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1. Introduction

Let M be a complete Riemannian manifold and let D be a generalized Dirac operator
acting on sections of a Clifford bundle S over M . It is well known (see, for example, [1])
that there is a Weitzenbock formula

D2 = ∇∗∇ + R,

where R is a certain self-adjoint endomorphism of S constructed out of the curvature. (For
example, in the classical case of the Dirac operator associated with a spin-structure, R

is pointwise multiplication by 1
4 times the scalar curvature [4].)

The author’s coarse index theory associates with D an index that lies in the K-theory
of the ‘translation C∗-algebra’ C∗(M). As in the classical case, the index vanishes if the
curvature operator is uniformly bounded below by a positive constant. In [7, Proposi-
tion 3.11] this statement is generalized as follows. Suppose that there is a subset Z ⊆ M

such that for some constant a > 0 one has Rx � a2I (as self-adjoint endomorphisms
of Sx) for all x /∈ Z; we will then say that the operator R is uniformly positive outside Z.
The index of D then lies in the image of the map

K∗(C∗(Z)) → K∗(C∗(X)),

where Z is considered as a metric subspace of X. In particular, if the curvature is uni-
formly positive outside a compact set Z (so that C∗(Z) is the compact operators), one
recovers the result of Gromov and Lawson [1, Chapter 3] that D has an index in the
ordinary Fredholm sense.
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Only the briefest sketch of a proof of this proposition was included in [7]. This note is
a response to several requests for more detail and also mentions a couple of applications
of the idea.

2. The main result

Let Z be a subset of a proper metric space X and let H be an ample X-module (i.e. a
Hilbert space that is a ‘sufficiently large’ module over C0(X), assumed fixed). (The reader
is referred to [2] for terminology; the module action is denoted by ρ : C0(X) → B(H).)
The C∗-algebra C∗(X) (or C∗(X; H) if it is important to keep track of the particular
Hilbert space) is then defined to be the norm closure of the controlled locally compact
operators on H, where we recall that a controlled (also known as finite propagation)
operator T has the property that there is a constant r for which

d(Suppϕ, Suppψ) > r =⇒ ρ(ϕ)Tρ(ψ) = 0

for all ϕ, ψ ∈ Cc(X). A controlled operator T is supported near Z if there is another
constant r′ for which

d(Suppϕ, Z) > r′ =⇒ ρ(ϕ)T = 0 = Tρ(ϕ).

The norm closure of the set of controlled locally compact operators supported near Z

is an ideal in C∗(X), which we denote∗ by C∗(Z ⊆ X). It is easy to see [3] that the
K-theory of C∗(Z ⊆ X) is the same as that of C∗(Z), if Z is considered as a metric
space in its own right.

Now we recall the relation of these concepts to index theory. Suppose that X is actually
a complete Riemannian manifold and that S is a Clifford bundle and let H = L2(X; S)
in forming the algebras above. The algebra D∗(X) is defined to be the norm closure of
the controlled pseudolocal operators on H: it is a unital C∗-algebra and C∗(X) is an
ideal in it. The following key analytic lemma [2, Chapter 10] can be proved by the finite
propagation speed method.

Lemma 2.1. Let X be a complete Riemannian manifold, as above, and let S be a
Clifford bundle over it. Let D denote the Dirac operator of S, considered as an unbounded
self-adjoint operator on H = L2(X; S). If f is a bounded continuous function on R

that has finite limits at ±∞, then f(D) ∈ D∗(X; H). If f tends to zero at ±∞, then
f(D) ∈ C∗(X; H).

A normalizing function χ : R → [−1, 1] is, by definition, a continuous odd function
that tends to ±1 at ±∞. Given such a function χ, it follows from the preceding lemma
that χ(D) ∈ D∗(X) and χ(D)2 −1 ∈ C∗(X). Moreover, if χ1 and χ2 are two normalizing
functions, then it similarly follows that χ1(D) − χ2(D) ∈ C∗(X). Thus, the equivalence
class of χ(D) gives a well-defined self-adjoint involution in D∗(X)/C∗(X), defining an
element [χ(D)] ∈ Kj+1(D∗(X)/C∗(X)) (j is determined by the grading of the operator:
it is equal to the parity of dimX). We now have the following definition.

∗ It is denoted C∗
X(Z) in [7], but the other notation now seems better.
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Definition 2.2. With the notation of Lemma 2.1, the coarse index of D is

Index(D) = ∂[χ(D)] ∈ Kj(C∗(X)),

where ∂ : Kj+1(D∗(X)/C∗(X)) → Kj(C∗(X)) is the boundary map in the long exact
sequence of C∗-algebra K-theory.

Now let Z ⊆ X as above. The algebra C∗(Z ⊆ X) is an ideal in D∗(X) (not just in
C∗(X)). To prove our result we will need to sharpen Lemma 2.1 as follows.

Lemma 2.3. Let the notation be as in Lemma 2.1. Suppose that the curvature oper-
ator R = RD that appears in the Weitzenbock formula for D,

D2 = ∇∗∇ + RD,

is uniformly positive outside Z, say Rx � a2I for x /∈ Z. Then, for any f ∈ Cc(−a, a) we
have f(D) ∈ C∗(Z ⊆ X).

Suppose that this lemma has been proved. Then choose a normalizing function χ such
that χ2 − 1 is supported in (−a, a). According to Lemma 2.3, the equivalence class of
χ(D) is a (well-defined) self-adjoint involution in D∗(X)/C∗(Z ⊆ X). Following the
construction above, we obtain a localized index

IndexZ(D) ∈ Kj(C∗(Z ⊆ X))

that maps to the previously defined Index(D) under the K-theory map induced by the
inclusion C∗(Z ⊆ X) → C∗(X). The existence of this localized index is the precise con-
tent of [7, Proposition 3.11]; it implies the version of the result stated in the introduction.
To state it precisely, we have the following theorem.

Theorem 2.4. Let M be a complete Riemannian manifold and let D be a Dirac-type
operator whose associated curvature endomorphism RD is uniformly positive outside a
subset Z of M . Then the construction above defines a localized coarse index

IndexZ(D) ∈ Kj(C∗(Z ⊆ X))

that maps to the coarse index Index(D) ∈ Kj(C∗(M)) under the K-theory map induced
by the inclusion C∗(Z ⊆ X) → C∗(X). (Here j is the parity of dim M .)

The rest of this section will give the proof of Lemma 2.3. In order to use the finite
propagation speed method, we first consider the properties of functions f that have
compactly supported Fourier transforms.

Lemma 2.5. With notation as in Lemma 2.3, suppose that f ∈ S(R) is an even
function and has Fourier transform f̂ supported in (−r, r). Let ϕ ∈ C0(X) have support
disjoint from a 2r-neighbourhood of Z. Then

‖f(D)ρ(ϕ)‖ � ‖ϕ‖ sup{|f(λ)| : |λ| � a}

and the same estimate applies to ρ(ϕ)f(D).
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Proof. We use the Fourier cosine formula

f(D) =
1
π

∫ r

0
f̂(t) cos(tD) dt,

remembering that f̂(t) vanishes for t > r. Now let Un = {x ∈ X : d(x, Z) > nr},
for n = 1, 2, and consider the unbounded symmetric operator that is equal to D2 with
domain C∞

c (U1). This operator is bounded below by a2I and therefore it has a Friedrichs
extension on the Hilbert space L2(U1; S), which is also bounded below (with the same
bound) and which we shall denote by E.

A standard finite propagation speed argument shows that if s is smooth and compactly
supported in U2, then

cos(tD)s = cos(t
√

E)s for 0 � t � r.

In particular, cos(tD)ρ(ϕ) = cos(t
√

E)ρ(ϕ) for these values of t. Via the Fourier integral
above, this implies that f(D)Mϕ = f(

√
E)Mϕ. But since the spectrum of

√
E is bounded

below by a,
|f(

√
E)| � sup{|f(λ)| : |λ| � a},

and this gives the desired estimate. �

There is a version of Lemma 2.5 without the evenness hypothesis.

Lemma 2.6. With notation as above, suppose that f ∈ S(R) has Fourier transform f̂

supported in (−r, r). Let ϕ ∈ C0(X) have support disjoint from a 4r-neighbourhood of Z.
Then,

‖f(D)ρ(ϕ)‖ � 2‖ϕ‖ sup{|f(λ)| : |λ| � a}

and the same estimate applies to ρ(ϕ)f(D).

Proof. If f is even, this is a consequence of Lemma 2.5. If f is odd, use the C∗-identity
to write

‖f(D)ρ(ϕ)‖2 � ‖ρ(ϕ̄)‖ ‖|f |2(D)ρ(ϕ)‖.

The function g = |f |2 is even, belongs to S(R) and has Fourier transform supported in
(−2r, 2r). Thus, applying Lemma 2.5 to the function g,

‖|f |2(D)ρ(ϕ)‖ � ‖ϕ‖ sup{|f(λ)|2 : |λ| � a},

and so we obtain (on taking the square root)

‖f(D)ρ(ϕ)‖ � ‖ϕ‖ sup{|f(λ)| : |λ| � a},

which gives the desired result for odd f . The general result is obtained by writing f as a
sum of even and odd components (this decomposition accounts for the extra factor of 2
in the statement of Lemma 2.6). �
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Using this, let us complete the proof of Lemma 2.3. Let f be as in that lemma and
let ε > 0 be given. There exists a smooth function g with compactly supported Fourier
transform such that sup{|g(λ) − f(λ)| : λ ∈ R} < ε. In particular, |g(λ)| < ε for |λ| > a.
Let r be such that Supp(ĝ) ⊆ (−r, r) and let ψ : X → [0, 1] be a continuous function
equal to 1 on a 4r-neighbourhood of Z and vanishing off a 5r-neighbourhood of Z. Write

f(D) = ρ(ψ)g(D)ρ(ψ) + ρ(1 − ψ)g(D)ρ(ψ) + g(D)ρ(1 − ψ) + (f(D) − g(D)).

The first term is a locally compact operator supported near Z, the second and third
terms have norm bounded by 2ε by Lemma 2.6, and the fourth term has norm bounded
by ε by the spectral theorem. Thus, f(D) lies within 5ε of a locally compact operator
supported near Z. Since ε is arbitrary, f(D) ∈ C∗(Z ⊆ X), as was to be shown.

3. Vanishing results

As a consequence of the discussion above, if the curvature operator R is uniformly positive
outside Z, and if the K-theory map K∗(C∗(Z)) → K∗(C∗(X)) is zero, then the index
Index(D) ∈ K∗(C∗(X)) must vanish. The usual vanishing theorem establishes this result
when Z = ∅ (i.e. when we have uniformly positive curvature on the whole of M), so we
can regard these sorts of results as a generalization where one allows a ‘small amount’ of
non-positive curvature.

For example, we have the following proposition.

Proposition 3.1. Let M be a complete connected non-compact Riemannian manifold
and let D be a Dirac-type operator whose associated curvature R is uniformly positive
outside a compact set. Then, Index(D) = 0.

Proof. Let K be a compact set outside of which the curvature is uniformly positive
and let Z be the union of K and a geodesic ray from one of its points to infinity. The
index of D then lies in the image of K∗(C∗(Z)) → K∗(C∗(X)) by the discussion above.
But Z is coarsely equivalent to R

+, so K∗(C∗(Z)) = 0. �

As another example, imagine that we are in the situation of the ‘partitioned manifold
index theorem’ of [5]. So, let M be a non-compact manifold that is partitioned by a
compact hypersurface N , which (say) is spin and of non-zero Â-genus, into two pieces M+

and M−.

Proposition 3.2. A partitioned manifold as described above admits no complete met-
ric that has uniformly positive scalar curvature on just one of the partition components
(M+ or M−).

Proof. Suppose that M has such a metric. Using the distance from N , construct
a proper coarse map g : M → R that induces the given partition. By definition, the
partitioned manifold index is

g∗(IndexD) ∈ K1(C∗(|R|)) = Z,
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and the index theorem of [5] equates this to the Â-genus of N . Now suppose that M

has positive scalar curvature over M+. Then by our main result, the coarse index factors
through K1(C∗(M− ⊆ M)). But considering the commutative diagram

K1(C∗(M− ⊆ M)) ��

g∗

��

K1(C∗(M))

g∗

��
K1(C∗(R− ⊆ R)) �� K1(C∗(R))

and noting that the bottom left-hand group is zero, we see that the coarse index vanishes.
�

4. The relative index theorem

The key technical result of [1, Chapter 4] is a relative index theorem that may be
expressed as follows.

Suppose that M1 and M2 are complete Riemannian manifolds equipped with gener-
alized Dirac operators D1 and D2, respectively, acting on (graded) Clifford bundles S1

and S2. Suppose further that these items agree near infinity : in other words, suppose
that there exist compact sets Zi ⊆ Mi and an isometry h : M1 \ Z1 → M2 \ Z2 that is
covered by a bundle isomorphism from S1 to S2, and that this isomorphism conjugates
D1 to D2.

In these circumstances one can define a relative topological index Indexr(D1, D2) ∈
Z. There are several ways to define this quantity. For instance, one can compact-
ify each of the Mi identically outside Zi (thus obtaining compact manifolds M̃i with
elliptic operators D̃i) and then take the difference of the ordinary Fredholm indices,
Index(D̃1) − Index(D̃2), to define the relative index. Alternatively, one can take the
Chern–Weil forms ai that are the representatives of the indices of Di according to the
local index theorem, and ‘integrate their difference’ over M1 ∪ M2: specifically, note that
h∗ takes a2 to a1, so that if we let a be any smooth form on M2, supported outside Z2

and agreeing with a2 near infinity, then the difference
∫

M1

(a1 − h∗
a) −

∫
M2

(a2 − a)

is well defined (the integrands are compactly supported) and independent of the choice
of a, and may be taken as the definition of the ‘integral of the difference of Chern–Weil
forms’. The equality of these two definitions of relative index is essentially Proposition 4.6
of [1]: it shows both that the first definition is independent of the choice of compactifi-
cation and that the second definition yields an integer.

Remark 4.1. Either definition implies that the relative index Indexr(D1, D2) depends
only on the geometry of M1 and M2 (and the associated operators) in a neighbourhood
of the ‘regions of disagreement’ Z1 and Z2. This stability property of the relative index
is the basis for several calculations in [1].
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Now suppose further that D1 and D2 have uniformly positive Weitzenbock curvature
operators at infinity. Then D1 and D2, individually, are Fredholm operators, by [1,
Theorem 3.2] (a special case of our Theorem 2.4). The relative index theorem then states
the following proposition.

Proposition 4.2 (Gromov and Lawson [1, Theorem 4.18]). In the circumstances
described above one has

Index(D1) − Index(D2) = Indexr(D1, D2).

We are going to generalize this result by allowing the ‘regions of disagreement’ Zi to
be non-compact. The first thing that we need to do is to define the relative index in
this case. The following discussion, which is based on the ideas of [6], leads up to the
generalized definition of the relative index, Definition 4.5.

Let M1 and M2 be complete Riemannian manifolds (as above) and let D1 and D2 be
generalized Dirac operators. Suppose that M1 and M2 are equipped with coarse maps q1

and q2 to a control space X (a proper metric space) and that Z is a subset of X. Put
Zi = q−1

i (Z) ⊆ Mi for i = 1, 2. Suppose that there is a diffeomorphism h : M1 \ Z1 →
M2 \ Z2 that is covered by an isomorphism of Clifford bundles and Dirac operators and
is compatible with the control maps in the sense that q1 = q2 ◦ f .

From these data one can define a relative index in Kj(C∗(Z)). Let Hi be the Hilbert
space L2(Mi; Si) and regard each Hi as an X-module via the control map qi. In this
way we obtain translation algebras C∗(X; Hi), i = 1, 2, each of which contains an ideal
C∗(Z ⊆ X; Hi) corresponding to Z. The isometry h between the Mi outside Zi passes to
a unitary isomorphism V between the L2(Mi\Zi; Si) and it is easy to see that conjugation
by this unitary induces an isomorphism of quotient C∗-algebras

Φ : C∗(M1; H1)/C∗(Z1 ⊆ M1; H1) → C∗(M2; H2)/C∗(Z2 ⊆ M2; H2).

Lemma 4.3. Let the notation be as above and let f ∈ C0(R). Then,

Φ[f(D1)] = [f(D2)]

in the quotient algebra C∗(M2; H2)/C∗(Z2 ⊆ M2; H2).

There is also a ‘D∗-version’ of this discussion. Namely, following [9] we can define
ideals D∗(Zi ⊆ Mi; Hi) as the closure of the finite propagation pseudolocal∗ operators
that are supported near Zi and are locally compact on Mi \ Zi. Once again, conjugation
by U induces an isomorphism of quotient C∗-algebras

Ψ : D∗(M1; H1)/D∗(Z1 ⊆ M1; H1) → D∗(M2; H2)/D∗(Z2 ⊆ M2; H2).

Lemma 4.4. Let notation be as above and let χ be a normalizing function. Then

Ψ [χ(D1)] = [χ(D2)]

in the quotient algebra D∗(M2; H2)/D∗(Z2 ⊆ M2; H2).
∗ ‘Finite propagation’ is defined with respect to the control space X via the control maps qi; ‘pseu-

dolocal’ is defined with respect to the ambient manifold Mi.
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Proof. The proofs of Lemmas 4.3 and 4.4 both rely on the finite propagation speed
method. First we give the proof for Lemma 4.3. Suppose that f ∈ S(R) and has Fourier
transform f̂ supported in (−r, r). As usual, we write

f(D) =
1
2π

∫ ∞

−∞
f̂(t)eitD dt

and use the fact that, for a Dirac-type operator D, eitD has propagation |t|. Let ψi : Mi →
[0, 1] be a smooth function equal to 1 on an r-neighbourhood of Zi and vanishing off a
2r-neighbourhood of Zi, and such that ψ1 = ψ2 ◦ h on M1 \ Z1. Write

f(Di) = f(Di)ρ(ψi) + f(Di)(1 − ρ(ψi)).

Since f(Di) has propagation r, the first term belongs to C∗(Zi ⊆ Hi). By finite propa-
gation speed we have

V ∗eitD1ρ(1 − ψ1)V = eitD2ρ(1 − ψ2) for |t| < r.

Consequently,
V ∗f(D1)(1 − ρ(ψ1))V = f(D2)(1 − ρ(ψ2))

and the proof is complete for f having compactly supported Fourier transform. The
general result follows, since such f are norm-dense in C0(R).

The proof of Lemma 4.4 follows a similar pattern, where the Fourier transform χ̂ must
now be understood as a distribution with a mild singularity at 0. The only additional
argument that is needed is to show that

(V χ(D1)V ∗ − χ(D2))ρ(ϕ) (4.1)

is compact for ϕ ∈ C0(M2 \ Z2). Suppose in fact that ϕ is compactly supported. Then
there is a constant r > 0 such that d(Z2, Supp(ϕ)) > r and if we should choose the
normalizing function χ to have Fourier transform supported in (−r, r), then finite prop-
agation speed shows that the displayed quantity in 4.1 is not just compact: it is actually
zero! The general case follows from this particular one, since any two normalizing func-
tions differ by some g ∈ C0(R) and we already know that for such g the individual terms
g(D1) and g(D2) are locally compact. �

Now let πi denote the quotient map C∗(Mi) → C∗(Mi)/C∗(Zi ⊆ Mi) or D∗(Mi) →
D∗(Mi)/D∗(Zi ⊆ Mi) as appropriate. Let us define A to be the pull-back C∗-algebra

A = {(T1, T2) ∈ C∗(M1; H1) ⊕ C∗(M2; H2) : Φ(π1(T1)) = π2(T2)}.

Similarly, define B to be the pull-back C∗-algebra

B = {(T1, T2) ∈ D∗(M1; H1) ⊕ D∗(M2; H2) : Φ(π1(T1)) = π2(T2)}.

Then A is an ideal in B. Let D denote the Dirac operator on the disjoint union M1 �M2.
Lemmas 4.3 and 4.4 show that for a normalizing function χ, the operator χ(D) is an
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element of B, and that for a function f ∈ C0(R), the operator f(D) is an element of the
ideal A. Consequently, there is defined an index of D,

IndexZ(D) ∈ Kj(A). (4.2)

The group Kj(A) can be decomposed as a direct sum. In fact, let U : H1 → H2 be a
covering isometry for the identity map [2, Definition 6.3.9] that agrees on L2(M1 \ Z1)
with the isomorphism L2(M1 \Z1) → L2(M2 \Z2) induced by h. (The hypothesis that h

boundedly commutes with the control maps assures the existence of such an isometry.)
There is then a split short exact sequence

0 → C∗(Z1 ⊆ M1) → A → C∗(M2) → 0, (4.3)

where the first map is a �→ (a, 0), the second is (a1, a2) �→ a2, and the splitting maps a

to (U∗aU, a). From this split short exact sequence we obtain a direct sum decomposition

Kj(A) = Kj(C∗(Z1 ⊆ M1)) ⊕ Kj(C∗(M2)).

Definition 4.5. The relative index of the above data is the component in Kj(C∗(Z1 ⊆
M1)) = Kj(C∗(Z)) of IndexZ(D) ∈ Kj(A). We denote it by Indexr(D1, D2).

The generalization of Gromov–Lawson’s relative index theorem is then the following
theorem.

Theorem 4.6. Let (Mi, Di, qi) be a set of relative-index data over (X, Z) with
the notation described above. Suppose that the operators Di have uniformly positive
Weitzenbock curvature operators outside Zi. Then each Di has a localized coarse index
in Kj(C∗(Z)), by Theorem 2.4, and the identity

IndexZ(D1) − IndexZ(D2) = Indexr(D1, D2)

holds in Kj(C∗(Z)).

(The case considered by Gromov and Lawson can be recovered by taking X = R
+,

Z = {0}.)

Proof. Let A be the pull-back algebra that we introduced in our definition of the
relative index (so that A consists of pairs (T1, T2), Ti ∈ C∗(Mi), that ‘agree away from
Z’). Let J be the ideal in A that consists of pairs (T1, T2), where each Ti belongs to
C∗(Zi ⊆ Mi); in fact, J is simply the direct sum C∗(Z1 ⊆ M1) ⊕ C∗(Z2 ⊆ M2). Let D

denote the Dirac operator on M1 � M2.
Because of the positive curvature away from Z, it follows from Lemma 2.3 that, for

f ∈ C0(R), f(D) belongs to the ideal J . Thus, in this case, the index IndexZ(D) defined
in (4.2) in fact belongs to Kj(J) = Kj(C∗(Z))⊕Kj(C∗(Z)), and it is apparent from the
definitions that, in terms of this direct sum decomposition,

IndexZ(D) = (IndexZ(D1), IndexZ(D2)).
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The definition of the relative index tells us to take the component of IndexZ(D)
in Kj(C∗(Z)) in the direct sum decomposition coming from the split short exact
sequence (4.3). Restricted to J , this sequence takes the form

0 → C∗(Z) → C∗(Z) ⊕ C∗(Z) → C∗(Z) → 0,

where the first map is inclusion on the first factor, the second is projection on the second
factor and the splitting used is a �→ (a, a). Using this splitting, one finds that the relevant
component of IndexZ(D) = (IndexZ(D1), IndexZ(D2)) is IndexZ(D1) − IndexD(Z2), as
required. �

As we observed above, it is an important feature of the Gromov–Lawson relative index
that it depends only on the geometry of a neighbourhood of the ‘region of disagreement’.
The corresponding result is also true in our more general context and is a key to the
applications of the relative index concept in [7].

Proposition 4.7 (Roe [7, Theorem 3.12]). The relative index of Definition 4.5
depends only on the geometry of a metric neighbourhood of Z1 and Z2 and the operators
thereon.

Notice that this statement is independent of any positive-curvature hypotheses.

Proof. This follows from the results of [8]. In that paper, it was shown that to a set of
relative index data (as described in this section), one may associate a relative homology
class that lies in the K-homology group K∗(Z). Moreover, comparison of the definitions
shows that our coarse relative index is simply the image of this relative homology class
under the coarse assembly map

A : K∗(Z) → K∗(C∗(Z)).

The result is therefore a consequence of [8, Proposition 4.8], which states that in fact the
relative homology class of a set of relative index data depends only on the geometry in a
neighbourhood of the region of disagreement. �
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