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We suggest a sequential monitoring scheme to detect changes in the parameters
of a GARCH~ p,q! sequence+ The procedure is based on quasi-likelihood scores
and does not use model residuals+ Unlike for linear regression models, the squared
residuals of nonlinear time series models such as generalized autoregressive con-
ditional heteroskedasticity~GARCH! do not satisfy a functional central limit theo-
rem with a Wiener process as a limit, so its boundary crossing probabilities cannot
be used+ Our procedure nevertheless has an asymptotically controlled size, and,
moreover, the conditions on the boundary function are very simple; it can be cho-
sen as a constant+We establish the asymptotic properties of our monitoring scheme
under both the null of no change in parameters and the alternative of a change in
parameters and investigate its finite-sample behavior by means of a small simu-
lation study+

1. INTRODUCTION

The assumption that the parameters remain stable over time plays a crucial role
in statistical modeling and inference+ If the parameters have changed within the
observed sample, then, e+g+, forecasts lose accuracy and the parameter esti-
mates no longer provide meaningful information+ Because of the importance of
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parameter stability, the detection of possible changes in the data generating pro-
cess has become an active area of research+ There are hundreds of papers study-
ing various aspects of change-point detection in econometric settings+ We list
those most closely related to the present work later in this section+ For surveys
concerned with the general statistical methodology for change-point detection,
we refer to Besseville and Nikifirov~1993!, Brodsky and Darkhovsky~1993,
2000!, and Csörgo˝ and Horváth~1997!+

The present paper is motivated by the work of Chu, Stinchcombe, and White
~1996!, who pose the following problem: “Given a previously estimated model,
the arrival of new data invites the question: is yesterday’s model capable of
explaining today’s data?” These authors develop fluctuation and cumulative sum
~CUSUM! monitoring procedures for linear regression models+ Our paper focuses
on generalized autoregressive conditional heteroskedasticity~GARCH! mod-
els, which are important in financial applications~see, e+g+, Gouriéroux, 1997!
and, as explained later, differ from linear models in ways that make a direct
application of the approach of Chu et al+ ~1996! not readily possible+

Before outlining the central ideas of Chu et al+ ~1996! and contrasting our
approach with theirs, we note that procedures for detecting parameter changes
in a GARCH specification may have a number of useful applications+ For exam-
ple, risk managers use GARCH for calculating portfolio risk measures such as
value at risk+ GARCH parameters are typically estimated over a rolling win-
dow of returns, and change points in this window will introduce bias+ Simi-
larly, option traders use GARCH to make up for the well-known biases in Black–
Scholes option prices+ A detection of parameter changes may lead to a more
cautious interpretation of the calculated option prices+ Although our paper is
not concerned with such applied issues, we do hope that it will make a contri-
bution to the important problem of monitoring for changes in GARCH models+

As argued convincingly in Chu et al+ ~1996!, the sequential analysis of eco-
nomic and financial data is somewhat different from engineering applications+
The sampling is costless under the no change null hypothesis, and no action is
required if the observed processes is “in control,” i +e+, there is no change in the
parameters of the data generating process+ Because it is impossible to eliminate
false alarm due to chance, the probability of stopping under the no change null
hypothesis should be less than a given level 0, a , 1+ On the other hand, it is
desirable to stop with probability one if a change occurs+ With these goals in
mind, Chu et al+ ~1996! propose to consider decisions functions of the form

Qt
~m! 5 (

m11#i,m1mt

[vi , t [ @0,`!, (1.1)

wherem denotes the number of initial observations used to estimate the model
and the [vi are model residuals that are estimated sequentially+ The idea of their
procedure is as follows: denoting byW~{! the standard Wiener process, sup-
pose it can be shown that, asm r `,
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m2102Qt
~m!

r W~t ! in D@0,`! (1.2)

and that a functiong can be found such that

lim
mr`

P~6Sn6 $ Mmg~n0m!, for somen $ m!

5 P~6W~t !6$ g~t ! for somet $ 1!, (1.3)

provided the sequenceSn satisfies a functional central limit theorem+ It can then
be concluded from~1+2! and~1+3! that

lim
mr`

P~6Qt
~m! 6 $ Mmg~n0m!, for somen $ m!

5 P~6W~t !6$ g~t ! for somet $ 1!+ (1.4)

For several judicious choices ofg, the probability on the right-hand side of
~1+4! can be computed analytically, and consequently a monitoring scheme can
be developed such that asymptotically, asmr `, the decision function6Qt

~m! 6
crosses the boundaryMmg~n0m! at some future daten with a prescribed prob-
ability a, provided the parameters have not changed+

The present paper is concerned with the detection of changes in GARCH~ p,q!
processes that are used to model volatility+ Statistics designed for detecting
changes in volatility are typically based on the squares of observations or the
squares of residuals+ The squares of residuals from a GARCH~ p,q! process do
not satisfy a functional limit theorem with the Wiener process in the limit because
of the presence of extra terms in their covariance structure~see, e+g+, Boldin,
1998; Horváth, Kokoszka, and Teyssière, 2001; Koul, 2002, Ch+ 8; Berkes and
Horváth, 2003; Kulperger and Yu, 2003!+ Thus the approach of Chu et al+ ~1996!
cannot be readily applied+ In this paper, we put forward a different approach
that does not use model residuals but relies more directly on the quasi-likelihood
function+ Suppose we have observedy1, + + + , ym for which we have postulated a
model withd parameters+ Denote byu a generic element of the parameter space
and by,i ~u! the conditional quasi-likelihood ofyi givenyi21, + + + , y1, so that the
quasi-likelihood function isLm~u! 5 (1#i#m,i ~u!+ For time series models,
the ,i ~u! typically cannot be computed exactly because of the dependence on
the unobservedyk, k # 0, and some approximationsZ,i ~u! must be used in-
stead+ Denote by Z,i

'~u! thed-dimensional row vector of partial derivatives with
respect to the model parameters and consider the matrix

ZDm 5
1

m (
1,i#m

~ Z,i
'~ Zum!!T Z,i

'~ Zum!, (1.5)

where Zum is the quasi–maximum likelihood parameter estimate+ We can now
construct thed-dimensional process

Gm~t ! 5 (
m,i#mt

Z,i
'~ Zum! ZDm

2102, t [ @0,`!+ (1.6)
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Our approach relies on the realization that the processGm~{! can be well approx-
imated by the process

S~11 t !W1S t

11 t
D, + + + , ~11 t !WdS t

11 t
DD, t [ @0,`!, (1.7)

whereWj ~{!, j 5 1, + + +d are independent standard Wiener processes+ By taking
appropriate functionals, it is then easy to construct a monitoring scheme with a
controlled probability of a false rejection of the null hypothesis+ The details are
presented in Section 3+

Although the preceding idea is applicable to essentially any parametric model
for which a reasonable approximate quasi-likelihood function can be found, a
rigorous verification for a complex nonlinear model requires some effort+ First
of all, appropriate approximationsZ,i

'~u! must be used+ To obtain them, we use
an expansion developed in Berkes, Horváth, and Kokoszka~2003!, which is
described in Section 2+ Second, asymptotics for the matrixZDm in ~1+5! must be
established that allow us to approximate the processG~{! by a bridge-type multi-
dimensional Gaussian process~see Lemma 6+6 in Section 6!+ The correspond-
ing result is stated in Proposition 3+1, which is proved in Section 5+ Finally, the
partial sum process(m,i#mt Z,i

'~ Zum! must be carefully approximated, which is
accomplished in several stages presented in Section 6+

By considering the quasi-likelihood scores, our approach is related to that of
Nyblom ~1989!, but it is different in that our focus is on controlling the prob-
ability of false alarms, whereas Nyblom~1989! concentrates on constructing
locally most powerful tests against alternatives that assume that the parameter
changesuk 2 uk21 from time k 2 1 to timek form a martingale sequence with
known covariance matricesGk 5 E @~uk 2 uk21!~uk 2 uk21!T# + Such assump-
tions are not appropriate in the context of on-line monitoring for a change in
the GARCH~ p,q! parameters+ Moreover, to prove a functional limit theorem
similar to our relation~6+53!, Nyblom ~1989! needs to impose a number of
additional technical assumptions on the asymptotic properties of the likelihood
scores+ Our assumptions pertain only to model parameters and the distribution
of the model errors and are very weak, essentially necessary for the consis-
tency and asymptotic normality of the quasi–maximum likelihood estimator+
Another important contribution to the theory of optimal a posteriori~in-sample!
change-point tests under local alternatives is made by Sowell~1996!, who con-
siders a much more general setting+ His assumptions, however, also impose var-
ious conditions on scorelike objects rather than on the model parameters and
errors+

There has been a growing literature concerned with the change-point prob-
lem specifically in GARCH setting or with a more general problem of detect-
ing changes in volatility+ Lamoureux and Lastrapes~1990! and Mikosch and
Stărică ~2002!, among others, show that change points in a GARCH specifica-
tion may lead to the presence of spurious persistence in volatility+ Mikosch and
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Stărică ~2002! also propose a periodogram-based on-line change-point detec-
tion procedure but do not develop it theoretically+ The following papers deal
with change-point detection in a historical sample~a posteriori methods!+ Inclan
and Tiao~1994!, Kokoszka and Leipus~1999, 2000!, Kim, Cho, and Lee~2000!,
and Andreou and Ghysels~2002! study CUSUM type tests based on squared
observations+ Tests based on the empirical distribution function of the squared
residuals are studied by Horváth et al+ ~2001! and Kokoszka and Teyssiere
~2002!+ Inoue~2001! proposes a simulation-based method based on the empir-
ical distribution function of the observations and applies it to stochastic vola-
tility models+ CUSUM tests based on the partial sums of powers of residuals
are developed by Kulperger and Yu~2003!+ Kokoszka and Teyssière~2002! also
study a generalized likelihood ratio test+ Chu ~1995! and Lundbergh and Teräs-
virta ~2002! investigate Lagrange multiplier tests+ The preceding list is not meant
to be exhaustive but is intended to indicate a recent interest in and a variety of
approaches to the problem of change-point detection in GARCH processes+ For
a review of sequential testing strategies in the case of independent observa-
tions, see, e+g+, Gombay~1996, 2002!+

The paper is organized as follows+ In Section 2 we present the necessary
technical background on GARCH processes, which includes very weak assump-
tions on the model parameters and errors+ In particular, we do not require that
the innovationsei have a smooth density or that the observationsyi have finite
expected value+ Section 3 describes the monitoring scheme and contains results
establishing its asymptotic behavior under the null and under the alternative+
Results of a small simulation study are presented in Section 4+ Proofs are col-
lected in Sections 5–7+

2. DEFINITIONS AND ASSUMPTIONS

In this section we present the general framework used throughout the paper+
We recall the definition of a GARCH~ p,q! process and present recursions needed
to define the quasi–maximum likelihood estimator+ We state the conditions for
the existence of a stationary solution to the GARCH~ p,q! equations and for
the consistency and asymptotic normality of the maximum likelihood estima-
tor+ The section is based primarily on the results of Bougerol and Picard~1992a,
1992b! and Berkes et al+ ~2003!+

We assume that

yk 5 skek (2.8)

and under the no change null hypothesis

sk
2 5 v 1 (

1#i#p

ai yk2i
2 1 (

1#j#q

bj sk2j
2 , (2.9)
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whereu 5 ~v,a1, + + + ,ap,b1, + + + ,bq! is the parameter of the process+ Under the
alternative

sk
2 5 5v 1 (

1#i#p

ai yk2i
2 1 (

1#j#q

bi sk2j
2 , 2` , k # k*

v* 1 (
1#i#p

ai
*yk2i

2 1 (
1#j#q

bi
*sk2j

2 , k* , k , `,
(2.10)

i+e+, a change in the parameters occurred at timek* and the new parameter is
u* 5 ~v*,a1

*, + + + , ap
*,b1

*, + + + ,bq
*!+ In the following discussion, we refer to the

specification~2+9! as the null hypothesisH0 and to~2+10! for some integerk*

as the alternative hypothesisHA+
Throughout this paper we assume that

ek,2` , k , ` are independent, identicallydistributed random variables+

(2.11)

Note that like Bougerol and Picard~1992a! we do not assume that the errorsek

have mean zero+ Our procedure is not based on the deviations of residuals from
zero+ Additional assumptions on the distribution of theek are stated in condi-
tions ~2+17!–~2+19!+

Our procedure is based on the quasi–maximum likelihood estimator of the
parameters of a GARCH process developed by Lee and Hansen~1994!, Lums-
daine~1996!, and Berkes et al+ ~2003!+ ~For a more general method we refer to
Berkes and Horváth, 2004+! To define this estimator for general GARCH~ p,q!
processes, denote byu 5 ~x,s1, + + + ,sp, t1, + + + , tq! the generic element of the param-
eter spaceU, which, following Berkes et al+ ~2003!, is defined as follows: let
0 , tu , Su, 0 , r0 , 1, q tu , r0+ Then

U 5 $u : t1 1 t2 1 {{{ 1 tq # r0 and tu , min~x,s1,s2, + + + ,sp, t1, t2, + + + , tq!

# max~x,s1,s2, + + + ,sp, t1, t2, + + + , tq! # Su%+

We assume that

u [ U+ (2.12)

Define now the log quasi-likelihood function as

ZLm~u! 5
1

m (
1,k#m

2
1

2 Hlog [wk~u! 1
yk

2

[wk~u!J ,
where

[wk~u! 5 c0~u! 1 (
1#i,k

ci ~u!yk2i
2 +
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The functionsci ~u!, 0 # i , ` are defined by recursion+ If q $ p, then

c0~u! 5 x0~12 ~t1 1 {{{ 1 tq!!,

c1~u! 5 s1,

c2~u! 5 s2 1 t1c1~u!,

I

cp~u! 5 sp 1 t1cp21~u! 1 {{{ 1 tp21c1~u!,

cp11~u! 5 t1cp~u! 1 {{{ 1 tpc1~u!,

I

cq~u! 5 t1cq21~u! 1 {{{ 1 tq21c1~u!,

and if q , p, the preceding equations are replaced with

c0~u! 5 x0~12 ~t1 1 {{{ 1 tq!!,

c1~u! 5 s1,

c2~u! 5 s2 1 t1c1~u!,

I

cq11~u! 5 sq11 1 t1cq~u! 1 {{{ 1 tqc1~u!,

I

cp~u! 5 sp 1 t1cp21~u! 1 {{{ 1 tqcp2q~u!+

In general, if i . R 5 max~ p,q!, then

ci ~u! 5 t1ci21~u! 1 t2ci22~u! 1 {{{ 1 tqci2q~u!+

The preceding recursions ensure that for the true valueu, sk
2 5 c0~u! 1

(1#i,` ci ~u!yk2i
2 +

To formulate a necessary and sufficient condition for the existence of a unique
stationary sequence satisfying~2+8! and ~2+9! we must introduce further nota-
tion+ Let

tn 5 ~b1 1 a1en
2,b2, + + + ,bq21! [ Rq21,

jn 5 ~en
2,0, + + + ,0! [ Rq21,

and

a 5 ~a2, + + + ,ap21! [ Rp22+
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~Clearly, without loss of generality we may and shall assume min~ p,q! $ 2+!
Define the~ p 1 q 2 1! 3 ~ p 1 q 2 1! matrix An, written in block form, by

An 5 3
t bq a ap

I q21 0 0 0

jn 0 0 0

0 0 I p22 0
4 ,

whereI q21 and I p22 are the identity matrices of sizeq 2 1 andp 2 2, respec-
tively+ The norm of anyd 3 d matrix M is defined by

7M7 5 sup$7Mx7d 07x7d : x [ Rd, x Þ 0%,

where7{7d is the euclidean norm inRd+ The top Lyapunov exponentgL asso-
ciated with the sequence$An,2` , n , `% is

gL 5 inf
1#n,`

1

n
E log7A0 A1 + + +An7,

assuming that

E~ log7A07! , `+ (2.13)

~We note that7A07 $ 1; cf+ Berkes et al+, 2003+! Bougerol and Picard~1992a,
1992b! show that if~2+13! holds, then~2+8! and~2+9! have a unique stationary
solution if and only if

gL , 0+ (2.14)

We note that~2+14! impliesb1 1 {{{ 1 bq , 1 ~cf+ Bougerol and Picard, 1992b!+
The next two conditions are needed to uniquely identify the parameteru:

the polynomialsa1 x 1 a2 x2 1 {{{ 1 ap x p and

12 b1 x 2 b2 x2 2 {{{ 2 bq xq are coprimes on the set of polynomials

with real coefficients, (2.15)

and

e0
2 is a nondegenerate random variable+ (2.16)

We also assume

lim
tr0

t2mP$e0
2 # t % 5 0 with somem . 0, (2.17)

which will be needed to estimate the moments ofw0~u!0w0~u! ~cf+ Berkes et al+,
2003!+
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Finally, the last set of conditions concerns the moments ofe0:

Ee0
2 5 1 (2.18)

and

E6e0
2621d , ` with somed . 0+ (2.19)

Berkes et al+ ~2003! show thatm102~ Zum 2 u! is asymptotically normal if~2+8!,
~2+9!, and~2+13!–~2+19! hold+

3. MAIN RESULTS

Suppose we have observedy1, + + + , ym, which represent available historical data+
The estimator for the unknown parameteru based on these data is defined by

Zum 5 arg max$ ZLm~u! : u [ U %, (3.20)

whereU is a suitably chosen compact set defined in Section 2+ Using the nota-
tion introduced in Section 2, we also define the conditional likelihoods

Z,i ~u! 5 2
1

2 Hlog [wi ~u! 1
yi

2

[wi ~u!J
and the matrix

ZDm 5
1

m (
1,i#m

~ Z,i
'~ Zum!!T Z,i

'~ Zum!+

~Here T denotes the transpose of vectors and matrices+!
Let 6{6 denote the maximum norm of vectors and matrices+We can now define

the stopping timekm as

km 5 minHk : * (
m,i#m1k

Z,i
'~ Zum! ZDm

2102* . m102S11
k

mDbS k

mDJ +
If km , `, we say that a change occurred+ We choose the boundary function
b~t ! so that

lim
mr`

PH0
$km , `% 5 a, (3.21)

where 0, a , 1 is a prescribed number and

lim
mr`

PHA
$km , `% 5 1+ (3.22)

Recall thatH0 is defined by~2+8! and ~2+9! and HA by ~2+8! and ~2+10!+
Conditions on the boundary functionb~{! are specified in the following two
sections, which study the asymptotic behavior of the monitoring scheme, respec-
tively, underH0 and HA+ Unlike for the scheme of Chu et al+ ~1996!, which
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requires more complex boundary functions, in our setting, the simplest choice
satisfying all the assumptions is to take a constantb~t ! 5 b . 0+

3.1. Monitoring Scheme under H0

Throughout this section we assume that~2+8! and~2+9! hold+
It follows from the definition that the matrixZDm is nonnegative definite+We

show in Proposition 3+1, which follows, that ZDm is nonsingular with probability
tending to one asm r `+ Hence ZDm

2102 exists with probability tending to one
asm r `+

To formulate Proposition 3+1, we define

wk~u! 5 c0~u! 1 (
1#i,`

ci ~u!yk2i
2

and

,k~u! 5 2
1

2Slog wk~u! 1
yk

2

wk~u!D+
Finally, define

D~u! 5 E @~,0
' ~u!!T,0

' ~u!#

and

D 5 D~u!+

PROPOSITION 3+1+ If (2.8), (2.9), and (2.13)–(2.19) are satisfied, then

ZDm r D a+s+

Also,D is a positive definite, nonsingular matrix.

The proof of Proposition 3+1 is presented in Section 5+
We impose the following conditions on the boundary functionb~t !:

b~t ! is continuous on~0,`! (3.23)

and

inf
0,t,`

b~t ! . 0+ (3.24)

THEOREM 3+1+ If (2.8), (2.9), (2.13)–(2.19), and conditions (3.23) and (3.24)
are satisfied, then

lim
mr`

PH0
$km , `% 5 1 2 SPH sup

0#t,1

6W~t !6

b~t0~12 t !!
# 1JDp1q11

,

where$W~t !, 0 # t # 1% denotes a Wiener process.
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The proof of Theorem 3+1 is presented in Section 6+

Choosingb~t ! 5 b, a constant function, and using the well-known formula
for the distribution function of sup0#t#16W~t !6 ~cf+ Csörgőand Révész, 1981,
p+ 43! we obtain the following corollary+

COROLLARY 3+1+ If (2.8), (2.9), (2.13)–(2.19), and conditions (3.23) and
(3.24) are satisfied, then

lim
mr`

PH0
$km , `% 5 1 2 SPH sup

0#t#1
6W~t !6# bJDp1q11

5 12 H 4

p (
0#k,`

~21!k

2k 1 1
expS2

p2~2k 1 1!2

8b2 DJp1q11

+

Corollary 3+1 allows us to specify the critical levelb for any significance
level a in ~3+21!+

3.2. Monitoring Scheme under HA

Under the alternative~2+10! the parameter changes fromu to u* at timek* . m+
We define the sequence$zk, 2` , k , `% , which represents the model after a
change in parameters, by the equations

zk 5 gkek (3.25)

and

gk
2 5 v* 1 (

1#i#p

ai
*zk2i

2 1 (
1#j#q

bj
*gk2j

2 + (3.26)

The error sequenceek has not changed+
Our first condition is that the parameteru* defines a GARCH~ p,q! process+

The vectors tn
* 5 ~b1

* 1 a1
* en

2,b2
*, + + + ,bq21

* ! [ Rq21 and a * 5
~a2
*, + + + ,ap21

* ! [ Rp22 are defined astn anda in Section 2, but ai andbi are
replaced byai

* andbj
*+ Similarly to An we define

An
* 5 3

tn
* bq

* a * ap
*

I q21 0 0 0

jn 0 0 0

0 0 I p22 0
4 +

The top Lyapunov exponent of the sequenceAn
* , 2` , n , ` is denoted by

gL
*+ As in Section 2, the equations~3+25! and ~3+26! have a unique stationary

solution if and only if

gL
* , 0, (3.27)
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assuming that

E~ log7A0
* 7! , `+ (3.28)

Similarly to ,i ~u! we define

gi ~u! 5 2
1

2 Hlog vi ~u! 1
zi

2

vi ~u!J ,
where

vi ~u! 5 c0~u! 1 (
1#j,`

cj ~u!zj2i
2 +

Hence

gi
'~u! 5

1

2Sei
2

gi
2

vi ~u!

vi'~u!

vi ~u!
2
vi'~u!

vi ~u!D+
Let

Sg~u! 5 Eg0~u!+

We assume that

Sg'~u! Þ 0 (3.29)

and

there isU *, a neighborhood ofu, such that Sg~u!, Sg'~u!, Sg''~u!

exist and are continuous for eachu [ U *+ (3.30)

We note that under some regularity conditionsSg'~u! 5 0 if and only if u 5 u*

~cf+ Berkes et al+, 2003, Lemma 5+5!+ We also assume that

k* 5 k*~m! and lim sup
mr`

~k*0m! , ` (3.31)

and

sup
0,t,`

b~t ! , `+ (3.32)

THEOREM 3+2+ If (2.8), (2.10), (2.13)–(2.19), (3.23), (3.24), and (3.25)–
(3.32) hold, then

lim
mr`

PHA
$km , `% 5 1+

The proof of Theorem 3+2 is presented in Section 7+
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4. SIMULATIONS

In this section we report the results of a simulation study intended to assess the
behavior of the procedure in finite samples+ Even before we commenced the
numerical experiments, it was clear to us that much larger sample sizes than
those considered by Chu et al+ ~1996! would be needed for the asymptotic behav-
ior to manifest itself+ There are two main reasons for this+ First, the required
model estimation in Chu et al+ consists essentially in estimating the mean of
normal variables, and it is well known that already for samples of size 50 such
estimates are very accurate+ In our context, we have to estimate the parameters
of a GARCH process via nonlinear optimization+ It is well known that although
these estimates are optimal when the innovations are normal~the case we con-
sidered in the simulation study!, they may have large biases and standard errors
even for samples as large as 1,000+ For a sample size of 1,000, these estimators
are accurate for a wide range of parameters, but for some choices of param-
eters they exhibit large biases+ Second, our procedure requires the estimation
of the covariance matrixZDm+ Because there is no close formula forZDm, it would
have to be estimated even if the parameters were known+We conducted a num-
ber of experiments, not reported here in a systematic way, in which we used
the exact values of the GARCH parameters rather than their estimates+ Even in
this situation, samples of size about 1,000 are required to obtain relatively sta-
ble estimates of ZDm+

We now proceed with a detailed description of our simulation study and the
conclusions it leads to+ We focused on the popular GARCH~1,1! models and
considered a wide range of the parametersv, a1, andb1+ The GARCH models
were simulated and estimated using the S1 module GARCH, whereas for the
estimation of ZDm it was necessary to write a much faster C11 code and inter-
face it with S1+

We report the results for three GARCH~1,1! models:

Model I: v 5 0+05, a1 5 0+4, b1 5 0+3;
Model II: v 5 0+05, a1 5 0+5, b1 5 0+0;
Model III: v 5 1+0, a1 5 0+3, b1 5 0+2+

The results for these three models are fairly representative of the overall
conclusions+

To facilitate the graphical presentation of the results, we work with the nor-
malized decision function

C~k! 5 S11
k

m
D21 1

Mm *F (
m,i#m1k

l i
'~ Zum! ZDm

2102G*, 1 # k , `+

A change in parameters is signaled ifC~k! . c~a!, wherec~a! satisfies

12 PS sup
0,t,1

6W~t !6 # c~a!D3
5 a+ (4.33)
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Table 1 gives the critical values for the conventional significance levels+
In Table 2 we report the empirical rejection probabilities of the null hypoth-

esis of no change in the model parameters assuming this hypothesis is true+ It
is seen that for models with pronounced GARCH characteristics, i+e+, param-
etersa1 andb1 much larger thanv, the procedure has correct size for monitor-
ing horizons of about 500 time units with the 10% bound being somewhat more
reliable+ By a monitoring horizon we understand here the length of time we are
willing to use the procedure without updating the parameters+ We note that the
theory developed in this paper shows that the empirical size tends to the nom-
inal size asmr `, so for any finitem size distortions will be present+ This is
particularly visible if the GARCH parameters are difficult to estimate, as in
Model III ~the process looks more like a white noise!; the procedure has a high
probability of type I error+We conjecture that in such situationsm much larger
than 1,000 would be required to obtain empirical size close to the nominal size+
Using the true values ofa1, b1, andv, leads to entries about half the size of
those reported in Table 2+With m5 1,000, the method is not accurate for mon-
itoring horizons longer than 500 and cannot be used in an automatic way+ As
we mention in the discussion toward the end of this section, a visual real-time
inspection of the graph ofC~k! following an alarm~critical level exceeded!
might indicate that there is no reason to suspect a change in model parameters

Table 1. Critical values calculated according to relation~4+1!

a 0+10 0+05 0+01

c~a! 2+382 2+632 3+150

Table 2. Empirical sizes for monitoring horizonsk

k 100 200 300 400 500 600 700 800 900 1,000

Model I: v 5 0.05,a1 5 0.4, b1 5 0.3
a 5 0+10 0+001 0+008 0+021 0+045 0+072 0+099 0+132 0+146 0+165 0+183
a 5 0+05 0+001 0+003 0+009 0+028 0+052 0+070 0+095 0+112 0+127 0+139

Model II: v 5 0.05,a1 5 0.5, b1 5 0.0
a 5 0+10 0+013 0+027 0+041 0+054 0+068 0+080 0+099 0+116 0+129 0+137
a 5 0+05 0+013 0+026 0+038 0+051 0+066 0+076 0+090 0+109 0+120 0+128

Model III: v 5 1.0, a1 5 0.3, b1 5 0.2
a 5 0+10 0+047 0+146 0+237 0+329 0+407 0+465 0+519 0+561 0+593 0+616
a 5 0+05 0+029 0+101 0+190 0+256 0+334 0+390 0+440 0+483 0+516 0+539

Note: Simulations were done withm 5 1,000 and are based on 2,000 replications+
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~see Figure 3!+Alternatively, finite-sample corrections could be obtained by sim-
ulation for specific values ofm and monitoring horizons of interest+ Such sim-
ulations would be specific to a problem at hand and have not been conducted+

The power of the procedure for three change-point scenarios is reported in
Table 3+ As can be expected, large changes in parameters are detected more
reliably+

From a practical point of view, it is more useful to study the distribution of
the detection delay time or, equivalently, the distribution of the random time
when the decision functionC~k! first exceeds a critical level+ In Table 4, we
report selected descriptive statistics for such distributions+ The estimated den-
sities are depicted in Figure 1+

Focusing first on the first three change-point models reported in Table 4, we
note that the distribution of the delay time is fairly symmetric but its spread
increases as the change point moves further away from the point where the
monitoring was initiated+ Similar findings were reported in Chu et al+ ~1996!+
However, unlike for the fluctuation monitoring scheme investigated in Chu et al+,
the average delay time does not appear to increase with the distance of the
change point from the initiation point, and it is about 20 for a change from
Model I to Model III+ For relatively less significant changes in parameters, such
as the change from Model I to Model II, the delay time is much longer+ Even in
such situations, however, a visual real-time inspection of the graph ofC~k!
may suggest that something is happening to the parameters of the model+ In the
panel in the right-bottom corner of Figure 2, five randomly selected trajecto-
ries of C~k! for the change from Model I to Model II are shown+ A picture of
this type may be fairly typical in real-data applications as the parameters need

Table 3. Empirical power of the test

k 100 200 300 400 500 600 700 800 900 1,000

Model I changes to Model III at k* 5 50
a 5 0+10 0+975 1 1 1 1 1 1 1 1 1
a 5 0+05 0+962 1 1 1 1 1 1 1 1 1

Model I changes to Model III at k* 5 250
a 5 0+10 0+002 0+004 0+947 1 1 1 1 1 1 1
a 5 0+05 0+000 0+003 0+932 1 1 1 1 1 1 1

Model I changes to Model III at k* 5 500
a 5 0+10 0+000 0+009 0+020 0+037 0+055 0+999 1 1 1 1
a 5 0+05 0+000 0+005 0+012 0+024 0+034 0+998 1 1 1 1

Model I changes to Model II at k* 5 250
a 5 0+10 0+002 0+004 0+017 0+071 0+252 0+523 0+735 0+859 0+927 0+966
a 5 0+05 0+000 0+003 0+008 0+045 0+177 0+407 0+646 0+796 0+892 0+946

Note: For eachk, the fraction of trajectories crossing the critical levels from Table 1 is reported+ Simulations
were done withm 5 1,000 and are based on 1,000 replications+
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not switch immediately into a new regime but may evolve gradually through a
number of smaller changes+ In contrast, as shown in Figure 3, if there is no
change, the trajectory ofC~k! may occasionally exceed the critical value, but it
will not show a pronounced upward trend such as that manifest in Figure 2+

Table 4. Elementary statistics for the distribution of the first exceedance of
the 10% critical level

Mean SE Min Q1 Med Q3 Max

Model I changes to Model III at k* 5 50
71+4 12+4 50 63 71 79 135

Model I changes to Model III at k* 5 250
272+3 18+1 89 262 271 282 338

Model I changes to Model III at k* 5 500
516+4 54+7 121 511 523 538 618

Model I changes to Model II at k* 5 250
612+9 166+5 89 498 589 710 1,000

Note: The estimated densities are graphed in Figure 1+ Simulations were done withm5 1,000 and are based on
1,000 replications+

Figure 1. Estimated densities of the first exceedance of the 10% critical level+ Esti-
mates were obtained using the cosine kernel with support of length 70+ Simulations were
done withm 5 1,000 and are based on 1,000 replications+
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5. PROOF OF PROPOSITION 3.1

Let

ZDm~u! 5
1

m (
1,i#m

~ Z,i
'~u!!T Z,i

'~u!

and

Dm~u! 5
1

m (
1#i#m

~,i
'~u!!T,i

'~u!+

In the proof of their Lemma 5+8, Berkes et al+ ~2003! show that there is a con-
stant 0, ® , 1 and a positive random variablej such that

sup
u[U
6 Z,k
'~u! 2 ,k

'~u!6 # j®k+ (5.34)

Berkes et al+ ~2003! also show that supu[U 6,i ~u!6 is a stationary sequence and

E sup
u[U
6,0~u!6 , `+

Figure 2. Five randomly selected realizations of the sequenceC~k! for the data sum-
marized in Table 4+ The vertical lines correspond to 10% critical values+ The correspond-
ing estimated densities of the first hitting time are depicted in Figure 1+
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Hence

sup
u[U
6 ZDm~u! 2 Dm~u!6 #

1

mS2j (
1,i#m

r i sup
u[U
6,i ~u!61 j2 (

1,i#m

r2iD
5
a+s+

OS 1

m
D (5.35)

by Lemma 2+2 of Berkes et al+ ~2003!+
Next we show that

E sup
u[U
6~,0
' ~u!!T,0

' ~u!6 , `+ (5.36)

By ~6+49! we have that

sup
u[U
6~,0
' ~u!!T,0~u!6 # sup

u[U
6, '~u!62

# e0
4Ssup

u[U

s0
2

w0~u!D2Ssup
u[U

6w0
' ~u!6

w0~u! D2

1Ssup
u[U

6w0
' ~u!6

w0~u! D2

+

Figure 3. Five randomly selected realizations of the sequenceC~k! for Model I and
m51,000+ The two horizontal lines correspond to 5 and 10% critical values from Table 1+
The fractions of trajectories crossing these lines before timek are reported in Table 2+
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Using the independence ofe0 and~w0~u!,s0
2!, u [ U we get that

Ee0
4Ssup

u[U

s0
2

w0~u!D2Ssup
u[U

6w0
' ~u!6

w0~u! D2

5 Ee0
4ESsup

u[U

s0
2

w0~u!D2Ssup
u[U

6w0
' ~u!6

w0~u! D2

# Ee0
4ESESsup

u[U

s0
2

w0~u!D21d02D20~21d02!SESsup
u[U

6w0
' ~u!6

w0~u! D2~41d!0dDd0~41d!

+

Lemma 5+1 of Berkes et al+ ~2003! yields that

ESsup
u[U

s0
2

w0~u!D21d02

, `, (5.37)

and Lemma 3+6 of Berkes and Horváth~2004! gives

ESsup
u[U

6w0
' ~u!6

w0~u! D2~41d!0d

, `+

Hence the proof of~5+36! is complete+ For eachu [ U, ,i
'~u! is a stationary

and ergodic sequence+ So by~5+36! we can use the ergodic theorem, resulting in

Dm~u! r D~u! a+s+ for anyu [ U+ (5.38)

Next we show that there are a constantC1 andU * # U, a neighborhood of
u, such that

6E~,0
' ~u!!T,0

' ~u! 2 E~,0
' ~v!!T,0

' ~v!6 # C16u 2 v6, if u,v [ U *+ (5.39)

Using ~6+49! we can write

E supH 1

6u 2 v6
6~,0
' ~u!!T~,0

' ~u! 2 ,0
' ~v!!6: u,v [ U *J # A1 1 {{{ 1 A4,

(5.40)

where

A1 5 Ee0
4E supH 1

6u 2 v6

s0
2

w0~u! *Sw0
' ~u!

w0~u!DT

s0
2Sw0

' ~u!

w0
2~u!

2
w0
' ~v!

w0
2~v!D*: u,v [ U *J ,

A2 5 Ee0
2E supH 1

6u 2 v6 * s0
2

w0~u!Sw0
' ~u!

w0~u!DTSw0
' ~u!

w0~u!
2

w0
' ~v!

w0~v!D*: u,v [ U *J ,
A3 5 Ee0

2E supH 1

6u 2 v6 *Sw0
' ~u!

w0~u!DT

s0
2Sw0

' ~u!

w0
2~u!

2
w0
' ~v!

w0
2~v!D*: u,v [ U *J ,
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and

A4 5 E supH 1

6u 2 v6 *Sw0
' ~u!

w0~u!DTSw0
' ~u!

w0~u!
2

w0
' ~v!

w0~v!D*: u,v [ U *J +
Using the mean value theorem coordinate-wise we get that

A1 # C2 EFSsupH s0
2

w0~u!
,u [ UJD2

3 supH 6w0
' ~u!6

w0~u!
: u [ UJ supH w0~v!

w0~u!
;u,v [ U *J

1 SsupH 6w0
' ~u!6

w0~u!
: u [ UJD2SsupH w0~v!

w0~u!
: u,v [ U *JD2G+

By the Hölder inequality we have

A1 # C2HESsupH s0
2

w0~u!
u [ UJD21d02J20~41d!

3 SEHSsupH 6w0
' ~u!6

w0~u!
: u [ UJD2

3 Ssup
w0~v!

w0~u!
: u,v [ U *D2

1 1J~41d!0dDd0~41d!

+ (5.41)

By ~5+37!, the first expected value is finite in~5+41!+ Using the Cauchy inequal-
ity we get that

EFHsupS 6w0
' ~u!6

w0~u!
: u [ UDJ~812d!0d HsupSw0~v!

w0~u!
: u,v [ U *DJ~812d!0dG

# HESsup
6w0
' ~u!6

w0~u!
: u [ UD~1614d!0d

3 ESsupSw0~v!

w0~u!
: u,v [ U *DD~1614d!0dJ102

+ (5.42)

The first expected value on the right-hand side of~5+42! is finite according to
Lemma 3+6 of Berkes and Horváth~2004!+ The second expected value on the
right-hand side of~5+42! is finite by Lemma 3+7 of Berkes and Horváth~2004!
assuming thatU * is a small enough neighborhood ofu+ Hence

A1 , `+ (5.43)
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Similar arguments show that

Ai , `, i 5 2,3,4, (5.44)

implying that

E supH 1

6u 2 v6
6~,0
' ~u!!T~,0

' ~u! 2 ,0
' ~v!!6: u,v [ U *J , `, (5.45)

assuming thatU * is a small enough neighborhood ofu+ By symmetry, we have
that

E supH 1

6u 2 v6
6~,0
' ~u! 2 ,0

' ~v!!T,0
' ~v!6: u,v [ U *J , `+ (5.46)

Hence the proof of~5+39! is complete+
We note that

sup
u,v[U *

1

6u 2 v6
6Dm~u! 2 Dm~v!6

#
2

m (
1,i#m

sup
u,v[U *

1

6u 2 v6
6~,i
'~u!!T,i

'~u! 2 ~,i
'~v!!T,i

'~v!6+

Because sup$6~,i
'~u!!T,i

'~u! 2 ~,i
'~v!!T,i

'~v!606u 2 v6: u,v [ U *% is a station-
ary and ergodic sequence with finite mean by~5+39!, the ergodic theorem implies
that

lim
mr`

1

6u 2 v6
6Dm~u! 2 Dm~v!6 5 c*

with some constantc*+ Hence by~5+38! we have that

sup
u[U *
6Dm~u! 2 D~u!6r 0 a+s+ (5.47)

Berkes et al+ ~2003! show that

Zum r u a+s+, (5.48)

and therefore the first part of Proposition 3+1 follows from ~5+47!+
The nonsingularity ofD 5 D~u! is proved by Berkes et al+ ~2003!, and the

positive definiteness ofD is obvious+

6. PROOF OF THEOREM 3.1

The proof of Theorem 3+1 is based on several lemmas, which we present after
introducing some additional notation+
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Let

,i ~u! 5 2
1

2 Hlog wi ~u! 1
yi

2

wi ~u!J ,
where

wi ~u! 5 c0~u! 1 (
1#j,`

cj ~u!yj2i
2 +

We note that

,i
'~u! 5

1

2Sei
2

si
2

wi ~u!

wi
'~u!

wi ~u!
2

wi
'~u!

wi ~u!D, (6.49)

and we define

Tm~k,u! 5 (
m,i#m1k

,i
'~u!, 1 # k , `+

LEMMA 6 +1+ If the conditions of Theorem 3.1 are satisfied, then

sup
1#k,`

* (
m,i#m1k

Z,i
'~ Zum! 2 Tm~k, Zum!*YSm102S11

k

m
DbS k

m
DD 5

a+s+
O~m2102!,

as mr `.

Proof+ By Lemmas 5+8 and 5+9 of Berkes et al+ ~2003! we have that

sup
u[U * (

1#i#n

~ Z,i
'~u! 2 ,i

'~u!!* 5
a+s+

O~1!,

implying Lemma 6+1+ n

Let

Z ~u! 5 E,0
''~u!+

LEMMA 6 +2+ If the conditions of Theorem 3.1 are satisfied, then there is
U *, a neighborhood ofu, such that

sup
u[U * *

1

n (
1#i#n

,i
''~u! 2 Z ~u!*r 0 a+s+

Proof+ This is Lemma 5+6 in Berkes et al+ ~2003!+ n
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LEMMA 6 +3+ If the conditions of Theorem 3.1 are satisfied, then

sup
1#k,`

* (
m,i#m1k

,i
'~ Zum! 2 S (

m,i#m1k

,i
'~u! 1 ~ Zum 2 u!kZ ~u!D*

m102S11
k

m
DbS k

m
D 5 oP~1!,

as mr `.

Proof+ First we show that there is a neighborhood ofu, say, U *, such that

sup
1#k,`

sup
u[U *

* (
m,i#m1k

,i
''~u! 2 kZ ~u!*

mS11
k

m
DbS k

m
D 5 oP~1!, (6.50)

as m r `+ Because,i
''~u!, u [ U * is a stationary sequence, by ~3+24! it is

enough to prove that

sup
1#k,`

sup
u[U *

* (
k,i#m1k

,i
''~u! 2 kZ ~u!*

m1 k
5 oP~1!, asmr `+ (6.51)

However, ~6+51! is an immediate consequence of Lemma 6+2+ Theorem 4+4 of
Berkes et al+ ~2003! implies that

6 Zum 2 u6 5 OP~m2102!+ (6.52)

Using the mean value theorem coordinate-wise for(,i
'~ Zum! and then~6+50!,

~6+52! for the coordinates of(,i
''~u! we get Lemma 6+3+ n

LEMMA 6 +4+ If (2.8), (2.9), and (2.13)–(2.19) are satisfied, then

Zum 2 u 5 2
1

m (
1#i#m

,i
'~u!Z21~u!~11 o~1!! a+s+

as mr `+

Proof+ Lemma 6+4 follows from Theorem 4+4 of Berkes et al+ ~2003!+ n

LEMMA 6 +5+ If the conditions of Theorem 3.1 are satisfied, then

sup
1#k,`

* (
m,i#m1k

,i
'~ Zum! 2 S (

m,i#m1k

,i
'~u! 2

k

m (
1#i#m

,i
'~u!D*

m102S11
k

m
DbS k

m
D 5 oP~1!,

as mr `.
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Proof+ We note that

max
1,k#m

* k

m (
1#i#m

,i
'~u!*

m102S11
k

m
DbS k

m
D

# sup
1#k,`

k

m

11
k

m

sup
1#j,`

1

bS j

k
D m2102* (

1#i#m

,i
'~u!*5 OP~1!,

by conditions ~3+23!, ~3+24!, and the asymptotic normality ofm2102 3

(1#i#m ,i
'~u! ~cf+ Berkes et al+, 2003!+ Hence putting together Lemmas 6+3 and

6+4 we get the result in Lemma 6+5+ n

LEMMA 6 +6+ If the conditions of Theorem 3.1 are satisfied, then

sup
1#k,`

* (
m,i#m1k

,i
'~u! 2

k

m (
1#i#m

,i
'~u!*

m102S11
k

m
DbS k

m
D

D
&& sup

0,t,`

6WD~11 t ! 2 ~11 t !WD~1!6

~11 t !b~t !
,

as m r `, where WD~s! is a Gaussian process with EWD~s! 5 0 and
EWD

T~s!WD~s' ! 5 min~s,s'!D+

Proof+ As is shown in Berkes et al+ ~2003!, ,i
'~u! is a stationary ergodic

martingale difference sequence; clearly cov~,i
'~u!! 5 D+ Hence the Cramér–

Wold device~cf+ Billingsley, 1968, p+ 206! yields that for anyT . 0

m2102 (
1#i#mt

,i
'~u!

D@0,T #
&& WD~t ! asmr `+ (6.53)

Hence

m2102 H (
m,i#m~11t !

,i
'~u! 2 t (

1#i#m

,i
'~u!J D@0,T #

&& WD~11 t ! 2 ~11 t !WD~1!

(6.54)

for any T . 0 asm r `+ By the Hájek–Rényi–Chow inequality~cf+ Chow,
1960! we have

lim
Tr`

lim sup
mr`

PH sup
mT#k,` * (

1#i#m1k

,i
'~u!*YSm102S11

k

mDbS k

mDD $ xJ 5 0

(6.55)
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for any x . 0+ The coordinates ofWD~t ! are Brownian motions, so by the law
of the iterated logarithm and~3+24! we have

sup
T#t,`

6WD~11 t !6

~11 t !b~t !
r 0 a+s+ ~T r `!+ (6.56)

Lemma 6+6 now follows from~6+53!–~6+56!+ n

Proof of Theorem 3+1+ Putting together Lemmas 6+1–6+6 we get that

sup
1#k,`

* (
m,i#m1k

,i
'~ Zum! ZDm

2102*
m102S11

k

m
DbS k

m
D

D
&& sup

0,t,`

6~WD~11 t ! 2 ~11 t !WD~1!!D2102 6

~11 t !b~t !
+

Elementary arguments show that

E$~WD~11 t ! 2 ~11 t !WD~1!!D2102%T$~WD~11 s! 2 ~11 s!WD~1!!D2102%

5 t~11 s!I p1q11, t # s,

whereI p1q11 is the identity matrix inRp1q11+ Computing the covariances one
can verify that

$~WD~11 t ! 2 ~11 t !WD~1!!D2102, t $ 0%

5
D H~11 t !W1S t

11 t
D, + + + , ~11 t !Wp1q11S t

11 t
D, t $ 0J ,

whereW1,W2, + + + ,Wp1q11 are independent Wiener processes+ Hence

sup
0,t,`

6~WD~11 t ! 2 ~11 t !WD~1!!D2102 6

~11 t !b~t !
5
D

max
1#i#p1q11

sup
0,s,1

6Wi ~s!6

bS s

12 s
D ,

completing the proof of Theorem 3+1+ n

7. PROOF OF THEOREM 3.2

By Proposition 3+1 it is enough to show that

sup
1#k,`

* (
m,i#m1k

Z,i
'~ Zum!D2102*YSm102S11

k

m
DD P

&& `, (7.57)

asm r `+ Theorem 3+1 yields that

sup
1#k#k*2m

* (
m,i#m1k

Z,i
'~ Zum!D2102*YSm102S11

k

m
DD 5 OP~1!,
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as m r `+ Let Xn 5 ~sn11
2 , + + + ,sn2p12

2 , yn
2, + + + , yn2q12

2 !T [ Rp1q21 and d 5
~v*,0, + + + ,0!T+ Using ~2+9! and~2+10! we get that

Xn11 5 An11
* Xn 1 d if n $ k*,

and induction yields

Xk*1k 5 Ak*1k
* + + +Ak*11

* Xk* 1 S (
0#i#k21

Ak*1k
* Ak*1k21

* + + +Ak*1k2i
* 1 I p1q21Dd+

Condition ~3+25! and the independence of the matricesAj
* yield that there is a

constant 0, ®* , 1 such that

6Ak*1k
* + + +Ak*11

* Xk* 6 5 OP~®*
k!+

Thus

6yk*1k
2 2 zk*1k

2 6 5 OP~®*
k! (7.58)

and

6sk*1k
2 2 gk*1k

2 6 5 OP~®*
k!+ (7.59)

Hence following the proof of Lemma 6+1, one can easily derive from~7+58!
and~7+59! that

sup
k*2m,k,`

* (
m,i#m1k

~ Z,i
'~ Zum! 2 gi

'~ Zum!!*YSm102S11
k

m
DD 5 oP~1!+

Using the mean value coordinate-wise and the ergodic theorem we get that

(
m,i#m1k

gi
'~ Zum! 5 (

m,i#m1k

gi
'~u! 1 ~ Zum 2 u!k~ Sg''~u!T 1 oP~1!!

5 k~ Sg'~u! 1 oP~1!!+ (7.60)

Choosing any sequenceDk 5 Dk~m! satisfying Dk0m102 r ` and Dk 5 O~m! we get
from ~7+60!

* (
m,i#m1 Dk

gi
'~ Zum!D2102*YSm102S11

Dk
m
DD

5 6 Sg'~u!D2102 1 oP~1!6
Dk

m102S11
Dk

m
D

P
&& `,

because6 Sg'~u!D21026 Þ 0 by ~3+29!+
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