)
A= CZ{E<sup{ ) ue U}) }
X <E{<sup{ |WoEU;| ue U})

Wy (V) i 2 (4+6)/8 \ 8/(4+5)
X | sup :u,veUu +1 . (5.41)
Wo(U)

By (5.37), the first expected value is finite if5.41). Using the Cauchy inequal-
ity we get that

‘ 0( )| (8+28)/6 WO(V). . (8+25)/6
E[{sup( Wo(l) - ue U>} {sup( Wo(l)' uveu >] }
_ ‘W()(LI)| . (16+48)/6
= {E <SUp—wo(u) ue U)

Wy (V) . (16+458)/8 1/2
X E|sup :u,ve U . (5.42)

and

A, = Esup{u_v

Wo(U)

The first expected value on the right-hand sidg®#2) is finite according to
Lemma 36 of Berkes and Horvatl2004). The second expected value on the
right-hand side 0f5.42) is finite by Lemma 37 of Berkes and Horvatf2004)
assuming thatl * is a small enough neighborhood @fHence

A; < oo. (5.43)
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Similar arguments show that

A <o, =234, (5.44)
implying that

1
ESUP{ u—v] [ (€5(u)T(€5(u) — €5(V)|: u,v € U*} < o, (5.45)
assuming that * is a small enough neighborhood &fBy symmetry we have
that

1
ESUD{H [(€5(u) — €5(V)Te4(V)|: u,v € U*} < oo. (5.46)

Hence the proof 0f5.39) is complete
We note that

1
sup T |Dm(u) - Dm(v)|

uveu* [U—V|
== 3 W) W) — (W) TGW)
B m1<ismu,3gg* U_V| i i iV i (V).

Because sufd(€/(u)) "¢/ (u) — (€/(v))™¢/(v)|/|u — v|: u,v € U*} is a station-
ary and ergodic sequence with finite mean(by89), the ergodic theorem implies
that

lim
mooo [U — V|

|Dm(u) - Dm(v)| =c’

with some constant®. Hence by(5.38) we have that

sup|D,(u) = D(u)] > 0 as. (5.47)

ueu”
Berkes et al(2003 show that
6,—6 as, (5.48)

and therefore the first part of Propositiori3ollows from (5.47).
The nonsingularity oD = D(0) is proved by Berkes et a(2003, and the
positive definiteness dD is obvious

6. PROOF OF THEOREM 3.1

The proof of Theorem .3 is based on several lemmaghich we present after
introducing some additional notation
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Let

1 y?
G = —E{Iogwi(w + W.(u)},

where

Wi (U) = Go(u) + > G(U)y2,.

1=j<oo

We note that

o  w/(u) _ Wi’(U)) (6.49)

G = (e
[(u) = 2 € wi(u) wi(u)  wi(u)
and we define

Tm(k’ U) = E €{(u), 1=k< 0.

m<i=m-+k

LEMMA 6.1. If the conditions of Theorem 3.1 are satisfied, then

el () vome
m m

Proof By Lemmas 3B and 59 of Berkes et al(2003 we have that

Z é\i’(ém) - Tm(Kém)

m<i=m+k

sup

1=k<oo

as m— co.

sup| X (£/(u) = €(u)| = 0(),

uey | 1=i=n

implying Lemma 61. u
Let

Z(u) = E€4(u).

LEMMA 6.2. If the conditions of Theorem 3.1 are satisfied, then there is
U*, a neighborhood o#, such that

1
sup |= > €'(u)—Z(u)| -0 as
ueu* | N 1=i=n
Proof This is Lemma % in Berkes et al(2003. u
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LEMMA 6.3. If the conditions of Theorem 3.1 are satisfied, then

> e{(ém)—( > e{(o>+(ém—o>kz<o>>‘

m<i=m+k m<i=m+k
sup = 0p(1),
1o m1/2<1+5>b<5>
m m
as m— co.

Proof First we show that there is a neighborhooddotay U *, such that

> 6w —kZ(w

m<i=m+k

sup sup = 0p(1), (6.50)

=k<oo u * k k
S m<1+—>b<—>
m m

asm — oo. Becausef;’(u), u € U* is a stationary sequenchby (3.24) it is
enough to prove that

> (w—kzZ(u

k<i=m-+k

sup sup = 0p(1), asm-— co. (6.51)

1=k<oo UEU* m+ k

However (6.51) is an immediate consequence of Lemma. @heorem 4 of
Berkes et al(2003 implies that

|6, — 8] = Op(m~/2). (6.52)
Using the mean value theorem coordinate-wiseXdﬁ’(ém) and then(6.50),
(6.52) for the coordinates of ¢;’(u) we get Lemma . |

LEMMA 6.4. If (2.8), (2.9), and (2.13)—(2.19) are satisfied, then

6,— 0= 1 > €(6)Z27%8)(1+0(1) as
1=i=m

as m— oo.

Proof Lemma 64 follows from Theorem 4} of Berkes et al(2003. |

LEMMA 6.5. If the conditions of Theorem 3.1 are satisfied, then

N k
> fi'(om)_< > te)y—-— X ei,(0)>

m<i=m+k m<i=m+k 1=i=m
Sup = OP(]-)’
1=k<oo 1/2 k k
mY2(1+ — |b( —
m m
as m— co.
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Proof We note that

k
‘_ PIRACH
1=i=m
max
i ()
m m
k

> 6(0)] =0p(),

1=i=m

m 1
= sup sup ———m 2
1=k<owo 1+ E 1=sj<oo b<l>
m k

by conditions (3.23), (3.24), and the asymptotic normality ofmn /2 X
Di=i=m ti(0) (cf. Berkes et al 2003. Hence putting together Lemmas3énd
6.4 we get the result in Lemma® u

LEMMA 6.6. If the conditions of Theorem 3.1 are satisfied, then

> 6(0)—— > (o)

< m<i=m+k Mi<i=m D, o Wh(1+1t) — (1+ )W (D)]
u —> u ’
L (1+ K >b< 5) ozt (1+)b(t)

m m

as m— oo, where W(s) is a Gaussian process with EM&) = 0 and
EWJ (s)\W(s') = min(s,s')D.

Proof As is shown in Berkes et a[2003, ¢/(@) is a stationary ergodic
martingale difference sequenocgearly coW¢;(8)) = D. Hence the Cramér—
Wold device(cf. Billingsley, 1968 p. 206) yields that for anyT > 0

mv2 S e0) 22 wht)  asm— co. (6.53)
1=i=mt
Hence
—1/2 ’ _ , DO, T] _
m { Sooge-t Y €i<o>}—>WD<1+t) (1+ OWo (1)
m<i=m(1l+t) 1=i=m
(6.54)

for any T > 0 asm — oo. By the Hajek—Rényi—Chow inequaliticf. Chow

1960 we have
1=i=m+k

(6.55)

lim limsupP{ sup
T mosoeo mT=k<co
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for anyx > 0. The coordinates of\;(t) are Brownian motionsso by the law
of the iterated logarithm an¢8.24) we have

Wo(1+1)|

sup ————— >0 as. (T— o). 6.56
S0 T+ o) (1= (6:56)
Lemma 66 now follows from(6.53)—(6.56). u

Proof of Theorem 3. Putting together LemmasB-66 we get that

> (6D

m<i=m+k

» [(Wo(L+ 1) = (1+ DWp(1)D 2|
Su —> Su
28 <1+ K >b< K ) oot (1+0b(1)
m m

Elementary arguments show that
E{Mp(1+1) = (1+ )Wp(1)D 2 {(Wp(1+ ) — (1 + Wp(1))D 2}
= t(1+s)|p+q+1’ t=s

wherel ;41 is the identity matrix inRP*9*1. Computing the covariances one
can verify that

{Wp(1+1) — (1+t)Wp(1))D Y2t =0}

” t t
=1+ — ), 1+ —)t=
{(1 t)Wl<1+t>’ ’(1 t)Wp+q+1<1+t>vt O};

whereW;,Ws, ..., W, 4.1 are independent Wiener processdsnce

sup |(Wo(1+t) — (1+ )Wy (1)) DY 2 max  sup IWi(s)|
0<t<oo (1 + t)b(t) 1=i=p+qg+1 0<s<1 b i ’
( 1- s)
completing the proof of TheoremB u

7. PROOF OF THEOREM 3.2

By Proposition 31 it is enough to show that

/<m1/2 (1 + 5)) L5 o0, (7.57)
m

asm — oo. Theorem 31 yields that

o 2) o
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asm — oo. Let Xp = (021,...,02 pi2, Y3, Yaqi2)| € RPT9 1 andd =
(w*,0,...,00T. Using (2.9) and(2.10) we get that

Xy = Aty X, +dif n=k

and induction yields

— £ ES * ES Ed
Xir sk = A A g1 Xpee ( > AvaAcaker - Acaei Ip+q—1> d.

O=i=k-1

Condition (3.25) and the independence of the matrid§syield that there is a
constant 0< g, < 1 such that

| Ak e Ak Xiee| = Opl().

Thus

Y&k = Zewsil = Op(2¥) (7.58)
and

|0'k2*+k - 7|§*+k| = Op(0¥). (7.59)

Hence following the proof of Lemma.§ one can easily derive frorir.58)
and(7.59) that

s | (@@ - gt [(me(1+ X)) = o
k*—m<k<oo | m<i=m+k m

Using the mean value coordinate-wise and the ergodic theorem we get that

S gbn)= X g8+ (6,—0)k(g" ()" +0p(2)

m<i=m+k m<i=m+k

k(g'(8) + 0p(1)). (7.60)

Choosing any sequenée= k(m) satisfyingk/m*? — co andk = O(m) we get
from (7.60)

el 2)

2 gi’(oAm)Dil/2

m<i=m+k

k
=1g'(0)D V2 + 0p(1)| ————=+ D o»,

me(1e )
m

becauseg’(8)D 2| # 0 by (3.29).
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